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Abstract 

Increasing atmospheric concentration of N2O has been a concern, as it is a potent greenhouse 

gas and promotes ozone layer destruction. In the N-cycle, release of N2O is boosted upon a 

drop of pH in the environment. Here, Marinobacter hydrocarbonoclasticus was grown in 

batch mode in the presence of nitrate, to study the effect of pH in the denitrification pathway 

by gene expression profiling, quantification of nitrate and nitrite, and evaluating the ability of 

whole cells to reduce NO and N2O. At pH 6.5, accumulation of nitrite in the medium occurs 

and the cells were unable to reduce N2O. In addition, the biochemical properties of N2O 

reductase isolated from cells grown at pH 6.5, 7.5 and 8.5 were compared for the first time. 

The amount of this enzyme at acidic pH was lower than that at pH 7.5 and 8.5, pinpointing to 

a post-transcriptional regulation though pH did not affect gene expression of N2O reductase 

accessory genes. N2O reductase isolated from cells grown at pH 6.5 has its catalytic center 

mainly as CuZ(4Cu1S), while that from cells grown at pH 7.5 or 8.5 has it as CuZ(4Cu2S). 

This study evidences that an in vivo secondary level of regulation is required to maintain N2O 

reductase in an active state. 
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Introduction 

Nitrous oxide (N2O) has an estimated half-life of 120 years in the atmosphere, being one of 

the major contributors to the greenhouse effect [1, 2]. Global analysis of N2O emissions 

highlights that there has been an enhancement of this gas in the atmosphere in the last century 

due to biomass burning, combustion of fossil fuel and in particular from agriculture through 

the use of synthetic nitrogenous fertilizers [3-5]. In fact, 60 % of N2O emissions come from 

soils [5]. Nevertheless, a perturbation in nitrogen balance of marine systems has also been 

observed due to the increase presence of fertilizers in drainage waters and inorganic nitrogen 

leaching to coastal seawaters and oceans [2, 6]. 

An increase in nitrogen-based compounds together with low oxygen tensions in these 

environments induces anaerobic metabolic processes, such as denitrification and anammox 

(pathways of the nitrogen cycle). In fact, many bacteria can switch from respiring oxygen to 

respiring nitrate (NO3-) and using N2O as terminal electron acceptor, by activating the 

denitrification pathway [7]. This pathway, when complete, is a four-step process, with each 

step being catalyzed by a different metalloenzyme, in which nitrate is reduced to the inert 

dinitrogen gas (N2) via nitrite (NO2-), nitric oxide (NO) and N2O [8]. The genes required for 

this pathway include those encoding the catalytic subunits of the reductases - nitrate reductase 

(narG or napA), nitrite reductase (nirS or nirK), nitric oxide reductase (c-norB or q-norB) and 

nitrous oxide reductase (nosZ), as well as genes encoding various accessory proteins 

necessary for the biosynthesis and cofactor assembly in those reductases [9].  

The last step of the denitrification pathway is catalyzed by nitrous oxide reductase (N2OR), in 

which N2O is reduced to dinitrogen and water, in a reaction involving two electrons and two 

protons [10]. The analysis of the nosZ operon in several genomes let to the division of these 

enzymes in two clades, Clade I and Clade II [11]. Clade I N2ORs were the first to be isolated, 

and they have been the focus of most of the spectroscopic, kinetic and structural studies 
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reported in the literature. Clade II N2OR are not so well characterized and are present in 

Gram-positive bacteria and in canonical non-denitrifiers [12]. 

N2OR is a homodimeric enzyme containing two multicopper centers - a binuclear copper 

center [13], CuA, which is the electron transferring center and whose properties are similar to 

CuA center found in cytochrome c oxidase; and a tetranuclear copper-sulfide cluster named 

“CuZ” center, which is the catalytic center [14]. The four coppers of the catalytic center adopt 

a tetrahedral arrangement and each of them is coordinated by two histidine residues, with 

exception of CuIV, which has only one histidine ligand. These characteristics are common to 

Clade I and Clade II N2OR, but in Clade II N2OR isolated from Wolinella succinogenes there 

is an additional C-terminal domain containing a c-type heme, which is a quite unique feature 

of this enzyme [15]. 

Attending to the fact that Marinobacter hydrocarbonoclasticus N2OR, the focus of this work, 

belongs to Clade I N2OR, the spectroscopic and redox properties of these enzymes will be 

described, and from now on they will be referred only as N2OR for simplicity. 

N2OR has been isolated with “CuZ” center in two different forms CuZ(4Cu2S) and 

CuZ(4Cu1S). Several studies have shown that these two forms of "CuZ” center differ in their 

kinetic, spectroscopic and redox properties [16-19], and also in its structure, with 

CuZ(4Cu2S) presenting a second sulfur atom in between CuI and CuIV [20]. 

CuZ(4Cu1S) has only been isolated in the [1Cu2+-3Cu1+] oxidation state, which is kinetically 

inert and characterized by a maximum absorbance band at 640 nm [21]. This form of “CuZ” 

center can be reduced to the [4Cu1+] oxidation state, after a prolonged incubation (between 3-

5 h) with reduced viologens [22-24], becoming catalytically competent with a high turnover 

number (kcat = 321 s-1) [22]. 

CuZ(4Cu2S) can be isolated in two oxidation states, [2Cu2+-2Cu1+] or [1Cu2+-3Cu1+], with the 

reduction potential of this redox pair being + 60 mV, at pH 7.5 [18, 25], but cannot be 
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reduced to the [4Cu1+] oxidation state [16, 25]. In its reduced state, CuZ(4Cu2S) can react 

with N2O but has a very low turnover number (kcat = 0.6 h-1) [16]. Spectroscopically, it is 

characterized by a maximum absorption band at 550 nm with a shoulder at 635 nm in the 

oxidized state, and a broad absorption band with a maximum at 670 nm in the reduced state 

[17, 18].  

There has been a debate as whether the active form of N2OR in vivo is one with “CuZ” center 

as CuZ(4Cu2S) or as CuZ(4Cu1S). In fact, N2OR with CuZ(4Cu2S) has been isolated mainly 

under anoxic conditions [18], while the enzyme with CuZ(4Cu1S) has been isolated under 

oxic conditions [18, 21]. However, N2OR with CuZ(4Cu1S) was also isolated from a double 

mutant in Paracoccus denitrificans nosXnirX [26] or from Pseudomonas stutzeri mutants in 

the accessory gene nosR [27]. In fact, it has been proposed that NosR (maturated by NosX, or 

by the ApbE homologue protein [28]), could be responsible for maintaining N2OR in an 

active state, or involved in electron transfer to N2OR [26]. 

The rate of denitrification and amount of N2O released to the atmosphere is affected by 

different environmental factors [29], such as copper availability [30], temperature [31, 32], 

oxygen concentration [33, 34], pH [35-38], sulfide concentration and carbon dioxide [39]. In 

some cases, it leads to its arrest at different points, resulting in an incomplete denitrifying 

pathway, but remaining an energy conservation process. Under such conditions NO and/or 

N2O might be released to the atmosphere [40, 41]. The release of N2O from cultures or soils 

kept at low pH values has been attributed to incorrect assembly of N2OR [35, 36, 42], though 

the enzyme has never been isolated from cells grown under such conditions. 

The effect of pH on the denitrification pathway of the marine bacterium Marinobacter 

hydrocarbonoclasticus 617 is reported. The influence of cultivating the cells at pH 6.5 or 8.5 

on the denitrification pathway was investigated in a bioreactor operating in batch mode under 

microaerobic conditions. Nitrate and nitrite concentrations were monitored and the rates of 
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reduction of exogenous NO and N2O gases by the whole cells were analyzed throughout the 

growth. The expression of genes encoding the catalytic subunits of the enzymes of the 

denitrification pathway, as well as some accessory proteins were analyzed, during the growth 

at the two pH values. In addition, N2OR was isolated, spectroscopic and kinetically 

characterized from cells grown at three different pH values (6.5, 7.5 and 8.5) to identify 

differences that could explain at the molecular level the release of N2O from acidic (soils or 

aquatic) environments. 

 

 

Materials and Methods 

Materials 

All the reagents used in this work were of the highest purity grade available from either 

Sigma-Merck. In the assays with NO and N2O, a NO- or N2O-water-saturated solution was 

prepared at 95.5 µM and 25 mM, respectively. The N2O solution was prepared by degassing 5 

mL of Milli-Q water for 30 min with argon in a sealed serum flask (sealed with a rubber 

septum and aluminum cap) followed by vacuum cycles, and then flushed with N2O (> 95 % 

N2O, Air Liquid) for 1 h. For the preparation of the NO solution, a 10 % (per mass) KOH 

solution was placed between the NO bottle (5 % NO/95 % He, Air liquid) and the Milli-Q 

water argon-saturated solution, to remove other nitrogen oxides from the NO gas, and the 

solution was flushed during 1 h with NO. 

 

Growth of M. hydrocarbonoclasticus in the bioreactor 

M. hydrocarbonoclasticus 617 was grown in artificial seawater (ASW) liquid medium [43] at 

30 ºC in an open system using a 2-L or 10-L bioreactor with 0.75 % (w/w) sodium lactate, as 

carbon source, and 10 mM sodium nitrate, as an electron acceptor. In short, microaerobic 
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conditions were achieved with an aeration rate of 0.2 vvm, maintained throughout the growth, 

and the culture was stirred at 150 rpm for 5 h, and afterwards at 50 rpm until the end of the 

growth (48 h). pH was continuously controlled and automatically adjusted to pH 6.5 or 8.5, 

with 1 M HCl or 1 M NaOH. The oxygen level was monitored using an oxygen electrode 

(Hamilton). The growth experiments were performed at least in triplicate. Samples of 4-mL 

were collected during the 2-L bioreactor growth and used to: i) measure the optical density at 

600 nm (OD600nm); and quantify ii) gene expression; iii) nitrate and nitrite; iv) nitric and 

nitrous oxide reduction rates by whole-cells (see below). 10-L bioreactor was used to obtain 

cell mass for protein purification. The growths performed in the 10-L bioreactor were 

monitored through nitrate and nitrite quantifications and by measuring the ability of whole-

cells to reduce NO and N2O. 

At the end of each growth the cells were harvested by centrifugation (Beckman Avanti J-26 

XPI) at 7930 g for 15 minutes, 6 ºC. The pellet was resuspended in 50 mM Tris-HCl pH 7.6 

(in a proportion of 1 g cells per mL of buffer), containing protease inhibitors (EDTA-free 

cOmplete Protease Inhibitor, Roche) and DNase I (Roche), and then degassed by bubbling 

argon prior to its storage at - 80 °C. 

 

Nucleic acid extraction and cDNA generation 

Samples of 1-mL were taken at different time-points from the bioreactor (operating at pH 6.5 

or 8.5) and immediately frozen in liquid nitrogen, until further use. Total RNA was extracted 

using the Isolate II RNA mini kit (Bioline), according to the manufacturer’s instructions. 

Genomic DNA was digested with DNase I and its removal confirmed by PCR. RNA integrity 

was evaluated by agarose gel electrophoresis and estimated by determining the A260nm/A280nm 

and A260nm/A230nm ratios. Each RNA sample (500 ng) was reversely transcribed immediately 

after its extraction, to generate the respective cDNA using the SensiFAST cDNA Synthesis 
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Kit (Bioline) and the following thermal cycling settings: 10 min at 25 °C, 15 min at 42 °C and 

5 min at 85 °C. cDNAs were 1:100 diluted and kept at -80 °C. DNA used in standard curves 

was extracted from a sample of the bioreactor culture taken during the exponential phase, 

using the Isolate II Genomic DNA Kit (Bioline), according to the manufacturer’s instructions.  

 

Quantitative Real-Time PCR 

Effect of pH on the expression of M. hydrocarbonoclasticus genes involved in the 

denitrification pathway (narG, nirS, c-norB, nosZ, nosR, nosD, nosL) and accessory genes 

(MARHY1479, MARHY1380, pCuC (MARHY1049) and senC (MARHY0057)) were analyzed 

by quantitative real-time PCR (qPCR). Primers were designed using Primer3 software [44] 

(Table S1 in Supplementary Material). In each reaction, specific primers (250 nM) for the 

target gene were used to amplify the cDNA (3 µL) using the SensiFAST™ SYBR No-ROX 

Kit (Bioline). Reactions were performed on a Corbett Rotor-Gene 6000 instrument (Qiagen) 

using the following thermal cycling conditions: 95 °C for 5 min followed by 40 cycles of 95 

°C for 15 s and 60 °C for 30 s. Analysis of melting curves generated by the stepwise increase 

of the temperature from 60 °C to 95 °C, were used to verify the specificity of the amplified 

products. Gene expression levels were determined using the relative standard curve method 

[45]. Standard curves were prepared with genomic DNA, and the amount of cDNA of each 

gene was determined by conversion of the mean threshold cycle (Ct) value of its respective 

DNA curve [45]. Relative normalized expression values were determined by dividing the 

quantity obtained for each gene by the one obtained for the control gene (16S rRNA), as its 

expression remained stable throughout the different growth phases. Reactions were run at 

least in duplicate and a “no template” and “no transcriptase” (a reverse transcription reaction 

containing all reagents except the reverse transcriptase enzyme) controls were also included in 

each qPCR assay. Similar expression profiles were obtained for three biological replicates 
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performed at each pH, but since samples were not collected at the same time-points, the data 

for one representative experiment is presented. 

 

Nitrate and nitrite quantifications 

Nitrate and nitrite concentrations were determined in triplicate in the samples collected from 

each growth, using the Nitrate/Nitrite Assay kit (Sigma). This method, involving two 

separated reactions, one to detect nitrite and another to detect both nitrate and nitrite, was 

performed in a 96-well microplate following the manufacturer’s instructions. The absorbance 

was measured at 540 nm in a VersaMax ELISA Microplate Reader. 

 

Nitric oxide and nitrous oxide reduction rates by whole-cells 

The ability of whole-cells to reduce exogenous NO and N2O in the presence of reduced 

methyl viologen was followed at 600 nm, using a fiber-optic diode-array spectrophotometer 

(TIDAS), inside a glove box (MBraun). Assays for nitric oxide reduction were performed 

with constant stirring, by adding 40 μL of M. hydrocarbonoclasticus cell suspension, 

collected from the bioreactor at each time-point, to a quartz cuvette already containing 120 

µM methyl viologen and 60 µM sodium dithionite in 100 mM Tris-HCl pH 7.6 (in a final 

volume of 1 mL). The nitric oxide reduction assay was initiated with the addition of 100 µL 

NO-saturated water (to a final concentration of 9.6 µM). A similar procedure was followed 

for the nitrous oxide reduction assay, but with 100 µM methyl viologen and 50 µM sodium 

dithionite in 100 mM Tris-HCl pH 7.6 (in a final volume of 1 mL), with the reaction being 

initiated immediately (without further incubation) by addition of 50 µL N2O-saturated water, 

to a final concentration of 1.25 mM. Reduction assays by whole-cells were performed within 

1-3 h after collecting the cell suspension, with the samples being kept at 4 °C during that 

period. Reduction rates were determined by subtracting the slope of the residual oxidation in 
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the absence of substrate to the initial slope after NO or N2O addition. The activity was 

calculated taking into consideration the number of electrons involved in each reaction and is 

reported as micromoles of NO or N2O reduced per minute per optical density (µmolNO or 

N2O·min-1·OD-1). 

 

Purification of nitrous oxide reductase 

The cell suspension obtained from the growth experiments performed at different pH values 

(6.5, 7.5 and 8.5) was diluted 5 times with cold distilled water (dH2O) and 0.5 mM EDTA, 

under continuous stirring, and incubated for 30 min at room temperature. The suspension was 

then centrifuged during 1 h, 6 ºC at 32816 g in a Beckman Coulter centrifuge (Avanti J-26 

XPI), and the periplasmic extract was loaded onto an anion exchange DEAE Fast Flow 

chromatographic column (Ø 2.6 cm x 28 cm), previously equilibrated with 10 mM Tris-HCl 

pH 8.0. After washing out unbound proteins, a linear gradient, from 0 to 500 mM NaCl in 10 

mM Tris-HCl pH 8.0, was applied during 250 min, at 3 mL min-1 to elute the bound proteins. 

The fractions containing N2OR were diluted 10 times with distilled H2O and applied onto a 

second anionic exchange Source15-Q chromatographic column (Ø 2.6 cm x 13 cm), 

previously equilibrated with 10 mM Tris-HCl pH 8.0. A step gradient, from 0 to 300 mM 

NaCl in 10 mM Tris-HCl pH 8.0, was applied during 200 min at 4 mL min-1. The N2OR-

containing fractions were combined, concentrated using a Vivacell (Sartorius) apparatus over 

a YM30 membrane at 4 ºC, under argon atmosphere and stored as small spheres in liquid 

nitrogen. Fractions were monitored during the purification by visible spectroscopy and SDS-

PAGE (12.5 % Tris-Tricine polyacrylamide) to evaluate N2OR purity (see Figure S1 in 

Supplementary Material). 

The whole procedure, starting from the periplasm preparation to protein purification, was 

performed under anoxic conditions inside a glove box, with an atmosphere of 2 % H2 in 
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Argon (Coy Laboratories) at room temperature. This procedure is known to maintain “CuZ” 

center unaltered. 

 

Biochemical and spectroscopic characterization of nitrous oxide reductase 

Total protein concentration was determined by the Lowry modified method [46], using bovine 

serum albumin as the standard protein.  

The visible spectra of the isolated samples of M. hydrocarbonoclasticus N2OR were recorded 

on a UV-1800 spectrophotometer (Shimadzu). N2OR samples were reduced with either 

sodium ascorbate or sodium dithionite and oxidized with a solution of potassium ferricyanide 

(dithionite and ferricyanide solutions were prepared in 100 mM Tris-HCl pH 7.6). Nitrous 

oxide reductase concentration was determined based on the extinction coefficient of the 

dithionite reduced form, 3.5 mM-1 cm-1 for CuZ(4Cu1S) at 640 nm [21] or 4.0 mM-1 cm-1 for 

CuZ(4Cu2S) at 670 nm (this work), for the monomer.  

Total copper content was estimated using the 2,2’-biquinoline modified assay [47] and/or ICP 

(Inductively Coupled Plasma) analysis.  

The electron paramagnetic resonance (EPR) spectra of each N2OR purified sample (~200 µM 

per monomer, in 100 mM Tris-HCl pH7.6) were recorded on a X-band Bruker EMX 

spectrometer equipped with a rectangular cavity (model ER 4102T) and an Oxford 

Instruments continuous liquid helium flow cryostat, operating at 30 K. Spectra were acquired 

with the following instrument settings: microwave frequency, 9.65 GHz; microwave power, 2 

mW; gain, 1 x 105. The EPR spectra of each N2OR purified sample was acquired for the as-

isolated, ferricyanide-oxidized, and ascorbate-, dithionite- and methyl viologen-reduced 

forms, prepared inside a glove box (Mbraun). 
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Enzymatic activity of the isolated N2OR 

All the procedures to prepare the fully reduced N2OR and activity assays were performed 

inside a glove box (MBraun) at room temperature. Activity assays were performed by 

monitoring the oxidation of the redox mediator, using a TIDAS diode-array 

spectrophotometer. In short, 70 nM N2OR was incubated under anaerobic conditions with 100 

µM methyl viologen and 50 µM sodium dithionite in 100 mM Tris-HCl pH 7.6 during 180 

min. After this period, the assay was initiated by adding N2O-saturated water to a final 

concentration of 1.25 mM and the oxidation of reduced methyl viologen was followed at 600 

nm [21, 48]. Specific activity was determined through linear regression fitting of the 

oxidation curve immediately after substrate addition. A similar assay was performed using a 

dithionite reduced N2OR (prepared as describe below), but without further incubation with 

reductants in the activity assay. 

The activity using reduced cytochrome c552 as electron donor was determined, as described in 

[22]. In the assay, 60 µM N2OR were reduced with 100 equivalents of reduced methyl 

viologen or 5 mM sodium dithionite in 100 mM Tris-HCl pH 7.6 for 3 h followed by 

desalting using a NAP-5 column (GE Healthcare) equilibrated with the same buffer. The 

assays were initiated by the addition of dithionite- or fully reduced 70 nM N2OR to a cuvette 

containing 7-10 µM reduced cytochrome c552 and 1.25 mM N2O-saturated water, in 100 mM 

Tris-HCl pH 7.6. Specific activities, either using methyl viologen or cytochrome c552 as 

electron donor, are reported as µmolN2O·min-1·mgN2OR-1. 
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Results 

M. hydrocarbonoclasticus cells grown under denitrifying conditions at different pH values 

M. hydrocarbonoclasticus cells were grown in a 2-L bioreactor operated in batch mode in the 

presence of 10 mM sodium nitrate and at low aeration rate (to attain microaerobic conditions), 

maintaining the pH of the growth media constant at either pH 6.5 or 8.5 (see Figure S1 in 

Supplementary Material). The growth curve of M. hydrocarbonoclasticus at pH 8.5 had a 

diauxic behavior with a growth rate of 0.135 ± 0.006 h-1 for the first 7 h (see Figure S1A in 

Supplementary Material), during which the oxygen level decayed rapidly. After 2 h of 

incubation the oxygen level became negligible and remained as such for the entire duration of 

the growth period (see Figure S1B in Supplementary Material). 

The growth curve of M. hydrocarbonoclasticus at pH 6.5, exhibited a shorter exponential 

phase (4 h) but with a higher growth rate, 0.164 ± 0.014 h-1, followed by a stationary phase 

until the end of the growth period (see Figure S1A in Supplementary Material). The oxygen 

level became negligible in the beginning of the exponential phase, but increased after time-

point 5 h, reaching around 90 % and remaining at that value until the end of the growth period 

(see Figure S1B in Supplementary Material). At this pH, the culture ceased growing leading 

to a lower final OD600nm (0.82 versus 2.11, for the growth at pH 6.5 and pH 8.5, respectively) 

(see Figure S1A in Supplementary Material), which resulted in a lower wet cell mass (4 g L-1 

media for pH 6.5 versus 8 g L-1 for pH 8.5). 

 

Gene expression during M. hydrocarbonoclasticus growth under denitrifying conditions at 

different pH values 

The expression of genes involved in the denitrification pathway of M. hydrocarbonoclasticus 

cells grown under denitrifying conditions at pH 6.5 (Figure 1A) and 8.5 (Figure 1B) was 

analyzed by qPCR. Expression profiles showed that genes encoding the catalytic subunits of 
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denitrifying enzymes (narG, nirS, c-norB and nosZ) are expressed simultaneously at each pH 

(Figure 1A and 1B). However, the timing of maximum transcription was affected by pH, as 

maximum transcription levels occurred at time-point between 1 and 3 h for pH 6.5 (Figure 

1A) and at 7 h for pH 8.5 (Figure 1B), which corresponded to the end of the exponential 

phase (Figure 1A and 1B). A similar result was observed by Carreira and colleagues in M. 

hydrocarbonoclasticus cells grown at pH 7.5, in which the maximum of expression occurred 

after 5 h of growth [49]. 

In cells grown at pH 7.5 (published work by Carreira and colleagues in [49]) and at pH 8.5, 

the expression levels of narG were lower than the ones of the other denitrification genes 

(Figure 1B). In cells grown at pH 6.5, the gene with the lower expression level was nirS 

(Figure 1A). The maximum expression level of nirS in cells grown at pH 6.5 had a 6-fold 

decrease when compared with its maximum expression level at pH 8.5 (Figure 1). 

 

- Insert Figure 1 here -  

 

The expression profile of genes encoding the accessory proteins, proposed to be involved in 

the biosynthesis of N2OR copper centers or in the maintenance of its active state [28, 50-52], 

were also analyzed by qPCR during growth experiments at pH 6.5, pH 7.5 and pH 8.5, but no 

significant changes were observed in their expression levels, with the exception of senC that 

had a lower expression at pH 6.5 (Figure S3 in Supplementary Material). Another difference 

was the expression profile of MARHY1380 (M. hydrocarbonoclasticus nosX homologue, see 

Figure S2A in Supplementary Material), as its maximum expression occurred at the same 

time point as the one of genes encoding the catalytic subunits of denitrifying enzymes at pH 

6.5 (Figure 1A). For the growth experiments at pH 7.5 and 8.5, MARHY1380 was still highly 

expressed during the first 3 h (Figure S2B and S2C in Supplementary Material), but the 
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maximum gene expression of the genes encoding the catalytic subunits of denitrifying 

enzymes occurred at 5 h, for the growth experiment performed at pH 7.5 (published data in 

[49]) and 7 h, for the growth experiment performed at pH 8.5 (Figure 1B). This might 

evidence a different regulatory mechanism between MARHY1380 and the denitrifying genes. 

 

Nitrate and nitrite concentrations and activity of nitric oxide reductase and nitrous oxide 

reductase 

Free nitrate and nitrite were quantified along the growth to detect whether nitrate reductase 

(NaR) and cytochrome cd1 nitrite reductase (cd1NiR) were active in the cells, as these 

enzymes catalyze the reduction of nitrate and nitrite, respectively. The presence of the other 

two enzymes of the denitrification pathway (nitric oxide reductase (NOR) and N2OR) was 

evaluated by the ability of the cells to reduce exogenous NO and N2O through the oxidation 

of reduced methyl viologen as an electron donor (Figure 2). 

The analysis of these data showed that, nitrate consumption started at the same time point (2 

h), and that after 7-8 h of inoculation it was completely consumed (Figure 2). This indicated 

that nitrate was transported to the cytoplasm, and it was consumed at a similar rate, 

independently of the pH at which the cells were grown and that NaR was active in these cells. 

The decrease in nitrate concentration was concomitant with formation of nitrite, which 

reached a maximum value close to the initial nitrate concentration. In the growth experiment 

performed at pH 8.5, nitrite was completely consumed after ~ 10 h (during the initial stages of 

the second diauxic growth phase) (Figure 2B), similar to what was previously observed by 

Carreira and colleagues in cells grown at optimum pH (pH 7.5) [49]. However, in cells grown 

at pH 6.5, only 27 % of the total nitrite produced was consumed and consequently high levels 

of nitrite (around 6.2 mM) remained in the medium until the end of the growth period (40 h) 

(Figure 2A). 
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In fact, it was observed a lower amount of cd1NiR in the periplasm of cells grown at pH 6.5, 

when compared to the one of cells grown at pH 7.5 and pH 8.5 (see Figure S5 in 

Supplementary Material in which it is presented the heme-stained SDS-PAGE of the 

normalized periplasm). 

Cells grown at pH 8.5 were able to reduce external NO and N2O. In fact, their ability to 

reduce NO started before complete consumption of nitrite (5 h), coincident with the time-

point at which c-norB had already started to be transcribed. Similarly, these cells were able to 

reduce N2O after 7 h of incubation and maintained this ability until the end of the growth 

period (Figure 2B). Since reduction of N2O by the whole cells was detected, it is plausible to 

argue that the four steps of the denitrification pathway are carried out by Marinobacter 

hydrocarbonoclasticus cells when grown at pH 8.5. Indeed, the profile of denitrification 

metabolites (NO3- and NO2-), as well as the profiles of the reduction rates of NO and N2O by 

whole-cells grown at this pH were similar to the profiles reported previously in M. 

hydrocarbonoclasticus cells grown at optimum pH (pH 7.5) [49]. 

Cells grown at pH 6.5 were able to reduce externally provided NO after 6 h of incubation, 

ability that was maintained until the end of the growth period but were unable to reduce 

externally provided N2O (Figure 2A). This suggested that NOR was produced in an active 

form in these cells, while N2OR was either absent or not active. 

 

- Insert Figure 2 here -  

 

Biochemical and spectroscopic characterization of nitrous oxide reductase 

The effect of the pH of the growth media on the mature N2OR was analyzed through 

biochemical and spectroscopic characterization of the isolated enzyme. Little is known about 

the mechanism of N2O reduction in vivo. However, it is now clear that a slight acidification 
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(pH 6.5) in the growth medium of M. hydrocarbonoclasticus was sufficient to affect N2O 

reduction in vivo.  

However, this acidification of the growth media had no significant effect in the expression 

level of nosZ or of any other genes encoding proteins considered to be important for the 

copper center assembly and/or activity of N2OR. Thus, to seek for an explanation for such 

drastic effect, N2OR was isolated from cells grown at different pH values (6.5, 7.5 and 8.5, 

named here as N2OR6.5, N2OR7.5 and N2OR8.5, respectively). 

The yield of N2OR isolated from the periplasmic extracts differed between preparations, being 

higher for N2OR7.5 (0.5 ± 0.2 mgN2OR·gcell-1), than for N2OR6.5 (0.16 ± 0.02 mgN2OR·gcell-1, a 

three-fold lower yield) (Table 1). The amount of copper determined per N2OR7.5 (monomer) 

was close to the expected value (6 copper atoms per monomer), while N2OR6.5 and N2OR8.5 

had a lower copper/protein ratio than expected (Table 1), due to a lower purity index 

(presence of other proteins), which decreased this ratio (see Figure S6 in Supplementary 

Material). In fact, since the molar extinction coefficients (vide infra) were determined based 

on copper content and the values obtained were similar to the ones listed in the literature for 

N2OR from other microorganisms [11], it means that these three N2OR preparations had their 

copper centers fully loaded. 

 

- Insert Table 1 here -  

 

The visible spectra of N2OR6.5 differed from that of either N2OR7.5 or N2OR8.5 (Figure 3). The 

as-isolated N2OR6.5 exhibited a spectrum with a maximum absorption band at 640 nm, 

characteristic of CuZ(4Cu1S) in the [1Cu2+-3Cu1+] oxidation state, with CuA center being 

mainly in the [Cu1+-Cu1+] oxidation state (Figure 3A, spectrum II). The spectrum of N2OR6.5 

reduced with sodium ascorbate (data not show) or sodium dithionite did not differ 
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significantly from the one of the as-isolated form, corroborating that the enzyme was isolated 

with CuA center in the reduced state. Upon oxidation of N2OR6.5 with potassium ferricyanide, 

absorption bands at 480 nm, 540 nm and 800 nm were observed, characteristic of the oxidized 

CuA center, while the absorption band with the maximum at 640 nm did not change (Figure 

3A). These spectroscopic features are characteristic of N2OR isolated with “CuZ” center 

mainly as CuZ(4Cu1S) [53]. 

The features of the as-isolated N2OR7.5 (and N2OR8.5) visible spectra evidenced that both CuA 

and “CuZ” centers were in the reduced state (Figure 3C and 3E, spectra II). Both centers were 

fully oxidized by addition of potassium ferricyanide, with the visible spectra presenting 

absorption bands with maxima at 480 nm, 540 nm and 800 nm, and a shoulder at 635 nm 

(Figure 3C and 3E, spectra I). Upon reduction of N2OR7.5 with sodium ascorbate, CuA center 

was reduced, not contributing to the spectra and the features of the “CuZ” center become 

defined, with a maximum absorption band at 550 nm and a shoulder at 635 nm (data not 

shown). The spectra of the dithionite reduced N2OR7.5 and N2OR8.5 exhibited a single 

absorption band with a maximum around 670 nm (Figure 3C and 3E, spectra III). The 

properties of the absorption spectra described for N2OR7.5 and N2OR8.5 are characteristic of 

N2OR isolated with “CuZ” center mainly as CuZ(4Cu2S) [53]. 

The X-band EPR spectra of these different N2OR preparations were also acquired at different 

oxidation states by complete oxidation with potassium ferricyanide, or selectively reducing 

the copper centers with sodium ascorbate (data not shown), sodium dithionite (data not 

shown) or methyl viologen (Figure 3B, 3D and 3F). 

The EPR spectrum of oxidized N2OR6.5 showed an axial signal, with g║ = 2.17 and g┴ = 2.04, 

and showed a low resolved pattern of seven hyperfine lines in the A║ region (A║ = 3.9 mT) 

(Figure 3B, spectrum I). This pattern is explained by a delocalized electron (S = 1/2) between 

two coupled copper nuclei (I = 3/2), assigned to the mixed-valence [Cu1.5+-Cu1.5+] oxidation 
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state of CuA center. The broadening of the spectra is attributed to a delocalized electron on 

the CuZ(4Cu1S), in the [1Cu2+-3Cu1+] oxidation state. This form of “CuZ” center cannot be 

further reduced by sodium dithionite, but its signal disappeared upon prolonged incubation 

with reduced methyl viologen (Figure 3B, spectrum IV). This is an evidence that “CuZ” 

center was completely reduced to the [4Cu1+] oxidation state, which is diamagnetic. These 

spectral features are similar to the ones previously reported for M. hydrocarbonoclasticus 

N2OR with “CuZ” center mainly as CuZ(4Cu1S) [54], strengthening the conclusion taken 

from the analysis of its visible spectra. 

The EPR spectra of oxidized N2OR7.5 (and N2OR8.5) presented an axial signal with g║ = 2.18 

and g┴ = 2.03, with a well-resolved 7-line hyperfine coupling (A║ = 3.9 mT), in an intensity 

ratio of 1:2:3:4:3:2:1 (Figure 3D and 3F, spectra I). These features arise from the presence of 

the mixed-valence CuA center in the [Cu1.5+-Cu1.5+] oxidation state, as explained before. The 

well-resolved 7-line pattern in N2OR EPR spectrum is generally observed when the only 

contribution to this spectrum is CuA center, suggesting that the form of “CuZ” center present 

in such sample is diamagnetic and in the [2Cu2+-2Cu1+] oxidation state. The EPR spectra of 

N2OR7.5 and N2OR8.5 after prolonged incubation with reduced methyl viologen exhibited an 

axial signal, similar to the sodium dithionite reduced sample (data not shown) but with lower 

intensity (Figure 3D and 3F, spectra IV), suggesting that methyl viologen could not reduce 

this form of “CuZ” center to the [4Cu1+] oxidation state, in agreement with the previous 

observations that in these samples “CuZ” center was mainly as CuZ(4Cu2S) [16]. 

 

- Insert Figure 2 here -  
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The specific activity of each N2OR preparation was determined in the presence of its 

physiological electron donor, cytochrome c552, or an artificial donor, methyl viologen [22] 

(Table 2). 

Knowing that N2OR with CuZ(4Cu1S) is only active in the fully reduced form [16], the three 

enzyme samples were incubated with methyl viologen during 3 h, prior to measuring its 

activity. The specific activity of N2OR6.5 determined using this procedure (192 ± 14 

µmolN2O·min-1·mgN2OR-1) was higher than the one of N2OR7.5 (51 ± 18 µmolN2O·min-

1·mgN2OR-1) and N2OR8.5 (55 ± 5 µmolN2O·min-1·mgN2OR-1) samples (Table 2). This was an 

indication that the percentage of CuZ(4Cu1S) was higher in the enzyme isolated from cells 

grown at pH 6.5. Moreover, considering that an enzyme sample with 100 % of CuZ(4Cu1S) 

has a specific activity of 200 µmolN2O·min-1·mgN2OR-1 [16, 53], the data showed that N2OR7.5 

and N2OR8.5 were isolated with around 25 % of CuZ(4Cu1S), even if all the purification 

procedure was performed in the absence of oxygen. 

The activity corresponding to CuZ(4Cu2S) was measured in assays with N2OR reduced with 

sodium dithionite, as CuZ(4Cu2S) in the [1Cu2+-3Cu1+] oxidation state is able to reduce N2O, 

while CuZ(4Cu1S) in the same oxidation state is not, as previously reported [16]. The specific 

activity of dithionite-reduced N2OR7.5 is 0.15 ± 0.03 µmolN2O·min-1·mgN2OR-1 (Table 2), and 

considering that this enzyme preparation had 75 % of CuZ(4Cu2S), then 0.2 µmolN2O·min-

1·mgN2OR-1 is the estimated specific activity for a preparation with 100 % of CuZ(4Cu2S). 

In addition, the catalytic activity of N2OR6.5 and N2OR7.5 was investigated in the presence of 

its putative physiological electron donor, cytochrome c552. A specific activity of 1.25 ± 0.07 

µmolN2O·min-1·mgN2OR-1, was determined for the fully reduced N2OR6.5, while N2OR7.5 

reduced with sodium dithionite exhibited a much lower value, 0.004 ± 0.001 µmolN2O·min-

1·mgN2OR-1 (Table 2). 

- Insert Table 2 here –  



 

21 
 

Discussion 

Effect of pH in M. hydrocarbonoclasticus denitrification pathway 

The observation of a diauxic growth at pH 8.5 is due to a limitation in the electron acceptor, 

as initially both oxygen and nitrate are being used by the cells, while in the second part of the 

growth, only nitrite is used as terminal acceptor. A similar behavior was reported for P. 

denitrificans Pd1222 grown anaerobically in the presence of 60 mM nitrate at pH 7.2 [55]. At 

pH 6.5, the accumulation of toxic byproducts due to the low pH (see below) lead to an early 

growth arrest (Figure S1A in Supplementary Material). 

The pH of the growth media does not affect the global nitrate consumption by the cells, 

though in cells grown at pH 6.5 its consumption is slower. On the contrary, nitrite 

consumption changes with pH, indicating that nitrite reductase is being affected at pH 6.5, 

while in cells grown at pH 8.5 there is a clear correlation between nirS expression and the 

concentration of nitrite in the medium (Figures 1 and 2). At pH 6.5 nitrite concentration 

remains high until the end of the growth period (Figure 2), which can be explained by the 6-

fold lower nirS expression relative to cells grown at pH 8.5 (Figure 1) and by the lower 

production of cd1NiR in the cells grown at pH 6.5. This was confirmed by electrophoretic 

studies of the periplasm of cells grown at different pH values (see Figure S5 in 

Supplementary Material). The effect of acidifying the growth media in the amount of mature 

cd1NiR was also reported in P. denitrificans grown at suboptimal pH 6.8, but in this case no 

differences were observed in nirS expression (relative to pH 7.5) [56]. A decrease in nirS 

expression level was only reported for this organism, in a growth performed at pH 6.0 [42, 

56]. However, in that case the authors also reported lower values of norB, nosZ and nirS 

transcripts (narG quantification was not reported) relative to the growth at pH 7.0, with 

nosZ/nirS and nosZ/norB ratios not being significantly affected [42]. In the present study, c-

norB and nosZ genes relative expression were also affected by the pH of the growth media, 
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with a 2-fold lower expression in cells grown at pH 6.5 compared to the ones at pH 8.5, while 

for nirS there was a 6-fold decrease. Thus, nosZ/nirS ratio is significantly affected in cells 

grown at pH 6.5, whereas nosZ/c-norB ratio is not (see Figure S4 in Supplementary Material).  

The observed nitrite accumulation in M. hydrocarbonoclasticus grown at pH 6.5 led to the 

formation of 4.3 µM nitrous acid (HNO2) in the medium. The accumulation of this acid was 

also reported in acidic cultures of Pseudomonas fluorescens and P. denitrificans upon nitrite 

accumulation [56-58], and explains the inactivation of cd1NiR and also the growth arrest 

observed at acidic suboptimal pH values in the presence of nitrite. Moreover, HNO2 

dissociates into reactive species, such as nitric oxide and nitroxyl anion intermediates [59], 

explaining the NO accumulation in P. denitrificans cultures grown at acidic pH values [42]. 

Thus, although in M. hydrocarbonoclasticus grown at pH 6.5, nirS transcription stops after 10 

h, and cd1NiR is produced at lower levels, NO can be chemically formed. Under such 

conditions, NO-induced transcription of the denitrifying genes can occur through the DNR-

type regulator [33, 34] (that in M. hydrocarbonoclasticus is encoded by MARHY3023). 

Although cells grown at pH 6.5 and 8.5 have the ability to reduce added NO, indicating the 

presence of a functional NOR, major differences were observed in N2O reduction, which is 

completely abolished in cells grown at pH 6.5 (Figure 2). This clearly indicates that the N2OR 

produced in these cells is not active. A similar conclusion was obtained from gas 

measurements performed in other microorganisms, such as P. denitrificans [42], Ensifer 

meliloti 1021 [60] and P. stutzeri [61], grown at acidic pHs, which evidences a clear impair of 

the denitrification pathway at acidic pH values, leading to release of N2O to the environment. 

 

Effect of pH on nitrous oxide reductase 

The inability of cells grown at pH 6.5 to reduce N2O means that N2OR is not present in an 

active form in vivo, which cannot be attributed to a deficient transcription of nosZ (Figure 
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1A). To explain this result, two hypotheses were investigated: i) effect of pH on the 

transcription of accessory factors proposed to be involved in the biogenesis of N2OR copper 

centers, and ii) the biochemical properties of N2OR isolated from cells grown at different pH 

values. 

In M. hydrocarbonoclasticus the expression levels of pCuC, senC and nosL, which have been 

proposed to be involved in copper insertion into N2OR [30, 50], were low but not 

significantly altered at suboptimal pH to raise the hypothesis that copper centers in M. 

hydrocarbonoclasticus would be affected in terms of copper content. In fact, N2ORs isolated 

from M. hydrocarbonoclasticus grown at different pH values have spectroscopic features for 

the presence of CuA and “CuZ” centers fully loaded with copper. 

However, although copper content was not affected, the form of “CuZ” center present in 

N2OR isolated from cells grown at pH 6.5 (N2OR6.5) differed from the one in N2OR7.5 and 

N2OR8.5, being mainly CuZ(4Cu1S) in the former and CuZ(4Cu2S) in the later. Thus, 

lowering the environmental pH influences either maturation of “CuZ” center or its 

maintenance in an active state. 

Towards this end, the gene expression of nosX homologue, MARHY1380, was analyzed, as it 

is involved in the maturation of NosR by donating its flavin group to this protein [28]. This 

gene is highly expressed during the first 3 h in all the growths, but in the growth at pH 6.5 this 

was also the time point at which nosR attained its maximum expression, while in the other 

two growths the maximum expression occurred at later time-points. This raises the question 

as whether NosR is fully functional in the cells grown at pH 6.5.  

One question that remains to be answered is why the enzyme that presents higher specific 

activity in vitro either using an artificial electron donor or cytochrome c552 (its physiological 

electron donor) was isolated from cells not able to reduce N2O. The specific activity of N2OR 

with “CuZ” center as CuZ(4Cu2S) does not explain the reduction rate of the cells from which 
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it was isolated. In fact, considering that there is 100 % recovery of N2OR, isolated from cells 

grown at pH 7.5, 40 µL of cell suspension would have 0.000104 mg of N2OR, thus since this 

volume of cells have a reduction rate of 3.4 x 10-2 µmolN2O·min-1, this gives an estimate of 

326 µmolN2O·min-1·mgN2OR-1. Another important comment is that the KM for N2O (18 ± 5 µM) 

of cells grown at pH 7.5 is similar to the one determined for N2OR with “CuZ” center as 

CuZ(4Cu1S) in the fully reduced state using reduced methyl viologen as an electron donor 

(14 µM) [49]. Therefore, these results clearly point out that N2OR is activated in vivo through 

a still unknown mechanism, that seems to include the reduction of “CuZ” center to the 

[4Cu1+] oxidation state. In fact, [4Cu1+] can be an intermediate in the catalytic cycle as its 

turnover number is the only one that explains the activity of the whole-cells (320 s-1, 

determined in vitro [22]). 

This activation mechanism might consist in a sulfur displacement aid by accessory protein(s), 

that are membrane associated, as N2O reduction rate of the periplasm prepared under 

anaerobic conditions (2.5 ± 0.3 µmolN2O·min-1·mgTotal-1) is lower than the one of a cell extract 

prepared in the same conditions (3.5 ± 0.4 µmolN2O·min-1·mgTotal-1), and its activity decays 

with time [62]. A plausible candidate is NosR, an integral membrane protein, shown to be 

required to isolate N2OR with “CuZ” center as CuZ(4Cu2S), and to sustain a high activity in 

vivo [63]. N2OR isolated from cells grown at suboptimal pH (N2OR6.5) is spectroscopically 

similar to the one isolated from nosR mutant strains [27]. Therefore, in M. 

hydrocarbonoclasticus cells grown at pH 6.5, NosR might be inhibited, misfolded or 

incorrectly maturated (e.g., without the flavin group), or its interaction with N2OR impaired 

(as it is known that in P. aeruginosa these proteins are part of a supramolecular complex 

[64]). 
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Conclusions 

The results presented clearly show that N2OR with “CuZ” center as CuZ(4Cu2S) is a 

protective form of this enzyme, and that it requires activation to attain maximum activity. 

Environmental pH, which was mimicked here by growing M. hydrocarbonoclasticus at a 

constant pH, had a clear effect in the ability of the cells to reduce N2O. Two clear effects were 

observed in N2OR: one is the smaller amount of copper-loaded enzyme in the cells grown at 

pH 6.5 and the other is the form of “CuZ” center present in the isolated enzyme from these 

cells. The first can be explained by a post-transcriptional regulation, either by its transport to 

the periplasm by the Tat system or partial assembly of copper centers, as only copper-loaded 

N2OR was isolated. The second effect can be attributed to an impair in some accessory factor 

that is required to maintain N2OR in an active state or be involved in its activation but is 

absent or not fully functional in the cells grown at suboptimal conditions. 

In conclusion, this study contributes to the identification and understanding of the molecular 

mechanisms underlying the released of one of the most worrying greenhouse gases of the 21st 

century, nitrous oxide, due to the acidification of soils and aquatic environments, 

strengthening the need to develop mitigation processes to decrease its release and its 

atmospheric concentrations. 
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Tables 

Table 1 - Purification yield and copper ratio of M. hydrocarbonoclasticus N2OR isolated 

from the growths carried out at pH 6.5, 7.5 and 8.5. 

Sample 
Yield 

(mgN2OR·L-1) 
Yielda 

(mgN2OR·gcell-1) Cu/proteinb 

N2OR6.5 0.5 ± 0.2 0.16 ± 0.02 3.6 ± 0.1 

N2OR7.5 2.6 ± 0.4 0.5 ± 0.2 5.5 ± 0.4 

N2OR8.5 1.1 ± 0.2 0.3 ± 0.1 c 3.1 ± 0.2 
Notes: a Yield is given as mg of purified N2OR per g of wet cell; b Considering N2OR as a monomer. 
 

 

Table 2 - Activities of M. hydrocarbonoclasticus N2OR, isolated from the growth performed 

at pH 6.5, 7.5 and 8.5, using cytochrome c552 and methyl viologen as electron donors. 

Sample 

Methyl viologen 
(incubation 3 h) 
(µmolN2O·min-

1·mgN2OR-1) 

Cytochrome c552 
(µmolN2O·min-

1·mgN2OR-1) 

N2OR6.5 192 ± 14 1.25 ± 0.07a 

N2OR7.5 51 ± 18 0.004 ± 0.001b 

N2OR8.5 55 ± 5 - 

Notes: a Reduction rates of N2OR in the fully reduced state; b Reduction rates of N2OR reduced with sodium 
dithionite, as explained in Materials and Methods. 
 

 



 

36 
 

Figure legends 

 

Fig. 1 Representative gene expression profile of narG (closed diamonds), nirS (open squares), 

c-norB (closed triangles) and nosZ (open circles) encoding the catalytic domain of M. 

hydrocarbonoclasticus denitrification enzymes during growth at pH 6.5 (Panel A) and 8.5 

(Panel B), under denitrifying conditions. Relative expression values were obtained by 

normalizing expression of each gene, analyzed by qPCR, to the reference gene 16S rRNA 

gene. The growth curve obtained for each growth conditions is represented in grey as 

logOD600 nm. 

 

Fig. 2 Representative profile of M. hydrocarbonoclasticus denitrification metabolites and 

enzymatic activities at (A) pH 6.5 and (B) pH 8.5. Nitrate (closed diamonds) and nitrite (open 

squares) concentrations at different time-points of the growth are represented in the primary 

axis and nitric oxide (closed triangles) and nitrous oxide (open circles) reduction rates by 

whole-cells are represented in the secondary axis. The growth curve obtained for each growth 

conditions is represented in grey as logOD600 nm. 

 

Fig. 3 Visible and X-band EPR spectra of M. hydrocarbonoclasticus N2OR isolated from 

growths performed at different pH values: (A, B) N2OR6.5, (C, D) N2OR7.5 and (E, F) N2OR8.5, 

in 100 mM Tris-HCl pH 7.6. For each nitrous oxide reductase sample, the spectra of the fully 

oxidized form with potassium ferricyanide (solid line - I), as-isolated (dotted-dashed line - II), 

dithionite-reduced form (dashed line - III) and methyl viologen (IV) are presented. The 

contribution of methyl viologen radical to the spectrum was removed (*). The visible 

spectrum of N2OR8.5 (E, III) starts at 540 nm to remove the contribution of contaminant 
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cytochrome that is more evident in the reduced form. The extinction coefficient was 

determined based on the copper content of the samples. 
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Figures 
 

Figure 1 
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Figure 2 
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Figure 3 
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