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Abstract: 

In contrast to other domains, recommender systems in health sector may benefit particularly 

from the incorporation of medical domain knowledge, as it provides meaningful and 

personalised recommendations. With recent advances in the area of representation learning 

enabling the hierarchical embedding of health knowledge into the hyperbolic Poincaré space, 

this thesis proposes a recommender system for patient-doctor matchmaking based on patients’ 

individual health profiles and consultation history. In doing so, a dataset from a private 

healthcare provider is enriched with Poincaré embeddings of the ICD-9 codes. The proposed 

model outperforms its conventional counterpart in terms of recommendation accuracy. 
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I. Introduction 

With the emergence of healthcare analytics and growing calls to leverage the potential of the 

tremendous amounts of available electronic healthcare records from practitioners and scholars 

alike, machine learning (ML) solutions, such as recommender systems (RS) experience 

growing relevance in the healthcare industry (Ghassemi et al., 2018). In fact, patients do 

increasingly seek bespoke and digital medical solutions, similar to what they are used to from 

e-commerce and other domains. However, as patients’ relationship to their doctors can be 

very personal and health is a sensitive topic in itself, healthcare recommender systems (HRS) 

are subject to a different set of rules and evaluation criteria, than other commercial 

applications of RS. For instance, product or movie RS do not operate under the same scrutiny 

regarding the reliability and trustworthiness of their predictions, since the ramifications of 

specific treatment or doctor recommendations are obviously more severe in nature. 

In general, RS often capitalise on the target user’s interaction data without the need of any 

additional information about the user itself or the recommended entity. While such methods 

can be highly performant, they usually do not offer a straightforward explanation as to why a 

certain product or movie is being recommended. Still, as long as users receive interesting 

recommendations, one can assume that this is not a particular issue for the latter. Patients, in 

contrast, may be highly interested in solutions that not only fit their personal medical profile 

insofar, as they are built on medically meaningful information about the patient, but also 

provide explanations of the recommendation itself. That is to say, patients will arguably 

prefer recommendations optimised towards their individual medical needs, instead of 

suggestions based on the similarity to other patients that may show very similar behavioural 

patterns but have a completely different medical background. Thus, adding such a dimension 

to HRS may increase patients’ trust into the model and ultimately improve patients’ quality of 

care, as trust fosters not only the patient-doctor relationship, but also treatment adherence 
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(Fiscella et al., 2004). Meanwhile, from a business value perspective, healthcare providers 

offering medically meaningful recommendations can treat this as a value proposition to their 

clients thereby meeting current market trends of medical personalisation. 

That being said, the resultant question is how to add such a medical personalisation and 

explanatory perspective to a ML model? A simple solution to this issue appears to be the 

incorporation of domain knowledge about patient’s health conditions. In medicine, a viable 

candidate for such domain knowledge may for instance be the ICD-9 (International 

Classification of Diseases) hierarchy, since it is a comprehensive catalogue of all sorts of 

medical conditions published by the WHO and globally used among medical institutes. Yet, 

using data such as the ICD-9 hierarchy as a source of domain knowledge – independently of 

its evident benefits – faces a series of practical implementation problems. Chief among those 

is the structure of the data itself, as hierarchies are in nature tree-like structures hard to embed 

into the continuous space necessary for most ML models. Nevertheless, recent works of 

Nickel and Kiela (2017) and Chamberlain et al. (2017) proposing hyperbolic embeddings for 

learning hierarchical representations appear to provide a bypass for this issue, as will be 

elaborated further throughout this paper. 

In light of the research problem outlined above, the objectives of this work are a) to 

investigate how to incorporate complex domain knowledge, such as the ICD-9 hierarchy into 

a HRS and b) examine whether said domain knowledge can add value to the model in terms 

of performance. In order to achieve this goal, this research proposes a content-based RS for 

patient-doctor matchmaking built on real data from a leading Portuguese healthcare provider. 

Thereby, patients’ available ICD-9 records are used as a source of domain knowledge and 

enhanced with an external, pre-trained dataset of ICD-9 embeddings in the hyperbolic space. 

More precisely, the following approach will be pursued: Contextualising the topic, chapter II 

begins with a bibliographical examination of related works laying out the general mechanics 
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of RS and considering a series of practical applications of HRS. Additionally, in a rather 

theoretical part the concept of embedding hierarchical data into the hyperbolic space and its 

benefits will be examined, laying the foundation for the later proposed model. Notably, it will 

be shown why hyperbolic embeddings are inherently better equipped than their Euclidean 

counterparts to embed hierarchical, tree-like data into the continuous space. Moving forward, 

chapter III sheds light on the different data sources used to build this model, while pointing 

out the substantial data processing challenges connected to translation issues between 

different medical terminologies. Moreover, some exploratory data analysis will be performed 

in order to gain a better understanding of the data at hand. Approaching the core work of this 

paper, chapter IV is dedicated to the implementation of the model itself. After first 

introducing the notion of hyperbolic distance as a similarity measure for recommender 

systems, this section serves mainly for the formulation of two content-based models using 

hyperbolic distance, namely a patient ICD-9 similarity model and a doctor ICD-9 similarity 

model. For evaluation purposes, a conventional content-based model is formulated to serve as 

a benchmark. Ultimately, chapter V analyses the results of this investigation. As will be 

shown, incorporating complex domain knowledge to a HRS is not only feasible, but also adds 

value to the model. In fact, one of the proposed models, namely the doctor ICD-9 similarity 

model, outperforms its conventional counterpart in common evaluation metrics. With these 

findings in place, their implications for the healthcare sector will be discussed in the final 

chapter emphasising the potential business value of a HRS providing medical personalisation. 

Summarizing, this work understands itself as an initial investigation into the notion of using 

hyperbolic embeddings to incorporate domain knowledge into ML applications encouraging 

further research in this area. With that in mind, it has to be noted that the scope of this paper is 

limited to the proposed content-based models, while it is acknowledged that further research 

into hybrid solutions may yield in promising results. 
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II. Background and related work 

To shed light on the broader context of this paper, this chapter provides a brief overview of 

recent literature on HRS as well as an outline of the functioning of RS in general. 

Furthermore, recent works on representation learning in the hyperbolic Poincaré space and 

their theoretical background will be discussed in order to understand how they might help 

incorporating complex domain knowledge into ML models. 

A. Recommender systems in healthcare 

Successful applications of ML can be found across different industries and domains ranging 

from spam and malware detection, over online chat-bots, stock price predictions and 

sentiment analysis, to product recommendations or social media services (McKinsey, 2018). 

Nevertheless, as prevalent as ML may be across sectors, within the healthcare domain, ML 

applications and particularly RS are only recently emerging, due to elevated requirements 

regarding reliability and trustworthiness, as well as increased data privacy regulations 

(Ramakrishnan et al, 2001; Özkan and Sezgin, 2013). The last years, however, have shown an 

increase in studies and research papers on HRS (Schäfer et al., 2017). 

Among those works, medical user profiling and medical personalisation are two of the most 

popular topics. Their applications range from health and fitness apps, emphasising the user 

profiling aspect, to clinical decision support systems, focusing on medical personalisation. For 

instance, Luo et al. (2012) propose an application recommending relevant medical home care 

products based on a patient’s individual history of health records. Going one step further, 

Radha et al. (2016) add a behavioural perspective to HRS in investigating the impact of 

different motivation and engagement strategies to improve lifestyle adaption 

recommendations for hypertension prevention and treatment. Furthermore, RS also find usage 

in therapy decision support. Gräßer et al. (2017) suggest incorporating inherent methods of 
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RS into clinical decision support systems in order to leverage the large volume of clinical 

data, instead of relying solely upon rule-based expert knowledge for decision support. 

Ultimately, Han et al. (2018) address the topic of patient-doctor matchmaking laying the 

foundation for this adjacent work. The authors propose a RS for suggesting primary care 

doctors to patients based on their prior consultation history and metadata. 

In general, RS are a sub-class of information filtering systems with the goal to provide 

meaningful suggestions to users for certain items or entities, by attempting to predict the 

affinity or preference of a given user for said items (Melville and Sindhvani, 2010).1 RS can 

be broadly divided into three major categories: collaborative filtering (CF) approaches, 

content-based (CB) recommenders and hybrid models, which are a combination of the former 

two. CF approaches rely solely upon past interactions recorded between users and items, 

whereas CB approaches use additional information about users and/or items (Ricci et al., 

2011). More precisely, CF capitalises on behavioural data, i.e. users’ co-occurrence patterns 

in order to detect similar users and/or items and make predictions based on these similarities, 

while CB recommenders explore user or item metadata to derive user preferences and model 

the observed user-item interactions. 

As for CF approaches, a common challenge is the enormous size and the sparsity of the user-

item interaction matrix, as most users naturally have only interacted with a small set of items. 

That being said, memory-based CF approaches, where one attempts to detect the nearest 

neighbour relying on the entirety of the large and sparse user-item interaction matrix can be 

computationally expensive and difficult to scale (Pennock et al., 2000). Consequently, model-

based realisations of CF such as matrix factorisation (MF) are commonly used for this task, as 
 

 

1 Given that this work tackles the challenge of patient-doctor matchmaking, the terms “users” and “items” can be 
replaced by “patients” and “doctors”. When speaking of RS in a broader context, however, the former appear 
more appropriate. Thus, they will be used interchangeably according to context for the remainder of this paper. 
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they are more robust against the aforementioned problems. The underlying rationale behind 

MF approaches is to decompose the huge and sparse interaction matrix into the inner product 

of two smaller and denser matrices, which are essentially latent feature representations of 

users and items, respectively, and letting the model learn these features (Koren et al., 2009). 

In addition to sparsity, CF approaches often suffer from the cold-start problem, i.e. the 

question of what to do with new users that have no prior interactions usable for predictions 

(Ghazanfar and Prugel-Bennet, 2010). A way to bypass this issue is to use CB recommenders, 

since those do not depend on prior interaction data for predictions. Describing new items or 

new users based on their features instead, enables meaningful recommendations for new 

entities, even when there is no interaction data available. Despite the advantage with the cold-

start problem, however, CF approaches tend to outperform CB recommenders, as usually 

even a few ratings are more valuable than metadata about users or items (Pilászy and Tikk, 

2009). Ultimately, a method to balance both CF and CB respective limitations is to use hybrid 

recommenders, which are a combination of the former and the latter (Burke, 2002). 

B. Hyperbolic embeddings 

As has been hypothesized in the introduction, HRS might profit more than other areas from 

incorporating domain knowledge into the model. Within the healthcare context, such 

knowledge may include, for instance, a catalogue and categorisation of health conditions, 

such as the ICD-9 hierarchy. Abstracting a hierarchy into mathematical terms, it is essentially 

a complex tree that is defined as a connected graph in which for any pair of two vertices u ≠ v 

there is exactly one path connecting them (Bender and Williamson, 2010). An inherent 

characteristic of hierarchies or trees, however, is that they are discrete structures and thus 

embedding them in a way that can be used in machine learning models can be challenging, as 

the latter often rely on continuous representations (De Sa et al., 2018a). Thus, the underlying 
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question is, how to efficiently and accurately model an increasingly complex hierarchy – and 

accordingly an increasingly complex tree – into a continuous space, such that the inherent 

information of the hierarchy can be used for machine learning? 

Recent proposals of Nickel and Kiela (2017) and Chamberlain et al. (2017), suggesting 

hyperbolic embeddings for learning hierarchical representations to address this issue, have 

found much notice in the machine learning community. The rationale is that embeddings of 

hierarchical, tree-like data into the hyperbolic space perform better in the task of capturing 

and preserving the distances and complex relationships within a given hierarchy, than 

embeddings in the Euclidean space would. As a matter of fact, their works show that 

hyperbolic embeddings, even in very low dimensions, consistently outperform their higher-

dimensional, Euclidean counterparts when learning hierarchical representations. 

The reasons for said superiority lie within the properties of hyperbolic geometry itself. 

Hyperbolic space is a space with a constant negative curvature, in which disk area and 

circumference both grow exponentially with their radius – even in two dimensions. In fact, 

this very exponential expansion property renders it inherently well-suited for the task of 

embedding a tree into the continuous space, since for a regular tree the number of children 

grows exponentially with their distance to the root, as well (Nickel and Kiela, 2017). 

Meanwhile, Euclidean geometry would need to increase the dimensionality of the embedding, 

since in a 2-d Euclidean space circumference and disk area only increase linearly and 

quadratically with the radius, respectively. 

While the considerations above hold for hyperbolic space in general, the preferred 

geometrical models for representation learning tasks, such as the one at hand, are the Poincaré 

disk for a 2-d hyperbolic geometry and the Poincaré ball model for 3-d or more. The main 

characteristic of Poincaré models is that all points of the geometry are interior of the unit disk 

(for 2-d) or the 3 or n-dimensional unit ball (for more than 2-d) (Anderson, 2005). Moreover, 
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Poincaré models offer conform mapping between hyperbolic and Euclidean space, as angles 

are preserved, which is convenient when translating between spaces and models.  

Recalling that the goal when embedding tree-like graphs into a continuous space is to 

preserve original graph distances, one needs to consider the hyperbolic distance, which is 

defined as 𝑑𝑑𝐻𝐻(𝑥𝑥,𝑦𝑦) = acosh �1 + 2 ||𝑥𝑥−𝑦𝑦||2

(1−||𝑥𝑥||2)(1−||𝑦𝑦||2)� (1). In hyperbolic space, the shortest 

paths between two points, called geodesics, are curved (similarly to the space itself). Due to 

this curvature, the distance from the origin to a given point 𝑑𝑑𝐻𝐻(𝑂𝑂, 𝑥𝑥) grows towards infinity 

as x approaches the edge of the disc, as can be observed in figure 1. 

Now, considering the embedding of a graph (or tree) into a continuous space, suppose x and y 

are children of a parent z, which is placed at the origin O. Then, the distance between x and y 

is 𝑑𝑑(𝑥𝑥,𝑦𝑦) = 𝑑𝑑(𝑥𝑥,𝑂𝑂) + 𝑑𝑑(𝑂𝑂,𝑦𝑦) (2). Normalizing this equation, provides the distance ratio of 

the original graph, i.e. 𝑑𝑑(𝑥𝑥,𝑦𝑦)
𝑑𝑑(𝑥𝑥,𝑂𝑂)+𝑑𝑑(𝑂𝑂,𝑦𝑦) = 1 (3). This equation will be relevant in the following, 

since when comparing its behaviour in hyperbolic and Euclidean space, quite different effects 

can be observed. As is visualised in figure 2, when moving towards the edge of the unit disk, 

i.e. 𝑥𝑥 → 1, in Euclidean space 𝑑𝑑𝐸𝐸(𝑥𝑥,𝑦𝑦)
𝑑𝑑𝐸𝐸(𝑥𝑥,𝑂𝑂)+𝑑𝑑𝐸𝐸(𝑂𝑂,𝑦𝑦) remains a constant, whereas in hyperbolic space 

𝑑𝑑𝐻𝐻(𝑥𝑥,𝑦𝑦)
𝑑𝑑𝐻𝐻(𝑥𝑥,𝑂𝑂)+𝑑𝑑𝐻𝐻(𝑂𝑂,𝑦𝑦) approximates 1, which is exactly the original graph distance ratio! Therefore, it 

can be seen that Poincaré embeddings are inherently better suited for this kind of 

representation learning task, due to their better capacity to preserve original graph distances 

with arbitrarily low distortion (De Sa et al. 2018a). 

A further investigation of the detailed mathematics of Poincaré embeddings, as laid out by 

Nickel and Kiela (2017), Chamberlain et al. (2017) or De Sa et al. (2018b) amongst others, 

would be beyond the scope of this paper. Nevertheless, a brief overview of the actual 

applications of Poincaré embeddings seems appropriate. 
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First and foremost, De Sa et al. (2018b) provide a variety of powerful use-cases of 

representation learning, most of which related to natural language processing (NLP). The 

authors use their combinatorial construction algorithm to obtain entity embeddings of 

different types of hierarchies, such as WordNet’s hypernym relationships or MusicBrainz’ 

artist, album and song hierarchy. In light of the given topic, however, their work on 

embeddings of the UMLS diagnostic hierarchy from ICD-9 vocabularies is of particular 

interest. In fact, the provided ICD-9 embeddings contribute substantially to the proposed 

model and will therefore be described in more detail in chapter III. 

Furthermore, Beaulieu-Jones et al. (2019) examine an equally tangible application of Poincaré 

embeddings to the healthcare domain, in general, and the ICD-9 hierarchy, in particular. In 

line with a core hypothesis of this paper, they argue that embeddings in the hyperbolic space 

could provide a better representation of diseases and medical concepts. Applying Poincaré 

embeddings to a large-scale dataset of electronic healthcare records, the authors show that 

hyperbolic embeddings of medical concepts outperform traditional approaches in terms of 

representations on real data. In addition, the paper illustrates that Poincaré embeddings can 

accurately reconstruct the ICD-9 hierarchy on synthetic data. 

III. Data 

While the theoretical benefits of Poincaré embeddings have been laid out in depth in the prior 

chapter, it remains to be examined whether they can add value in practice. For that purpose, a 

pre-trained dataset of Poincaré embeddings of the ICD-9 hierarchy has been applied to real 

data from a leading private clinical network in Portugal. Thus, the following chapter will 

provide an overview of the data sources used, briefly explain the necessary processing and 

mapping steps between them, and ultimately perform an exploratory data analysis of the final 

dataset. 
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A. Data sources 

By and large, four different data sources have been used: 1) data from the healthcare service 

provider itself, 2) the ICD-9 hierarchy master data, 3) Poincaré embeddings of the ICD-9 

hierarchy in Unified Medical Language System (UMLS) entities provided by Hazy Research 

and 4) mapping keys between UMLS, SNOMED CT2 and ICD-9 terminologies. 

The data provided by the Portuguese clinical network is the core data of the project. The 

private healthcare provider operates country-wide with 18 hospitals or clinics across Portugal. 

According to its website, it serves more than 1,000,000 patients p.a. with over 2,000,000 

consultations and 8,000,000 examinations and has more than 5,000 members of staff. 

Building on the prior work of Han et al. (2018), an already curated dataset has been used for 

this paper. Said data can be divided into three categories: First of all, there are demographic 

information, such as gender, age or location of the patients themselves. For inpatients, i.e. 

patients who stay at the hospital while under treatment, this demographic information is 

enriched with medical information in form of the ICD-9 code. Analogously, the dataset 

contains demographic and professional information, such as gender or the hospital of the 

doctors. Ultimately, the interactions between patients and doctors are captured as episodes.3 

The aforementioned medical information about the patients are based on ICD-9 codes, which 

are the global standard for reporting diseases and health conditions published and maintained 

by the WHO. As such, the ICD is the endeavour to comprehensively catalogue, classify and 

map all sorts of “diseases, disorders, injuries or other health conditions” (WHO, 2020a). In 

practical terms, the ICD is a hierarchy of codes, each of which corresponding to a specific 

health condition. Since this system of classifications evolved over time, there are different 

 
 

2 Systematized NOmenclature of MEDicine Clinical Terms 
3 In medical jargon, interactions between patients and doctors are referred to as “episodes of care”. 
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ICD versions in place. As of the date of the publication of this paper, the newest version is 

ICD-11, which was published in 2018 and will become effective for reporting in 2022. 

Given that the underlying investigative question of this paper is whether complex domain 

knowledge, such as the ICD-9 hierarchy embedded into hyperbolic space can add value to 

HRS, the need for such embeddings in the first place is evident. While it would be possible to 

derive embeddings directly from the healthcare provider dataset by for instance analysing co-

occurrence patterns among diseases, it can be argued that such an undertaking would show 

little promise due to the relatively small size of the dataset, as well as the fact that not all 

ICDs occur in it, which might distort graph distances. Instead, this work aims to capitalise on 

a pre-trained dataset of Poincaré embeddings provided by Hazy Research. The research group 

used the diagnostic hierarchy of ICD-9 vocabulary in the UMLS to retrieve Poincaré 

embeddings of single medical concepts within the ICD-9 hierarchy. This method results in 

unique hyperbolic embeddings of medical concepts (identified by the CUI, i.e. Concept 

Unique Identifier) available in different levels of dimensionality (10, 20, 50 or 100d). The 

model developed in this paper bases on the 100d embeddings. As such, the embeddings 

classify as transfer learning data subjecting them to a set of limitations including the risk of 

negative transfer or overfitting (Torrey and Shavlik, 2010), in addition to general mapping 

problems. Nonetheless, it needs to be stressed that the pre-trained embeddings are paramount 

to the success of this research, as they represent the actually meaningful information aimed to 

be incorporated into the proposed model. 

Ultimately, since the given hyperbolic embeddings are only available in UMLS and not 

directly available for ICD-9 codes, a mapping between UMLS and ICD-9 is needed. As will 

be explained further in the following chapter, this process is by no means trivial, due to the 

fact that there is no direct mapping from CUI codes in UMLS to the ICD-9 codes of the core 

dataset. Consequently, the SNOMED CT were selected as an intermediary, as it is a very 
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comprehensive healthcare terminology and transferable both to UMLS’ CUIs and ICD-9 

codes (SNOMED International, 2020). All UMLS data including SNOMED CT and CUIs 

have been retrieved from the US National Library of Medicine (NLM).  

B. Data processing 

In light of the considerations above, mapping the hyperbolic entity embeddings in UMLS’ 

CUIs to the mere ICD-9 codes of the core dataset represents a substantial challenge during the 

data processing stage. A mapping between SNOMED CT and ICD-9 is updated and published 

annually by the US NLM and could be added to the ICD-9 data straightforwardly (US NLM, 

2019). In order to retrieve a mapping between CUI and SNOMED CT, however, the 

multilingual medical terminology service PyMedTermino has been used. PyMedTermino is 

an open source API that provides access to the main medical terminologies, as well as 

mappings between those terminologies (Lamy, 2015). In practice, the Python implementation 

of PyMedTermino was used to parse through the UMLS Metathesaurus (provided by the US 

NLM) to access the desired CUIs and subsequently map them to the SNOMED CT. 

Figure 3 provides an overview of the data curation process. There are two main flows of data: 

the core dataset from the healthcare provider and the entity embeddings enriched with 

corresponding terminology mappings. Regarding the entity embeddings part, at first, the CUI 

to SNOMED CT and the SNOMED CT to ICD-9 mapping data was merged on the SNOMED 

CT in order to obtain a CUI to ICD-9 mapping. This enabled a merge of ICD-9 codes with the 

hyperbolic entity embeddings. Having established a unique hyperbolic embedding per ICD-9 

code, these embeddings needed to be added to the core dataset. Naturally, only the patients 

having an ICD-9 record are included in the final dataset. These patients and their ICD-9 codes 

were enriched with the hyperbolic embeddings, such that only a list of patients that have at 

least one ICD-9 diagnosis, which in turn has an entity embedding, remain. Consequently, all 
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episodes with non-ICD-9 patients were excluded, as well as doctors who only had episodes 

with such patients. 

At this point, it needs to be acknowledged that this data curation process suffers from two 

main limitations, namely the lack of mapping and, if there is a mapping, the quality of such 

(compare table 1). As ML models often capitalise on huge amounts of data, it is unfortunate 

that a lot of valuable information is lost due to missing translations between medical 

terminologies impeding transfer learning tasks significantly. Moreover, as mappings between 

SNOMED CT, ICD and CUI terminologies are being improved only incrementally, they can 

by no means be considered flawless. Hence, the potentially meaningful contribution of pre-

trained domain information in form of ICD embeddings is reduced substantially, if applied to 

the wrong diseases, as ultimately a model can only be as good as the data that feeds it.  

C. Exploratory data analysis 

Despite the substantial reduction from its initial size, a dataset consisting of over 33k patients 

and 223 doctors with more than 166k interactions between them remain. Thus, in the 

following a variety of insights relevant to the patient-doctor matchmaking process will be laid 

out and analysed. 

To begin with, figure 4 illustrates an increasing demand for primary care doctors with roughly 

27k episodes in 2012 and 34k in 2016, underlining the relevance of primary care and 

consequently ML applications in this domain.4 Furthermore, as it can be pertinent how often 

patients switch doctors, or stick with the same, it is worthwhile analysing the frequencies of 

visits as well as the “churn” rate of patients. Notably, over the observed period patients only 

had a total of five visits and saw 2.6 distinct doctors on average. More precisely, almost 65% 

 
 

4 Note that for 2017 only the first four months are available. 
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of patients visited at least two different doctors, whereas only 28% visited the same doctor 

twice. While this indicates that patients tend to switch their family doctors quite frequently 

not trusting their family doctors right away, it has to be noted that this dataset only contains 

inpatients, who arguably are more likely to have more health records, visit doctors more 

frequently and, hence, have a higher likelihood to have seen multiple doctors. Doctors, on the 

other hand, had 745 episodes on average over the observed period, with an average of 381 

distinct patients. Considering patient demographics, it is little surprising that a large portion of 

patients are elderly people or at least adults (compare figure 5). The average patient age is 55. 

Finally, the gender distribution both among patients and doctors is relatively balanced, albeit 

with a slight surplus of female doctors. 

With this work’s strong emphasis on the patient’s ICD-9 information, it is of relevance to 

analyse how the different diseases distribute in the given dataset. The ICD-9 hierarchy is 

structured by 18 overarching chapters, which in themselves are divided into sub-chapters. 

These sub-chapters, then, contain major ICD codes, which in most cases have further 

specifications of a particular medical condition. As figure 6 displays, the most common ICD-

9 chapters are injuries and poisoning, followed by diseases of the circulatory system. Both 

observations are intuitive, as naturally many patients consult their doctors with effects from 

injuries, and circulatory diseases are very common throughout the population in general and 

among elderly in particular. This is underpinned further, when analysing the levels below the 

two most common chapters, as figures 7 and 8 illustrate. For instance, in the injuries and 

poisoning chapter, the most common sub-chapters are the late effects of injuries or poisoning 

themselves, as well as “other and unspecified effects of external causes” including effects of 

heat and light. All of which are arguably very common causes to visit a primary care doctor. 

The same is the case for diseases of the circulatory system, where hypertension – also a fairly 

common disease – is the largest sub-chapter. 
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Ultimately, to complete the exploration of the data used in this work, a few considerations on 

the hyperbolic embeddings are adequate. Due to the high dimensionality of the data, a 

visualisation of the embeddings is not possible. Nevertheless, analysing hyperbolic distance 

measures between single ICD-9 codes within the dataset shows that inherent characteristics of 

the hierarchy have been captured well by the embeddings, as the distances between related 

diseases, i.e. from the same chapter or sub-chapter, tend to be small, whereas distances 

between unrelated ICD-9 codes tend to be bigger. When reducing the dimensionality to 2-d, 

however, one can, indeed, illustrate how a hierarchy embedded into a graph looks like, as the 

Poincaré disk model’s properties allow for a translation into Euclidean geometry. For 

instance, the Poincaré embeddings of the ICD-9 hierarchy built on synthetic data in two 

dimensions by Beaulieu-Jones et al. (2019) exemplify this quite well. Figure 9 shows how 

single ICD-9 codes are clustered around their respective chapters and sub-chapters. Whilst 

acknowledging the limited comparability of the separate embedding datasets, due to the 

different data and methodology used, it can be observed, how well Poincaré embeddings, in 

principle, capture the ICD-9 hierarchy in terms of preserving original graph distances.  

IV. Methods 

With the theoretical foundation set and the properties of the data analysed in depth, a model 

using Poincaré embeddings can be formulated. For that purpose, the following chapter first 

introduces the notion of using hyperbolic distance as the similarity measure in RS explaining 

its differences to conventional approaches and, subsequently, examines the mathematical 

implementation of this approach in practice. 

A. Hyperbolic distance as a similarity measure for recommender systems 

As has been elaborated in chapter II, the goal of RS is to predict the affinity or preference of 

users for certain items or in this case patients and doctors. This is typically achieved by, first, 
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deriving a similarity measure of all users or all items and, subsequently, use this similarity 

measure as a weight in combination with past interaction data to predict users’ preference for 

a given item. Despite this basic concept, heuristics to retrieve said similarity measure vary in 

the type of data used as features, as well as the selected mathematical method. For instance, 

collaborative filtering approaches rely on past user-item interaction data, whereas content-

based methods use metadata. Different mathematical methods for similarity detection, on the 

other hand, include cosine similarity, Pearson correlation, Jaccard similarity or mean-squared 

differences among others (Agarwal and Chauhan, 2017). 

The most popular methods within the context of RS, however, are cosine similarity and 

Pearson correlation – in the following referred to as 𝑠𝑠𝑐𝑐 and 𝑠𝑠𝑃𝑃, respectively. 𝑠𝑠𝑐𝑐 measures the 

similarity of two vectors by considering the cosine of the angle between them. As such, for 

two vectors A and B, it is defined as cos(𝜃𝜃) =  𝐴𝐴∗𝐵𝐵
||𝐴𝐴||∗||𝐵𝐵||

 (4). 𝑠𝑠𝑐𝑐 assumes values between 0 and 

1, with cos(0°) = 1 being the highest similarity score. Treating users’ preference vectors as 

variables, 𝑠𝑠𝑃𝑃, on the other hand, measures the linear correlation between two given users (or 

items). For the variables A and B, it is defined as 𝜌𝜌(𝐴𝐴,𝐵𝐵) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴,𝐵𝐵)
𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎

 (5). 𝑠𝑠𝑃𝑃 assumes values 

between -1 and 1, with -1 indicating perfect negative correlation, 1 indicating perfect positive 

correlation and 0 indicating no correlation at all. In terms of similarity, the closer to 1 the 

correlation converges, the higher the similarity between users or items. 

Besides their simplicity and easy interpretation, both 𝑠𝑠𝑐𝑐 and 𝑠𝑠𝑃𝑃 are typically preferred over 

simple Euclidean distance, since – in case of explicit feedback – they are robust against 

individually different rating scales among users. For instance, two users may have a very 

similar taste, but different rating generosity with one being rather critical tending to rate items 

below average, whereas the other typically rates items comparatively higher. Considering 

their Euclidean distance, they may appear quite different from one another. Nonetheless, both 
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𝑠𝑠𝑐𝑐 and 𝑠𝑠𝑃𝑃 are able to capture this hidden similarity, since 𝑠𝑠𝑐𝑐 is ultimately a measure of angle 

and not magnitude and 𝑠𝑠𝑃𝑃 captures linear trends by design. 

At this point it must be noted, however, that both 𝑠𝑠𝑐𝑐 and 𝑠𝑠𝑃𝑃 (as well as most other 

conventional similarity measures in RS) are inherently suited for the Euclidean space only 

(Leimeister and Wilson, 2019). That being said, for the purpose of this paper the notion of 

hyperbolic distance as a more suitable similarity measure needs to be evaluated. As each of 

the derived ICD-9 diseases is represented by an embedding in the hyperbolic space, the 

objective is to determine how similar these diseases – and ultimately the patients admitted 

with or doctors having treated these diseases – are with one another. 

The basic principle of hyperbolic distance as a similarity measure is simple: Once a unique 

embedding per either patient or doctor is derived, a patient-patient or doctor-doctor similarity 

score can be determined for each patient or doctor by utilising the hyperbolic distance 

function from equation (1). The resulting matrix of distances is subsequently scaled from 0 to 

1 and subtracted from 1 in order for 0 to be the minimum similarity and 1 the maximum. 

Applying this heuristic, yields a similarity score that is not only consistent with hyperbolic 

space (i.e. preserving the hierarchal information and complexities of the input graph), but also 

as easily interpretable as 𝑠𝑠𝑐𝑐 or 𝑠𝑠𝑃𝑃. This similarity measure shall be referred to as hyperbolic 

similarity 𝑠𝑠𝐻𝐻 for the remainder of this paper and its implementation into the model at hand 

will be examined in the following chapter. 

B. Implementation of a content-based recommender system using hyperbolic distance 

Since the ICD-9 embeddings represent metadata about patients or doctors, a RS using said 

embeddings classifies as content-based. While there is further data available for both patients 

and doctors (e.g. demographic or location data), the proposed model will consider only the 
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ICD-9 information. In fact, it will be benchmarked against an alternative content-based model 

using that very metadata for performance evaluation purposes in the next chapter. 

As has been discussed in chapter III, the ICD-9 information per patient from the core dataset 

has been enriched with the Poincaré embeddings provided by Hazy Research. Since many 

patients have been admitted with more than one disease throughout their individual medical 

history, naturally, the majority of patients have multiple ICD-9 entries. Therefore, in order to 

determine a unique embedding per patient and per doctor, multiple entries need to be 

averaged – especially in the case of doctors who obviously treat many different patients. Due 

to the specific properties of the hyperbolic space, however, the usual Euclidean mean is not 

applicable and thus a generalisation is needed. In hyperbolic geometry, the averaging of 

feature vectors is done by using the Einstein midpoint (Khrulkov et al., 2019). The Einstein 

midpoint takes its simplest form in Klein coordinates and is defined as 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑥𝑥1, … , 𝑥𝑥𝑁𝑁) =

∑ 𝛾𝛾𝑖𝑖𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1
∑ 𝛾𝛾𝑖𝑖𝑁𝑁
𝑖𝑖=1

 (6), where 𝛾𝛾𝑖𝑖 = 1

�1−𝑐𝑐�|𝑥𝑥𝑖𝑖|�
2

  
 and c = 1 as c corresponds to the radius of the Poincaré 

disk. The Klein model is consistent with the Poincaré ball model5, but since the same point 

has different representations in the two models, they need to be first translated from the 

Poincaré to the Klein model, then averaged and ultimately mapped back into the Poincaré 

model in order to complete the operation. Thus, if 𝑥𝑥𝔻𝔻 and 𝑥𝑥𝕂𝕂 correspond to the same point in 

the Poincaré and the Klein model, respectively, then the following formulas serve for 

translating between them: 𝑥𝑥𝔻𝔻 = 𝑥𝑥𝕂𝕂

1+�1−𝑐𝑐�|𝑥𝑥𝕂𝕂|�2
 and 𝑥𝑥𝕂𝕂 = 2𝑥𝑥𝔻𝔻

1+𝑐𝑐�|𝑥𝑥𝔻𝔻|�2
. 

 
 

5 In contrast to the Poincaré model, the Klein model considers lines as straight Euclidean lines, whereas in the 
former lines are arcs that are orthogonal to the boundary. Moreover, the Klein model is not conformal, meaning 
that angles and circles are not preserved in the curvature of the space. 
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With an appropriate methodology for hyperbolic feature vector averaging in place, a content-

based model for patient-doctor matchmaking can be formulated. In formal terms, for N 

patients and K doctors, the patient-doctor interaction matrix Y ∈ ℝN × K is denoted as: 

𝑦𝑦𝑖𝑖𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑗𝑗
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 . 

Adapting the work of Han et al. (2018), the patient-doctor interactions are furthermore 

weighted with a trust measure. Thereby, the trust between a patient and a doctor is modelled 

in dependence of the recency and frequency of their consultation history, i.e. doctors that have 

been visited repeatedly and recently will be weighted higher for a given patient.  

Regarding feature creation, the ICD-9 embeddings need to be considered. If V ∈ ℝ is the set 

of all Poincaré embeddings, with each embedding being essentially a 1 ×  100 dimensional 

row vector, then for each patient i the set of embedding vectors is denoted as V𝑖𝑖 ⊂ V 

corresponding to all ICDs that patient has been diagnosed with. Similarly, for each doctor j 

the set of embedding vectors is specified by V𝑗𝑗 ⊂ V corresponding to the ICDs of all patients 

that visited said doctor. Hence, the feature vectors of patient i and doctor j are given by the 

hyperbolic average of their embeddings, i.e. 𝑓𝑓𝑖𝑖 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑉𝑉𝑖𝑖) and 𝑓𝑓𝑗𝑗 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻�𝑉𝑉𝑗𝑗� (7). 

With the feature matrices for patients and doctors established, the similarity across patients 

and doctors can be calculated. For purposes of simplicity, this process will be described only 

for doctor-doctor similarity, while it is acknowledged that the method is analogously 

applicable for patients. The similarity between doctor j and k is described by the above 

defined hyperbolic similarity of their feature embeddings, i.e. 𝑠𝑠𝑗𝑗,𝑘𝑘 = 𝑠𝑠𝐻𝐻(𝑓𝑓𝑗𝑗 ,𝑓𝑓𝑘𝑘) (8). 

Ultimately, the predicted affinity 𝑝𝑝𝑖𝑖,𝑗𝑗 of a user i towards a doctor j can be computed using the 

following operation: 𝑝𝑝𝑖𝑖,𝑗𝑗 =
∑ 𝑦𝑦𝑖𝑖,𝑘𝑘∗𝑠𝑠𝑗𝑗,𝑘𝑘
𝐾𝐾
𝑘𝑘=1
∑ 𝑠𝑠𝑗𝑗,𝑘𝑘
𝐾𝐾
𝑘𝑘=1

 (9). Recalling that K is equal to the total amount of 

doctors and 𝑦𝑦𝑖𝑖,𝑘𝑘 is the trust-weighted interaction value between patient i and doctor k, it 
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becomes evident that the predicted affinity of patient i is essentially given by the similarity-

weighted sum of doctors the patient visited previously, divided by the sum of the weights. 

While RS in e-commerce and such usually aim to suggest primarily new, unseen items, this 

model does not exclude doctors the patient already interacted with for recommendation. This 

is of relevance insofar, as the goal of this model is to suggest the patient with the best suiting 

doctor for their next primary care visit, for which previously seen doctors are arguably highly 

relevant candidates and should by no means be excluded. 

V. Results and discussion 

While a substantial part of this paper has been dedicated to the theoretical benefits of Poincaré 

embeddings and their application to the given problem of patient-doctor matchmaking, it is 

ultimately necessary to evaluate their performance in comparison to conventional methods, in 

order to judge their actual value. Therefore, this chapter will evaluate the proposed models 

with respect to common performance metrices and furthermore discuss their value from a 

commercial perspective. 

A. Proposed models 

In line with the methods described above, this paper proposes the following models:  

1. Conventional CB: a patient-patient-similarity based benchmark model using 𝑠𝑠𝑐𝑐 of 

patient features such as gender, age, location, as well as 1-hot encoded ICD-9 data to 

capitalise on co-visitation patterns of patients with similar demographic profiles, 

2. Patient ICD-9 similarity: a patient-patient-similarity based recommender capitalising on 

co-visitation patterns of patients with similar diseases and, 

3. Doctor ICD-9 similarity: a doctor-doctor-similarity based recommender aiming to 

identify doctors that have similar expertise to the ones the patient visited in the past. 
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For each model a list of either 3, 5 or 10 suggested doctors is generated, which hereinafter 

will be analysed with respect to their performance.   

B. Model evaluation 

For the performance evaluation of RS, it is common practice to rely on overall root mean 

square error (RMSE) or hit rate (HR) and precision (p) as evaluation criteria (Chen and Liu, 

2017). However, since most RS – including this one – are typically presented as a sorted list, 

the latter are arguably more suitable, as the evaluation objective is to see, if the patient 

actually visited one of the recommended doctors or not. That being said, HR@n refers to the 

number of total hits, divided by number of patients depending on the number of 

recommended doctors n. Analogously, p@n indicates the amount of correctly predicted 

doctors depending on n. Intuitively, the HR will increase with a growing number of 

recommendations, whereas p will decrease. As a matter of fact, the very reason to combine 

these two evaluation criteria is that although it is desirable to maximise the number of hits, 

patients should not be confused with too many options that do not meet their needs, as this 

might even have counterproductive effects, e.g. paradox of choice (Schwartz, 2004). 

Figure 10 illustrates the performance of the three suggested models regarding HR and p. 

While the patient ICD-similarity model is apparently not able to add substantial value scoring 

even slightly below the benchmark model, the doctor ICD-similarity model does, indeed, 

outperform the benchmark model. In fact, this allows for two major conclusions in light of the 

theoretical considerations in the chapters above: First, hyperbolic averaging appears to be a 

viable method for feature averaging of Poincaré embeddings considering the substantial 

number of different patients and diseases doctors treat. This is insofar noteworthy, as one 

might reasonable assume that the more disease embeddings are being averaged, the less 

meaningful they become. Yet, the resulting averaged embeddings are evidently still capable to 
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set apart doctors fairly well. And second, the Poincaré embeddings – despite not having been 

trained on this dataset – can add value to this HRS. 

Returning to the underlying investigation question of this paper, these two observations show 

that Poincaré entity embeddings of hierarchical data are, indeed, a powerful framework to 

help incorporate complex domain knowledge into a ML application in the healthcare sector. 

With this in mind, the business implications for the healthcare sector remain to be considered.   

C. Implications for healthcare sector 

As has been hypothesised in the introduction, the potential business value of successfully 

incorporating complex domain knowledge into machine learning applications in the 

healthcare sector may be substantial. Recalling that the goal of a matchmaking algorithm 

between patients and doctors is insofar different from typical e-commerce RS, as it aims to 

recommend patients with the doctor best suited for their specific, medical condition, instead 

of the “next best doctor”, different evaluation criteria may apply from a business value 

perspective. For instance, one might argue that technical performance evaluation metrices 

such as hit rate and precision are, in fact, negligible in favour of a more qualitative evaluation. 

RS, in general, often suffer from popularity bias, in that they tend to suggest mostly popular 

doctors (Abdollahpouri et al., 2019). That being said, patients should not be matched with 

doctors because they are popular or because other patients with similar demographics visited 

them (even if this yields in high HR and p scores), but because they best fit their medical 

needs. Hence, it is suggested for further research that recommenders akin to this work should 

be optimised not only with respect to hit rate and precision, since this may not fully account 

for popularity bias, but also towards the domain-specific quality of the recommendation.  

In light of these considerations, healthcare providers can treat this factor as a value 

proposition for their clients. With increasing demand for personalised healthcare solutions, 



25 
 
 

recommenders built on patients’ individual health record are arguably in-line with current 

market trends. Picturing a potential customer journey, the RS would suggest a patient that has 

been admitted with, for example, hypertension with doctors that have treated many cases of 

hypertension or similar diseases. In addition, making recommendations based on individual 

health profiles adds an explanatory perspective to the suggestions that many RS lack. Since 

health is a sensitive topic, in general, and trust into AI solutions is a major concern in the 

healthcare domain, in specific, this may be a substantial driver for the success and adaptation 

of HRS in practice. 

VI. Conclusion 

Recapitulating the objectives of this work, the previous chapters have shown that 

incorporating complex domain knowledge in form of Poincaré embeddings of the ICD-9 

hierarchy into a HRS is not only possible, but also yields in an actual performance 

improvement in comparison to conventional approaches. Based on prior research, this paper 

has examined the benefits of the hyperbolic space for representation learning tasks in theory 

and, furthermore, applied the concept to real dataset. In doing so, it has been shown that 

Poincaré embeddings can contribute meaningful value in domains going beyond their original 

scope of NLP. Ultimately, it has been argued that the incorporation of domain knowledge is 

of particular value in the healthcare domain, as it allows for medically personalised 

recommendations that are also insofar more transparent, as they base on the patient’s 

individual health record. 

While the results of this preliminary investigation in this field are promising in principle, a set 

of limitations remains to be considered. As a matter of fact, from each of said limitations 

direct recommendations for further research can be derived. First of all, since the proposed 

models are purely CB in nature, they neglect valuable information that can be retrieved from 
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patient-doctor interaction data. That being said, further research on a hybrid RS leveraging 

both interaction data and ICD-9 embeddings is strongly encouraged. Indeed, despite being 

beyond the scope of this paper, preliminary experiments with such hybrid models have shown 

first, promising results, albeit still needing optimisation. 

In addition, data quality and data consistency have been persistent issues throughout this work 

with a substantial portion of available data lost due to insufficient mapping between 

terminologies. As has been stressed before, transferability between terminologies is 

paramount to the further growth of AI in healthcare and healthcare analytics. Hence, the 

healthcare industry as a whole is strongly encouraged to foster collaboration among different 

initiatives such as SNOMED CT, UMLS, ICD and others. 

Analogously to the need of improved data quality in the healthcare sector in general, 

healthcare service providers, in specific, need to drive the digitisation in their industry if AI is 

to play a role in future healthcare. For instance, instead of capturing only the ICD information 

of inpatients, all patients attended by a doctor should be assigned with a diagnostic code in 

order to increase the scalability of ML solutions as the one at hand. Additionally, since 

catalogues as the ICD evolve over time, healthcare institutions need to ensure their systems 

and processes are not outdated. Anecdotal evidence to this issue is the fact that as of the date 

of the publication of this paper the WHO only issued emergency COVID-19 codes for ICD-

10, while an ICD-9 code is strikingly absent from the list (WHO, 2020b). 

At last, a less technical and more content-related issue is the fact that primary care physicians 

tend to be generalists arguably diminishing the supposed benefit of medical specialisation of 

the recommendations. With primary care doctors treating a variety of very different patients 

throughout their consultation history, it is harder to determine a sharp, distinguishable profile 

for each doctor. Thus, repeating similar investigations in more specialised fields of healthcare 

than primary care may yield promising results in the future.  
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Appendix 

A. Figures 

Figure 16: Poincaré disk model 

Distance between points grow towards infinity when approaching the edge of the disk in the 

Poincaré disk model. 

 

 

 

Figure 2: Distance ratios 

Distance ratios of hyperbolic and Euclidean distance in comparison with original input graph 

distance ratio (De Sa et al., 2018a).  

 

  

 
 

6 Follow link on figure number to jump back to position in text. 
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Figure 3: Data diagram 

Diagram describing the data sources, as well as the necessary mapping steps between 

terminologies and datasets. 

 

 

 

Figure 4: Number of episodes over time 

Patient visits increased steadily over the observed period. 
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Figure 5: Patient age histogram 

As can be observed, the majority of patients are either adults or elderly people. 

 

 

 

Figure 6: Patients per ICD-9 chapter histogram 

Patients distribution across ICD-9 chapters (multiple counts possible). 
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Figure 6 (continued): ICD-9 chapter legend 

Each chapter corresponds to a range of ICD-9 codes. 

ICD-9 Chapter Range ICD-9 Chapter Description 

c_1_139 Infectious And Parasitic Diseases 

c_140_239 Neoplasms 

c_240_279 Endocrine, Nutritional And Metabolic Diseases, And Immunity Disorders 

c_280_289 Diseases Of The Blood And Blood-Forming Organs 

c_290_319 Mental Disorders 

c_320_389 Diseases Of The Nervous System And Sense Organs 

c_390_459 Diseases Of The Circulatory System 

c_460_519 Diseases Of The Respiratory System 

c_520_579 Diseases Of The Digestive System 

c_580_629 Diseases Of The Genitourinary System 

c_630_679 Complications Of Pregnancy, Childbirth, And The Puerperium 

c_680_709 Diseases Of The Skin And Subcutaneous Tissue 

c_710_739 Diseases Of The Musculoskeletal System And Connective Tissue 

c_740_759 Congenital Anomalies 

c_760_779 Certain Conditions Originating In The Perinatal Period 

c_780_799 Symptoms, Signs, And Ill-Defined Conditions 

c_800_999 Injury And Poisoning 

c_V01_V99 Supplementary Classification Of Factors Influencing Health Status And Contact With Health Services 
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Figure 7: Injury and poisoning sub-chapter histogram 

Patients distribution across injury and poisoning sub-chapters (multiple counts possible). 

 

Figure 7 (continued): Injury and poisoning sub-chapter legend 

Each sub-chapter corresponds to a range of ICD-9 codes. 

ICD-9 Sub-chapter Range ICD-9 Sub-chapter Description 

s_800_829 Fractures 

s_830_839 Dislocation 

s_840_848 Sprains And Strains Of Joints And Adjacent Muscles 

s_850_854 Intracranial Injury, Excluding Those With Skull Fracture 

s_860_869 Internal Injury Of Thorax, Abdomen, And Pelvis 

s_870_897 Open Wounds 

s_900_904 Injury To Blood Vessels 

s_905_909 Late Effects Of Injuries, Poisonings, Toxic Effects, And Other External Causes 

s_910_919 Superficial Injury 

s_920_924 Contusion With Intact Skin Surface 

s_925_929 Crushing Injury 

s_930_939 Effects Of Foreign Body Entering Through Orifice 

s_940_949 Burns 

s_950_957 Injury To Nerves And Spinal Cord 

s_958_959 Certain Traumatic Complications And Unspecified Injuries 

s_960_979 Poisoning By Drugs, Medicinal And Biological Substances 

s_980_989 Toxic Effects Of Substances Chiefly Nonmedicinal As To Source 
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s_990_995 Other And Unspecified Effects Of External Causes 

s_996_999 Complications Of Surgical And Medical Care, Not Elsewhere Classified 

 

Figure 8: Diseases of the circulatory system sub-chapter histogram 

Patients distribution across diseases of circulatory system sub-chapters (multiple counts 

possible). 

 

 

Figure 8 (continued): Diseases of the circulatory system sub-chapter legend 

Each sub-chapter corresponds to a range of ICD-9 codes. 

ICD-9 Sub-chapter Range ICD-9 Sub-chapter Description 

s_390_392 Acute Rheumatic Fever 

s_393_398 Chronic Rheumatic Heart Disease 

s_401_405 Hypertensive Disease 

s_410_414 Ischemic Heart Disease 

s_415_417 Diseases Of Pulmonary Circulation 

s_420_429 Other Forms Of Heart Disease 

s_430_438 Cerebrovascular Disease 

s_440_449 Diseases Of Arteries, Arterioles, And Capillaries 

s_451_459 Diseases Of Veins And Lymphatics, And Other Diseases Of Circulatory System 
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Figure 9: ICD-9 hierarchy embedded in 2-d space 

Built on synthetic data, the ICD-9 hierarchy is reconstructed in the Poincaré disk model and 

then transferred to Euclidean space (Beaulieu-Jones et al., 2019). 
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Figure 10: Model evaluation 

Hit rate and precision scores per proposed model. 
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B. Tables 

Table 1: Summary statistics of 201912 release of US NLM ICD-9 to SNOMED CT map 

Table indicating how many ICD-9 codes have a unique, an ambiguous or no mapping to the 

SNOMED CT (US NLM, 2019). 

Map Type ICD-9 Codes % of usage of ICD-9 codes 

1-1 Maps 7,826 (66%) 70% 

1-M Maps 3,350 (28%) 25% 

No Map 672 (6%) 5% 

Total 11,848 (100%) 100% 
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C. Equations 

Equation (1): Hyperbolic distance 

 𝑑𝑑𝐻𝐻(𝑥𝑥,𝑦𝑦) = acosh �1 + 2
||𝑥𝑥 − 𝑦𝑦||2

(1 − ||𝑥𝑥||2)(1− ||𝑦𝑦||2)� 

Equation (2): Distance between two children in graph in continuous space 

𝑑𝑑(𝑥𝑥,𝑦𝑦) = 𝑑𝑑(𝑥𝑥,𝑂𝑂) + 𝑑𝑑(𝑂𝑂,𝑦𝑦) 

Equation (3): Distance ratio of original input graph (normalisation of equation (2)) 

𝑑𝑑(𝑥𝑥,𝑦𝑦)
𝑑𝑑(𝑥𝑥,𝑂𝑂) + 𝑑𝑑(𝑂𝑂, 𝑦𝑦) = 1 

Equation (4): Cosine similarity 

cos(𝜃𝜃) =  
𝐴𝐴 ∗ 𝐵𝐵

�|𝐴𝐴|� ∗ �|𝐵𝐵|�
 

Equation (5): Pearson correlation 

𝜌𝜌(𝐴𝐴,𝐵𝐵) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴,𝐵𝐵)
𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎

 

Equation (6): Hyperbolic Average (Einstein midpoint) 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑥𝑥1, … , 𝑥𝑥𝑁𝑁) =
∑ 𝛾𝛾𝑖𝑖𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1
∑ 𝛾𝛾𝑖𝑖𝑁𝑁
𝑖𝑖=1

 

𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝛾𝛾𝑖𝑖 =
1

�1 − 𝑐𝑐�|𝑥𝑥𝑖𝑖|�
2

  
 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐 = 1 

Equation (7): Feature vectors of patient i and doctor j: 

𝑓𝑓𝑖𝑖 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑉𝑉𝑖𝑖) 

𝑓𝑓𝑗𝑗 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻�𝑉𝑉𝑗𝑗� 

Equation (8): Hyperbolic similarity between doctors j and k: 

𝑠𝑠𝑗𝑗,𝑘𝑘 = 𝑠𝑠𝐻𝐻(𝑓𝑓𝑗𝑗 ,𝑓𝑓𝑘𝑘) 
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Equation (9): Predicted affinity of patient i towards a doctor j: 

𝑝𝑝𝑖𝑖,𝑗𝑗 =
∑ 𝑦𝑦𝑖𝑖,𝑘𝑘 ∗ 𝑠𝑠𝑗𝑗,𝑘𝑘
𝐾𝐾
𝑘𝑘=1

∑ 𝑠𝑠𝑗𝑗,𝑘𝑘
𝐾𝐾
𝑘𝑘=1
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