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Abstract

In this PhD thesis, the fragmentation of prototype radiosensitizer molecules for cancer

radio- and chemo-therapy is investigated through gas-phase collision experiments. The

main goal is to extend the current knowledge on the radiosensitization mechanism by

assessing the formation of reactive species, ions and neutral radicals, which may lead to

DNA damage during the early stages of radiation damage.

In the first part, a collision-induced dissociation study with protonated ronidazole

carried out with a home-built electrospray ionization source coupled to a double-focusing

mass spectrometer is presented. The main fragmentation pathway results from an in-

tramolecular proton transfer reaction followed by release of neutral –NH2CO2H fragment.

This reaction was demonstrated in low- and high-energy CID experiments with partially

deuterated ronidazole supported by DFT quantum chemical calculations. The second part

of the thesis focuses on low-energy electron interactions with 5-trifluoromethanesulfonyl-

uracil (OTfU), a modified pyrimidine, and benzaldehyde, a compound used in anti-cancer

clinical trials. Crossed electron-molecular beam setups coupled with a quadrupole mass

spectrometer were employed to identify the formed fragment anions, and to measure anion

efficiency curves as function of the incident electron energy. In dissociative electron attach-

ment (DEA) to OTfU, the triflate anion (OTF-), along with the reactive uracil-5-yl radical

was identified as the dominant anionic fragment. The efficient decomposition of OTfU into

reactive species upon electron attachment endorses its potential as a radiosensitizer. For
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benzaldehyde, in addition to the molecular anion detection, further nine fragment anions

were observed with modest DEA cross sections of about 10−24 − 10−23 m2. The study

with partially deuterated benzaldehyde showed that the dehydrogenation of benzaldehyde

is selective with respect to the incident electron energy. The formation of resonances was

also theoretically investigated by electron scattering calculations, and a quantum chemical

study predicted the thermochemical thresholds for the observed fragments.

The insights gained in this PhD thesis may contribute for a better understanding on

radiation damage, which is of paramount importance for the design of new radiosensitizer

drugs, as well as for the development of more efficient cancer treatments.
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Resumo

Nesta tese de PhD, a fragmentação de fármacos radiosensibilizadores usados em radio- e

quimioterapia é investigada experimentalmente através de colisões na fase gasosa. O objec-

tivo principal é expandir o conhecimento actual sobre o mecanismo de radiosensibilização,

através da avalição da formação de espécies reactivas, iões e radicais neutros, que podem

causar dano no DNA durante as fases iniciais dos efeitos da radiação.

Na primeira parte, um estudo de dissociação induzida por colisão com ronidazol

realizado numa fonte de ionização por electrospray acoplada a um espectrómetro de massa

dupla focagem. O canal de fragmentação principal resulta de uma reacção intramolecu-

lar de transferência de protão, seguida pela libertação do fragmento neutro –NH2CO2H.

Esta reacção foi demonstrada em experiências de dissociação induzida por colisão a alta-

e baixa-energia com ronidazol parcialmente deuterado, e apoiadas por cálculos DFT. A

segunda parte desta tese foca-se em interacções de electrões de baixa energia com 5-

trifluorometilsulfonil-uracil (OTfU), uma pirimidina modificada, e com benzaldéıdo, um

composto usado em ensaios cĺınicos. Equipamentos de feixes crossados electrão-molécula

acoplados com um espectrómetro de massa do tipo quadrupolo foram usados para identi-

ficar os fragmentos aniónicos formados, e para medir curvas de eficiência iónica em função

da energia dos electrões incidentes. Em captura electrónica dissociativa com OtfU, o anião

triflato (OTf–), junto com o radical reactivo uracilo-5-il foi identificado com o fragmento

aniónico dominante. A decomposição eficiente de OTfU em espécies reactivas devido a
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captura electrónica apoia o seu potencial com radiosensibilizador. Para o benzaldéıdo,

para além da detecção do anião molecular, foram observados nove fragmentos aniónicos

com secções eficazes para captura electrónica dissociativa modestas, de cerca de 10−24-10−23

m2. O estudo com benzaldéıdo parcialmente deuterado demonstrou que a dehidrogenização

de benzaldéıdo é selectiva relativamente à energia dos electrões incidentes. A formação de

ressonâncias foi também investigada por métodos teóricos, nomeadamente de cálculos de

dispersão electrónica, e um estudo de qúımica quântica previu os limiares termodinâmicos

para a formação dos fragmentos observados.

Os conhecimentos adquiridos nesta tese de PhD poderão contribuir para uma mel-

hor compreensão do dano por radição, o que é fulcral para o design de novos farmácos

radiosensibilizadores, assim como para o desenvolvimento de tratamentos do cancro mais

eficientes.
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Chapter 1
Introduction

1.1 Cancer

Cancer is a leading cause of death worldwide. Accordingly to the most recent statistics

provided by the World Health Organization, in 2018, cancer caused the death of about 9.6

million people globally. Lung cancer alone accounted for 2.09 million of the total number

of cancer cases diagnosed (figure 1.1), and for 1.76 million deaths worldwide.[1]

Cancer is a term used for a large group of diseases characterized by the rapid creation

of abnormal cells, or also referred to as malignant or tumor cells, which have suffered

genetic mutations. The uncontrolled proliferation of tumor cells throughout the body is

considered the major cause of cancer death. In the process known as metastasis formation,

the tumor cells leave their original location to attack several organs simultaneously, which

often comprises their function. Furthermore, the fast proliferating malignant cells are

competing with healthy cells for nutrients and oxygen, enhancing thus the complications

arising from metastasis formation.

Although cancer can be inherited, it was observed that inherited cancer only affects

< 0.3% of the world population, which results in less than 3-10% of all cancer cases annually

diagnosed.[2] The non-hereditary cancers are caused by agents capable to induce changes

in the DNA sequence, which in turn result in uncontrolled cell proliferation and tumor

growth.[3] Theses changes arise from the combination of genetics with external agents, also
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1.1. Cancer

known as carcinogens, including physical carcinogens, such as ionizing radiation, e.g. UV,

X- and γ-rays; chemical carcinogens, such as asbestos, tobacco smoke, or food and water

contaminants; and biological carcinogens, such as infections from viruses or bacterias.[1]

At last, the incidence of cancer cases increases significantly with age, in principle due to

a build-up of non-repaired damages in the DNA sequence which can give rise to cancer.

Therefore, ageing is also considered a fundamental factor for cancer.[1] The biological

effects of ionizing radiation which can lead to cancer will be discussed in section 1.2.

Lung
2.09M 

Breast
2.09M

Colorectal
1.8M

Prostate
1.28M

Skin 
1.04M

Stomach 
1.03M

Most common cancers

Lung
1.76M

Colorectal
0.86M

Stomach 
0.78M

Liver
0.78M

Breast
0.63 M

The most common causes of death from cancer

Figure 1.1. Incidence of the most common types of cancer, along with the most common causes

of death from different cancer types globally in 2018. Data taken from [1].

1.1.1 Cancer treatments

The primary goals of cancer therapies are to destroy, and to prevent proliferation of tumor

cells.[3] There are several treatments available depending on the type and severity of the

cancer. Surgery, radio- and chemotherapy represent the three most widely used cancer

therapies.[4] Surgery is the most common cancer therapy, in which the tumor is removed,

as possible, from the patient body. The second most used treatment is radiation therapy.

This form of therapy employs electromagnetic radiation (X-rays or γ-rays), accelerated

charged particles (e.g. electrons, protons, heavy ions), or fast-neutrons to selectively dam-

age and kill tumor cells. It is estimated that half of all patients will receive radiotherapy at

some point of the treatment.[5] At last, chemotherapy represents the third most common
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1.2. Biological effects of ionizing radiation

cancer therapy, in which chemical compounds, termed anti-cancer drugs, targeting DNA,

RNA, and proteins are administered in order to trigger apoptosis (cell death) of tumor

cells, however, with significant side effects to the patient.[3] A further strategy to fight

cancer relies on the combination of those therapies. For instance, concomitant chemo- and

radiotherapy, also referred to as chemoradiation therapy (CRT) arises as a more efficient

anti-cancer strategy. In fact, several cancer studies have shown that the simultaneous ad-

ministration of anti-cancer drug along with radiation, increases the survival probability of

patients who received these combined therapies, with respect to those who received only

radiotherapy. In CRT, the administration of anti-cancer drugs, also known as radiosensi-

tizers, enhances the sensitivity of tumor cells towards radiation [6–8]. In the section 1.4 it

will be discussed how this synergy between radiation and radiosensitizer occurs, and how

it leads to an improvement in the treatment of cancer.

1.2 Biological effects of ionizing radiation

In the early 1900’s, the study of biological effects of ionizing radiation had started. After

carrying inadvertently a piece of radium in his vest pocket, Becquerel developed skin

erythema and ulcers. In 1901, Pierre Curie reproduced the same experiment by placing

radium close to his forearm. At that time, these early observations set the framework for

radiobiology, which is the study of the impact of ionizing radiation on living organisms.[9]

Humans are exposed to natural radiation sources, such as cosmic rays, in a daily basis, and

also to artificial sources employed in medical imaging. For instance, a patient is exposed to

X-rays during a CT scan, or to γ-rays produced in positron emission tomography (PET).

Depending on the dose, kind of radiation, and observed endpoint, ionizing radiation, as

well as fast charged particles can cause harmful effects in living organisms, which can

be categorized into stochastic effects and deterministic (or non-stochastic) effects.[9, 10]

Stochastic effects are due to cells that are modified by irradiation, although not killed.

Carcinogenesis is the most important stochastic effect of radiation. In this case, although

the probability of cancer occurrence increases linearly with the radiation dose, the severity

of the cancer is independent of the radiation dose. Moreover, it is considered that there

3



1.2. Biological effects of ionizing radiation

Figure 1.2. Dose–response relationships for deterministic (tissue reactions), as well as for

stochastic effects. For deterministic effect, the dose-response is represented by a threshold-sigmoid

function. For stochastic effects, the dose–response relationship is a linear (or linear-quadratic)

function.

is no dose threshold in stochastic effects. Deterministic effects create damage due to cell

death and removal from a tissue or organ. The severity due to loss of tissue function is

zero at low radiation doses, and increases quickly above a given tissue-specific dose level,

or also called threshold dose. Cataracts and pulmonar fibrosis are examples of adverse

deterministic effects in humans. The dose-response relationship for both deterministic and

stochastic effects is represented in figure 1.2.

Most biological effects of radiation arise from DNA damage. Ionizing radiation

may promptly cause modifications in the DNA sequence resulting in apoptosis. However,

other consequences such as carcinogenesis, cataracts or fibrosis are not immediate and

may only be observed after days, months or, even some mutations may be expressed by

descendants after many years.[9, 11] Therefore, it is useful to sort out the physical, chemical

and biological processes triggered by ionizing radiation accordingly to their time scale, as

schematically represented in figure 1.3.

In the physical stage, electronic excitation and ionization events take place within

femtoseconds (< 10−15 s) due to direct interaction of radiation with molecules constitut-

ing the biological medium. The direct action of radiation induces DNA damage through

ionization or excitation of subunits of the DNA molecule. Water composes about 80%

of biological systems, the set of radiation-induced reactions with water, known as water
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Figure 1.3. Timeline of radiation damage.

radiolysis results in a wide assortment of highly reactive species, specially hydroxyl (OH•)

and hydrogen (H•) radicals, as well as secondary electrons (SEs) which are precursors for

DNA damage. Figure 1.4 shows the sequence of events occurring during water radiolysis,

in line with the timescale of radiation damage (figure 1.3). Water radiolysis begins with

the physical stage (< 10−15−10−16s), followed by the physico-chemical (< 10−15−10−12s),

and chemical stages (< 10−6 up to seconds).[12] Within < 10−15 − 10−16s in the physical

stage, water ionization upon irradiation yields SEs and water cations:

H2O + hυ
ionization−−−−−−→ H2O

+ + e− (1.1)

Water cations, H2O
+, may undergo ion-molecule reactions within < 10−14s to form

a hydronium ion, H3O
+, and a hydroxyl radical, OH•, as follows[12]:

H2O
+ +H2O → H3O

+ +OH• (1.2)

Electronically excited water molecules, H2O
∗ can also dissociate into H• and OH•
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Figure 1.4. Diagram representing the time scale of reactions in water radiolysis. Taken from

[13].

radicals within < 10−13s:

H2O
∗ → H• +OH• (1.3)

Within the physico-chemical stage of radiation damage (∼ 10−12 s), all products

are then close to be thermalized, i.e. in thermal equilibrium with the bulk. In addition

to the highly reactive products of water radiolysis, OH•, H• and SEs, radicals formed by

interaction of radiation with the molecules in the vicinity of the DNA molecule, namely

salts, proteins and oxygen molecules, are also able to cause DNA damage. This DNA

damage caused by radicals is known as free radical damage.[14] The damage observed in

DNA include single-strand breaks (SSBs), double-strand breaks (DSBs), base release and

tandem or clustered lesions which result from combinations of the first three lesions.[14,

15] Hence, besides the direct effect of radiation, the DNA free radical damage is called

indirect effect of ionizing radiation.[9, 12] The relative importance of direct and indirect

effects for DNA damage is still under investigation. It was assumed that the DNA damage

by ionizing radiation was about one-third due to the direct effets, and two-thirds due to the
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1.3. Low-energy electron induced DNA damage

indirect effects.[16, 17] However, ultrafast electron transfer experiments with DNA have

proposed that two-thirds of the damage is direct and one-third is indirect.[15, 18]

During the chemical stage of radiation damage, the highly reactive radicals en-

gage in a succession of diffusion controlled radical-molecule reactions that occur within

miliseconds up to seconds.[9] Afterwards, the cellular machinery proceeds to repair the

radiation-induced damage in the living cell, especially in DNA during the biochemical and

biological stages. SSBs and base release can be repaired, whereas severe DSBs lead in most

cases to apoptosis. Nevertheless, if some lesions fail to be repaired causing cell death, the

biological effect may be exhibited hours or days later. As discussed in section 1.1, among

other carcinogens, ionizing radiation can cause cancer. If radiation induces a mutation in

a germ cell, it can be passed to the descendants, which may not be exhibit in the future

generations.

1.3 Low-energy electron induced DNA damage

About 80% of the incoming projectile’s energy is deposited in the biological medium

through ionization. As a result, secondary electrons (SEs) are produced at a rate of 5×104

per MeV of deposited energy [19] and are the most abundant secondary species formed.

Through Monte Carlo simulations of liquid water irradiated with fast heavy particles with

MeV, such as 1H and 4He ions, it was shown that SEs have a energy distribution peaking

at about 9-10 eV, and are barely produced with energies above 100 eV [20], as shown in

figure 1.5. Electrons with energy between 0 and 20 eV will be referred to as low-energy

electrons (LEEs).

After the formation of SEs, they lose kinetic energy by sucessive excitation and

ionization events, before they polarize the phonon modes of water forming electrons in

different solvation (or hydration) states, namely quasi-free electrons (e−qf ), pre-hydrated

electrons (e−pre), and fully solvated electrons (e−aq).[12, 21] Each type of electron produced

during the irradiation exhibits different reactivity with biomolecules depending on the

electron energy, state of solvation and the distance to further reactive species.[21, 22]

Quasi-free electrons, e−qf , are electrons in the water conduction band. The energy of quasi-
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Figure 1.5. Energy distribution of secondary electrons released in water upon ionization by fast

charged particles, namely 1H and 4He ions. Taken from [20].

free electrons ranges from near 0 to -0.2 eV, and e−qf has a lifetime of about 100-550

femtoseconds.[12, 22] The capture of quasi-free electrons by DNA subunits forms temporary

negative ions that may result in bond cleavages via dissociative electron attachment, and

thereby DNA damage.[22, 23] Pre-hydrated electrons, e−pre may be defined as electrons in a

presolvated state having little or no kinetic energy.[23] Within 10−12s, e−pre are solvated by

the neighbouring water molecules leading to the formation of solvated electrons (e−aq) with

a energy of -1.6 eV corresponding to the free energy of solvation. The energy of e−pre lies in

the range of -0.2 eV to -1.6 eV, which is in between the energy of the water conduction band

and the solvated electron, e−aq.[21] Although it is recognized that e−aq does not induce strand

breaks in DNA, it may bind to nucleobases in aqueous phase. The nucleobase radical anions

protonate, that eventually leads to production of dihydrothymine and dihydrocitosine.[21,

22] These products can create clustered damage and are relevant for radiation induced

damage in DNA.
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Figure 1.6. Schematic energy diagram showing the type of electrons produced as a result of

the irradiation of water. The zero of the energy scale corresponds to the total energy of a gas-

phase electron at rest, and equilibrated (relaxed) water. The adiabatic electron affinity (AEA)

of the solvated electron, e−aq (blue circle), corresponds to the negative value of the free energy of

solvation (-1.6 eV). The energy required to ejected the solvated electron, e−aq, into the gas-phase

matches with the vertical detachment energy (VDE). The VDE value of 3.4 eV corresponds

to the energy difference between the lowest energy of the solvated electron (-1.6 eV), and the

zero eV electron in gas-phase. The difference between the AEA and VDE gives the solvation

reorganization energy (SRE) value of about 1.8 eV. The energy of the presolvated electron, e−pre,

lies between the energy of e−aq, and V0 corresponding to the adiabatic energy of the conduction

band of water (blue shaded area). Quasi-free electrons, e−qf , are in the conduction band of water.

The four arrows surrounding schematically represent the binding of e−aq in a cavity formed by four

water molecules.[24] Adapted from [21].

In 2000, Boudäıffa et al. demonstrated that LEEs cause strand breaks in DNA

[25]. In this study, both single- and double- strand breaks yields were determined by

irradiation of plasmid DNA with LEEs of energy between 3-20 eV, followed by agarose gel

electrophoresis analysis. As shown in figure 1.7 right panel, the DSB yield peaks at about
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10 eV, and the SSB yield exhibits an intense contribution at about the same energy. These

remarkable results suggest that the highest yield for DNA damage, in terms of single- and

double-strand breaks, occurs at the most probable energy of SEs formed in water upon

irradiation, accordingly to reference [20]. Afterwards, in 2004, Martin et al. covered the

electron energy range from 0-4 eV. [26] The SSB yield exhibits a sharp contribution at

(0.8 ± 0.3) eV with an absolute intensity of about 11 × 10−3 strand break per incident

electron, as shown in figure 1.7 left panel. Furthermore, given the observed behavior of

the strand break formation, it was demonstrated that LEEs efficiently damage DNA by

attaching temporarily to DNA subunits (nucleobase, sugar, or phosphate group) to form

temporary negative ions (TNI).[27] In a second step, TNIs decay via fragmentation yielding

a negative ion and neutral fragments. This decomposition process known as dissociative

electron attachment (DEA) is very efficient at low-energies, even at about 0 eV. Thus,

electron-driven DNA damage occurs at energies below the DNA ionization threshold of

7.5 to 10.0 eV.[25, 28] The studies based on the interaction of LEEs with DNA provided

a motivation for a significant number of gas-phase investigations with DNA sub-units,

namely nucleobases adenine [29, 30], uracil [31, 32], thymine[33–35] and cytosine [36, 37],

the nucleoside thymidine [38], as well as deoxyribose sugar unit [39–41].

1.4 Radiosensitizers

In concomitant chemo- and radiotherapy, or chemoradiation therapy (CRT), radiosensitiz-

ers are administered to the patient in order to enhance the sensitivity of tumor cells towards

ionizing radiation.[9] Comparatively to radiotherapy alone, the addition of the radiosen-

sitizer promotes tumor control without further damage to healthy tissue, as illustrated

in figure 1.8.[9] Within the physico-chemical stage of radiation damage, radiosensitizers

can be activated by LEEs released due to irradiation of the biological medium. Although

the exact mode of action of radiosensitization at the molecular level is not yet clarified,

the observed synergy between the radiation and the radiosensitizer, can be ascribed to

LEE-driven reactions, especially dissociative electron attachment.[6, 15, 42] In the case of

the radiosensitizer cisplatin (PtCl2(NH3)2, figure 1.9) an electron with about 0 eV firstly
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Figure 1.7. Single- and double-strand breaks yield obtained by irradiation of plasmid DNA

with low-energy electrons with 0-4 eV (left panel [25]), and 3-20 eV (right panel [26]).

induces the simultaneous release of both Cl atoms through DEA, which activates cisplatin

for DNA binding. Then, cisplatin covalently binds to DNA and distorts the double he-

lix structure of DNA inhibiting replication.[6, 43] LEEs-cisplatin interactions represent a

prime example of the role played by LEEs in chemoradiation therapy.

Most radiosensitizer compounds can be categorized accordingly to the mechanism

of action into (i) modified pyrimidines, or (ii) nitroimidazolic radiosensitizers that selec-

tively target hypoxic cells.[9, 44] There are more radiosensitizer classes which will not be

addressed in the present work, see reference [44] for further details.

1.4.1 Modified pyrimidines

Pyrimidine derivatives, in particular halogenated pyrimidines, or other 5-substituted uracils

have been suggested as radiosensitizers.[45] 5-fluorouracil is a radiosensitizer currently used

in clinic. Further, thymidine analogues such as bromodeoxyuridine (BrdU) as illustrated in

figure 1.9, were also proposed for CRT.[46] These compounds can be efficiently incorporated

into DNA, since the dimensions of the halogen atom and the methyl group at C5-position

are similar.[44] Within the physico-chemical stage of radiation damage, the incorporation
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Figure 1.8. With radiation alone, a given level (A) of tumor control is possible for a maximum

tolerable level of normal, or healthy, tissue damage (C). In the presence of the radiosensitizer

drug, a higher local tumor control (B) is achieved at a lower radiation dose, while keeping the

same level of normal tissue damage (c). Taken from [9].

of halogens, or electrophilic groups either in the nucleobase, or in the sugar moiety (e.g.

gemtacibine), results in a higher reactivity towards LEEs. The cleavage of the halogen-

carbon bond by dissociative electron attachment produces a negatively charged halogen

atom and a highly reactive carbon-centered radical. Subsequently, the radical can cause

both single- and double-strand breaks in DNA as caused by hydroxyl radicals.[44] For

instance, the interaction of LEEs with a structurally similar compound 5-bromouracil (5-

BrU) has been extensively studied.[47, 48] All studies show that an electron with about 0

eV can efficiently break the C5-Br bond resulting in Br– formation, as well as uracil-5-yl

radical which is a precursor for DNA strand breakage.[49]

1.4.2 Nitroimidazolic compounds

Within most solid tumors, there are regions composed of cells with low oxygen concen-

tration, called hypoxic cells. Unfortunately, the lack of oxygen increases the resistance

of tumor cells towards ionizing radiation, which reduces the efficiency of radiotherapy in

treating solid tumors. This effect is the so-called ”oxygen-effect”, in which cells are more

sensitive to ionizing radiation in the presence of oxygen, than in its absence (hypoxia).[9]
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Gemcitabine Bromodeoxyuridine Cisplatin

Figure 1.9. Molecular structure of three halogen-containing radiosensitizers.

The incorporation of electron-affinic radiosensitizers, which are compounds that mimic the

oxygen effect in hypoxic cells and thereby increase the sensitivity towards radiation. Ni-

troimidazolic compounds have been proposed as radiosensitizer as they consist of a nitro

moiety (-NO2), an imidazole ring and a side chain. The chemical structure of different

nitroimidazolic compounds are included in figure 1.10. The side chain often defines the

toxicity of the compound, whereas the nitroimidazole moiety is responsible for the observed

high electron-affinity.

The first studied nitroimidazolic radiosensitizer was misonidazole, a drug based on

2-nitroimidazole (see figure 1.10). Although the successful in vitro studies, it was veri-

fied that the composition of the side chain caused significant side effects in humans, and

the concomitant use of misonidazole with radiation was therefore abandoned.[50] Further

nitroimidazole-based compounds were developed in order to reduce the side effects to the

patient. Nimorazole, a less toxic radiosensitizer based on 5-nitroimidazole was then pro-

posed even in spite of its reduced sensitization efficiency compared to misonidazole. Nowa-

days in Danish radiotherapy centers, nimorazole is a standard drug employed for the CRT

of hypoxic tumors.[51] Although a complete description of the mode of radiosensitization

by nitroimidazolic compounds is still unclear, a hypothesis suggested that nitroimidazoles

are prodrugs which can be activated by intracellular one-electron reductases, such as cy-

tochrome P450 reductase, to form a radical anion. This species may be responsible for the

fixation of DNA damage induced by OH radicals. [44, 52]
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5-nitroimidazole Misonidazole Nimorazole

Figure 1.10. Molecular structure of three nitroimidazolic compounds.

1.5 Studies with electron-affinic radiosensitizers

Despite the current use of radiation along with radiosensitizers, the full potential of this

form of therapy is yet not known, since the exact description of the mechanism of radiosen-

sitization in the physico-chemical stage of radiation damage remains incomplete. Hence,

in order to improve radiation therapy protocols, as well as to design novel and better ra-

diosensitizer drugs, a comprehensive understanding of how reactive radicals and charged

fragments are formed from radiosensitizer molecules upon irradiation is of paramount im-

portance. In order to tackle this fundamental question, researchers have performed experi-

ments with thin films, in solution, or in the gas phase.[42] Naturally, all existing approaches

have advantages and drawbacks whose discussion will not, however, be addressed in the

present thesis, see reference [42] for more details. A large number of research groups pre-

ferred the study of biomolecules in the gas-phase, because it allows investigations on how

an isolated molecule reacts towards an energetic particle, including photons, electrons and

ions.

Over the last years, mass spectrometry studies have lead to the identification of

charged products formed in decomposition reactions with radiosensitizers, and therefore

contributing to a better understanding of the mechanism of radiosensitization at the molec-

ular level. Usually, two different strategies of measurement are adopted, either the top-

down approach[53], or the bottom-up approach[54]. In the top-down approach, macro-

molecules, e.g. DNA/RNA, proteins or large radiosensitizer compounds, are transferred
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to the gas-phase by matrix-assisted laser desorption/ionization (MALDI) or electrospray

ionization (ESI) and identified by mass spectrometry (MS). A precursor molecular ion is

then decomposed in the gas phase into product ions, which are analyzed by tandem mass

spectrometry (MS/MS) techniques. Collision-induced dissociation (CID) is a widely used

technique by which a molecular ion is decomposed into fragments, due to a collision with

a gas, typically helium, argon or nitrogen.[55] However, high-energy CID can lead to a

complex fragmentation pattern, which might be difficult to interpret. Therefore, ESI mass

spectrometry is often supported by theoretical studies to clarify the formation of fragment

ions. In the bottom-up approach, firstly, the studies are carried out with small molecules,

or building blocks of the macromolecules, e.g. DNA or radiosensitizers. After data ac-

quisition and further analysis, molecules of gradually increased complexity are selected to

study. In electron attachment studies with biomolecules, the bottom-up approach is a tool

to investigate which reactions remain and which modifications of the electron attachment

process may occur in terms of resonance energies and fragmentation pathways.[42]

1.5.1 Electrospray ionization of radiosensitizers

Electrospray ionization (ESI) coupled to a tandem mass spectrometer represents a suitable

method for studying the formation of biomolecular ions and clusters, and, in a second

stage, the respective fragmentation.[56, 57] Feketeová et al.[58] have observed the forma-

tion of radical anions, M−•, for the radiosensitizers misonidazole and nimorazole, as well

as for other nitroimidazole-based compounds. Hence, the formation of molecular anions of

nitroimidazole-based compounds in ESI matches with the first and key step of the radiosen-

sitization mechanism, and it allows studying fragmentation reactions of nitroimidazoles,

which are important for radiation therapy as previously mentioned. In ESI of misonida-

zole and nimorazole, as well as for other nitroimidazole-based compounds, the protonated

molecular ion, [M + H]+, is the most common ion observed in positive mode.[58] The

products ions formed by either collision-induced dissociation (CID, see section 2.2) and

electron-induced dissociation of [M + H]+ were identified by mass spectrometry. After-

wards, Pandeti et al.[59] have investigated the fragmentation through low-energy CID
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of protonated nitroimidazolic radiosensitizers (1-methyl-5-nitroimidazole, metronidazole,

ronidazole, ornidazole and nimorazole). At last, Khreis et al.[60] have extended the previ-

ous study by investigating high-energy CID of nimorazole and misonidazole anions using a

home-built ESI source coupled to a double focusing mass spectrometer. The kinetic energy

release (KER) of the most important dissociation channels was determined. In positive

mode, low-energy CID of protonated metronidazole and ornidazole leads to neutral NO2

loss, and NO loss for ronidazole and ornidazole. These two fragmentation channels were

not observed for protonated nimorazole. On the other hand, NO2
– formation was observed

in CID of radical anion of nimorazole and metronidazole, and it was thereby suggested as

ion marker for the detection of these two compounds. Moreover, the comparison between

the KER values associated with the loss of the side-chain from the N1 position in nimora-

zole (99 meV) and metronidazole (∼300 meV) suggests that the molecular structure of the

side-chain is relevant for the design of novel nitroimidazolic radiosensitizers.[61] Recently,

Pandeti et al.[62] has investigated the formation of proton bound biomolecular clusters of

five different nitroimidazolic compounds and all nucleobases, and respective nucleosides.

1.5.2 Electron attachment to radiosensitizers

The electron induced-reactions with various nitroimidazoles, including nitroimidazolic ra-

diosensitizers have been thoroughly investigated. In studies involving simpler nitroimi-

dazole molecules, Ribar et al.[63] have found that the position of the nitro group affects

the formation of anions upon electron attachment. The most abundant anion observed

in DEA to 4- and 5-nitroimidazole is formed by single hydrogen loss, while in DEA to 2-

nitroimidazole the release of neutral water represents the dominant fragmentation channel.

In addition, the formation of the reactive hydroxyl radical was observed for all molecules;

however the hydroxyl radical formation was much stronger for 2-nitroimidazole than for

the other isomers. Thus, when considering that the mechanism of radiosensitizer is solely

based on its efficient dissociation into charged fragments, and radicals, 2-nitroimidazole ap-

pears to be a better radiosensitizer.[63] Tanzer et al.[64, 65] showed that methylation of 4-

and 5-nitroimidazole quenches completely the fragmentation in the electron energy range
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below 2 eV. The theoretical study by Kossoski et al. [66] on electron scattering from 4- and

5-nitroimidazole demonstrated that DEA at around 1.5 eV is quenched, since the autode-

tachment lifetime of the π∗2 resonance is considerably shorter in the N1-methylated forms

of 4- and 5-nitroimidazole. More recently, in a study on the interaction of LEEs with bare

and hydrated nimorazole, Meißner et al. [67] observed that nimorazole efficiently forms a

radical through through attachment of electrons with about 0 eV. Therefore, in addition to

the enzyme-mediated reduction of nimorazole to form a cytotoxic radical anion, the elec-

tron attachment mechanism may be also responsible for the activation of the radiosensitizer

nimorazole.

Electron attachment to modified pyrimidines has been extensively studied by both

experimental and theoretical methods.[68] Such studies have been carried out with vari-

ous molecules, including ones that have been administrated in CRT treatments, as well

as compounds which were not considered in anticancer therapies yet, but suggested as

potential radiosensitizers. For example, 5-fluorouracil [49, 69–71], 5-chlorouracil [49, 69,

71–73], 6-chlorouracil [70, 73], 5-bromouracil [47, 48, 74–76], and 5-iodouracil [49, 77].

Further, the potential action of halogenated adenine derivatives as radiosensitizers, such

as 2-fluoroadenine[78], 8-bromoadenine[79] and 2-chloroadenine[80] has been also investi-

gated.

1.6 Thesis objectives and outline

The main objective of the present PhD thesis consists in furthering the current knowledge

on the radiosensitization mechanism of potential radiosensitizer compounds. In part I,

a home-built ESI source coupled to a double-focusing mass spectrometer was employed

to study the fragmentation of protonated ronidazole, a nitroimidazolic compound whose

radiosensitizer properties are yet under investigation. In high-energy CID of ronidazole,

the most abundant fragment ion is formed by proton transfer to the side-chain followed

by neutral –NH2CO2H release. Studies with deuterated solvents were performed to shed

light on the proton transfer reaction. In addition to high-energy CID, the decomposition of

ronidazole was investigated in low-energy CID and supported by density functional theory
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(DFT). In part II, electron attachment to radiosensitizers was investigated in two crossed

electron-molecular beams setups coupled to a quadrupole mass spectrometer. In a first

study, 5-trifluoromethanesulfonyl (OTfU), a potential radiosensitizer of the class of the

modified pyrimidines was studied. Benzaldehyde, a compound used as anticancer agent in

clinical trials, was also investigated and, the potential radiosensitization by benzaldehyde

in terms of negative ion formation upon electron attachment was assessed. Both studies

were supported by theoretical calculations.

The outline of this thesis is as follows:

Part I - Collision-induced dissociation of biomolecules

The goal of part I is to investigate the fundamental properties via high-energy collision-

induced dissociation of ronidazole, a compound of the class of the nitroimidazoles, at the

molecular level.

• Chapter 2 provides an introduction on the electrospray ionization technique used for

the formation of protonated ronidazole, as well as on general aspects of the collision-

induced dissociation (CID) process required to support the analysis of the results.

• Chapter 3 presents a comprehensive description of the experimental setup used to

carry out the high-energy CID studies.

• Chapter 4 contains the obtained results, namely high-energy CID of protonated

ronidazole, which are summarized in a peer-reviewed scientific publication.

Part II - Electron interactions with biomolecules.

The goal of part II is to investigate the formation of anions upon the interaction of low-

energy electrons with biomolecules, especially radiosensitizers.

• Chapter 5 provides an overview of the fundamental concepts of dissociative ioniza-

tion, and in more detail, electron attachment.

• Chapter 6 presents a comprehensive description of the experimental setups em-

ployed for investigating electron attachment to OTfU and benzaldehyde. For both

experimental setups, the methods used for calibration of the energy scale are pre-

sented. A description of data analysis methodology used in order to determine the
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position and onset of resonances comprising DEA signals is also provided.

• Chapter 7 contains the obtained results, electron attachment to OTfU and benzalde-

hyde, which are summarized in two peer-reviewed scientific publications respectively.

Finally, the thesis is summarized in chapter 8 wherein an outlook of the work is also

given.

19





Part I

Collision-induced dissociation of

biomolecules
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Chapter 2
Theoretical overview

”A few years ago the idea of making proteins or polymers “fly” by electrospray ionization

seemed as improbable as a flying elephant, but today it is a standard part of modern mass

spectrometers.”

Prof. Dr. John B. Fenn, Chemistry Nobel laureate (2002)

In the present chapter electrospray ionization (ESI) is described, followed by a brief

description of the collision-induced dissociation process as investigated in this thesis.

2.1 Electrospray ionization

The pioneering work of Dole et al. [81] has shown that electrospray is a process capable

to generate gas-phase ions from macro-molecules, e.g. polymers, diluted in a solution.

However, the first electrospray ionization ion source coupled to a mass spectrometer was

designed by Fenn and co-workers.[56, 82] In 2002, for this development, Fenn and Tanaka

were awarded with the Nobel Prize in Chemistry.

The underlying principle of ESI has been deeply investigated and then summarized

in the following reviews [83–86], thereafter just a short description will be provided. The

sample dissolved in a suitable solution is forced through a needle located near an inlet

capillary. As represented in figure 2.1, by applying a kV potential between these two
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2.1. Electrospray ionization

components, a strong electric field is created. Ions of either charge state can be generated

through electrospray, where cations are produced due to a positive potential of the needle

with respect to the capillary, and anions due to a negative potential. As the solution

emerges from the tip of the spraying needle, a mist of charged droplets, also referred to as

Taylor cone, is formed [87]. Once the charged droplets leave the tip of Taylor cone, solvent

molecules evaporate very quickly. Consequently, a microscopic charged droplet will shrink

until a maximum charge density, which overcomes the droplet surface tension is attained,

leading to droplet fission. This value of charge density is known as the Rayleigh limit, zR.

For a charged droplet of radius R and surface tension γ, it is expressed as [88]:

zR =
8π

e

√
ε0γR3 (2.1)

ε0 denotes the vacuum permittivity. The successive fission events yield nanodroplets which

are in turn closer to the Rayleigh limit. Ultimately, gas-phase ions are produced from these

charged nanodroplets as a result of successive subdivision of larger microscopic droplets

[83–85, 89].

ESI needle

ESI
capillary

Mass
spectrometer

Figure 2.1. Schematic representation of an ESI source operated for positive ions. Adapted from

[90].

Despite the recognition of electrospray as a standard analytical technique, the mech-
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2.1. Electrospray ionization

anism producing gas-phase ions is yet unclear. However, two models have been proposed,

namely (i) the ion evaporation model (IEM), and (ii) the charged residue model (CRM).

The most relevant aspects of those models are outlined in the following subsections.

2.1.1 Ion evaporation model

The ion evaporation model (IEM) was originally proposed by Iribarne et al. [91]. By

considering that small (low mass weight) ions may existed in a charged state in solution,

the IEM explains the generation of small gas-phase ions through electrospray. Accordingly

to the IEM, the Coulombic repulsion within a charged nanodroplet at the Rayleigh limit

creates an electric field sufficiently high to trigger the ejection of small solvated ions from

the droplet’s surface, as represented in figure 2.2. Moreover, the ejection rate constant, k

for ion evaporation can be calculated by the transition state theory, as [84, 90, 91]:

k =
kBT

h
exp

(
−∆G

kBT

)
(2.2)

where ∆G denotes the height of the activation free energy barrier (see figure 2.2), kB and

h are the Boltzmann’s and Planck’s constants, respectively, and, T is the temperature.

The IEM states that the activation barrier arises from the difference between the opposing

forces that act on an ion just after its ejection from a droplet: (i) the solvent polarization

acts as a restoring force that pulls the ion back into the droplet, and (ii) the droplet’s

charge tends to repel the ion from the droplet. In other words, the activation barrier is

associated with the energy required to take an ion from a droplet to a certain distance

from the surface [92].

The molecular dynamic simulations carried out by Ahadi et al. [93] have provided a

detailed picture of the ejection of solvated ions from electrosprayed nanodroplets. In brief,

a solvated ion located close to the surface of the droplet can move beyond the surface by

the formation of a bridge consisting of H-bonded solvent molecules. As the solvated ion is

ejected, the bridge collapses. As a result, the main product of the IEM is a small charged

cluster consisting of the ion accompanied by a few solvent molecules.[90, 93] The solvation

shell is, in principle, lost at the first vacuum stage of the ESI source, where it collides with
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2.1. Electrospray ionization

particles of the background gas.[94]

In summary, the IEM is well suited to explain the direct ejection of a small ion

preformed in solution to the gas-phase, as supported by theory and experiments.

Figure 2.2. The ion evaporation model suggests that a ion is formed by direct ejection from a

charged nanodroplet. ∆G denotes the height of the activation barrier for the ejection process.

Adapted from [90] and [95].

2.1.2 Charged residue model

The charged residue model (CRM) was originally proposed by Dole et al. [81] to explain

the production of gas-phase polymer ions. Today, it is widely accepted that CRM explains

properly the release of large molecules, like proteins, into the gas-phase. In fact, de la Mora

[96] has demonstrated that CRM is the only operative mechanism for producing gas-phase

ions from species heavier than 6500 Da.

In summary, CRM considers that solvent evaporation occurs from nanodroplets

at the Rayleigh-limit, until they contain a single analyte molecule. As the last solvent

molecule evaporates, a fraction of the vanishing droplet’s charge is transferred to the an-

alyte molecule becoming thus a gas-phase ion. The figure 2.3 provides a representation of

CRM.[84, 90, 97] However, the nanodroplets remain intact even at Rayleigh limit, which

implies that the droplet loses charges while its radius decreases. This charge reduction can

occur by evaporation of small ions, as explained by the IEM.[90]

Molecular dynamic simulations of the CRM are complicated due to the long (µs)
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timescale of the evaporation event. However, some theoretical investigations have con-

firmed that a solvation shell around a protein is able to trap the analyte within the droplet

[98–100], which supports the CRM. Additionally, mass spectrometry studies with globu-

lar proteins have reported that ESI produces ions [M + zrH]z
+
r with a number of charges

z+r close to Rayleigh limit (equation 2.1) determined for a water droplet with the same

diameter than the protein.[96]

Figure 2.3. The release of an ion, as suggested by the charged residue model. Adapted from

[90].

In spite of the proposed methods for ion production by electrospray, more studies are

required to fully assess the predictions obtained by these models. For example, studies on

where the borders that divide the IEM and CRM models are located in terms of analyte size,

structure and polarity are required.[89] Hence ”it is possible that additional ESI mechanisms

will be discovered in the future”, as stated by Konermann et al. [90]. For instance, Metwally

et al.[101] have proposed a new ESI model, referred to as the chain ejection model, to

explain the ejection of nonpolar polymer chains from charged nanodroplets.

2.2 Collision-induced dissociation

In mass spectrometry, the most widely used collision technique is collision-induced disso-

ciation (CID) of a selected precursor ion.[55] CID is a process by which a stable projectile

ion is decomposed into product ions, as a result of a collision with a collisional gas’ particle.

Usually, noble and inert gases, such as He, Ar or N2, serve as collisional gases. Therefore,
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the CID process provides insights about the structure of the precursor ion.

A tandem mass spectrometer (MS1/MS2) is required to probe the product ions

formed due to a CID reaction with a mass-selected precursor ion.[55] As shown in figure

2.4, CID can be achieved by passing the ion beam through a collision cell filled with a

collision gas at a pressure substantially above the high vacuum of the chamber. Different

mass spectrometers have been used to investigate either low- or high-energy CID. Low-

energy CID (2-200 eV of energy in the laboratory frame) can be studied with a quadrupole

mass spectrometer (QMS) in tandem with a reflectron time-of-flight. For instance, the

Ultima ESI Q-ToF MS (Waters-Micromass, UK) mass spectrometer, described in [59,

102], was used to study low-energy CID of ronidazole, see section 4.1. In this case, the

precursor ion was mass-selected by the QMS, and then subjected to CID in a hexapole

collision cell. The product ions arising from the decomposition reactions were probed

by the reflectron time-of-flight. Other instruments, for instance triple quadrupole mass

spectrometers also allow the study of low-energy CID.[55] On the other hand, high-energy

CID studies (1-20 keV of energy in the laboratory frame) are usually carried out in sector

or time-of-flight mass spectrometers.[55]. The present studies were performed with a Nier-

Johnson double-focusing mass spectrometer in reversed geometry equipped with a collision

cell, as is described in chapter 3.

2.2.1 Energy transfer in a collision

CID of an ion m+
p is described as a two-step process: (i) activation and (ii) dissociation of

the ion. The first step is the collisional activation wherein a fraction of the ion’s kinetic

energy is converted into internal energy forming an activated ion, m∗+p . Due to energy

conservation, some of the ion’s kinetic energy is also converted into both internal and

kinetic energy of the neutral target, N . As described by the next reaction [55, 103], the

second step corresponds to the dissociation of the activated ion into a charged product ion,

m+
f and neutral(s), mn:

m+
p +N → m∗+p +N → m+

f +mn +N (2.3)
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mp
+ mf

+

Figure 2.4. Schematic of a collision cell for CID experiments in a tandem mass spectrometer.

The precursor ion was selected by the MS1, the ions formed due to CID were analysed by the

MS2. Adapted from [55].

The internal energy of the activated ion, Em∗+p , comprises the energy carried by the

ion before the collision, Em+
p

, and the energy transferred during the collision, Q [55]:

Em∗+p = Em+
p

+Q (2.4)

For high-energy CID, the activation process is mainly a result of electronic excitation

as the ion-neutral interaction time is in the range of 10−15− 10−14 s.[55, 103] In the second

step the additional internal energy is distributed among the internal degrees of freedom of

the system leading to bond cleavage followed by dissociation of the activated ion m∗+p . The

upper limit of the energy transferred, Q, is defined as the center-of-mass energy, ECM :

ECM =
mN

mN +mm+
p

ELab (2.5)

mN denotes the mass of the neutral target, N , while mm+
p

denotes the mass of the projectile,

i.e. the mass of the precursor ion m+
p . Further, ELab corresponds to the precursor ion’s

kinetic energy in the laboratory frame, associated with the acceleration voltage, Uacc, of
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the mass spectrometer:

ELab =
mm+

p
· v2

2
= qUacc (2.6)

Please note that the center-of-mass energy is an upper limit for the energy to be

transferred to the precursor ion, because most of the collisions occur at a scattering angle

θ. The effect of the scattering angle on CID of an ion has been summarized by Bordas-

Nagy et al. [104]. In general, for a given collision gas, the center-of-mass energy at various

acceleration voltages is then a function of the mass of the projectile. The results for this

study were achieved, however at a constant acceleration voltage of 6 kV. The fragmentation

pathways of protonated ronidazole in low- and high-energy experiments have been studied

and the results are presented in section 4.1.
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Chapter 3
Experimental Setup - ESI-VG

The present chapter provides a detailed description of the experimental setup ESI-VG,

as it was used to investigate high-energy collision-induced dissociation of ronidazole. The

ESI-VG experiment consists of a home built electrospray ionization source (ESI) source

coupled to a double focusing mass spectrometer in reversed geometry, VG-ZAB-2-SEQ,

manufactured by Vacuum Generators Analytical (Manchester, UK, 1988).

The following sections will address the individual components of the ESI source as

well as the mass spectrometer.

3.1 Electrospray ionization source

The home-made ESI source consists of a spraying needle (A), a heated capillary (B), an

ion funnel (C), an octopole ion guide (D) and a three-element lens (E), as schematically

represented in figure 3.1.

A solution of the molecule of interest is pushed by a motor driven syringe through

a hypodermic needle at constant flow rate. The ionization occurs by applying 4-5 kV on

the spray needle with respect to the inlet capillary. Then, through the inlet capillary, the

electrosprayed ions pass from the atmospheric pressure region to the ion funnel placed

in the first vacuum stage at a pressure of 3 mbar. The ion funnel was designed after

Julian et al.[105], and it is an ion guide consisting of an electrode stack. The simultaneous
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application of a DC voltage gradient and radio frequency (RF) potentials phase-shifted by

180° on adjacent electrodes results in an electric field guiding the ions to next vacuum stage.

The octopole is mounted on the second and third vacuum stage. The second vacuum stage

has a pressure of 10−1 mbar, and the third one has a pressure of 10−4 mbar. The octopole

consists of eight cylindrical stainless steel rods. By applying RF voltage with a phase-shift

of 180°on alternating rods, the ions are guided into the next stage. A three-element lens

focuses the ion beam in the entrance slit of the mass spectrometer. This vacuum stage of

the ESI sources is connected to the first field-free region (FFR1) of the mass spectrometer.

All components of the ESI source were electrically isolated from the mass spectrometer,

since a voltage drop of 6 kV was used to accelerate the ions between the ESI source and

the first lens stack of the mass spectrometer.

Figure 3.1. Home-built electrospray ionization source (ESI source). Different interfaces are

used to guide and focus ions to different pressure stages. The ion inlet is realized by a spraying

needle (A) and a heated capillary (B), delivering the ions into the ion funnel (C), followed by an

octopole (D), which acts as an ion guide. The subsequent lens stack (E) guides the ion beam into

the mass analyzer. Adapted from [61].
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3.1.1 Solution

The solution of the molecule of interested was filled in a 10 mL gas tight syringe (Hamilton

Company) mounted on a motor driven syringe pump (Elite pump 11, Harvard Apparatus,

GmbH ) controlling the flow rate, i.e. the amount of solution sprayed per unit of time. A

silica tube with an inner diameter of 150µm (Optronics GmbH ) connected the syringe and

the spray needle, and it also serves as an insulator.

In order to prepare a solution, the sample was dissolved in a mixture of water and a

solvent, e.g. methanol (CH3OH) or acetonitrile (CH3CN). A further substance which en-

hances the ionization efficiency may be added to the solution.[106] For instance,acetic acid

(CH3COOH) was added for the cation production, while ammonium hydroxide (NH4OH)

was added for anion production. A typical solution has a concentration of 10 mmol of the

sample dissolved in a mixture of 1:1 water with methanol.

3.1.2 Spray needle assembly

The spray needle of inner diameter 100 µm was placed in a PTFE (teflon) holder, as

represented by (A) in figure 3.1. Usually, the position of spray needle was adjusted to

angles higher than 30° with the respect to the z-axis, to prevent accumulation of residuals

on the inlet capillary. Furthermore, a home built motor drive positioning system allowed

for a fine tuning of the position of the spray needle.[107] The spray needle was biased by

a bipolar high voltage power supply (HCN140-2000, FuG Elektronik GmbH ), to produce

either cations and anions by electrospray ionization.

3.1.3 Inlet capillary

The inlet capillary delivers the electrosprayed ions into the ion funnel. It also serves as

an interface between the atmospheric pressure and the first vacuum stage. The capillary

was installed in a Teflon holder mounted, on turn, on the chamber. As represent by (B)

in figure 3.1, the inlet consists of a stainless steel tube with a length of 5 cm and an inner

diameter of 0.75 mm. The ions arriving at the first two DC-only electrodes of the ion

funnel (see subsection 3.1.4) are thus positioned inside the ion funnel. Additionally, in
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order to avoid a potential barrier between these components within the ESI source, the

inlet capillary is kept at the same potential as the entrance electrode of the ion funnel.

A heating wire (WNC-32-100, LakeShore Cryotonics, Inc.) was wrapped around

the inlet capillary. By passing a current through the heating wire, the capillary was

thus warmed. In principle, the evaporation of the solvents is more efficient due to higher

temperatures leading to continuous spray conditions. As result, the ion yield may increase.

However, the yield of electrosprayed ions as a function of the temperature depends on the

studied sample, therefore the temperature was adjusted for each case.

3.1.4 Ion Funnel

In commercial ESI mass spectrometers, the ions are usually transferred from the capillary

through a conductance limit (e.g. a cone, or a skimmer) to the mass analyzer.[55, 108]

A major limitation of this process lies on the inefficient transfer of ions from the high

pressure region to the high-vacuum conditions required for mass analysis. Because only

a minor fraction of the ions passes through the orifice of the skimmer into the following

high-vacuum stage. Due to the supersonic expansion of the gas exiting the capillary, as

well as the collisions with the residual gas, the ion beam entering the first vacuum stage

becomes highly divergent.[55] All these factors make it difficult to control and focus the ion

beam by regular ion optics based on electrostatic devices [108–111]. Shaffer et al. [109–

111] have developed the ion funnel, a device consisting of a series of ring electrodes with

decreasing internal diameters. Under elevated pressures ranging from a few up to 40 mbar,

by co-applying a RF alternating-phase (180°) potential on adjacent electrodes with a DC

potential gradient, the ion funnel is capable of focusing and transmitting the ions. This

approach offers a better transmittance and control over the ion beam when compared to

a skimmer-based interface. A comprehensive review by Kelly et al. [108] summarizes the

current knowledge on ion funnels, and hence just a brief description on the ion funnel will

be presented here.

A RF voltage phase-shifted by 180° applied on adjacent electrodes creates an effec-

tive potential, V ∗, capable to radially confine the ions. Gerlich [112] expressed the effective
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potential, V ∗(r, z), for a given radial (r) and axial (z) in cylindrical coordinates, as:

V ∗(r, z) =
q |Erf (r, z)|2

4m(2πf)2
(3.1)

where Erf (r, z) represents the RF electric field, f is the RF frequency, q and m are the

charge and the mass of the ion, respectively. The geometry of the ring electrodes, in terms

of the distance, d, between adjacent electrodes as well as their radii, R, affects the spatial

distribution of the effective potential V ∗(r, z) accordingly to [112, 113]:

V ∗(r, z) = Vtrap

[
I20 (

r

δ
)sin2(

z

δ
)) + I21 (

r

δ
)cos2(

z

δ
))
]

(3.2)

Vtrap =
Vmax

I20 (R/δ)
(3.3)

Vmax =
ziqV

2
rf

4m(2πf)2δ2
(3.4)

Vtrap is the axial effective potential well depth. I0 and I1 are zero and first order modified

Bessel functions. Vmax is the maximum value of the effective potential at the position

r = Ri, where Ri is inner radius of the ith electrode, zi = d(i + 1/2), i = 0, 1, ...; d is the

distance between the ring electrodes, and δ = d/π. VRF represents half of the peak-to-peak

RF amplitude [108]. Shaffer et al. [109] have numerically derived the profile of V ∗(r, z)

along the z-axis of the ion funnel accordingly to the equation 3.1. Please note that it does

not account for the DC potential gradient. As shown in figure 3.2, the effective potential

appears to be smaller around the z-axis (r=0 mm) [111, 113]. However, towards the end of

the ion funnel where the internal diameter of the electrodes is comparable with the spacing

between them, the RF effective potential shows local maxima occurring in between pair of

electrodes. As a result, axial potential wells capable of trapping the ions and impair the

transmission are created; however in the real experiment this effect is not significant.[111,

113] At elevated pressures, the ions will undergo collisions with atoms and molecules of the

residual gas losing gradually kinetic energy, as they travel through the ion funnel. Then,

slower ions come closer to the z-axis, where the effective potential is smaller. Therefore,
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3.1. Electrospray ionization source

an initially divergent ion beam will be confined close the axis of the ion funnel by the

phase-alternating (180°) RF potential, due to a process referred to as collisional focusing

or collisional cooling.

Figure 3.2. The effective potential V ∗(r, z) given as function of the z-axis in the ion funnel.

The solid line represents the effective potential along the ion funnel axis, and at 1 mm off-axis is

represented by the dashed line. The parameters used in the calculations are the following: m/z

1000, VRF=100 V, f=700 KHz. Taken from [111].

In addition to the phase-alternating RF potential, a DC potential gradient is applied

on the electrodes comprising the ion funnel. This gradient pushes the ions along the z-axis

of the ion funnel and provides more control over the ion beam.[110] Therefore, when a

capillary transfers an ion beam to an ion funnel, the divergent ions are radially confined

around the z-axis due to the RF potential. The DC potential gradient leads the ions

towards electrodes with gradually reduced inner diameter, enhancing the focusing. In

addition, the flow of gas exiting the first vacuum stage also supports the movement of the

ions. The synergy between the RF potentials and DC gradient results in a focused and

directed ion beam. To sum up, an ion funnel is capable to efficiently transmit an ion beam

from a high-pressure region to a lower pressure region.

In the present experiment, a home-built ion funnel, as shown in figure 3.3, and as (C)

in figure 3.1, was used. It consists of 36 stainless steel ring electrodes with a thickness of 0.5
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3.1. Electrospray ionization source

mm. The first three electrodes have an inner diameter of 20 mm. While the inner diameter

of the following electrodes is gradually reduced by 0.5 mm ending in the last electrode

with an inner diameter of 3.5 mm. The adjacent ring electrodes are equally spaced by 2.5

mm-thick insulating plain bearings (igus GmbH ). The ion funnel is mounted on four M8

threaded rods placed on the entrance flange, covered by 1mm-thick insulating polyether

ether ketone (PEEK) hollow rods. Additionally, two further DC-only electrodes, referred

to as funnel entrance electrode and funnel exit electrode, were placed immediately before

and after the stack of ring electrodes, respectively. The entrance electrode is electrically

connected to the inlet capillary, resulting in a sharing of the same DC potential, and

avoiding a potential barrier between these components. The exit electrode also serves as a

closure element of the first vacuum stage.

z

r

Figure 3.3. The ion funnel.

A voltage divider consisting of 10 kΩ resistors connecting adjacent electrodes creates

a linear DC potential gradient, that moves the ions along the funnel. For positive ions,

the first lens of the ion funnel has the most positive voltage while the later electrodes

have gradually decreasing voltages. Coils with an inductance of 470 µH are connected

in series to decouple the DC from the RF power supply. Additionally, the DC voltage
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3.1. Electrospray ionization source

is decoupled from the RF power supply by 10 nF capacitors connected in parallel to the

electrodes, assuring that the RF voltage is not applied to the DC power supply and vice-

versa. The DC voltages (U0, U1 and U2) are provided by a power supply EBS Bipolar

Distributor H Modules with Common Floating-GND (iseg Spezialelektronik GmbH ). The

RF potential was delivered by the first frequency head of a PSRF-125: Dual RF Power

Supply (Ardara Technologies L.P.). It had a frequency of 2 MHz and phase-shifted of 180

° on the outputs, while the amplitude may be adjusted from 0 up to 900 V. Finally, the ion

current transmitted by the ion funnel may be measured at the exit lens L38 (represented

in figure 3.4).

Figure 3.4. Schematics of the electrical circuit of the ion funnel. The electrodes 6 to 34 are

represented by the dashed line. Where, URF is the RF potential, while U0, U1 and U2 are DC

voltages.

3.1.5 Octopole ion guide

Following the ion funnel, an octopole ion guide transports the ions from the first vacuum

stage towards the fourth vacuum stage. The application of RF-only multipoles as ion

guides, and traps, have been summarized in a review by Gerlich [112] and in a tutorial by

Wester [114]. Furthermore, the relevance of ion traps and multipoles for mass spectrometry
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3.1. Electrospray ionization source

has been extensively discussed by Douglas et al..[115] Hence, just a brief description on

the octopole performing as an ion guide will presented here.

Octopole (n=4)

A B

Figure 3.5. A: Cross section of a octopole. B: Schematic drawing of the home-made octopole.

The eight stainless steel rods are mounted on Teflon components, while the mounting screws also

serve as electrical connectors. Entrance and exit DC-only lenses are attached to the holders.

Taken from [116].

Multipoles consist of n pairs of hyperbolic or cylindrical rod electrodes positioned

equidistantly along a circle. An octopole is thus a multipole of order n=4. Figure 3.5

shows the cross section of an octopole with cylindrical electrode rods of radius ρ positioned

along a circle of inner radius R0. By applying phase-alternating (180°) RF on pairs of

electrodes, the octopole will operate as a wide band pass for ions. This property makes

the octopole an ion guide.[55] The time dependent potential created along the z-axis of nth

order multipole with cylindrical rod electrodes, may be given in cylindrical coordinates, as

follows [112, 114]:

V (r, φ, t) = VRF cos(nφ)

(
r

R0

)n
sin(2πt)

n=4−−−−→
octopole

V (r, φ, t) = VRF cos(4φ)

(
r

R0

)4

sin(2πt)

(3.5)

VRF and f are the amplitude and frequency of the RF potential, respectively. The equa-

tions of motion of ions in a nth order multipole cannot be solved analytically, because the

equation of motion in the position coordinates is nonlinear. In contrast to the motion in

a quadrupole (n=2), where the trajectory of the ions is analytically expressed as solutions
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3.1. Electrospray ionization source

of the Mathieu equations (please see section 6.1.4 for further details). Therefore, one must

employ the effective potential approximation suggested by Dehmelt [117] to calculate the

ion trajectories in a multipole field. First, the motion of an ion can be separated into

a micro and a secular motion. The micromotion is rapid and follows the RF frequency,

while the latter may be realized as a slowly varying drift motion.[114] And, second, by

time averaging the equation of motion of an ion (not shown here) over the period of one

RF oscillation, the effective potential approximation, V ∗(r, z), for a nth order multipole is

achieved, and expressed as [114]:

V ∗(r, z) =
q2n2V 2

RF

4m(2πf)2R2
0

(
r

R0

)(2n−2)
n=4−−−−→

octopole
V ∗(r, z) =

4q2V 2
RF

m(2πf)2R2
0

(
r

R0

)6

(3.6)

The equation 3.6 demonstrates that the ion motion in a multipole field has an effec-

tive potential proportional to r(2n−2), that is proportional to r6 for an octopole. However,

it is no longer valid if the ion motion becomes unstable. If so, the amplitude of the ion

motion will increase until the ion collides with an electrode rod. For an ideal multipole, a

stability parameter, η, was thus introduced and is given by [114]:

η = 2n(n− 1)
|q|VRF

m(2πf)2R2
0

(
r

R0

)(n−2)
n=4−−−−→

octopole
η = 24

|q|VRF
m(2πf)2R2

0

(
r

R0

)2

(3.7)

In contrast to quadrupoles (n = 2), it is not possible to plot a stability diagram for multi-

poles. In fact, the stability parameter for quadrupoles is a constant value, which is equal

to the q value used in the Mathieu equation (please see subsection 6.1.4). Instead, Gerlich

[112] has introduced two conditions that define a stable trajectory in a multipole. First, the

radius of the ion trajectory, r must be lower than 0.8 ·R0, second, the stability parameter

η must be lower than 0.3.[112, 114, 118] Therefore, by assuming that the amplitude of the

RF potential VRF leads to a stability parameter η less than 0.3, an ion of mass m and

charge q will be transmitted by a the multipole of inner radius R0 with a stable trajectory

of radius smaller than 0.8 of the inner radius.

The effective potential created by phase-alternating (180°) RF potentials can be

described as a ”restoring force” to the center of the ion guide. For positive ions, the ion
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3.1. Electrospray ionization source

beam is pulled by the negative rods and repelled by the positive rods at any instant of

time.[115] Then, by setting properly the amplitude and frequency of the RF potential, the

ions will be thus radially confined along the z-axis preventing collisions with the rods. The

effective potentials shown in figure 3.6 demonstrate that higher order multipoles (n > 2)

show a quasi flat and low effective potentials near the center (r = 0) and increasing

towards the rods (r = R0). In the present setup, the octopole occupies the second and

third vacuum stage that corresponds to a pressure regime of 10−2 − 10−3 mbar. Thus,

as the ions travel along the octopole, a fraction of their kinetic energy will be lost due

to collisions with the atoms and molecules of the residual gas. As a result, the ions will

come closer to the z−axis of the octopole where the effective potential is smaller.[55, 119]

Therefore, collisional cooling contributes to the radial confinement of the ions.[55]
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Figure 3.6. The effective potential for multipole ion guides, namely quadrupole, octopole,

hexapole, decapole and dodecapole.

In the present experiment, the home-built octopole, as shown as B in figure 3.5,

and as (D) in figure 3.1 consists of eight stainless-steel electrode rods with a diameter of 4

mm each, and a length of 326 mm. The electrode rods are placed along a circle of inner

radius R0 = 5.6 mm. Further, two DC-only electrodes positioned at both ends of the
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3.1. Electrospray ionization source

octopole support a better control over the ion beam. Both have an outer diameter of 36

mm and an orifice with a 2 mm opening. All these components are directly mounted on

two teflon holders, as shown in figure 3.5. The teflon holder on the left-hand side seals the

second vacuum stage, and the one on the right-hand side, the third vacuum stage. The RF

potential is applied on the rods through the screws fixing a Teflon ring. The RF potential

was supplied by the second frequency head of the PSRF-125: Dual RF Power supply

(Ardara Technologies L.P.). The RF potential floats on a DC voltage supplied by the

EBS Bipolar Distributor HV Modules with Common Floating-GND (iseg Spezialelektronik

GmbH ). This power supply also supplies the voltage of both, entrance and exit octopole

lenses. At this point, the ions will be transported by the octopole to the mass analyzer via

a three-element lens, as described in the next subsection.

3.1.6 Three-element lens

The three-element lens is an electrostatic device used to focus the ion beam into the first

stack of lens of the mass analyzer. A comprehensive knowledge on this topic can be found

in literature, namely in textbooks [120–122], as well as in the review by Sise et al..[123] In

brief, focusing of a charged-particle, e.g. electron or ion beams, is achieved by passing it

from one electrode to another, i.e. from L1 to L2 and then to L3. Each single electrode is

biased with DC electric potentials, UL1, UL2 and UL3. Thus, the focusing of the ion beam

may be controlled by adjusting the mentioned voltages.

In the present experiment, the three-element lens, as shown as (E) in figure 3.1 and,

in figure 3.7, is comprised of three identical stainless steel cylindrical electrodes. The 1

mm-thick lenses have a length of 22 mm, while their inner diameter is of 24.88 mm. The

lenses are spaced and insulated by ceramics of a length of 2.5 mm. The lens stack was

mounted on a ring shaped holder by using four threaded rods covered by hollow ceramic

rods. The DC voltages were supplied by the EBS Bipolar Distributor HV Modules with

Common Floating-GND (iseg Spezialelektronik GmbH ).
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3.2. Double-sector field mass spectrometer: VG-ZAB-2SE

L1
L2

L3

Figure 3.7. Three-element lens.

3.2 Double-sector field mass spectrometer: VG-ZAB-

2SE

The study of collision-induced dissociation of biomolecules was carried out with a VG-

ZAB-2SE double-focusing mass spectrometer, as shown in figure 3.8. The main focus of

this section is to provide an overview of the mass spectrometer, although it was already

described elsewhere [61, 124]. The mass spectrometer has been constructed in reversed

Nier-Johnson geometry. The ions first pass a magnetic sector followed by an electric sector,

thereby constituting a double focusing mass spectrometer. The mass spectrometer consists

of a first field-free region (FFR1), a magnetic sector, a second field-free region (FFR2), an

electric sector and a detection system connected to a computer for data acquisition.

3.2.1 Magnetic sector

After the FFR1, the ion beam with kinetic energy Ekin enters the magnetic sector. The

working principle of the magnetic sector relies in the magnetic component of the Lorentz

force,
−→
FL:

−→
FL = z(−→v ×

−→
B ) (3.8)

where z and −→v are the charge and velocity of the ions. As represented in figure 3.9, within

the magnetic sector the the magnetic field,
−→
B , is orthogonal to the velocity −→v of the ions.
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Figure 3.8. Schematic representation of the VG-ZAB-SE double-sector field mass spectrometer.

Adapted from [124].

Hence, the Lorentz force can be rewritten in a scalar form:

FL = qzB (3.9)

The FL is perpendicular to the velocity of the ions, therefore it acts as the centripetal

force, FC :

FL = FC ⇒ zvB =
mv2

r
⇔ m

z
=
rB

v
⇔ r =

mv

zB
(3.10)

The equation 3.10 describes the working principle of the magnetic sector and shows

that the magnetic sector is a momentum analyzer, rather than a mass analyzer.

As described previously, the electrosprayed ions were accelerated towards the mass

spectrometer by a voltage drop U . The kinetic energy Ekin of the ions, and consequently

their velocity, is determined by the voltage drop, which can be given by:

Ekin = mv2

2

Ekin = zU

⇔ v2 =
2zU

m
(3.11)
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Taken into account the equation 3.11, the equation 3.10 can be rewritten as:

m2

z2
=
r2B2

v2
⇔ m�2

z�2
= r2B2 ��m

2�zU
⇔ m

z
=
r2B2

2U
(3.12)

The relation 3.12 demonstrates that for constant voltage drop U and constant mag-

netic field B, the ions with a particular m/z will describe a circular trajectory with a radius

r. Therefore, if the radius is limited by a flight-tube with a fixed curvature, e.g. 66 cm

such as in VG, only the ions with a m/z that verifies the relation 3.12 will be transmitted

by the magnetic sector. Furthermore, by changing the intensity of the magnetic field, ions

with different m/z can be transmitted.

current in coils 
around yoke

beam 
of 

positive 
ions

I

B

FL

Figure 3.9. Relationship between the direction of the magnetic field (B), velocity of the ion

beam (I) and the resulting Lorentz force (FL). Adapted from [55].

Although the voltage drop U is kept constant during the experiments, the ions are

produced with some kinetic energy distribution. As a result, the ions have trajectories

with different radii, accordingly to the equation 3.13, leading to a broadening of the ion

beam and lower mass resolution.

r =

√
2mEkin
zB

(3.13)
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In order to reduce the kinetic energy distribution of the ion beam and thus enhance

the mass resolution, an electric sector is used.

3.2.2 Electric sector

As mentioned previously in subsection 3.2.1, the ions that leave the ESI source have a

kinetic energy spread. To improve mass resolution, an electric sector is placed after the

magnetic sector. The instrument represents thereby a double-focusing mass spectrometer,

because it combines direction and energy focusing.

The momentum-analyzed ions will pass the FFR2 entering into the electric sector.

It consists of two plates, with a curvature of 81° and a mean radius of 38 cm. A radial

electric field is produced when the outer plate is kept at positive potential, whereas the

inner plate is kept at a symmetric and negative potential.[55, 125] The working principle

of the electric sector relies on the electric component of the Lorentz force,
−→
FL:

−→
FL = z

−→
E (3.14)

where z and −→v are the charge and the velocity of the ion, respectively. Within an

electric sector, the Lorentz force may be given in a scalar form:

FL = zE (3.15)

Since the electric field,
−→
E is always orthogonal to the velocity of the incoming ions,

the Lorentz force
−→
FL will act as a centripetal force,

−→
FC . Therefore, the ions will have a

circular trajectory with a radius r, given by:

FL = FC ⇒ zE =
mv2

r
⇔ r =

mv2

zE
(3.16)

Taking into account that Ekin = mv2

2
, the equation 3.16 may be rewritten as:

r =
2Ekin
zE

(3.17)

47



3.2. Double-sector field mass spectrometer: VG-ZAB-2SE

The equation 3.17 demonstrates that the electric sector acts a kinetic energy ana-

lyzer. Thus, the electric sector reduces the kinetic energy distribution of the momentum-

analyzed ions and, consequently enhances the mass resolution of the spectrometer. At

last, after exiting the electric sector the ions are focused on the detector. The figure 3.10

shows the double focusing of both magnetic and electric sector in a double focusing mass

spectrometer with reversed Nier-Johnson geometry.
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Collision cell

Figure 3.10. A double focusing mass spectrometer with reversed Nier-Johnson geometry.

Adapted from [126].

3.2.3 Collision cell

The collision cell placed before the electric sector allows studying collision-induced dissoci-

ation (CID) of a precursor ion. Usually, the collision cell is filled with a noble gas, referred

to as collision gas. As described in section 2.2, the dissociation of the precursor ion passing

through the gas-filled collision cell results from the conversion of a fraction of the kinetic

energy of the ion to internal energy.[55, 127]

For the high-energy CID experiments with ronidazole described in the section 4.1

helium served as collision gas. The real pressure within the collision cell is unknown.
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3.2. Double-sector field mass spectrometer: VG-ZAB-2SE

However, it was estimated to be up to three orders of magnitude higher than the reading

given by a cold-cathode gauge connected to the vacuum chamber.[128] Thus, a measured

pressure value of 4.0×10−6 mbar corresponds to a pressure of about 4.0×10−3 mbar within

the collision cell. Furthermore, the product ions forming due to CID are accelerated, or

decelerated by applying a voltage UGascell on the collision cell. This feature is useful to

sort out the ions formed by dissociation within the collision cell from those arising by

metastable decay in the FFR2. Although this feature was not employed in this studies, it

was used for instance to differentiate the fragments formed due to either CID or metastable

decay in the studies with chromium hexacarbonyl.[61] At last, the ions leave the collision

cell to enter into the electric sector.

mp
+

A B

Figure 3.11. A: Cross section of the collision cell. The helium pressure is regulated by a valve.

CID of the precursor ion, m+
p , gives rise to a product ion m+

f and a neutral mn. Adapted from

[129]. Biasing the collision cell with UGascell provides an post-acceleration (or deceleration) of the

product ions.

49



3.3. Detection system

3.3 Detection system

The detection system installed in VG-ZAB-2SE mass spectrometer comprises three detec-

tors. First, the ion current yielded by the ESI source is measured in a slit installed in the

FFR1 prior to the magnetic sector. The current of electrosprayed ions is hence monitored

by a picoammeter Model 6485 (Keithley). Second, the detector installed in the FFR2,

after the collision cell, is an electron multiplier of the continous dynode type - channel

electron multiplier, or also referred to as channeltron. This detector was mainly used to

check whether the ions were passing through the magnetic sector. Since this detector was

installed orthogonally to the ion beam, a pusher plate was employed to deflect the beam

towards it. Afterwards, when an ion enters into the detector colliding with its surface, sec-

ondary electrons are released and accelerated by a high voltage drop between the terminals

of the detector. These secondary electrons will further collide with the surface creating

additional electrons, thus initiating a cascade or avalanche of electrons. This process re-

sults in amplification of the input ion signal in a brief time interval (∼ 1 ns), leading to a

detectable current as output signal.

At last, a second channeltron coupled to a dynode, as shown in figure 3.12, placed

after the electric sector was usually used for the measurements. An ion hitting the dynode

yields an electron, that is accelerated towards the detector due to a a voltage difference

between the channeltron, and the dynode kept at ground potential. Then the channeltron

produces an output signal, as explained earlier. Therefore, the combination of a channel-

tron and a dynode assures the detection of ions of either charge state without changing

the voltages applied on the detector’s terminals. Both channeltrons installed in the mass

spectrometer are KBL 510 standard CEM (Dr. Sjuts Optotechnik GmbH ). It consists of a

ceramic body, with silver-coated terminals and a lead glass detection surface on the inner

side of the device. As represented in figure 3.12 C, the channeltron has a curved design,

in order to suppress the ion-feedback arising from secondary ionization of the molecules

of the residual gas, as well as to enhance the gain of the detector.[55] The typical gain of

a channeltron is about 108 and it may deliver up to 106 counts per second of acquisition.
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However, the acquisition of such high yields may harm the detector contributing to a re-

duction in its lifetime.[130] The applied voltage ranged from 2.5 up to 3.0 kV represents a

good compromise between the highest gain and the lifetime of the detector.

The output signal of the channeltron was connected to a home built electrical circuit,

designed as suggested by the manufacturer, used to decouple the signal from the applied

high voltage. Afterwards, the signal was preamplified by a PDA06 unit (WMT-Elektronik

GmbH ). At last, the amplified output signal was connected to a computer via a custom

made interface, and further processed by a software.
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a
m
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Figure 3.12. A: Photograph of the second channeltron installed in VG-ZAB-2SE. B: The

dynode (1) converts the ion beam into electrons, which are further detected by a channeltron.

C: Representation of a KBL 510 channeltron.

3.4 Data acquisition

The mass spectrometer is set by a custom made software (designed by Dr. Arntraud

Bacher). The computer communicates with the VG-ZAB-2SE via a home built interface

box and receives the output signal from a selected channeltron. The software allows the

setting of the acquisition parameters, such as the gate time, the step size and the number

of runs. Different scan modes are possible, like mass spectra, mass analyzed ion kinetic

energy (MIKE), electron energy, and high voltage scans. However, the latter two options
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were not used during the course of this work.

3.5 Vacuum system

The vacuum pumps used in the ESI-VG experiment are summarized in the table 3.1.

Compact FullRangeTM (Pfeiffer Vacuum) gauges controlled by a MAXIGAUGE, model

TPG 256 A (Pfeiffer Vacuum) were employed to monitor the pressure in each vacuum

stage.

The ESI source consists of three differentially pumped chambers, as shown in the

figure 3.1. The ion funnel chamber corresponds to the 1st vacuum stage. A roots pump

reduces the pressure to 3 mbar depending on the inner diameter of the inlet capillary.

The opening of the 2nd stage has a diameter of 3 mm, where a pressure is reduced by a

order of magnitude to 10−1 mbar by a rotary vane pump. The octopole ion guide chamber

(3rd stage) is pumped by a turbomolecular pump baked by two rotary vane pumps. The

entrance orifice has a diameter of 3 mm. The pressure in the 3rd vacuum stage is thus 10−3

mbar. Since the turbomolecular pump must be operated with respect to the Earth, an

160CF ceramic flange insulates the pump from the ESI source chamber. The three-element

lens is installed in 4th stage. This vacuum stage was connected to the first field-free region

(FFR1) of mass spectrometer, thus an additional pump was not required. The pressure

in this stage is in the range of 10−6 mbar. The FFR1 and the FFR2 were evacuated by

turbomolecular pumps baked by rotary vane pumps, respectively. At last, the detector

chamber housing the main channeltron was pumped by a turbomolecular pump baked by

a rotary pump. In contrast to FFR1 where the pressure was about 10−6 mbar, the pressure

at FFR2 and detector chamber was about 10−8 mbar.

The ESI-VG setup is equipped with a vacuum security device. In case of a vacuum

failure in any stage of the setup, this device protects the most sensitive components of

the setup, by switching off the power supplies connected to the acceleration voltage and

channeltron.[131]
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Table 3.1. Model and type of the pumps used in the ESI-VG setup. All pumps were man-

ufactured by Pfeiffer Vacuum. The working pressure, in mbar, achieved in each stage is also

depicted.

Stage Pump Model Type Pressure (mbar)

1st Revo-Dry Roots 3.0

2nd DUO M35 Rotary ×10−1

3rd

TMU 521 Y P Turbomolecular

×10−4DUO 10 M Rotary

DUO 35 M Rotary

4th or FFR1
TPH 510 Turbomolecular

×10−6

DUO M35 Rotary

FFR2
TPH 510 Turbomolecular

×10−8

DUO M35 Rotary

Detector chamber
TMH 521 P Turbomolecular

×10−8

DUO M35 Rotary
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Chapter 4
Results and Discussion

4.1 Decomposition of protonated ronidazole

In this chapter, a combined theoretical and experimental study on the decomposition of

protonated ronidazole is presented. This nitromidazole-based compound is used as an

antibiotic in veterinary medicine, yet its use as potential radiosensitizer is unclear. At

the Université de Lyon, the decomposition of protonated ronidazole was studied by low-

energy collision-induced dissociation and density functional theory. While, at Universität

Innsbruck, such decomposition was studied by high-energy collision-induced dissociation.
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ABSTRACT

Nitroimidazoles are important compounds in medicine, biology, and the food industry. The growing need for their structural assignment,
as well as the need for the development of the detection and screening methods, provides the motivation to understand their fundamen-
tal properties and reactivity. Here, we investigated the decomposition of protonated ronidazole [Roni+H]+ in low-energy and high-energy
collision-induced dissociation (CID) experiments. Quantum chemical calculations showed that the main fragmentation channels involve
intramolecular proton transfer from nitroimidazole to its side chain followed by a release of NH2CO2H, which can proceed via two pathways
involving transfer of H+ from (1) the N3 position via a barrier of TS2 of 0.97 eV, followed by the rupture of the C–O bond with a thermo-
dynamic threshold of 2.40 eV; and (2) the –CH3 group via a higher barrier of 2.77 eV, but with a slightly lower thermodynamic threshold of
2.24 eV. Electrospray ionization of ronidazole using deuterated solvents showed that in low-energy CID, only pathway (1) proceeds, and in
high-energy CID, both channels proceed with contributions of 81% and 19%. While both of the pathways are associated with small kinetic
energy release of 10–23 meV, further release of the NO• radical has a KER value of 339 meV.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5118844., s

I. INTRODUCTION

Nitroimidazole-based compounds are of importance in biol-
ogy and medicine due to their ability to selectively accumulate in
cells deprived of oxygen.1,2 Thus, nitroimidazoles are used to combat

anaerobic bacteria,3 target hypoxic cancer cells as radiosensitizers,2,4

and act as potential imaging agents for hypoxia.5,6 Nitroimidazoles
have also attracted interest in the context of high energy contain-
ing materials, such as explosives, propellants, and pyrotechnics.7,8

In veterinary medicine and, in particular, in the food industry,9
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some nitroimidazoles such as ronidazole (Roni; Scheme 1) have
been shown to not only be effective as antibiotics to treat poultry,
cattle, pigs,10 shrimps,11 and bees,12 but also to promote growth
and feed efficiency. The downside of the usage of antibiotics is
that some 30%–90% of the administered compounds remain unde-
graded in the human or animal body and are excreted as active
compounds,13 thus becoming a problem of pollution to the aquatic
environment.9,13 Moreover, these antibiotics can enter the human
diet through edible tissues of treated farm animals,10 fish and
seafood,9,11 or honey.12,14,15 As a consequence, there is a grow-
ing need for fast and reliable methods for food screening,16–21

tap water pollution detection,9 and a need for the development
of methods for the removal of these nitroimidazole antibiotics
from aqueous solutions.13,22–24 Thus, it is essential to understand
the fundamental properties and reactivity of nitroimidazole based
compounds.

Electrospray ionization (ESI) has been shown to be effective not
only in producing protonated nitroimidazole derivatives but also
in formation of their respective radical anions,25 which is rare in
ESI but possible for compounds exhibiting a high electron affin-
ity as is the case of some nitroimidazoles. It has been shown that
simple molecular modification such as replacing an H atom at the
N1 position by a methyl group can completely block reactivity trig-
gered by low-energy electrons.26 Moreover, decomposition of sim-
ple nitroimidazoles investigated by different methods of excitation
showed that for all decomposition pathways the nitro functional
group –NO2 is involved, while the loss of the NO• radical was
associated with a high kinetic energy release (KER) amounting to
nearly 1 eV.27 In addition, in the case of other nitrobases containing
nitroguanidine functional group, it was shown that the nitroguani-
dine functional group directs the fragmentation for all ionization
states, while the NO2 loss dominates only in the case of the protona-
tion.28,29 Furthermore, there are differences noted in the decompo-
sition depending on the position of the nitro group –NO2 attached
to the imidazole ring.27,30 In a recent study, the fundamental prop-
erties of several 5-nitroimidazoles including Roni were studied, such
as proton affinity, deprotonation energy, electron affinity, and dipole
moment.31 The proton affinity of Roni was reported to be 9.33 eV
at the N3 position of the imidazole ring.31 From a comparison of
the low-energy collision-induced dissociation (CID) of protonated
5-nitroimidazoles at a collision energy of 15 eV, it was concluded

SCHEME 1. Molecular structure of ronidazole (Roni).

that 1-methyl-5-nitroimidazole, metronidazole, and ornidazole lose
mainly the nitro functional group NO2, while Roni and ornida-
zole undergo loss of the NO• radicals.31 In contrast, nimorazole
did not show any of these losses in the positive ion mode. It was
suggested that nitroimidazolic compounds are first prone to dis-
sociation at the N1 position, unless the group at the N1 site is a
methyl group such as in the case of Roni. On the other hand, the
radical anions of nimorazole mainly lose the NO• radical under
low-energy CID conditions.25 Dissociation at the N1 position was
observed also for radical anions and deprotonated nitroimidazolic
radiosensitizers in low-energy and also high-energy CID.25,32 It is
well-known that low-energy CID, which is dominated by multi-
ple collisions with slow velocities, and high-energy CID proceeding
via single collision at high-velocity will result in different kinds of
excitation of the precursor ion, thus resulting in different product
ions.25,32–34

Here, we investigated the main dissociation pathways of pro-
tonated Roni in low-energy and high-energy CID. Additionally, we
used deuterated solvents to clarify the dissociation pathways involv-
ing proton transfer. Due to the different proton transfer reactions
that can lead to the main product ion, we have also evaluated the
KER for this dissociation channel. Additionally, we have also eval-
uated the KER for dissociation channel involving the release of
NO• radical due to the high KER observed in the case of simple
nitroimidazoles.27

II. METHODS

A. Materials

Ronidazole (Scheme 1) was purchased from Sigma Aldrich
(purity ≥ 95%) and was used as received. Roni was dissolved in
methanol, water, and acetic acid (CH3OH/H2O/CH3COOH) in a
ratio 50/50/1. For the deuterated experiments, we used a solu-
tion of methanol-d4, D2O, and acetic acid-d4. Deuterated solvents
result in the exchange of the labile hydrogens of the NH2 group
of Roni and addition of D+ on the N3 position of the imidazole
ring during ESI.

B. Low-energy CID

1. Waters ultima ESI Q-TOF MS
The CID experiments with protonated Roni, [Roni+H]+, were

carried out using a commercial instrument (Ultima ESI Q-TOF MS,
Waters-Micromass, UK), described elsewhere.31 The ions are gener-
ated in a Z-spray ESI source, i.e., the ions follow a Z-shaped trajec-
tory between their formation and a skimmer, which is placed right
before a hexapole ion guide that transports the ions into the mass
spectrometer. A solution of 5 mM of Roni was continuously sprayed
at 4.5 bars of the nitrogen drying gas into a differentially pumped
region at a working pressure of 1.6 mbar. The constant injection rate
of 15 μl/min was controlled by means of a syringe pump (NewEra
Syringe pump Systems, Inc.). The ESI needle was biased at +2.55 kV,
and a voltage of +19 V was applied to the cone relative to the extrac-
tion lens. The source and desolvation temperatures were set to 363 K
and 423 K, respectively.

The instrument consists of a quadrupole (Q), followed by
a hexapole collision cell, hexapole transfer lens, a reflectron
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time-of-flight mass spectrometer (TOF MS), and a microchannel
plate (MCP) for detection of the ions. For the CID experiments, a
given precursor is mass-selected by the Q and then subjected to CID
within a hexapole collision cell. Argon was used as collision gas at a
pressure of 5.7 × 10−5 mbar.

2. Bruker ESI Q-TOF MS
Due to the insufficient resolution of the quadrupole selection

achievable with our Ultima ESI Q-TOF MS, we have carried out the
CID experiments with deuterated Roni, [dRoni+D]+, using a com-
mercial instrument (Q-TOF2, Bruker Bremen, Germany), which is
also an ESI Q-TOF MS. Here, a solution of 100 μM of Roni was con-
tinuously sprayed at the constant injection rate of 150 μl/h using
nitrogen buffer gas. The ESI needle was grounded, while the ESI
capillary was biased at −4.2 kV. The desolvation temperature was
set to 353 K. This instrument consists of ion transfer stage, analyt-
ical quadrupole, quadrupole collision/cooling cell, reflectron TOF,
and MCP detector. CID experiments were performed in the colli-
sion cell using nitrogen gas at 18% of the maximum flow rate of this
instrument.

C. High-energy CID

The collision-induced dissociation of protonated and deuter-
ated ronidazole cations was investigated by means of a home-
built ESI source combined with a VG-ZAB-2SE double-focusing
mass spectrometer (V.G. Analytical, Ltd., Manchester, UK). The ESI
source as well as the mass spectrometer were already described in
detail elsewhere;35 therefore, only a brief description will be pro-
vided. The ions were produced by ESI,36 where ionization occurred
by applying a voltage ranging from +4.75 kV to +5.01 kV on the
spray needle with respect to the inlet capillary (inner diameter of 750
μm). Here, a solution of 10 mM of Roni was continuously sprayed at
the flow rate set to 650–750 nl/min, and the inlet capillary was kept
at room temperature in order to assure continuous spray conditions.
The mentioned inlet delivered the formed ions into a homemade ion
funnel, based on the design of Julian et al.37 Thereafter, an octupole
ion guide and an einzel lens setup transfered the ions to the mass
spectrometer. All components of the ESI-source were electrically
isolated from the mass spectrometer since a voltage drop of 6 kV
was used to accelerate the ions between the ESI-source and the first
lens stack of the mass spectrometer.

The mass spectrometer has been constructed in a reversed Nier-
Johnson geometry, i.e., ions first pass a magnetic sector followed
by an electrostatic sector, thereby constituting a double focusing
mass spectrometer. The magnetic sector analyzes the ions by their
momentum, and then, the electrostatic sector analyzes the ions by
their energy. After the electric sector, a channeltron type secondary
electron multiplier (Dr. Sjuts, Germany) is used for ion detection.
A collision cell before the electrostatic sector allows studies of CID.
Helium was used as a collision gas. The exact pressure within the
collision-cell is unknown since a cold-cathode gauge was used to
measure the pressure in the vacuum chamber of the collision-cell.
Consequently, the real pressure within the cell can be roughly esti-
mated to be up to three orders of magnitude higher than the stated
pressure values.38 Thus, the measured pressure value of 4 × 10−6

mbar gives an estimation of the real pressure of 4 × 10−3 mbar in
the collision cell.

The product ions formed via CID can be assessed by means of
the mass-analyzed ion kinetic energy (MIKE) scan method.39 In gen-
eral, if CID of a precursor ion with mass mp yields a product ion with
mass mf, this product ion is transmitted at the electric sector field
voltage E,

E = E0 mf/mp, (1)
with E0 as the corresponding electric sector field voltage, at which
the precursor ion is transmitted. It should be noted that for a given
precursor ion, complete electrostatic sector voltage scans were per-
formed in the first step. Subsequently, only scan regions indicating
a product ion were selectively measured with better statistics. The
latter scans are shown below.

Furthermore, we determined the KER regarding the most
abundant CID reactions, as follows:

KER = y2m2
1eV

16xm2m3
(ΔE
E
)2

, (2)

where m1 denotes the mass of the precursor ion and m2 and m3,
respectively, the masses of the neutral and charged products. The
charge state of the precursor ion and the product ion (in our case
both +1) are denoted by x and y and V is the acceleration voltage
(6 kV). E is the corresponding electrostatic sector voltage, and in
the case of a Gaussian peak shape, ΔE is the width of the peak in
the MIKE scan (of which the width of the precursor beam has to
be subtracted). The relative uncertainty of the KER value reported
for the protonated Roni is ∼10%, while for the deuterated Roni due
to the largely overlapping peaks in question increased the relative
uncertainty to ∼50%.

D. Theoretical calculations

The geometries of all molecules and ions were optimized at
the M062x/6-311+G(d,p) level of theory40 with the Gaussian-09D01
program package.41 All the product ions were calculated in their
singlet states. Frequencies were calculated to confirm that the struc-
tures are local minima on the potential energy surface and not the
transition states (TS). All energies were corrected for zero-point
energies. Transition states (TS) for the fragmentation pathways of
the protonated Roni [Roni+H]+ and their frequencies were calcu-
lated with the same theory and basis set. Calculations of the intrin-
sic reaction coordinates (IRC) connected the TS to reactants and
products.

III. RESULTS AND DISCUSSION

Electrospray ionization of a solution of Roni leads to
[Roni+H]+ at m/z 201 through protonation at the N3 position of
the imidazole ring, which has the highest proton affinity.31 The low-
energy CID of [Roni+H]+ was measured at several nominal labora-
tory collision energies up to 20 eV, and the results are summarized in
Fig. 1, which shows the product ion at m/z 140 increasing in inten-
sity with the nominal laboratory collision energy and dominating
in the spectra above 8 eV. It is interesting to note that the product
ion at m/z 140 is also the most abundant product ion that appears
in the high-energy CID (Fig. 2) of the protonated Roni, [Roni+H]+

m/z 201.
The high-energy CID of [Roni+H]+ (Fig. 2) was measured with

a two-sector field instrument here for the first time. In the work of
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FIG. 1. Summary of the low-energy collision-induced dissociation reactions of the
electrospray generated ion [Roni+H]+ as a function of the nominal laboratory col-
lision energy measured at Ultima ESI Q-TOF MS. Each of the points corresponds
to the integrated peak of the corresponding m/z. For the assignment of the product
ions at m/z 140 and m/z 110, refer to the text. Minor product ions (m/z 94 and
82) of relative abundance <2% appearing above 13 eV of the nominal laboratory
collision energy were omitted for clarity. The collision cell was filled with argon
gas.

Kumar et al.,21 protonated Roni was studied at Q Exactive mass spec-
trometer that employs C-trap dissociation; however, only product
ion at m/z 140 was reported. The two-sector field mass spectrometer
is unique as it can give information on the KER of the dissociation

FIG. 2. High-energy collision-induced dissociation mass spectrum of [Roni+H]+

formed via electrospray ionization and accelerated to 6 keV (black line). The col-
lision cell was filled with helium gas. The red line shows the convoluted Gaussian
fit line to guide the eye. For the assignment of the ion designated by #, see text for
details.

processes, which is lost in other types of high-energy CID instru-
ments. The high-energy CID of [Roni+H]+ (Fig. 2) leads to fragment
ions at m/z 157, 140, 127, 110, and 94. The product ion at m/z 157 is
due to the loss of a nominal mass of 44 Da, which could be formed
either due to the simple C–O bond cleavage and release of the neu-
tral radical NH2CO, or due to the rearrangement reaction releasing
CO2. The product ion at m/z 140 arises from the loss of [C,H3,N,O2]
and its assignment is discussed in the next paragraph. The prod-
uct ion at m/z 127 is due to the loss of a nominal mass of 74 Da,
which could be formed either directly from [Roni+H]+ by a simple
C2–C bond cleavage of the side chain releasing the neutral radical
CH2CO2NH2, or by concomitant loss of NO• radical from prod-
uct ion at m/z 157. The product ion at m/z 110 also appeared under
low-energy CID (Fig. 1) conditions and as previously suggested by
Pandeti et al.,31 it is formed from the main product ion at m/z 140 via
subsequent loss of the NO•. Usually, the loss of NO• is an exother-
mic reaction associated with a high KER, as in the case of simple
nitroimidazoles.27 The evaluated KER for this dissociation channel
amounts to 339 meV, which is lower than the KER reported for
simple nitroimidazoles of nearly 1 eV.27 Due to the high internal
energy content of the electrosprayed ions observed already previ-
ously for this experimental setup,35 the main product ion of m/z
140 is also visible in the ESI mass spectrum. The high-energy CID
of mass selected m/z 140 (Fig. S1 of the supplementary material)
showed that the product ion at m/z 94 is also formed from further
dissociation of m/z 140 likely through the loss of a complete NO2

•

group.
The main product ion at m/z 140 observed in both low-energy

CID (Fig. 1) and high-energy CID (Fig. 2) is formed due to the loss
of a nominal mass of 61 Da and is not a simple bond cleavage. Dif-
ferent structures have been considered for the product ion at m/z
140 ion associated with different neutral losses. All the structures
considered are shown in Fig. S2 of the supplementary material. The
loss of CH3NO2 can be excluded as a possible dissociation route
due to the high threshold for this process, which is calculated to be
4.50 eV (Fig. S2). Instead, the loss of 61 Da associated with a pro-
ton H+ transfer to the side group attached to C2 position of the
imidazole ring leading to the release of NH2CO2H appears to be
more favorable. Two relevant pathways were found for this mech-
anism and are shown in Fig. 3. One involves transfer of a proton H+

from the N3 position via TS2 of 0.97 eV, followed by the rupture
of the C–O bond, eventually leading to the release of NH2CO2H
with a thermodynamic threshold of 2.40 eV. The second pathway
includes proton transfer from the –CH3 group. It has a higher bar-
rier through TS1 of 2.77 eV. However, it results in a slightly lower
thermodynamic threshold of 2.24 eV. To distinguish which of the
pathway takes place under CID, we performed experiments with
deuterated solvents. As mentioned earlier, using deuterated solvents
results in exchange of the labile hydrogens of the NH2 group of
Roni (Scheme 1) and in the addition of D+ on the N3 position of
the imidazole ring upon ESI. Thus, the precursor ion [Roni+H]+

at m/z 201 will change to m/z 204 upon full deuteration due to
the exchange of three H by D. We label this compound hereafter
as [dRoni+D]+. Thus, if [dRoni+D]+ dissociates via TS1, a neu-
tral loss of ND2CO2H will lead to the formation of the product
ion at m/z 141, while the dissociation via TS2 will lead to neutral
loss of ND2CO2D, resulting in the formation of the product ion at
m/z 140.
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FIG. 3. M062x/6-311+G(d,p) calculated potential energy diagram for the dissocia-
tion of [Roni+H]+ leading to the product ion at m/z 140. The free reaction energy
∆G298K is also shown in eV. The green arrows in the respective TS show the
displacement vectors.

The low-energy CID of the fully deuterated [dRoni+D]+ as a
function of the nominal laboratory collision energy is summarized
in Fig. 4. An example mass spectrum of CID at 15 eV is shown in
Fig. S3 of the supplementary material. The spectrum shows domi-
nant product ion at m/z 140 and a very small amount of product ion
at m/z 141. However, from the data, we can conclude that the ion
at m/z 141 is only due to the 13C isotope of the partially deuterated

FIG. 4. Summary of the low-energy collision-induced dissociation reactions of the
electrospray generated ion [dRoni+D]+ as a function of the nominal laboratory col-
lision energy measured at Bruker ESI Q-TOF MS. Each of the points corresponds
to the integrated peak of the corresponding m/z. For the assignment of the product
ions at m/z 140 and m/z 110, refer to the text. The collision cell was filled with
nitrogen gas.

Roni at m/z 203, labeled hereafter [dRoni+H]+. In the ESI mass spec-
trum, the fully deuterated Roni at m/z 204 [dRoni+D]+ is the most
abundant ion, while [dRoni+H]+ at m/z 203 is at 27% abundance of
m/z 204 (see Fig. S4). Taking into account the natural abundance of
8.2%, the 13C isotope of the m/z 203 contributes to the m/z 204 by
2.2%. The contribution is probably slightly higher, as the 13C isotope
of the m/z 204 has abundance of 9.8% instead of the natural abun-
dance of 8.2% (Fig. S4). In the case of taking 9.8% as the amount of
13C isotope, the contribution of m/z 203 to m/z 204 is 2.6%. In the
Table S1 of the supplementary material, one can see that the num-
ber of counts of product ion at m/z 141 formed at different nomi-
nal laboratory collision energies (2–30 eV) is always below <2.6%.
Thus, we can conclude that in low-energy CID measured in the (2–
30 eV) nominal laboratory collision energy range with the present
experimental setup, we do observe only pathway, where D+ (H+) is
transferred from the N3 position to release the neutral ND2CO2D
(Fig. 3).

The result concerning high-energy CID of [dRoni+D]+ accel-
erated to 6 keV with a focus on the main dissociation channel in
question is shown in Fig. 5. A clear broadening to the right of the
m/z 140 is visible, i.e., a product ion at m/z 141 appeared. A zoom of
this m/z region is shown in the inset. In this case, the fully deuter-
ated Roni [dRoni+D]+ at m/z 204 was not the most abundant ion in
the ESI mass spectrum. The most abundant ion was partially deuter-
ated Roni [dRoni+H]+ at m/z 203. Indeed, D/H back-exchange
can occur rapidly due to the humidity before the ions enter into
the mass spectrometer or in the inlet capillary. Due to this strong
presence of the partially deuterated ions at mass 203, the mass peak
at m/z 204 is contaminated by partially deuterated ions contain-
ing instead of 12C the 13C isotope, according to our measurements
amounting to 20.47%. Additionally, we have performed CID of the
partially deuterated Roni [dRoni+H]+ at m/z 203, which is shown
in Fig. S5 of the supplementary material. Only the product ion at
m/z 140 is observed, making the two different pathways shown in
Fig. 3 undistinguishable. This means that the partially deuterated
Roni [dRoni+H]+ has two D atoms at the NH2 group (see Scheme 1)
while on the N3 position of the imidazole ring there sits a proton
H+. This is also confirmed by the low-energy CID experiments of
[dRoni+H]+ shown in Fig. S6, which also leads only to product ion
at m/z 140. Thus, the m/z 203 13C isotopic contamination of m/z
204 upon CID will contribute by (1/6) of 20.47% to the product
ion at m/z 140 and by (5/6) to the product ion at m/z 141. Since
the widths of the product ion peaks at m/z 140 and 141 are dif-
ferent (see Fig. 5), we made a correction of the peak heights and
not the peak areas. These corrected peaks of the formed product
ion abundances are shown by dashed lines in the inset of Fig. 5.
This gives a contribution of 81% for the pathway that proceeds
through proton transfer from N3 position and 19% contribution
for the pathway involving proton transfer from CH3 group (see
Fig. 3).

According to Eq. (2), we have calculated KER values for both
pathways. The KER values are relatively small. The pathway leading
to the product ion at m/z 140 via proton transfer from N3 position
is associated with a KER of about 10 meV, while the second path-
way leading to the product ion at m/z 141 via proton transfer from
CH3 group is associated with a KER of about 23 meV. According
to the potential energy diagram (Fig. 3), the latter reaction is indeed
expected to be associated with the higher KER value due to the TS
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FIG. 5. High-energy collision-induced dissociation mass
spectrum of [dRoni+D]+ formed via electrospray ionization
and accelerated to 6 keV (black line). The spectrum shows
only the product ions of interest. The collision cell was filled
with helium gas. The red and green lines are Gaussian fits
of m/z 140 and 141, respectively. The inset shows a blow-
up of the m/z 140 and 141 peak. The dashed red and green
lines correspond to the correction of the abundance due to
the 13C isotope contaminant of the m/z 203, where only two
H are exchanged in Roni by D. For details, refer to the text.

above the thermodynamic threshold. Thus, the KER value obtained
for this process suggests that most of the energy is carried away as
internal energy of the products.

IV. CONCLUSIONS

We have investigated decomposition of protonated Roni,
[Roni+H]+, in low-energy and high-energy CID experiments and
by density functional theory. The main dissociation channel form-
ing product ion at m/z 140 observed in both low-energy and
high-energy CID involves proton transfer reaction followed by a
release of neutral NH2CO2H. The experiments of CID of deuter-
ated Roni, [dRoni+D]+ have shown that while in low-energy
CID only proton transfer from the N3 position of the imida-
zole ring is observed, in the high-energy CID also proton trans-
fer from the –CH3 group is observed with contributions of 81%
and 19%, respectively. Both dissociation channels were shown to
have small KER values of 10–23 meV. However, the neutral loss
of NH2CO2H associated with further loss of NO• radical has
substantially higher KER value of 339 meV. Other product ions
observed in the high-energy CID were due to the simple and
homolytic bond cleavages forming radical product ions and neutral
radicals.

Characterization of the dissociation products and the pathways
for ions derived from nitroimidazoles will contribute to the knowl-
edge of fundamental chemistry of nitroimidazoles that is needed for
the development of the nitroimidazole based compounds and their
detection in food or water.

SUPPLEMENTARY MATERIAL

See supplementary material for the following: high-energy
CID of m/z 140, calculated thermodynamic threshold energies for
the dissociation of [Roni+H]+, low-energy CID of [dRoni+D]+,

high-energy CID of [dRoni+H]+, low-energy CID of [dRoni+H]+,
and table with data for low-energy CID of [dRoni+D]+.

ACKNOWLEDGMENTS

L.F. is thankful for the support from the University of Inns-
bruck via Grant No. P7440-035-011, the Institut de Physique
Nucleáire de Lyon (Institut de Physique des 2 Infinis de Lyon),
and the LABEX Lyon Institute of Origins (Grant No. ANR-10-
LABX-0066) of the Université de Lyon for its financial support
within the program “Investissements d’Avenir” (Grant No. ANR-
11-IDEX-0007) of the French government operated by the National
Research Agency (ANR). The crucial computing support from
the HPC infrastructures CCIN2P3 (France) is gratefully acknowl-
edged. S.D. acknowledges support from the Austrian Science Fund,
FWF, Vienna (Grant No. P30332). This work was also sup-
ported by Fundação para a Ciência e a Tecnologia (FCT-MCTES),
Radiation Biology and Biophysics Doctoral Training Programme
(Grant Nos. RaBBiT and PD/00193/2012), UID/Multi/04378/2019
(UCIBIO), UID/FIS/00068/2019 (CEFITEC), and scholarship Grant
No. PD/BD/114447/2016 to J.A.

Dedicated to our friend and collaborator, Professor Leo Radom
on the occasion of his 75th birthday and in recognition of his
outstanding contributions to theoretical chemistry.

REFERENCES
1A. M. Rauth, R. S. Marshall, and B. L. Kuehl, Cancer Metastasis Rev. 12, 153
(1993).
2P. Wardman, Clin. Oncol. 19, 397 (2007).
3A. H. Lau, N. P. Lam, S. C. Piscitelli, L. Wilkes, and L. H. Danziger, Clin.
Pharmacokinet. 23, 328 (1992).
4J. Overgaard, H. S. Hansen, M. Overgaard, L. Bastholt, A. Berthelsen, L. Specht,
B. Lindeløv, and K. Jørgensen, Radiother. Oncol. 46, 135 (1998).
5L. Bentzen, S. Keiding, M. R. Horsman, T. Grönroos, S. B. Hansen, and J.
Overgaard, Acta Oncol. 41, 304 (2002).

J. Chem. Phys. 151, 164306 (2019); doi: 10.1063/1.5118844 151, 164306-6

Published under license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

6A. R. Padhani, K. A. Krohn, J. S. Lewis, and M. Alber, Eur. Radiol. 17, 861
(2007).
7X. Su, X. Cheng, C. Meng, and X. Yuan, J. Hazard. Mater. 161, 551 (2009).
8Z. Yu and E. R. Bernstein, J. Chem. Phys. 137, 114303 (2012).
9C. Han, J. Chen, X. Wu, Y.-W. Huang, and Y. Zhao, Talanta 128, 293 (2014).
10M. Arias, O. P. Chevallier, S. F. Graham, A. Gasull-Gimenez, T. Fodey,
K. M. Cooper, S. R. H. Crooks, M. Danaher, and C. T. Elliott, Food Chem. 199,
876 (2016).
11A. Gadaj, K. M. Cooper, N. Karoonuthaisiri, A. Furey, and M. Danaher, Food
Addit. Contam., Part A 32, 180 (2015).
12K. Mitrowska, A. Posyniak, and J. Zmudzki, Anal. Lett. 47, 1634 (2014).
13A. Fakhri, S. Rashidi, M. Asif, and A. A. Ibrahim, Appl. Sci. 7, 205 (2017).
14K. Mitrowska and M. Antczak, Food Addit. Contam., Part A 34, 573 (2017).
15X. Li, Y. Ke, Y. Wang, C. Wang, D. Ye, X. Hu, L. Zhou, and X. Xia, Molecules
23, 3350 (2018).
16A. Rúbies, G. Sans, P. Kumar, M. Granados, R. Companyó, and F. Centrich,
Anal. Bioanal. Chem. 407, 4411 (2015).
17W. Han, Y. Pan, Y. Wang, D. Chen, Z. Liu, Q. Zhou, L. Feng, D. Peng, and
Z. Yuan, J. Pharm. Biomed. Anal. 120, 84 (2016).
18E. Daeseleire, H. De Ruyck, and R. Van Renterghem, Analyst 125, 1533
(2000).
19H. Zhao, J. Zulkoski, and K. Mastovska, J. Agric. Food Chem. 65, 7268 (2017).
20G. Cao, J. Zhan, X. Shi, X. Deng, J. Zhu, W. Wu, and X. Chen, Chromatographia
81, 707 (2018).
21P. Kumar, A. Rúbies, F. Centrich, and R. Companyó, Meat Sci. 97, 214 (2014).
22L. Qin, Y.-L. Lin, B. Xu, C.-Y. Hu, F.-X. Tian, T.-Y. Zhang, W.-Q. Zhu,
H. Huang, and N.-Y. Gao, Water Res. 65, 271 (2014).
23L. Sun, D. Chen, S. Wan, Z. Yu, and M. Li, Chem. Eng. J. 326, 1030 (2017).
24W. Yang, X. Wu, T. Liu, T. Wang, and X. Hou, Analyst 143, 5744 (2018).
25L. Feketeová, A. L. Albright, B. S. Sørensen, M. R. Horsman, J. White,
R. A. J. O’Hair, and N. Bassler, Int. J. Mass Spectrom. 365-366, 56 (2014).
26K. Tanzer, L. Feketeová, B. Puschnigg, P. Scheier, E. Illenberger, and S. Denifl,
Angew. Chem., Int. Ed. 53, 12240 (2014).
27L. Feketeová, J. Postler, A. Zavras, P. Scheier, S. Denifl, and R. A. J. O’Hair, Phys.
Chem. Chem. Phys. 17, 12598 (2015).
28W. A. Donald, M. G. Leeming, and R. A. J. O’Hair, Int. J. Mass Spectrom. 316-
318, 91 (2012).

29M. G. Leeming, J. M. White, R. A. J. O’Hair, and W. A. Donald, J. Am. Soc. Mass
Spectrom. 25, 427 (2014).
30P. Bolognesi, A. R. Casavola, A. Cartoni, R. Richter, P. Markus, S. Borocci,
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Chapter 5
Theoretical overview

This chapter provides a brief description of the mechanisms underlying the interaction of

an electron with a neutral molecule, in the gas-phase. The most relevant concepts are

related to the formation of anions through the resonant attachment of electrons by neutral

molecules, and cations through electron ionization.

5.1 Born-Oppenheimer Approximation

The Born-Oppenheimer approximation relies on the large difference between the electronic

motion and the nuclear motion, such as vibrational and rotational motions. For a given

amount of kinetic energy, the displacement of nuclei is much slower than the displacement

of electrons, due to the huge ratio between the nuclear and electronic mass. Hence, the

electron configuration is considered as well-defined for each nuclei configuration. So from

the mathematical point of view, the molecular wave function, ψtotal can be expressed as

the product between the electronic wavefunction, ψe, and the nuclear wavefunction, ψN ,

[125]:

ψtotal = ψeψN (5.1)

According to the Born-Oppenheimer approximation, the electronic and nuclear wave

functions are decoupled. A second approximation consists in separating the nuclei motion
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5.2. Franck-Condon principle

into its different components, vibrational, ψNv , and rotational, ψNR
as follows:

ψ = ψeψNvψNR
(5.2)

Therefore, a given molecular state is characterized through its electronic, vibrational

and rotational state, and total energy of a molecular state corresponds to the summed

contribution of each of them:

Et = ENR
+ ENv + Ee (5.3)

The Born-Oppenheimer approximation sets the framework for the Franck-Condon

principle, which will be introduced in the following section.

5.2 Franck-Condon principle

The Franck-Condon principle states that the molecular geometry is preserved when a

molecule undergoes an electronic transition. For a diatomic molecule, a so-called vertical

transition takes place from a point in the potential energy curve of the ground state to

a point located directly above in the potential energy curve of a given excited state [55,

125]. An adiabatic transition is defined as a transition from vibrational state υ = 0 in the

ground state, to the vibrational state υ = 0 in a given excited state. Both vertical and

adiabatic transitions are schematically represented in figure 5.1.

The probability of occurring a vertical transition depends on the molecular geometry

of the respective molecular states involved. By using the Born-Oppenheimer approximation

(see section 5.1), this probability is defined by the Franck-Condon overlap integral, or also

referred to as Franck-Condon factor, fFC . Hence, the probability Pl,u for a transition from

a vibrational state υ in the first state l, to a vibrational state υ′ in a second state u, can

be calculated by [125]:

fFC ≡ Pl,u ∼
(∫

ψυl ψ
υ′

u dR

)2

(5.4)
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5.2. Franck-Condon principle

The distribution of Franck-Condon factors reflects the distribution of vibrational

states for an excited ionic state, as depicted in the lower panel of figure 5.1 [55].

Figure 5.1. Schematic representation of various vertical transitions from the ground state of a

diatomic molecule, AB, to different vibrational states υ of a stable ionic state, denoted by AB+∗.

The lower inset shows the Franck-Condon factors, fFC , for several transitions. Adapted from

[55].

It should be noted that the considerations on the Born-Oppenheimer approxima-

tion, as well as the Franck-Condon Principle quantitatively describes vertical transitions

in diatomic molecules. In the case of a polyatomic molecule comprising n atoms, the en-

ergy potential curves are thus to be replaced by n-dimensional potential energy surfaces.

For a polyatomic molecule, although a vertical transition will proceed without changes

in the molecular geometry, accordingly to the Franck-Condon principle, the subsequent

dynamics is different as the excited molecular ion may undergo relaxation along other n

coordinates.[125]
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5.3. Dissociative ionization

5.3 Dissociative ionization

The interaction of a free electron with a target molecule can be categorized as direct

scattering and resonant scattering, depending on the amount of time spent by the incoming

electron in the vicinity of the target molecule. Dissociative ionization is an inelastic direct

scattering process, in which the incoming electron initially ionizes the target molecule

AB to form a parent cation, AB∗+, which dissociates into a positively charged fragment,

A+ and one or more neutral fragments, denoted as B. Such process is described by the

following equation [42]:

AB + e− → AB∗+ + 2e− → A+ +B + 2e− (5.5)

The superscript ∗ indicates that the ion is in a vibrationally and/or electronically excited

state.

The formation of the parent cation corresponds to a vertical transition to the ioniza-

tion continuum within the Franck-Condon region. However, when the energy transferred

by the incoming electron to the molecule exceeds the ionization energy (IE), the parent

cation is left in a vibrationally and/or electronically excited state. The distribution of the

internal energy of the parent cation among the internal degrees of freedom of the molecule

often leads to fragmentation [42].

For DI to a diatomic molecule AB in which the single bond is cleaved, the en-

ergy threshold is, in general, given as the sum of the respective bond dissociation energy

(BDE) and the ionization energy of the neutral precursor of the positively charged fragment

formed, because of the vertical transition. Thus, the energy threshold for A+ formation by

DI to AB is given by [42]:

Eth = BDE(A−B) + IE(A) (5.6)
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5.3. Dissociative ionization

5.3.1 Dissociative ionization cross section

The energy threshold of DI is usually slightly above the ionization energy of the target

molecule. With increasing energy, more fragmentation pathways are possible as the parent

cation is formed with internal energy.[55] The DI cross section as function of the electron

energy increases till it reaches a plateau at energies of about 70-100 eV, and then gradually

decreases. Generally, as shown in figure 5.2, the total ionization cross section (TICS) which

corresponds to the sum of all ionization processes follows the same trend.[42, 55] This

behavior correlates with the de Broglie wavelength of the electron, as at an energy of 70

eV the electron’s wavelength is comparable with the average bond length of most molecules,

that is in range of 100 up to 200 pm. At higher electron energies, the energy transfer to

the target molecule decreases, because (i) the de Broglie wavelength gets shorter, and (ii)

the interaction time is shorter.[55]

Figure 5.2. Experimental total ionization cross section (TICS) for a collection of aromatic

species. Adapted from [132].

At an incident electron energy of 70 eV, the DI process often results in a character-

istic fragmentation pattern, and is considered a useful technique in mass spectrometry for

identification of compounds.[42, 55] Nowadays, electron ionization mass spectra are avail-

able in different databases, such as the NIST Chemistry Webbook [133]. As an example,
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within this thesis, the mass spectrum of OTfU acquired at an electron energy of 70 eV was

reported for the first time, see section 7.

5.4 Electron attachment

Electron attachment constitutes a resonant scattering process through which a temporary

negative ion (TNI), also refereed to as resonance, is formed. In this case, the electron is

temporarily trapped in the vicinity of the target molecule; the dwell time is therefore large

when compared to the transit time the electron needs to travel through the molecule. In

comparison to electron attachment, dissociative ionization (see section 5.3) is, however a

direct scattering process, in which the incoming electron transfers energy to the molecule

leading to ionization. An electron with an energy of 70 eV travels at a speed of approxi-

mately v = 5.0× 106 m/s. Considering the typical molecular size of a few angstroms, the

transit time of the electron in the vicinity of the molecule is thereby just a few picosec-

onds, and smaller than the lifetime of resonances observed for molecules constituted by

more than three atoms.

The first step in the formation of the TNI by electron capture corresponds to a

vertical transition from the ground state of the neutral molecule to a given anionic state

within the Franck-Condon region, depicted by the shaded area in figure 5.4. Hence, the

TNI may be formed in an excited state [42, 126, 134]:

AB + e− → AB∗− (5.7)

The superscript ∗ denotes that the TNI may be in an electronically and/or vibrationally

excited state. The classification of resonances depending on the electronic structure will

be discussed in the section 5.4.3.

The resonance or TNI lifetime, may vary depending on the electronic structure,

molecular size, the electron energy and its internal energy. [42, 126] Accordingly to the
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Heisenberg’s uncertainty principle, the resonance width, Γ, may defined as:

Γ ≥ h̄

τ
(5.8)

h̄ denotes the reduced Planck constant and τ the lifetime.

For most diatomic molecules, the TNI lifetime is a few femtoseconds [135], while for

CCl4 the respective TNI may survive for a few picoseconds [136], and it may survive for

longer times up to a few tens microseconds, as in the case for SF6 [137].

5.4.1 Electron affinity

An important quantity in electron attachment processes is the electron affinity (EA). The

vertical electron affinity (VEA) which is defined as the energy difference between the neutral

molecule, AB, and one electron at infinity, and the molecular anion AB− (equation 5.7).

Equivalently, the adiabatic electron affinity (AEA) is defined as the difference between the

energy of the neutral molecule plus the electron at infinity and the energy of the respective

molecular anion, when both are in their respective electronic, vibrational and rotational

ground state [125, 138]. By definition, if the ground state of AB− lies below the ground

state of neutral AB, as illustrated in figure 5.3, it is considered that the adiabatic electron

affinity of AB, AEA(AB), is positive. Conversely, the AEA is negative, if the ground state

of AB− lies above the ground state of neutral AB. Hence, a positive adiabatic electron

affinity suggests a long-lived molecular anion might be formed.

The vertical detachment energy (VDE) is defined as the as the energy required to

detach the extra electron from the molecular anion in the ground state, without changing

the internuclear distance. The figure 5.3 (A) represents a situation that prevails for the

majority of molecules, |V DE(AB−)| > AEA(AB) [125]. This figure also depicts the

formation of a vibrational Feschbach resonance, as defined in section 5.4.3.

The vertical attachment energy (VAE) is also related to the EA, and it is defined

as energy difference between the neutral molecule in its ground state plus the electron at

infinity, and the molecular anion formed by attachment of the electron without changing

the internuclear distance. The figure 5.3 (B) illustrates the case where V AE(AB) ≤
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5.4. Electron attachment

−EA(AB). This figure also shows the formation of a shape resonance, as defined in

section 5.4.3, where the incoming electron is temporarily captured by the shape of the

potential energy curve of the molecule, as represented by the shade area.[125]

AB-

VDE(AB-)En
er
gy

AEA(AB)>0

-

+

AB+e–

AB+e–

AEA(AB)<0

AB–

(A) (B)

VAE(AB)

Figure 5.3. The solid line represents an energy potential curve for neutral molecule, AB, and

the dashed line is the respective molecular anion, AB-. (A): The positive value of both AEA(AB)

and VDE(AB-) are illustrated. (B): The negative value of AEA(AB) is illustrated, as well as the

positive value of the VAE(AB). Adapted from [125].

5.4.2 The decay of temporary negative ions

A TNI formed by electron capture by a molecule in the gas-phase is subjected to one of

the following reactions: autodetachment (reaction 5.9 and 5.10), radiative stabilization

(reaction 5.11), or dissociative electron attachment (reaction 5.12).[126, 134, 139]

Autodetachment

Through the autodetachment process, the TNI relaxes by ejecting the additional electron

to form the neutral precursor molecule in an electronic and/or vibrational excited state

(reaction 5.9), or in the ground state (reaction 5.10). Autodetachment, as denoted as AD

in figure 5.4, is possible for internuclear distances smaller than the crossing point, rC , of the

anionic excited state and the neutral ground state potential curves. The autodetachment
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lifetime varies from a few tens of femtoseconds to the milisecond time scale for larger

molecules [138].

AB + e− → AB∗− → AB∗ + e− (5.9)

→ AB + e− (5.10)

Radiative stabilization

Radiative stabilization of the excited TNI, through reaction 5.11, to the anionic ground

state is possible for molecules having a positive electron affinity. A photon is emitted by the

excited TNI carrying away energy hυ in order to stabilize the molecular anion. Radiative

stabilization is typically a slow process with a lifetime in order of 10−9 − 10−8 s.[126]

AB + e− → AB∗− → AB− + hυ (5.11)

Dissociative electron attachment – DEA

DEA is a process where the TNI dissociates into one negatively charged fragment and one

or more neutrals, as described by reaction 5.12. As schematically represented in figure 5.4,

electron capture by the target molecule AB occurs through a vertical transition from the

neutral ground state, AB, to a repulsive or dissociative anionic excited state, AB∗−, forming

thus a TNI. It undergoes relaxation through nuclear displacement wherein the internuclear

distance, r, gradually increases until the anionic excited state crosses with the neutral

ground state (crossing point, rC). At this point, the nuclear relaxation may lead to bond

cleavage and the formation of a negatively charged fragment and one or more neutrals.[42,

126, 134] In addition to this mechanism, the formation of a given fragment anion by

DEA occurs when the thermodynamic requisites are fulfilled, as discussed in section 5.4.5.

Considering a complex polyatomic molecule, in addition to single bond cleavage, further

fragmentation pathways may involve rearrangement reactions by which neutral and charged

fragments are formed with a structure not found in the parent molecule.[42]

DEA is an event that typically occurs for a simple bond cleavage on a time scale
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5.4. Electron attachment

ranging from 10−14 up to 10−12 s, and thus in the same timescale as autodetachment.

Therefore, autodetachment competes with dissociative electron attachment.[42, 126, 134]

AB + e− → AB∗− → A− +B (5.12)

Figure 5.4. Schematic representation showing dissociative electron attachment to a diatomic

molecule AB. The potential energy curves for the neutral ground state, AB, the anionic ground

state, AB-, and a dissociative anionic excited state AB*- are represented. The electron capture

process, labelled as EC, occurs within the Franck-Condon region (shaded area) and leads to the

formation of a TNI. The TNI may relax through nuclear relaxation along the anionic potential

curve, and autodetachment, labelled as AD, may occur until the crossing point, rC , with the

neutral potential curve. In the right-hand side axis, the energy dependence of the electron

capture, σEC , as well as the ion yield for the formation of A-, σA− , at 0 eV is shown. At

electron energues above 0 eV, the formation of B- obtained by the reflection principle, σB− , is

also presented. Taken from [42, 140].
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5.4.3 Resonances

The focus of the present section is to answer the following question:

”What is the mechanism responsible for trapping an incoming electron for times consider-

ably longer than the direct transit time through the molecule’s dimension?”

Prof. Dr. Eugen Illenberger in Gasesous Molecular Ions, Part III - Electron attachment

processes in molecules and molecular aggregates, 1992

The mechanisms underlying electron attachment by a target molecule to form a

TNI, or resonance may be generally categorized based on the changed caused by the in-

corporation of the extra electron into the molecular structure. The figure 5.5 shows the

electronic configuration of TNIs. In the case of single-particle (1p) resonances, the ex-

tra electron is added to the lowest unoccupied molecular orbital (LUMO), while the core

electron configuration remains unchanged. On the other hand, in the case of two-particle

one-hole (2p-1h) resonances, the electron attachment process causes a concomitant elec-

tronic transition in the neutral molecule, in which both electrons are added to two normally

empty molecular orbitals (MOs).[42]

Figure 5.5. Electronic configuration for a single-particle resonance and for a two-particle one-

hole resonance. Taken from [141].
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5.4. Electron attachment

Furthermore, the resonances may be also categorized accordingly to two mechanisms

of electron capture. Fist, the incoming electron can be trapped by the centrifugal barrier

from the effective potential which arises from the interaction between the incoming electron

and the neutral molecule. This process is thus termed open-channel resonance or shape

resonance, because, as the name suggests, the TNI is formed due to the ”shape” of the

energy potential surface. In terms of energy, the TNI formed through a shape resonance

lies above the neutral precursor. Shape resonances often have short lifetimes.[42, 126, 134]

Second, the incoming electron may be trapped by the excitation caused by itself on the

neutral target molecule, if the TNI lies energetically below the neutral molecule. This

process is termed Feshbach resonance, or closed-channel resonance. Since the decay of

such resonances back into the neutral requires a change in the electronic configuration,

Feshbach resonances often have longer lifetimes.[42, 126, 134]

Energy

AB*

AB

AB*–

AB*–

AB–

AB–

Core-excited shape

Core-excited Feshbach

Shape

Vibrational Feshbach

0 eV

Figure 5.6. Schematic energy diagram of transient negative ions formed by electron attachment

by a diatomic molecule, AB. Adapted from [126].

By combining both criteria for characterization of resonances, the formation of TNIs

may be sorted out in four categories: vibrational Feshbach resonance, shape resonance,
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core-excited Feshbach resonance, and core-excited shape resonance, as represented in figure

5.6. At last, the types of resonances will be discussed in greater detail below.

Vibrational Feshbach resonance

A vibrational Feshbach resonance (VFR) can be formed at low energies close to ∼0 eV,

if the TNI lies below the ground state of the neutral, as represented in figure 5.7. Hence,

VFR are formed in molecules with positive electron affinity. The formed TNI can survive

beyond microseconds in molecules that enable redistribution of the energy released into

the vibrational degrees of freedom, preventing thus autodetachment. This process known

as intramolecular vibrational redistribution (IVR) results in the formation of metastable

TNIs. For instance, the formation of metastable TNIs with high cross sections at about

0 eV from, sulphur hexafluoride, SF6, and hexaflurobenzene C6F6 is well known.[42, 125,

134]

On the other hand, strong long-range interactions give rise to TNIs through VFRs.

In the case of a sufficiently large dipole moment above 1.65 Debyes, the incoming electron

can be temporarily trapped in a dipole bound state (DBS). The binding energies of the

DBS are usually in the meV range.[142, 143] The excess energy can be also deposited into

vibrational levels of the DBS. In this case, the TNI formed may decay through autode-

tachment or, if energetically possible, it can also undergo DEA.[42, 125] For example, DBS

were suggested as doorway states for the dehydrogenation of nucleobases. [32, 144–146] In

this context, the studies with 5-trifluoromethanesulfonyl-uracil (OTfU) [147] have shown

that the loss of a hydrogen atom proceeds trough the coupling between the vibrational

levels of the TNI and a DBS, see section 7 for further details. Moreover, the potential role

of a DBS in the dehydrogenation of benzaldehyde was also investigated, please see section

7.

Shape resonance

Shape or open channel resonances represent single-particle (1p) resonances. In this case,

the incoming electron is trapped in a potential barrier induced by the electron-molecule

interaction.[42, 126] At large distance, the electron-molecule interaction is dominated by
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Figure 5.7. Representation of a vibrational Feshbach resonance, where the molecular anion,

AB−, lies energetically below the ground state of the target molecule, AB. Taken from [125].

the attractive polarization potential, Vα, given by [42, 134]:

Vα = −αe
2

2r4
(5.13)

where α denotes the polarizibality of the molecule, e is the elementary charge of the elec-

tron, and r corresponds to the electron-molecule distance. However, at shorter distances,

the repulsive centrifugal potential, Vl, which describes the angular momentum dependence

becomes more important, and it is given by [42, 134]:

Vl =
h̄2l(l + 1)

2µr2
(5.14)

µ denotes the reduced mass of the electron-molecule system (µ ≈ me), h̄ is the reduced

Planck’s constant, and l is the angular momentum quantum number.

For l 6= 0, the sum of these potentials, also referred to as effective potential Veff , is

given by [42, 134]

Veff = Vl + Vα ⇔ Veff =
h̄2l(l + 1)

2µr2
− αe2

2r4
(5.15)
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and it is represented in figure 5.8. Since no centrifugal barrier is created for l = 0, s-

wave attachment does not constitute a shape resonance. For l > 0, the incoming electron

can tunnel through the barrier becoming temporarily trapped within the vicinity of the

molecule. Thus, the TNI lifetime is equal to the time required for the electron to tunnel

out the centrifugal barrier.[42, 126, 134]

As already mentioned and represented in figure 5.6, the formed TNI lies above the

ground state of the neutral molecule, that means that the electron affinity is negative.

In terms of electron energy, shape resonances occur at low energy between ∼0 and 4

eV.[125] Usually, shape resonances decay by autodetachment within 10−15 to 10−10 s, or if

the thermochemical prerequisites are fulfilled, by DEA.[125] Thus, the lifetime of a shape

resonance is considered short, and may be observed as broad features in electron scattering

studies, accordingly to Heisenberg’s uncertainty principle (eq. 5.8).[42]

Figure 5.8. The effective potential describing the electron-molecule interaction, for l 6= 0 the

electron may trapped within the centrifugal barrier. Taken from [134].

Core-excited Feshbach resonance

A resonance is defined as a core-excited Feshbach resonance if the incoming electron is

captured with concomitant electronic excitation of the target molecule. [42, 134] This

kind of resonances are two-particle one-hole (2p-1h) of electron configuration depicted in
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figure 5.5. Figure 5.9 schematically shows a core-excited resonance, AB∗− formed via an

electronically excited state, AB∗.

In an electronically excited molecule, the positive charge of the nuclei is less screened

by the electron cloud, as result the incoming electron is attracted by the small positive

charge becoming temporarily captured by the molecule.[125] The autodetachment of the

extra electron is usually not possible if the TNI is energetically below the corresponding

electronically excited of the neutral. In this case, the TNI can only relax through a two

electron transition to a lower lying excited state, which involves rearrangements of the

molecular electronic structure. The autodetachment lifetime for core-excited Feshbach

resonances is, in turn, relatively long.[42, 125, 134] Hence, as in the case of VFRs, these

resonances appears as narrow contributions observed in electron scattering studies.[42]

Core-excited shape resonance

The formation of core-excited shape resonances proceeds as for the case of shape resonances,

except that in the present case the incoming electron is trapped by the centrifugal barrier

of an excited state of the neutral molecule, instead of its ground state. Thus, core-excited

shape resonances are considered two-particle one-hole (2p-1h) resonances, provided the

incoming electron carries sufficient energy to electronically excite the target molecule.[42,

125, 134] The TNI formed through a core-excited shape resonance lies energetically above

the excited electronic state of the target molecule, AB∗, and therefore these kinds of

resonances occur at higher electron energies, as depicted in figure 5.9.

5.4.4 Dissociative electron attachment cross section

As mentioned in section 5.4.2, the dissociation of a TNI depends on (i) its lifetime with

respect to autodetachment, τAD, and (ii) the time required for TNI to relax beyond the

point from which autodetachment is not possible, τdiss. In a diatomic molecule, as repre-

sented in figure 5.4, this corresponds to the crossing point, rC . In terms of cross section,

the DEA cross section, σDEA, is the product of the attachment cross section, σ0, and the
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AB

A – + B

A + B–

AB*–

(core excited shape)

AB*–

(Feshbach)

AB* 

Internuclear distance

Figure 5.9. Schematic representation of potential energy curves for the formation of a TNI,

AB∗, through a core excited shape (open channel) and a core excited Feshbach (closed channel)

resonances from a molecule AB. Adapted from [134].

dissociation probability, Pdiss [42, 134]:

σDEA = σ0Pdiss (5.16)

Attachment cross section σ0

For electron energies above 0 eV, the energy dependence of the attachment cross section,

σ0, is explained by the reflection principle.[126, 148] This is displayed on the right-hand

side y-axis of figure 5.4 wherein the attachment cross section, denoted as σEC , is achieved

as the reflection of the initial vertical transition over the TNI potential curve. The DEA

cross section overlaps with the attachment cross section, however the maximum DEA cross

section is typically shifted towards lower electron energies, because (i) the autodetachment

lifetime is longer at lower electron energies, since the with of the TNI increases with gradu-

ally increasing energies; and (ii) for transitions at lower electron energies, the internuclear
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distance to the crossing point is shorter, and consequently the time needed for the TNI to

reach that point.[42]

At electron energies close to 0 eV, the Wigner threshold law [149] predicts the

attachment cross section, σ0, where the electron involved may have a angular momentum

quantum number, l, as follows:

σ0(E, l) ∝ E(l− 1
2) E → 0 (5.17)

E is the incident electron energy. For s-wave attachment (l=0), the attachment cross

section is thus proportional to E−
1
2 , and it dominates at 0 eV. In addition, for halogens Cl2

[150] and F2 [151], it has been demonstrated that p-wave attachment (l=1) proportional

to E
1
2 may also contribute to electron attachment at lower energies from above 0 eV up to

200 meV . Later, the Vogt-Wannier model included the polarizability of the molecule. [152]

Hotop, Fabrikant and coworkers [153–155] extend the Vogt-Wannier model for molecules

with a dipole moment lower than 1.625 D.[42] Further details on models describing electron

attachment are given in references [152–155].

TNI survival probability Pdiss

The DEA cross section also depends on the TNI survival probability, Pdiss which is in turn

associated with both autodetachment and relaxation lifetimes by the following relation [42,

134]:

Pdiss = exp

(
−τdiss
τAD

)
(5.18)

The autodetachment lifetime, τAD, is associated to the energy width of the reso-

nance, Γ(r), through the Heisenberg’s uncertainty principle [42, 134]:

τAD =
h̄

Γ(r)
(5.19)

The relaxation time, τdiss, may be expressed from the radial velocity between the
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fragments formed according to [42, 134]:

τdiss =

∫ rC

r

dr

v(r)
(5.20)

r denotes the initial internuclear distance from where the vertical transition takes place,

and rC is, once gain, the crossing point.

By taking into account the relations 5.19 and 5.20, the TNI survival probability

may be written as [42]:

Pdiss = exp

(
−τdiss
τAD

)
⇔ Pdiss = exp

[
−1

h̄

∫ rC

r

Γ(r)
dr

v(r)

]
(5.21)

Therefore, the DEA cross section is described as:

σDEA = σ0 exp

(
−τdiss
τAD

)
(5.22)

Hence, one would expect higher DEA cross sections when the exponent of the ex-

ponential term is small, that is when the relaxation lifetime is smaller than the autode-

tachment lifetime. Furthermore, the observation of fragment anions depends on the ther-

modynamic threshold for a given DEA reaction to a target molecule, which will discussed

in the following section 5.4.5.

5.4.5 Thermodynamics in DEA

The thermochemical threshold, Eth, for a DEA reaction with a diatomic molecule, AB,

which leads to the formation of A− along with neutral B can be calculated as [42, 126,

134]:

Eth = BDE(A−B)− EA(A) (5.23)

BDE(A − B) denotes the bond dissociation energy required for bond cleavage

(BDE(A − B) > 0), and EA(A) the electron affinity of A. In the case illustrated in

figure 5.4, the fragment A− is promptly formed at 0 eV electron energy, since the respec-

tive DEA reaction has a negative thermochemical threshold as the EA(A) is larger than
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the BDE(A−B). On the other hand, the EA(B) is lower than BDE(A−B). The DEA

reaction leading to B− formation is thus endothermic and therefore thermochemically not

possible at 0 eV electron energy.

Except for 0 eV peaks, the onset of a given ion yield, also indicated as appearance

energy (AE), is associated to the low-energy onset obtained through the reflection principle,

instead of the the thermochemical threshold. However, the ion yield for a fragment anion

formed through an exothermic DEA reaction may show a peak at 0 eV. For this reason,

it is considered that the onset of an ion yield with a 0 eV peak is also zero. Since DEA

is often operative at energies above the thermochemical threshold, there is an excess of

energy, E∗. Considering a polyatomic molecule, such excess of energy is distributed among

both internal and translational degrees of freedom of the formed fragments. [42, 126, 134]

For a diatomic molecule, AB, the AE of a DEA reaction which yields A− may be rewritten

as [42]:

AE = BDE(A−B)− EA(A) + E∗ (5.24)

Therefore, the excess energy, E∗ is the difference between the thermochemical

threshold, Eth and the experimental appearance energy, AE [42, 126, 134].

In the case of DEA to polyatomic molecules, more complex fragmentation pathways

including multiple bond cleavages as well as rearrangements may occur. In order to calcu-

late the the thermochemical threshold for the formation of X− through a complex reaction

with a polyatomic molecule, the relation 5.24 may be written as [42]:

Eth(X
−) =

∑
BDE(educt)−

∑
BDE(product)− EA(X) (5.25)

The thermochemical threshold for X− formation is the difference between the energy

invested in multiple bond cleavage within the target molecule,
∑
BDE(educt), the energy

gain from new bond formations within the product fragment anion, and the binding of the

excess charge.

The thermochemical calculations discussed above only consider the initial and final
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states of the DEA process, however some dissociation pathways involve reaction barriers

which might arise from transition states above the thermochemical threshold. Therefore,

quantum chemical calculations may be employed to clarify the formation of negative ions,

and neutrals from polyatomic molecules through DEA.

5.5 Ion pair formation

Ion pair formation is non-resonant process by which both negative and positive ions may

be formed through electron scattering by a target molecule, as follows [42, 125]:

e− + AB → A+ +B− + e− (5.26)

This process occurs at electron energies sufficiently high to induce an electronic

transition in the target molecule, AB, to an dissociative state, which dissociates thereafter

into a positive-negative ion pair.[125] The ion pair formation cross section gradually in-

creases until it reaches a maximum at an energy of two or four-fold the threshold energy,

and declines thereafter.[125]

In the DEA study to OTfU, F– formation proceeds through ion-pair formation, in

addition to DEA. Please see section 7 for more details.
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Chapter 6
Experimental Setup

Low-energy electron interactions with biomolecules were investigated by using two mass

spectrometry experiments. Hence, this chapter provides a detailed description of both ex-

periments. The electron attachment studies with OTfU and benzaldehyde were carried out

with the so called Wippi experiment available at the Institut für Ionenphysik und Ange-

wandte Physik, Universität Innsbruck, Austria. Further studies with benzaldehyde, and

its deuterium labelled derivative (benzaldehyde-α-d1) were performed with the experiment

available at the Radiation Laboratory, University of Notre Dame, USA.

In general, both experiments are mass spectrometers composed by the same com-

ponents, as schematically represented in figure 6.1:

• The sample inlet enables the introduction of the sample to be investigated. Since

only gas-phase studies are allowed, the sample inlet must be capable of changing

the physical state of the sample, i.e. solid or liquid, to gas. Both setups allow the

introduction of gases and liquids, whereas solids are only investigated on the Wippi

experimental setup.

• The e– impact ion source creates ions from a sample, through interactions with

electrons. A hemispherical electron monochromator acts as the ion source in the

Wippi experiment, while an e– impact ion source is installed in Notre Dame.

• A quadrupole mass spectrometer sorts out the ions formed due to electron in-
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teractions within the ion source accordingly to their mass-to-charge ratio (m/z).

• A detector of the electron multiplier of the continous dynode type, also refered to

as channeltron, was installed in each experiment for ion detection.

• A computer for control and data acquisition was used to to acquire and further

process the data. A custom made software was used in Wippi, while a commercially

available software was used in Notre Dame.

Sample 

inlet

e– impact

ion source

Quadrupole 

MS
Detector

Computer:

Control & 

data 

acquisition 

High vacuum

Figure 6.1. General scheme of the mass spectrometry experiments used to study low-energy

electron interactions with biomolecules. Adapted from [55].

6.1 Wippi

The experiment known as Wippi is a crossed electron-molecule beam apparatus, repre-

sented in figure 6.2. The electron monochromator used in this experiment was designed

by Dr. Daniela Muigg and Dr. Günter Denifl.[156, 157] The neutral beam is formed by

a sample inlet suitable for either solids (oven with a capillary), liquids or gases. Addi-

tionally, a stagnant gas inlet is used to introduce calibration compounds, such as SF6 or

CCl4, as explained in section 6.3. Then, the beam effuses into the interaction chamber

of the hemispherical electron monochromator (HEM) through a 1 mm-diameter capillary

where it intersects orthogonally with the electron beam. For the present investigations,

an energy resolution of 100-120 meV at full width at half maximum (FWHM) was set,
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which is a suitable compromise between energy resolution and electron beam intensity.

The ions resulting from the electron attachment process are extracted by a weak electro-

static field into a quadrupole mass spectrometer (QMS) where they are mass-analyzed.

For a given ion, the ion yield is recorded as a function of the electron energy. In order

to record a mass spectrum, the electron energy is kept constant and the quadrupole m/z

range is scanned. Since, the quadrupole is aligned with the neutral beam, the formed ions

are deflected towards the detector by a deflector thereby suppressing noise resulting from

neutrals which may eventually reach the detector. The ions were detected by channeltron

electron multiplier.

In the following subsections a description of the components comprising both ex-

periments will be provided.

(1)

(2)

(3)

(4)

Figure 6.2. Schematic overview of Wippi: (1) - resistively heated oven; (2) hemispherical elec-

tron monochromator; (3) quadrupole mass spectrometer; (4) channel electron multiplier. Adapted

from [158].
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6.1.1 Sample inlet

A stagnant gas inlet used for introduction of calibration compounds, namely sulfur hex-

afluoride SF6 and carbon tetrachloride CCl4, is permanently installed. Since the admission

is realized via a valve connected to the chamber, an effusive beam is not created. On the

other hand, a capillary can introduce directly an amount of sample to be investigated into

the interaction region of the HEM. However, considering that the samples are available as

gas, liquids or even solids, a suitable sample inlet is thus needed, and it will be described

in the following subsections.

Gases

The influx of gas from a pressurized gas cylinder into the chamber is controlled by a

combination of two valves: (i) a bellow-sealed valve which opens and closes the access to

the chamber, and (ii) a needle precision valve precisely controls the influx of gas. The

pressure prior to the set of valves is adjustable by a suitable gas reducer attached to the

gas cylinder.

Liquid samples

A reservoir is filled with the liquid and then attached to a set of valves, as described for

gas introduction. On the vacuum side, the sample enters into the interaction zone of the

HEM through a 1 mm-diameter stainless steel capillary.

Nonetheless, liquids tend to condensate on the walls of the inlet, which may hinder

a continuous-flowing of sample into the chamber. A heating band can be used in order to

avoid any sample condensation in the inlet system. Furthermore, the vapor pressure of the

liquid may be increased by warming up the sample’s reservoir with heating tape. This is

particularly relevant for samples with a low vapor pressure.

Before starting the studies, the volatile contaminants in the sample were removed

by performing several freeze-pump-thaw cycles.
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Solid samples - The oven

Solid samples, e.g. OTfU, were vaporized in a resistively heated reservoir made of copper

installed on the vacuum side, in order to achieve a suitable vapor pressure. The formed

molecular effusive beam enters in the HEM interaction zone via a 1 mm-diameter capillary.

The oven is heated by a heating element, as well as by the halogen bulbs inside the chamber.

The temperature was monitored by a PT100 sensor placed in a orifice in the copper oven.

A pair of halogen bulbs was used to keep a temperature of 100-120°C in order to avoid

condensation of sample at the elements of the monochromator. Notwithstanding, when

a solid sample have sufficient vapor pressure, its introduction is performed analogous to

liquids.

6.1.2 The Hemispherical Electron Monochromator

The HEM, as represented in figure 6.3, consists of an electron emitter (filament), an elec-

trode stack collimating the electron beam into two concentric hemispheres acting as the

energy dispersing element, followed by a second electrode stack where the monochroma-

tized electron beam is guided into the interaction chamber of the HEM. In the end, the

electrons were collected in a Faraday cup and the current monitored by a picoammeter.

Within the HEM, the electron beam is controlled by a set of electrostatic lenses

summarized in table 6.1. In figure 6.4 A it is represented a lens, which may correspond to

an aperture (denoted by an A), thick or virtual lens (denoted by a L). Segmented lenses,

as shown in 6.4 A, consist of four parts (a, b, c), though both c parts are electrically

connected. A shared potential, Vc, is applied on the parts a, b and c, while the potentials

Va and Vb are further adjustable. The segmented lenses will thus act as deflectors improving

the transmission of electron beam throughout the HEM. Each lens was biased by a home

built power supply. The lenses were electrical insulated by zirconium spheres (Swarovski

GmbH ) with an inner diameter of 1.55 mm, while A3, SK1 and SK2 were insulated by

spheres with a larger inner diameter of 2.5 mm.

At the beginning of the HEM, the electrons were emitted by a tungsten hairpin
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Table 6.1. The type and the designation of the lenses constituting the HEM.

Type Designation

Aperture Anode, A1, A2, A3

Deflector 1(a,b,c), 2(a,b,c), 3(a,b,c), 4(a,b,c)

Thick L2, L3, L6, L7, L8

Virtual L4, L5

filament (AGA054, Agar scientific) mounted in a block based on the Pierce design.[125]

The filament was heated up by a current of about 2.35 A, which results in electron emission

through Edison effect. Thermal electron emission from pure metals, e.g. tungsten, requires

temperatures above 2000K. As a result, the thermally emitted electrons are produced with

a broad kinetic energy distribution (0.5 up to 1 eV), given by [125]:

dN(E) ∝ exp

[
−W + E

kT

]
dE (6.1)

where dN(E) is the number of electrons emitted per second with energies between E and

E+dE, k is the Boltzmann constant, T is the absolute temperature andW is the metal work

function. A stack of lenses focused the electron beam into an energy dispersing element

employed to increase the energy resolution. This element comprising a pair of concentric

hemispheres acts as a kinetic energy analyzer. Thus, by producing a potential difference,

∆V, between the pair of concentric hemispheres, the electrons with kinetic energy eV0 will

be transmitted. The relationship between ∆V and V0 is [126]:

∆V = V0

(
r22 − r21
r1r2

)
(6.2)

where r1= 27 mm and r2= 33 mm are the inner and outer radii of the hemispheres, as

represented in figure 6.5. Additionally, the in-going electrons are deflected by a pair of

stainless steel wires (deflectors D1 and D2) mounted on the side plates of the hemispheres

and centered on the entrance. The hemispheres have an angle of 174°, instead of 180°, to
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.

Figure 6.3. Schematic representation of the HEM. The orifice diameter, �, and the thickness,

d, in mm, of a given lens is given on the left. The segmented lenses are hatched

compensate for the fringing field effect.[157]

The energy dispersing element is followed by the second electrode stack, which deliv-

ers the electron beam into the interaction chamber. Within the interaction chamber (SK1

and SK2), the electrons interact with the molecular beam to form negative or positive ions

which are extracted towards the mass spectrometer. The neutral molecules introduced via

the capillary and, that did not interact with the electron beam follow the same trajectory

as the ions, that is, towards the QMS. In order to achieve high energy resolution, the

potential applied on the neighbouring lenses (A3, SK1, SK2, L9, L10) must be equal to

zero volts. Charging effects, as well as artifacts produced by scattered electrons, may re-

duce significantly the energy resolution. Moreover, perturbing electric and magnetic fields

lower the the electron beam stability close to zero kinetic energies. In order to reduce this

effect, the HEM was set to a given above zero electron energy, while Uexmitte, the potential

shared by the interaction chamber elements SK1 and SK2, was set to a negative voltage
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A B

Figure 6.4. Wippi lenses - A: Drawing of an electrostatic lens. B: Drawing of deflector 1. The

dimensions are in mm. Adapted from [157].

of about -1.9 V retarding the electron beam and allowing the formation of negative ions

upon electron attachment. Finally, the electrons which passed the interaction region were

collected by the last lenses, L9 and L10, acting as a Faraday cup. The incident electron

current was thus monitored by a home built picoammeter.

6.1.3 Magnetic field compensation

Magnetic fields, such as the Earth’s magnetic field and other perturbative fields are able to

affect the trajectory of the electron beam. To cancel the effect of the Earth’s magnetic field,

the setup was placed within three pairs of square Helmholtz coils in the direction of the

three directions of space. In the current version of the Wippi experiment, the Helmholtz

coils are squared with a length of 1.25 m.

The intensity of each component of the magnetic field produced by each pair of

Helmholtz coils must be optimized to preserve the intensity of ∼0 eV electrons reaching

the HEM interaction zone.
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Figure 6.5. Representation of the inner and outer hemispheres, with radius r1 and r2, respec-

tively. The pair of deflectors D1 and D2 are stainless steel wires mounted on the side-plates of

the hemispheres. Adapted from [157].

6.1.4 Quadrupole mass spectrometer

A QMS is comprised of four cylindrical or hyperbolic shaped rod electrodes positioned

along a circle of radius r0, as presented in figure 6.6. A pair of opposite rods are electrically

connected and held at the same potential composed of a DC voltage and a radiofrequency

(RF) voltage. The voltage applied on the pair A is equal to U+V cos(ωt), while the voltage

applied on the pair B is equal to −(U +V cos(ωt)), where U is the DC amplitude, V and ω

denote the amplitude and frequency of the RF voltage. As explained for the octopole guide

in section 3.1.5, when an ion enters the quadrupole along the z-axis, a ”restoring force”

is exerted on it by the pairs of electrode rods. That is, a positive ion will be attracted

towards negative rods, while it is repelled by positive rods at any instant of time.

Based on the charged particle’s motion equation, its motion along the x-, y-, and

z- axis through the quadrupole can be described by the following equations [55]:

d2x

dt2
+

e

mr20
(U + V cos(ωt))x = 0 (6.3)

d2y

dt2
− e

mr20
(U + V cos(ωt))y = 0 (6.4)
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Figure 6.6. Cross section of a quadrupole (a) for the cyclindrical approximation and (b) for the

hyperbolic profile of the rods. 2r0 is the spacing between the electrodes. Adapted from [55].

d2z

dt2
= 0 (6.5)

The motion equations on the x, y directions may be rewritten as Mathieu equations

by defining ξ = 1
2
ωt:

d2u

dξ2
+ (au − qucos(2ξ))u = 0 (6.6)

The stability parameters au and qu can be either obtained for the directions u = x, y:

ax = −ay =
8eU

mr20ω
2

(6.7)

qx = −qy =
4eV

mr20ω
2

(6.8)

The Mathieu equations 6.6 are well-known and its solutions describe the trajectory

of an ion oscillating in the x and y directions.[159] The figure 6.7 shows a stability diagram

(a vs. q) for a two-dimensional quadrupole field. For an ion transmitted by a QMS, its

trajectory is stable along the x- and y-axis.[126] This means that the stability parameters

au and qu are located under the area labeled as ”xy stable” in figure 6.7. In order to

transmit ions with a different mass through the QMS U and V are scanned, while its ratio
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is kept constant, as represented by the ”scan line” in figure 6.8 comprising all points of

constant ratio a/q = 2U/V . For instance, the ions with m/z m1 and m2 will possess stable

trajectories and would be transmitted by the QMS, while the ions with mass m3 will be

lost due to the instability. The mass resolution of the QMS is described by the width of

the stable region ∆q. The mass resolution is infinite at the apex of the stability region

corresponding to 2U/V = 0.237/0.706 = 0.336.

Figure 6.7. Stability diagram for a quadrupole mass spectrometer. Adapted from [55].

Figure 6.8. Mass scan of a quadrupole mass spectrometer; the stable region of a mass is shifted

along a ”scan line” towards the right. Adapted from [55].

As previously mentioned, the ions formed within the HEM are extracted by a weak

electrostatic towards the QMS for mass-analysis. The QMS installed is a QMG 700 HiQuad
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coupled to a radiofrequency head (QMH 410-2 both manufactured by Pfeiffer Vacuum.

This combination enables mass-analysis of ions with m/z up to 2048.

The kinetic energy of the ions passing the QMS is defined as the potential difference

between the HEM, which floats on the ionenenergie voltage, and the potential applied

on the quadrupole rods, floating on the feldachse voltage. As a result, the QMS mass

resolution relating to the ion’s kinetic energy, gets worsen with the increase of the difference

between ionenenergie and feldachse voltages.

In order to achieve the best sensitivity, the ion beam must be focused into the

the QMS. The figure 6.9 shows a representation of the interaction chamber of the HEM

alongside the extraction ion optics denoted as optik außen, optik innen and a grounded

element. The ions are thereby focused by adjusting the voltage applied on both optik außen

and optik innen, while the third lens is grounded. The extracting field produced by the ion

optics may also lead to the extraction of electron with kinetic energies close to zero eV,

since the distance between the optik außen and the SK2 is a few tenths of a millimeter.

Therefore, it is of great importance to keep the potential applied on the optik außen below

70 V.[160, 161]

At last, the mass-selected ions are 90° deflected towards the detector by a two-

element deflector, as shown in figure 6.2.

6.1.5 Detector

The detector installed in Wippi is an electron multiplier of the continous dynode type

- channel electron multiplier, namely a KBL 510 standard CEM (Dr. Sjuts Optotechnik

GmbH.), like the ones installed in VG-ZAB-2SE. For details on the working principle of

channeltrons, please see section 3.3.

The channeltron can detect either positive or negative ions, depending on the po-

tential gradient created within the device. For positive ion detection, a voltage of about

-2.4 kV was applied on the back of channeltron and the entrance was kept grounded. While

for negative ion detection, +1000 V were applied on the entrance of the channeltron, and

+3.2 kV were applied on the back of the detector.
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Figure 6.9. Schematic representation of the interaction chamber of the HEM and the ion

optics, namely optik außen, optik innen and the third element (grounded), of the quadrupole

mass spectrometer. Taken from [157].

6.1.6 Data acquisition

The unit CP 400 ion counter (Pfeiffer Vacuum) is connected to the channeltron. Although

this unit comprises pulse counting, preamplifier and a discriminator, it is used just to

decouple the high voltage from the output signal of the detector. The decoupled output

signal is thereafter fed into a commercial preamplifier discriminator unit (PAD06, WMT-

Elektronik GmbH ). Afterwards, the amplified output signal was connected to a computer

and processed by a custom made software.

In brief, the software (designed by Dr. Arntraud Bacher) allows recording the

measurements. It controls all experimental parameters, such as the gate time, the step-

width, number of runs, the electron energy for measuring a mass scan or to set the QMS for

a particular ion and measure an electron energy scan. The software is also able to log the

pressure value read by the pressure gauge(s) while acquiring. Furthermore, the software

also posses an optimization mode which displays the ion yield of a mass-selected ion for a
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given gate time. This mode is, as suggested, used to optimize the ion yield. So, the data

is only displayed on the software interface, although it is not stored in a data file.

6.1.7 Vacuum system

The experiment comprises a high-vacuum chamber evacuated by a turbomolecular pump

baked by a 3-stage diaphragm pump, as listed in table 6.2. The present vacuum system can

thus achieve a base pressure of about 10−8 mbar as measured by a Bayard-Alpert ionization

gauge (UHV-24 Nude Bayard-Alpert, Varian Agilent) connected to the chamber.

In case the pressure in the chamber increases above 6.0 × 10−6 mbar, a vacuum

safety device switches off the power supplies connected to sensitive components of the

experiment, namely the filament, QMS and the detector.

Table 6.2. Model, type and manufacturer of the pumps used in the Wippi setup. The base

pressure, in mbar, is also depicted.

Model Type Manufacturer Base pressure (mbar)

TMU 521 P Turbomolecular Pfeiffer Vacuum
×10−8

MD 4C NT Diaphragm pump Vacuubrand

6.1.8 Measuring absolute dissociative electron attachment cross

sections

Crossed-beams experiments, such as Wippi, allow for the determination of absolute disso-

ciative electron attachment cross-sections, σDEA. The measured ion yield, iion, is related

to σDEA, by the following expression [42]:

iion = σDEA · ie ·Nt · l (6.9)

where ie is the incident electron current, Nt is the density of neutrals in the interaction

region, and l is the interaction length between electrons and neutrals within, in this case,

the HEM. In crossed-beam experiments, the σDEA may be determined by comparing the
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measured ion yield for a fragment anion formed from a sample with well-known cross

sections occurring at ∼0.8 eV for Cl– from CCl4 (σDEA,Cl−/CCl4 = 5.0× 10−20 m2) [162] or

at 5.2 eV for F– from SF6 (σDEA,F−/SF6
= 5.0× 10−22 m2) [163].

The different experimental conditions were considered by normalizing the anion

signal intensity with respect to the partial pressures, as well as to the intensity of the

incident electron current by using the following relation:

iion
iCl−/CCl4

=
σDEA,ion

σDEA,Cl−/CCl4
× ie,ion
ie,Cl−/CCl4

× Nt,ion

Nt,Cl−/CCl4

×
�
�

�
�
�lion

lCl−/CCl4
(6.10)

The interaction length between the electrons and the neutrals either from the sam-

ple, lion, or calibrant, lCl−/CCl4 is assumed to be the same. Furthermore, the target density

Nt is directly proportional to the partial pressure value, P . The partial pressure of both

sample, Pion, and calibrant, PCCl4 , is defined as the difference between the working pres-

sure and the base pressure measured by a ionization gauge connected to the chamber. The

target density of sample delivered by a capillary directly into the interaction region of the

HEM is, however substantially higher than the target density of calibrant introduced in

the chamber via the stagnant gas inlet. At the same incident electron current, and partial

pressure of calibrant compound, through a comparison between the intensity of the ion

yield obtained when the compound was introduced (i) via the stagnant gas inlet, or (ii) via

the capillary; it was determined that the target density of neutrals may be increased by

25 times when the sample is introduced as in the latter case. Thus, this correction factor

must be taken into account when calculating the cross section.

Absolute dissociative electron attachment cross sections, σDEA,ion, can be thus de-

termined through the following relation:

σDEA,ion = σDEA,Cl−/CCl4 ×
iion

iCl−/CCl4
×
ie,Cl−/CCl4
ie,ion

× 1

25

PCCl4
Pion

(6.11)

The experimental uncertainty of the cross section values of about one order of magnitude

results from the several sources of experimental errors in the experiment. Namely, the

estimation of the partial pressure ratio, the efficiency of ion extraction towards the QMS,

102



6.1. Wippi

which in turn exhibits a non-constant transmission for different masses, and at last the

channeltron detection efficiency.

Partial pressure ratio

The partial pressure ratio between the calibrant and the sample, PCCl4/Pion, was deter-

mined from the pressure values measured with the ionization gauge connected to the cham-

ber. In ionization gauges, the measured pressure value depends on the ion current, which

in turn depends on the electron current emitted by the filament, as well as the ionization

cross section of the gas, at electron energies of 70 eV, in the gauge [164]. Therefore, the

error associated with the partial pressure ratio results from the difference between the

ionization cross sections at 70 eV of either the calibrant compound, and of the sample of

interest.[43]

Ion extraction field

In Wippi, a weak electric field extracts the ions from the HEM, in order to avoid extraction

of ∼0 eV electrons. The electric field extracts, however less efficiently fragment anions

which are formed with high kinetic energy release (KER) in respect to Cl–/CCl4 or F–/SF6

anions used for calibration. By simulating the extraction field and the geometry of the

interaction region of a trochoidal electron monochromator (TEM), Engmann et al. [165]

have found that the extraction efficiency for fragment anions formed with KER values

between 50 and 100 meV is reduced from about 30 up to 60% when compared to thermal

ions, i.e. formed at rest (KER=0 eV). In Wippi, this effect, and how it contributes to the

accuracy of the determined cross sections is yet to be investigated.

QMS transmission

The mass dependent transmission of the QMS can lead to a less efficient detection of

ions with heavier masses. For positive ions, Engmann et al. [165] have reported a lin-

ear dependency between transmission through the QMS and mass. This was achieved by

normalizing the ion counts obtained for the formation of N2
+/N2, Ar+/Ar, Kr+/Kr and

Xe+/Xe against the well-known ionization cross sections for which case. To the best of my
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knowledge, the mass dependency of QMS transmission for negative ions was not investi-

gated so far. Therefore, in this context, it was considered a constant transmission for the

different fragment anions. Consequently, the exact contribution of the QMS transmission

to the inaccuracy of the determined cross section values is yet to be estimated.

Channeltron detection efficiency

For a given incident particle, the channeltron detection efficiency is defined as the proba-

bility of this particle or photon producing an output pulse. In the case of the channeltrons

manufactured by Dr. Sjuts Optotechnik GmbH, detection efficiency for electrons, positive

ions and UV light have been investigated.[130] However, to the best of my knowledge, the

mass dependency for both positive and negative ions on the detection efficiency was not

investigated so far. In this thesis, the channeltron detection efficiency for different anions

was considered to be constant.

6.2 Experimental Setup - Notre Dame University

At the Radiation Laboratory at the University of Notre Dame, the experiments were carried

out in a crossed electron-molecule beam apparatus coupled with a QMS (HAL/3F PIC

Hiden Analytical, Inc.) operated in RGA (residual gas analyzer) mode, as shown in figure

6.10.[166] An electron impact source is installed at the front of the QMS, as represent in

figure 6.11. A description of the mode of operation of QMS was already provided in the

section 6.1.4.

In the electron impact ion source, the electron emission occurs from one of two

filaments made of oxide coated iridium. The incident electron current, i.e., the current

of electrons which pass the grid, is set by the software and it may range from 0.2 µA up

to a few µA. For the studies carried out with benzaldehyde (see section 7.2), a constant

incident current of 2 µA was used. The positive bias voltage, Vcage, is applied to the cage

and to the filament power supply (Vfilament) to simultaneously attract the electrons to the

cage, as well as to repel them from the grounded side walls. This cage can transmit the

electrons, because it is made of a fine metal mesh. The ions are thereby formed within the
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cage due to interactions with the electrons emitted by a heated filament. The electrons are

accelerated to a given kinetic energy by a positive voltage drop, Velectron, between the cage

and the filament. The electron energy scale was calibrated by measuring the well-known

resonances of SF6
– and F– from SF6, see section 6.3. The electron energy resolution was

estimated to be approximately 500 meV (FWHM) for an incident electron current of 2 µA.

There is also a focus lens right before the QMS entrance.

Figure 6.10. Crossed beam setup at the Notre Dame University. Please note that the electron

gun was not used in the present studies. Adapted from [167].

The installed QMS enables mass-analysis of ions with unit mass resolution up to

m/z 300. A channel electron multiplier was used for ion detection (see section 3.3 for

details on the working principle).

The base pressure of 10−9 mbar was achieved by a turbomolecular pump baked by a

oil-free scroll pump. An ionization gauge was used to monitor to the pressure. Furthermore,

the chamber was heated by a set of halogen bulbs, in order to reduce the adsorption of

material on the colds surfaces of setup.

During a study, the vapor of a liquid sample or gas was introduced in the chamber

by an external gas line coupled with a needle precision valve and a bellow-sealed valve.

On the vacuum-side, the sample’s vapor enters in the ion source of the QMS through a

1 mm-diameter stainless-steel capillary. Before performing the studies, the liquid samples
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went through several freeze-pump-thaw cycles .

The MASsoft version 7 Professional software (Hiden Analytical, Inc.) controlled

all experimental parameters involved in the acquisition of both mass scans and electron

energy scans, that is, the number of runs, gate time and step-width. Furthermore, the

voltages applied on each particular component of the ion source, QMS and detector were

also controlled by the software.

Figure 6.11. A 3D representation of the electron impact ion source. Taken from [167].

6.3 Energy scale calibration

For both experimental setups, the electrons were accelerated towards the interaction region

by a voltage difference. In Wippi, the electrons were accelerated towards the interaction

chamber by a voltage drop between the tip of the filament and all the electrostatic elements

(from anode to L8) with respect to the interaction chamber.[156, 157] In the Notre Dame

experiment, the electron energy was defined by adjusting a potential difference between

the cage and the filament. In both setups the electron energy scale requires calibration

in order to determine resonance positions. In Wippi, the electron energy scale and the

electron energy resolution were determined by measuring the well-known resonances for the

formation of SF6
– from SF6 and Cl– from CCl4. While at Notre Dame, both parameters

were determined by measuring the well-known resonances for the formation of SF6
– and

F– from SF6.
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6.3.1 Sulfur hexaflouride, SF6

A comprehensive knowledge on the interactions of low-energy electrons with SF6 may be

found in the literature, e.g. Christophorou et al. [163, 168], Fabrikant et al. [169] and

Fenzlaff et al. [170]. As shown in figure 6.12, the electron attachment cross section for the

formation of SF6
– close to ∼0 eV dominates. At electron energies ranging between 0.3 and

∼ 2.0 eV, SF5
– is the most abundant fragment anion. Though, at energies above 3 eV,

the formation of F– starts to dominate.

The parent anion is formed at ∼0 eV through s-wave attachment of an electron, as

described by reaction 6.12. The lifetime of SF6
– is long enough to be detected in this mass

spectrometer. The electron energy resolution was determined as the FWHM of the ∼0 eV

SF6
–/SF6 resonance. The electron energy scale was calibrated by shifting downwards the

peak position associated with the maximum intensity to 0 eV.

SF6 + e− ↔ SF−#6 → SF−6 + hυ (6.12)

At Notre Dame, the electron energy scale was calibrated using F–/SF6. As described

by reaction 6.13, the formation of F– occurs through three resonances centered at 5.5, 9.0

and 11.5 eV (see figure 6.12).[163, 168].

SF6 + e− ↔ SF−#6 → F− + SF5 (6.13)

Therefore, by fitting the measured ion yield with Gaussian functions, the resonance posi-

tions were determined and the energy scale shifted accordingly.

6.3.2 Carbon tetrachloride, CCl4

CCl4 is a compound previously used as solvent and precursor agent for several industrial

processes [171], as well as an element in fire extinguishers [172]. DEA to CCl4 has been

extensively studied. In contrast to SF6, the TNI CCl4
-# has a reduced lifetime of ∼

5-10 ps before dissociation [136], which invalidates its detection by mass spectrometry.

The reaction 6.14 describes the formation of the anion Cl– , that corresponds to the most
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Figure 6.12. Electron attachment cross section for the formation of the intact molecular anion

SF6
– , and fragment anions formed due to DEA to SF6. Taken from [163, 168].

abundant ion formed upon DEA to CCl4:

CCl4 + e− ↔ CCl−#4 → Cl− + CCl•3 (6.14)

In a s-wave attachment process of a 0 eV electron, Cl– is formed with a large electron

attachment cross section of 1.3 × 10−14 cm2 [173]. Additionally, a broader higher-lying

resonance centered at ∼0.8 eV also leads to Cl– formation, though with a reduced electron

attachment cross section amounting to 5.0× 10−16 cm2 [162, 174]. For instance, Cl–/CCl4

formation mesaured with Wippi is shown in figure 6.13.

6.4 Determination of position and onset of resonances

As a first approximation, by fitting a Gaussian function, equation 6.15, to the experimental

data; the center, onset and area of peaks can be determined.

y = y0 +
A

w
√

π
2

· exp
(
−2

(x− xc)2

w2

)
(6.15)

where y0 denotes the offset, xc is the center, or the position of the maximum, w the width,

and A corresponds to the area under the Gaussian. Additionally, the standard deviation,
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Figure 6.13. Ion yield of Cl–/CCl4 measured with Wippi.

σ, may be calculated as:

σ =
w

2
(6.16)

In statistics, the 68-95-99.7 rule is an empirical rule which states the percentage

of values lying in a interval around the center of a normal, or Gaussian distribution, with

a width of one, two or three standard deviations [175]. The figure 6.14 shows that, more

precisely, 68.27%, 95.45% and 99.73% of the values from a normal distribution lie within

one, two or three standard deviations away from the center, respectively. Based on this

statistic rule, the onset of a resonance, xonset maybe defined as:

xonset = xc − 2σ = xc − w (6.17)

At last, since an ion yield may comprise several resonances, a multiple Gaussian

fitting of the data may be employed to determine the position, area and onset of individual

resonances.
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𝒙𝒄 𝒙𝒄 + 𝝈 𝒙𝒄 + 𝟐𝝈 𝒙𝒄 + 𝟑𝝈𝒙𝒄 + 𝝈𝒙𝒄 + 𝟐𝝈𝒙𝒄 + 𝟑𝝈

𝑤

68.27% within one 
standard deviation

95.45% within two standard deviations

99.70% within three standard deviations

Figure 6.14. Representation of the Gaussian function used to determine the centre, area and

onset of resonances. For a normal distribution, two standard-deviations from the center account

for 95.45% of the values.
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Chapter 7
Results and Discussion

7.1 Low-energy electron-induced decomposition of OTfU

A combined theoretical and experimental on the electron-induced decomposition of 5-

trifluoromethanesulfonyl-uracil (OTfU), in the gas-phase is presented. This compound is

a potential radiosensitizer synthesized in the research group led by Professor Dr. Janusz

Rak, Gdansk University, Poland. The DEA investigations were carried out with Wippi.

Quantum chemical calculations on the thermochemical thresholds for the formation of

the observed fragments were performed by Samanta Makurat from Professor Janusz Rak

group. The results are summarized in the following publication:

Low-energy electron-induced decomposition of 5-trifluoromethanesulfonyl-uracil:

A potential radiosensitizer:

J. Ameixa, E. Arthur-Baidoo, R. Meißner, S. Makurat, W. Kozak, K. Butowska, F. Fer-

reira da Silva, J. Rak, and S. Denifl, J. Chem. Phys. 149, 164307 (2018).

Author’s contribution: I performed the measurements and analyzed the obtained data.

Afterwards, I prepared the final figures and wrote the first version of the manuscript.
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Low-energy electron-induced decomposition
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5-trifluoromethanesulfonyl-uracil (OTfU), a recently proposed radiosensitizer, is decomposed in the
gas-phase by attachment of low-energy electrons. OTfU is a derivative of uracil with a triflate (OTf)
group at the C5-position, which substantially increases its ability to undergo effective electron-induced
dissociation. We report a rich assortment of fragments formed upon dissociative electron attachment
(DEA), mostly by simple bond cleavages (e.g., dehydrogenation or formation of OTf−). The most
favorable DEA channel corresponds to the formation of the triflate anion alongside with the reac-
tive uracil-5-yl radical through the cleavage of the O–C5 bond, particularly at about 0 eV. Unlike
for halouracils, the parent anion was not detected in our experiments. The experimental findings
are accounted by a comprehensive theoretical study carried out at the M06-2X/aug-cc-pVTZ level.
The latter comprises the thermodynamic thresholds for the formation of the observed anions cal-
culated under the experimental conditions (383.15 K and 3 × 10−11 atm). The energy-resolved ion
yield of the dehydrogenated parent anion, (OTfU–H)−, is discussed in terms of vibrational Fesh-
bach resonances arising from the coupling between the dipole bound state and vibrational levels of
the transient negative ion. We also report the mass spectrum of the cations obtained through ion-
ization of OTfU by electrons with a kinetic energy of 70 eV. The current study endorses OTfU
as a potential radiosensitizer agent with possible applications in radio-chemotherapy. Published by
AIP Publishing. https://doi.org/10.1063/1.5050594

I. INTRODUCTION

Regardless of the noticeable effort in finding and improv-
ing anticancer therapies, radiotherapy is still one of the pre-
vailing strategies to defeat cancer. However, hypoxia is the
Achilles heel of radiotherapy, which significantly decreases
the efficiency of such therapy in hypoxic tumors.1 The con-
comitant application of radiotherapy with chemotherapeutic
drugs, namely, radiosensitizers, represents thus an alternative
as well as more efficient type of therapy. An ideal radiosen-
sitizer selectively binds to tumor cells which enhances their
radiosensitivity2 and results in the reduction of the adminis-
tered dose of radiation, ultimately leading to little or no effect
to healthy cells. In fact, incorporation of an electrophilic sub-
stituent into DNA substantially enhances its radiosensitivity

a)E-mail: j.ameixa@campus.fct.unl.pt
b)E-mail: janusz.rak@ug.edu.pl
c)E-mail: stephan.denifl@uibk.ac.at

toward high-energy radiation, without altering gene expres-
sion prior to irradiation.3–5 For instance, a uracil derivative
with an electrophilic group (e.g., halogen) in the C5-position
has been extensively used as radiosensitizers5,6—such com-
pounds are known as 5-halouracils. However, in spite of the
intensive research devoted to this subject, the fundamental
reactions underlying the operation of such compounds are still
unclear. Nevertheless, it is acknowledged that in the physio-
chemical stage of radiation damage the reactivity of such
compounds to low-energy electrons plays a crucial role in
the sensitization process notably through dissociative elec-
tron attachment (DEA) reactions.7 In brief, the interaction of
high-energy radiation with a biological medium yields low-
energy (<20 eV) electrons (LEEs), at a number of 104/MeV
of incident radiation.8 Thereafter, these LEEs are thermalized,
within the picosecond time scale, to subexcitation energies,
thereby generating highly reactive species, namely, OH•
and H• which may also react further with DNA.9 However,
prior to thermalization, radiosensitizer molecules, which are
present in the biological medium, may capture these LEEs

0021-9606/2018/149(16)/164307/9/$30.00 149, 164307-1 Published by AIP Publishing.
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FIG. 1. Structures of (a)—5-bromo-2′-
deoxyuridine (5-BrdU), (b)—5-seleno-
cyanatouracil (SeCNU), and (c)—5-tri-
fluoromethanesulfonyl-uracil (OTfU).

and then undergo DEA, particularly at energies below the
threshold for electronic excitation. Therefore, an effective
radiosensitizer must be decomposed efficiently upon electron
attachment, thus generating reactive radicals (i.e., uracil-yl)
which may react with DNA, leading to the loss of integrity of
such a key biomolecule.6 Notably, the interaction of LEEs
with 5-halouracils in the gas phase has been comprehen-
sively studied experimentally as well as by theoretical meth-
ods.10 In particular, such studies have been carried out for
5-chlorouracil,11–16 5-fluorouracil,11,14–16 5-iodouracil,11,17

and 6-chlorouracil.13,15 Electron transfer from potassium
atoms to 5-fluorouracil and 5-chlorouracil has been assessed
as well.18 To our best knowledge, 5-bromo-2′-deoxyuridine
(5-BrdU), shown in Fig. 1(a), is the most comprehensively
studied radiosensitizer.19,20 Consequently, there is an urgent
need for new and more efficient compounds with radiosen-
sitizing properties. A methodology concerning the proposal
of new radiosensitizers was suggested,6 in addition to several
analogs proposed by Rak and co-workers.5 The most efficient
compound turned out to be 5-selenocyanatouracil (SeCNU),
shown in Fig. 1(b), which is 1.5-fold more effectively decom-
posed by solvated electrons when compared to BrU.21 In the
light of such findings, a novel compound was proposed—
5-trifluoromethanesulfonyl-2′-deoxyuridine (OTfdU). It pos-
sesses a substantial adiabatic electron affinity (AEA) and
appears to be prone to undergo effective electron-induced
dissociation,22 thereby can be treated as a pseudohalouracil.
Its fragmentation induced by solvated electrons was studied
by steady-state radiolysis combined with theoretical meth-
ods.22 However, no DEA study in the gas-phase has been
reported so far. Therefore, we have investigated DEA to 5-
trifluoromethanesulfonyl-uracil (OTfU), shown in Fig. 1(c), in
the gas-phase in order to unravel the fundamental dissociation
channels induced by LEEs. Moreover, the mass spectrum of
cations formed via dissociative electron ionization at the elec-
tron energy of ∼70 eV is also presented in order to study the
fragmentation pathways upon positive ion formation. Finally,
the observed DEA reactions were studied by theoretical calcu-
lations; in particular, the respective thermodynamic thresholds
as well as the AEA for the observed anions and the neutral
OTfU molecule were calculated.

II. METHODS
A. Dissociative electron attachment

The experiments were performed in a crossed electron-
molecular beam apparatus coupled with a quadrupole mass
spectrometer available at the Innsbruck laboratory, described

in detail previously.23 The molecular effusive beam is
produced by the evaporation of the solid sample in a resis-
tively heated oven inside the vacuum chamber. Then it effuses
into the interaction chamber of the hemispherical electron
monochromator (HEM) through a capillary of 1 mm diam-
eter where it intersects orthogonally with a monochroma-
tized electron beam. The HEM was shown to generate an
electron beam with an energy resolution around 35 meV at
full width at half-maximum (FWHM). In the present exper-
iment, an energy resolution of 100 meV (FWHM) was set,
which is a suitable compromise between energy resolution
and beam intensity. The anions resulting from the electron
attachment process are extracted from the interaction chamber
by a weak electrostatic field into a quadrupole mass spec-
trometer where they are mass-analyzed and further detected
by a channeltron electron multiplier in single pulse-counting
mode. For a given anion, the ion yield is recorded as a func-
tion of the electron energy. In order to record a mass spec-
trum, the electron energy is kept constant and the ion yield is
recorded as a function of the mass. The electron energy scale
and energy resolution are determined by measuring the well-
known ion yields for the formation of SF6

−/SF6 or Cl−/CCl4 at
0 eV. The remaining electrons, which crossed the interaction
region, are collected in a Faraday plate and monitored using a
picoamperemeter.

B. Synthesis of 5-trifluoromethanesulfonyl-uracil

The compound was obtained via the procedure described
by Crisp and Flynn.24 To the solution of 5-hydroxyuracil
(75 mg, 0.59 mmol) in pyridine (2 ml), N-phenyltriflimide
(251 mg, 0.70 mmol) was added (Fig. 2). The mixture was
stirred overnight at room temperature. After concentration
under vacuum, the resulting residue was purified by column
chromatography using hexane:AcOEt 1:1 as an eluent to give
the desired product in a 66.3% yield.

1H NMR (Bruker AVANCE III, 500 MHz, DMSO), δ:
11.9 (s, 1H), 11.5 (s, 1H), 8.26 (d, 1H); 3C NMR (125
MHz, DMSO), δ: 158.7, 150.5, 133.2, 126.5, and 118.5 (q);

FIG. 2. Synthetic route for 5-OTfU.
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HRMS (TripleTOF 5600+, SCIEX), m/z: [M−H]− calcd for
C5H3F3N2O5S 258.9642, found 258.9547. For the MS, 1H
and 13C NMR spectra see Figs. S1–S3 in the supplementary
material.

C. Computational

In order to achieve a more comprehensive knowledge
about the DEA process, a set of theoretical calculations was
performed at the M06-2X25/aug-cc-pVTZ26,27 level of the-
ory, which has proven to give comparable results to the G428

extrapolation scheme.29 However, the latter method is much
more computationally demanding. In particular, the thermo-
dynamic thresholds of various DEA reactions as well as the
AEA of the neutral OTfU and of the observed anions were
calculated. Additionally, the dipole-bound states (DBS) of
OTfU were predicted. All the calculations were performed
with the Gaussian09 suite30 and the visualizations with the
VMD package.31

1. Thermodynamic thresholds

The thermodynamic threshold for the DEA reactions was
calculated as a difference,∆G, between the Gibbs free energies
of reactants in their ground state [Eq. (1)], as it was performed
in the previous studies32

∆G = Gproducts − Gsubstrate. (1)

The substrate was the neutral OTfU [see Fig. 1(c)], and the
products consisted of both the anion and radical formed after
electron-induced dissociation. The lowest-energy geometry
resulted from the conformational scan for the neutral. First, the
structures were optimized at the M06-2X/aug-cc-pVTZ level
of theory (0 K). Afterwards, in order to obtain thermochem-
ical characteristics (free energies of reactions), the frequency
calculations were performed at the same level, both in the
standard state (298.15 K, 1 atm) and in the experimental con-
ditions (383.15 K, 3 × 10−11 atm). The pressure correction to
the G value for the experimental pressure was obtained using
[Eq. (2)],

G3×10−11atm,T = G1atm,T + TStrans;1atm,T − TStrans; 3×10−11atm,T,

(2)

where Gp,T is the free enthalpy at the pressure p and tem-
perature T and TStrans;p,T denotes the product of tempera-
ture and translational entropy at the pressure p and tempera-
ture T.33

Furthermore, the AEA was calculated for OTfU and the
anionic products as the free energy difference between the opti-
mized pairs of the neutral and its corresponding anion [Eq. (3)].
For some of the products, the neutral was unstable; there-
fore, the vertical detachment energy (VDE) was calculated
[Eq. (4)],

AEA = Eneut,geom:neut − Eanion,geom:anion, (3)

VDE = Eneut,geom:anion − Eanion,geom:anion. (4)

2. Conformational scan

The conformational scan was performed with the use
of the M06-2X/aug-cc-pVTZ constrained optimizations. Two

dihedral angles ϕC6–C5–O7–S8 and ϕC5–O7–S8–C9 [for atoms
numbering see Fig. 1(c)] were systematically changed in steps
of 30◦ to perform a scan of the conformational PES. The
lowest-energy points were further subjected to further uncon-
strained geometry optimizations at the same level of theory
and the difference in their Gibbs free energies allowed us
to calculate the composition of the gas-phase equilibrated
mixture under the experimental conditions. The details and
results concerning the conformational scan are provided in the
supplementary material.

3. Dipole-bound states

In order to provide the excess electron binding energy for
the dipole-bound state (DBS) of OTfU, the neutral conform-
ers (see Fig. S4 of the supplementary material) of the neutral
molecule were first optimized at the MP2/aug-cc-pVTZ level
of theory.34 Two of them converged to the same conformations,
thus only two neutral conformations exist at the MP2 level. The
standard aug-cc-pVTZ basis set was then supplemented with
the diffuse functions necessary to describe the diffuse charac-
ter of the loosely bound electron.35 These basis set functions,
centered on the C6 atom as suggested by the position of the
dipole moment vector [for numbering see Fig. 1(c)], were sub-
sequently added with a geometric progression ratio equal to
5.36 The exponent was build up for each symmetry starting
from the lowest exponent in the original basis set;37 i.e., the
first additional s symmetry was built from the lowest exponent
of s symmetry included in the aug-cc-pVTZ basis set for car-
bon, the second extra s function was equal to the 1/5 of the first
function added, and so on. A 5s4p3d2f set of diffuse functions
was sufficient to obtain a saturated basis set. Indeed, addition
of the further set of diffuse functions extending the space of
diffuse atomic orbitals to 6s5p4d3f increases the VEA calcu-
lated at the MP2 level by less than 1 cm−1. Therefore, we set
up at aug-cc-pVTZ augmented with 5s4p3d2f diffuse func-
tions centered at the C6 atom to characterize the respective
dipole-bound states.

The two-electron integrals were calculated with the accu-
racy of 10−20 (default 10−12), and the full accuracy was
switched on during the SCF procedure.38 Thereafter, the verti-
cal electron binding energy was calculated, first, at Koopman’s
theorem (KT) level as EKT

bind, equal to the negative energy of
the LUMO orbital of the neutral, and then, supplemented with
the orbital relaxation and electron correlation contributions
(VEAMP2). Similarly, the adiabatic electron affinity, AEAMP2,
was calculated at the MP2 level.

III. RESULTS AND DISCUSSION
A. Formation of cations through dissociative
ionization of OTfU

Figure 3 shows the electron ionization mass spectrum of
OTfU measured at the electron energy of about 70 eV. To the
best of our knowledge, the formation of cations upon dissocia-
tive ionization has not been reported so far. We recorded dif-
ferent mass spectra at different oven temperatures (not shown
here) in order to achieve a suitable ion yield as well as to
rule out thermal decomposition of the compound. It is worth
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FIG. 3. Mass spectrum of cations formed by electron ionization of OTfU at
the electron energy of 70 eV. The oven temperature was set to 383.15 K.

noting that the reported relative ion yields depend on the trans-
mission of the quadrupole mass spectrometer as well as the
ion collection efficiency of the cations formed with high ini-
tial kinetic energy. The ion at m/z 18 arises from residual water
present in the vacuum chamber during the measurements. The
cation with the highest yield is CO+ (m/z 28). Another highly
abundant cation is UO+ (m/z 127) formed by the cleavage
of the S–O bond in the triflate group. At m/z 69, two iso-
baric fragment ions may be present, C3H3NO+ and CF3

+.
They represent the mass peak with the third highest yield.
C3H3NO+ is the dominant fragment ion upon electron ioniza-
tion of uracil.39 The complementary cation of CF3

+ formed
by cleavage of the C–S bond within the triflate group, (OTfU–
CF3)+ (m/z 191), appears with minor abundance in the mass
spectrum. The cations at m/z 153 and m/z 196 are possibly
C4F3OS+ and C4F2NO4S+, respectively, which only form by
complex rearrangements involving the molecule. The intact
parent cation at m/z 260 is also observed. Compared to elec-
tron ionization of uracil studied with the same setup,39 one may
conclude that the formation of NCO+ is substantially reduced
by the substitution of uracil at the C5 position with the triflate
group.

B. Formation of anions upon dissociative
electron attachment to OTfU

In general, DEA is a resonant two-step process character-
ized by the capture of an electron by a molecule AB forming
a transient negative ion (TNI), AB#−. The TNI is formed
through a vertical transition (following the Franck-Condon
principle) from the ground state of the molecule to an accessi-
ble excited state of the anionic molecule, AB#−. Consequently,
the electronically and/or vibrationally excited TNI can relax
through several fragmentation channels leading to the forma-
tion of an anionic fragment and a neutral fragment [DEA,
Eq. (5)],

e− + AB↔ AB#− → A− + B (5)

or via emission of the excess electron thus leaving the molecule
in an excited state (autodetachment).

We studied DEA to OTfU in the energy range from about
0 to 14 eV. The following dissociation channels were detected
within the experimental detection limit:

OTfU + e− ↔ OTfU#− → (OTfU–H)− + H• (I)

→ (OTfU–CF3)− + CF•3 (II)

→ OTf− + C4H3N2O•2 (III)

→ Tf− + C4H3N2O•3 (IV)

→ OU− + Tf• (V)

→ (U–H)− + OTf• (VI)

→ CF−3 + SO3C4H3N2O•2 (VII)

→ SO−2 + (OTfU–SO2)• (VIII)

→ NCO− + CF3SO3C3H3NO (IX)

→ F− + fragments. (X)

The ion yields for all anions detected are discussed in
Secs. III B 1–III B 5. To our surprise, the stable parent anion
OTfU− is not observed within the experimental detection lim-
its. Most halonucleobases XU (X = Cl, Br, I) do form a stable
parent anion upon attachment of a free electron in the gas
phase,4,12,40–43 in contrast to fluorinated derivatives,44 unsub-
stituted DNA bases,45–47 and amino acids.48,49 The stabilisa-
tion of the parent anion is associated with the positive EA.
In fact, the calculated AEA of OTfU at the M06-2X/aug-cc-
pVTZ level is about 0.90 eV which is remarkably higher when
compared to the AEA calculated by Li et al. for particular
5-halouracils (5-XU),50 i.e., EA(5-FU) = 0.48 eV, EA(5-ClU)
= 0.60 eV, and EA(5-BrU) = 0.63 eV. Therefore, assuming that
the metastable parent anion of OTfU is formed, the TNI will be
vibrationally excited such that the decay will occur on sub-µs
time scales by autodetachment or through the DEA reactions
(I)–(X) invalidating its detection. The resonance position for
the observed anions, the respective thermodynamic thresh-
olds, as well as the predicted AEA compared to other values
available in the literature are summarized in Table I (and
for more calculation data, see Table SI in the supplementary
material).

1. Dehydrogenated parent anion (OTfU–H)−

The ion yield for the formation of the closed shell anion
(OTfU–H)– is represented by reaction (I). The peak posi-
tions for the corresponding resonances are listed in Table I.
The formation of the closed shell anion (OTfU–H)– mainly
occurs through the attachment of electrons with energy well
below the threshold for electronic excitation. The anion yield
exhibits a rich structure consisting of a set of peaks observed
at about ∼0, 0.24, 0.56, 0.95, and 1.28 eV, as shown in
Fig. 4. The formation of the first three sharp peaks (the one
at ∼0 eV is not resolved) may be assigned as vibrational
Feshbach resonances (VFR) arising from the vibrational lev-
els of the TNI or from a dipole-bound state (DBS) where
an incoming electron may be temporally bounded. Indeed,
the dipole moment of the most stable conformer (Fig. S5–
A) of the neutral OTfU is estimated to be 3.2 D, while
for the second conformer (Fig. S5–B) a considerably higher
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TABLE I. Mass for each anion formed upon DEA to OtfU with the respective resonance position, the respec-
tive experimental threshold as well as thermodynamic threshold calculated at the M06-2X/aug-cc-pVTZ level
(383.15 K, 3 × 10�11 atm) and the predicted adiabatic electron affinity compared to other values available in the
literature. The AEA of OTfU is 0.9 eV at M06-2X/aug-cc-pVTZ.

Mass
Resonance position (eV) Threshold (eV) AEA (eV)

(m/z) Anion 1 2 3 4 5 Exp. Calc. Calc. Lit.

259 [OTfU–H]− ∼0 0.24 0.56 0.95 1.28 ∼0
N1–H �1.05a 4.19 . . .

N3–H �0.56a 4.70 . . .

C6–H �0.01a 3.67 . . .

191 [OTfU–CF3]− ∼0 2.53 . . . . . . . . . ∼0 �3.09a 4.02b . . .

149 OTf− ∼0 0.14 1.05 3.65 . . . ∼0 �2.44a 6.22b 5.50c

133 Tf− ∼0 0.13 1.04 3.60 . . . ∼0 �3.22a 3.61 . . .

127 [OTfU–CF3SO2]−/OU− ∼0 0.13 1.07 . . . . . . ∼0 �2.00a 2.38 . . .

111 [OTfU–CF3SO3]−/[U–H]− ∼1.2 . . . . . . . . . . . . ∼0.2 1.25 2.26 2.34d

69 CF−3 ∼0 2.35 4.75 8.45 . . . ∼0 �0.74a 1.69 2.01e

64 SO−2 ∼0 . . . . . . . . . . . . ∼0 �3.92a 1.42 1.11e

42 NCO− ∼0 ∼1.8 ∼4.0 ∼8.1 . . . ∼0 . . . . . . . . .

19 F− ∼4.8 ∼8.0 . . . . . . . . . ∼3.1 0.61 3.27 3.40e

aThe negative value obtained from the calculations corresponds to the experimental threshold of 0 eV.
bThe neutral product is unstable. AEA is calculated for the neutral geometry with the frozen bond that is prone to break. Additionally
VDE was calculated for both anions. VDE[OTfU–CF3]− = 4.47 eV and VDE[CF3SO2O]− = 6.67 eV.
cData taken from Refs. 51 and 52.
dData taken from Ref. 50, i.e., AEA(Ur-5-yl•).
eData taken from Ref. 53.

dipole moment of 5.4 is predicted at the M06-2X/aug-cc-pVTZ
level of theory. These values are above the critical value (2.0–
2.5 D)54 required for the existence of a dipole-bound state
(DBS).

In Fig. 5, the characteristic distributions of the SOMO
orbital for DBSs formed by both conformers are depicted. As
indicated by the numbers gathered in Table II, the anion orig-
inated from conformer A, of smaller dipole moment, is bound
by only 9 meV at the KT level, while the more polar structure
forms DBS characterized by the KT vertical energy attach-
ment of 47 meV. Electron correlation is significant for DBSs
since dipole moment is seriously overestimated at the HF level.

FIG. 4. Ion yield of (OTfU–H)− formed upon DEA to OTfU.

On the other hand, dynamic correlation stabilizes DBSs to a
large extent. Although these two effects have opposite signs,
they usually do not cancel out which makes the calculations at
the correlated level obligatory.55 Actually, the VEAMP2 values
gathered in Table II constitute a good illustration of the men-
tioned above (9 vs. 39 and 47 vs. 97 meV for conformation A
and B, respectively; see Table II). An additional stabilization of
DBS results from geometry relaxation due to anion formation.
However, since the excess electron density of DBS is beyond
the molecular framework (see Fig. 5), this effect, unlike for
valence bound anions, is relatively small, cf. VEAMP2 with
AEAMP2 (Table II).

Therefore, the coupling between the vibrational levels of
the TNI with DBSs may arise as an effective DEA channel
leading to the dehydrogenation of OTfU. In fact, DBS for
the most abundant conformation of OTfU was predicted to lie
54 meV below the neutral (see Table II). Concerning the sec-
ond conformer (Fig. 5), its DBS lies as much as 110 meV (see
Table II) lower than the neutral. Notably, the same mechanism
involving DBS underlying the dehydrogenation of uracil and
thymine upon attachment of electrons with an energy below
3 eV has been proposed by a combination of experimental and
theoretical methods.56 In the case of OTfU, different anionic
isomers may form by dehydrogenation depending on the site of
H-loss—N1, N3, or C6 in the uracil moiety. As so, the variation
of the Gibbs free energy for each possible isomer is listed in
Table I. The thermodynamic calculations show that in spite of
the dehydrogenation site, the loss of a hydrogen from OTfU is
always an exothermic reaction, whereas the dehydrogenation
from the N1 position appears to be thermodynamically most
favorable. Note that the energetically most favorable loss of
hydrogen upon DEA to uracil occurs from the N1 position
as well.56,57 Furthermore, the predicted AEA for (OTfU–H)−
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FIG. 5. The SOMO orbitals of the
anions for both conformers considered.
The isosurface value for the most stable
conformer (a) is 0.001 a.u.−3/2, while the
second one (b) is equal to 0.018 a.u.−3/2.

depends on the dehydrogenation site, and it varies from 3.67
to 4.19 eV, as shown in Table I.

2. Cleavage of the C–S bond in the triflate group

The cleavage of the C–S bond within the triflate group
leads to the formation of two complementary anions with the
ion yields shown in Fig. 6. First, (OTfU–CF3)− is formed
via reaction (II) where the trifluoromethyl radical (–CF3

•) is
formed as a neutral byproduct. The experimental threshold
of about 0 eV is in agreement with the calculated thermo-
chemical threshold of −3.09 eV. The AEA of (OTfU–CF3)− is
predicted to be 4.02 eV. However, the trifluoromethyl radical
appears to be unstable. Second, the closed shell anion CF3

−
is formed via the complementary reaction (VII) together with(
OTfU−CF3

)•. The respective experimental threshold is also
about 0 eV, which matches with the calculated thermochemi-
cal threshold of −0.74 eV. The theoretical AEA of 1.69 eV for
CF3

− is comparable to the AEA of 2.01 eV obtained by photo-
electron spectroscopy reported in the literature.53 In addition to
a strong resonance near 0 eV for the former anion and hardly
present for the latter anion, the ion yields of (OTfU–CF3)−
as well as CF3

− exhibit a broad resonance centered at about
2.4 eV. The anion yield of CF3

− further exhibits a resonance
at 4.75 eV and a broad structure at 8.45 eV. The presence of
a resonance for both anions at the same positions, i.e., about
2.4 eV, is the evidence that the formation of both species may
occur from a common electronic state of the TNI. The for-
mation of the aforementioned anions was previously reported
by Ptasińska et al. in DEA studies with the triflate analogs
in the gas-phase.52 In brief, they reported the formation of the
counterpart of the –CF3

• radical through resonances near 0 eV
and 2.5–3.0 eV electron energies for the triflates containing a
phenyl ring and only at 3 eV for the methyl triflate. Notably, a
good agreement is observed between the resonance positions

TABLE II. Electron binding characteristics for dipole bound states supported
by conformers A and B. All values shown in meV.

Conformer A Conformer B

EKT
bind 9 47

VEAMP2 39 97
AEAMP2 54 110

that lead to the formation of (OTfU–CF3)− by C–S bond cleav-
age either in OTfU or in triflate analogs. Therefore, one may
conclude, based on this similarity, that the uracil ring attached
to the triflate in OTfU has little effect on the electron ener-
gies required to cleave the C–S bond within the triflate. On
the other hand, the formation of CF3

− in the triflate analogs
occurs mainly through a resonant state at 3 eV in addition to
other states located at higher electron energies which depend
on the considered analog, i.e., at 8 eV for methyl triflate and
at 6 and 7.5 eV for tolyl triflate. In the present study, CF3

−
is formed from OTfU by the same number of resonant states
such as in tolyl triflate, even though the respective positions
appear to be different.

3. Cleavage of the O–S bond in the triflate
group versus cleavage of the O–C5 bond
in the uracil group

The triflate (OTf−) and triflyl (Tf−) anions are formed
upon a simple bond cleavage, i.e., the O–C5 bond within
the triflate group and the O–S bond in uracil and they are
represented by reactions (III) and (IV), respectively. The calcu-
lations show that the neutral by-product, C4H3N2O•2, which is
formed alongside OTf− appears to be unstable. These two DEA

FIG. 6. Ion yield of (OTfU–CF3)− and CF3
− formed by the cleavage of the

C–S bond within the triflate upon DEA to OTfU.



164307-7 Ameixa et al. J. Chem. Phys. 149, 164307 (2018)

reactions represent the most favorable fragmentation channels,
particularly close to 0 eV. Further resonances at about 0.13 eV,
1.05 eV, and at around 3.65 eV were observed as well for
both anions (see Fig. 7). Such finding is in line with the out-
comes of the DEA4,41 and theoretical17 studies with 5-BrU,
where the abstraction of the halide anion Br− represents the
main dissociation pathway. The highly exothermic character
is not surprising though since the anionic products possess a
large AEA, i.e., AEA(Tf) = 3.61 eV and AEA(OTf) = 6.22 eV
(see Table I). The calculated thermochemical thresholds of
−2.44 eV for the formation of OTf− and −3.22 eV for the
formation of Tf− are in good agreement with the peaks
at about 0 eV obtained experimentally. However, Ptasińska
et al. reported an energy barrier of about 0.5 eV for the forma-
tion of OTf− through DEA to triflate analogs,52 which is not
observed in the present study. The predicted AEAs of about
6.22 eV for the triflate group and about 3.61 eV for the tri-
flyl group represent the driving forces of these DEA reactions.
Albeit, to our best knowledge, the AEA of the triflyl group
is not reported in the literature. Under the same experimental
conditions, the intensity of the triflate anion is higher when
compared to the intensity of the triflyl anion, which may sug-
gest that the O–C5 bond is more readily cleaved than the O–S
bond within the triflate group. These findings can be com-
pared with the outcomes obtained by Makurat et al. upon
electron attachment in an aqueous 5-trifluoromethanesulfonyl-
2′-deoxyuridine (OTfdU) solution.22 Briefly, this study was
carried out in a deoxygenated aqueous OTfdU solution
containing an OH• radical scavenger and phosphate buffer
(pH = 7.0). Solvated electrons were generated in the solu-
tion through irradiation with X-rays. Thereafter, the products
formed by electron attachment to OTfdU were probed by liq-
uid chromatography mass spectrometry (LC-MS) operated in
the negative mode. The authors reported that in the experiment
the most abundant dissociation channel leads to the formation
of dU by the cleavage of the C5–O bond in the triflate group,
in opposition to calculations, which indicated that in solution
the O–S bond cleavage would be thermodynamically more

FIG. 7. Ion yield of OTf−, Tf−, OU−, and (U–H)− formed either by the cleav-
age of the S–O bond or the O–C5 bond in the uracil upon DEA to OTfU. The
ion yield for (U–H)− can be likely ascribed to a weak impurity since the
resonance is below the calculated threshold for the DEA reaction (VI).

favorable. This discrepancy was finally explained by proto-
nation of the compound at the C5 position in solution which
promotes the cleavage of the C5–O bond rather than the O–S
bond.22 The present calculations for the gas phase also predict
that the cleavage of the O–S bond should be more favorable
(see Table I); however, the total ion yields for cleavage of
the C5–O bond vs. the O–S bond are approximately equal. In
this context, we note that under single collision conditions,
the yield of a particular anion formed by DEA is associ-
ated to the DEA cross section σDEA, which is influenced by
autodetachment. This situation is expressed by

σDEA = σ0Pdiss, (6)

where σ0 represents the electron attachment cross section and
Pdiss represents the dissociation probability which is a function
of the autodetachment lifetime, τAD, and the dissociation time,
τDEA, as follows:

Pdiss = exp
(
−τDEA
τDA

)
. (7)

Thus, despite the inferior thermodynamic threshold for
the cleavage of the O–S bond within the triflate group leading
to the formation of Tf−, it does not imply that the formation
of this particular anion should be favored over the formation
of OTf− upon cleavage of the O–C5 bond in uracil.

In addition to reactions (III) and (IV), which lead to the
formation of negatively charged triflate and triflyl ions, we
report the formation of OU− upon cleavage of the O–S bond
within the triflate group, represented by reaction (V), mainly
through a resonance at about 0 eV as well as others at 0.13
and 1.07 eV (see Fig. 7). The experimental threshold of about
0 eV is in accordance with the predicted thermodynamic
threshold of −2.00 eV. The reaction (VI) represents the for-
mation of dehydrogenated uracil, (U–H)−, upon cleavage of
the O–C5 bond in uracil, which is endothermic and charac-
terized by the predicted thermodynamic threshold of about
1.25 eV. This dissociation channel appears to be unfavorable
in the experiment, with a very low intensity of the ion yield
as shown in Fig. 7. The experimental onset of ∼0.2 eV was
obtained, which is lower than the theoretical threshold and
thus indicating rather an impurity.

Finally, we note that the energy-resolved ion yields regard-
ing the above mentioned DEA reactions (III)–(V) exhibit peaks
at the same electron energy, which suggests that the anions may
be generated from a common electronic state of the TNI. More-
over, this set of reactions represents a prime example where
a particular bond was cleaved, and the negative charge stayed
on complementary parts of the molecule.

4. Complex fragmentation pathways: SO2
– and NCO–

Apart from single bond cleavages, DEA to OTfU leads
to the formation of further anionic species by multiple bond
cleavages or through complex rearrangements within the
molecule. Namely, the sulphur dioxide (SO2

−) anion results
from the cleavage of two bonds, i.e., the C–S and the S–O bond
in the triflate group, upon attachment of a single electron with
0 eV energy, as represented by reaction (VIII) and shown in
Fig. 8. The experimental outcome is in line with the predicted
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FIG. 8. Ion yields of SO2
−, NCO−, and F− formed upon DEA to OTfU.

thermodynamic threshold for this reaction of about −3.92 eV
(Table I). The theoretical AEA of 1.42 eV (Table I) for SO2

−
is comparable to the AEA of 1.11 eV reported in the litera-
ture.53 We note that the formation of SO2

− through DEA to
triflate analogs in the gas-phase seems to be a more complex
process52 since SO2

− ion yields exhibit resonances at different
positions for each analog.

We report the formation of NCO− by DEA to OTfU as
represented by reaction (IX) and shown in Fig. 8. The anion
is rather weakly formed in a resonance centered at about
0 eV and even less intense in resonances at energies above
0 eV. Under the present experimental conditions, the ion yield
seems to be reduced which hinders the identification of reso-
nances at higher electron energies. It is worth noting that the
underlying mechanism regarding the formation of NCO− upon
DEA to pyrimidine bases58 and halouracils XU (X = Cl, Br)4,12

has been already intensively investigated in recent years (see
Ref. 58). Therefore, we omit a detailed description regarding
the formation of this only weakly abundant anion based on
quantum chemical calculations for OTfU.

5. Cleavage of the C–F bond in the triflate
group: Formation of F−

The formation of F− occurs by a single bond cleavage in
the triflate group, as represented by reaction (X). The anion
yield shows very interesting features resulting from the super-
imposition of two resonances at about 4.8 and 8.0 eV, which
are formed by electron attachment, and a continuous ion sig-
nal, which results from the non-resonant ion pair formation
process, as shown in Fig. 8. The weak contribution at 0 eV
is not due to the DEA reaction, and it may be assigned as an
artifact.59 The ion pair formation usually occurs at higher elec-
tron energies than the DEA process and, in this case, may be
described as follows:

CF3SO3C4H3N2O2 + e−

→ F− + CF2SO3C4H3N2O2
+ + e−.

The calculated thermodynamic threshold concerning the DEA
reaction is 0.61 eV, which is considerably lower than the
experimental onset of about 3.2 eV. Therefore, fragmenta-
tions, which are more complex, have been further investigated.
The thermodynamic thresholds, which lead to the formation of
F−, are presented in Table SII in the supplementary material.
The DEA reaction appears to be endothermic in most cases.
Notably, the experimental onset lies above the thermodynamic
threshold in all cases, which does not allow an unambiguous
assignment. Furthermore, the predicted AEA of 3.27 eV for
the fluorine anion matches with the value (3.40 eV) reported
in the literature.53

IV. CONCLUSION

We studied electron attachment in the gas-phase to the
recently synthetized radiosensitizer OTfU in the electron
energy range 0–14 eV. OTfU may be considered as a pseudo-
halouracil. The triflate group present at the C5 position in the
uracil ring possesses a large electron affinity (6.22 eV) which
overcomes the electron affinity of all halogens. We observed
ten different anionic species formed through DEA to OTfU
either upon simple bond cleavage (e.g., formation of OTf− and
loss of H•) or upon complex reactions (e.g., formation of SO2

−
and NCO−). In most cases, we observed that an anion and its
counterpart are formed by the decay of the same electronic
state of the TNI since the ion yields concerning both anions
exhibit resonance(s) at similar positions. The best example is
represented by the cleavage of the S–O bond in the triflate
group leading to the formation of Tf− and the OU− as well as
by the cleavage of the O–C5 bond in the uracil leading to the
formation of OTf− through resonant states at similar positions.
Moreover, the features presented in the energy-resolved ion
yield concerning the loss of H• were assigned as VFR involv-
ing the dipole-bound state of the neutral OTfU. The AEA of the
formed anions is comparable to the values previously reported
in the literature in most cases.

In contrast to negative ion formation, the stable parent ion
can be detected upon electron ionization. Also for this ion-
ization process, reactions accompanied by the cleavage of the
S–O bond in the triflate group are dominant. For example, the
formation of OU+, which is the second most abundant cation
observed, is only possible by the cleavage of this bond. How-
ever, otherwise the electron ionization mass spectrum shows
several abundant cations formed by complex fragmentation
reactions.

Ultimately, this study endorses OTfU as a potential
radiosensitizer, in particular due to its high reactivity toward
low-energy electrons. These LEEs very efficiently decompose
OTfU and thereby generate radicals (e.g., uracil-yl) which
may further react with DNA. This property is supported by
the exothermic character predicted for nine out of eleven cal-
culated DEA reactions, thus operative upon attachment of
electrons with about 0 eV.

SUPPLEMENTARY MATERIAL

See supplementary material for the electrospray ioniza-
tion mass spectrum of OTfU, the 1H and 13C NMR spectra
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of OTfU, as well as more computational data including con-
formational scan, dipole-bound states, calculated thresholds
at different conditions, and other reaction pathways leading to
the formation of the F− anion.
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43R. Schürmann, K. Tanzer, I. Da̧bkowska, S. Denifl, and I. Bald, J. Phys.

Chem. B 121, 5730 (2017).
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7.2. Formation of resonances and anionic fragments upon electron attachment to
benzaldehyde

7.2 Formation of resonances and anionic fragments

upon electron attachment to benzaldehyde

A detailed investigation on electron attachment to benzaldehyde is presented. Two ex-

perimental setups were used to study the electron energy dependence of DEA for various

fragments, and absolute cross sections is presented. The experimental results are supported

by a comprehensive set of theoretical calculations. Namely, quantum chemical calculations

were performed by Prof. Dr. Ian Carmichael, Notre Dame University, USA; and by Dr.

Lucas Cornetta and Prof. Dr. Márcio Varella, Universidade de São Paulo, Brazil who also

performed electron scattering calculations. The results are summarized in the following

publication:

Formation of resonances and anionic fragments upon electron attachment to

benzaldehyde

J. Ameixa, E. Arthur-Baidoo, J. Pereira-da-Silva, M. Ryszka, I. Carmichael, L.M. Cor-

netta, M. T. do N. Varella, F. Ferreira da Silva, S. Ptasińska and S. Denifl, Phys. Chem.

Chem. Phys. 22, 8171 (2020)

Author’s contribution: I performed the measurements and analyzed the obtained

data. Afterwards, I prepared the final figures and prepared the first version of the manuscript.
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Formation of resonances and anionic fragments
upon electron attachment to benzaldehyde†
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S. Ptasińska ce and S. Denifl *a

Benzaldehyde is a simple aromatic aldehyde and has a wide range of applications in the food,

pharmaceutical, and chemical industries. The positive electron affinity of this compound suggests that

low-energy electrons can be easily trapped by neutral benzaldehyde. In the present study, we investigated

the formation of negative ions following electron attachment to benzaldehyde in the gas-phase.

Calculations on elastic electron scattering from benzaldehyde indicate a p* valence bound state of the

anion at �0.48 eV and three p* shape resonances (0.78, 2.48 and 5.51 eV). The excited state spectrum of

the neutral benzaldehyde is also reported to complement our findings. Using mass spectrometry, we

observed the formation of the intact anionic benzaldehyde at B0 eV. We ascribe the detection of the

benzaldehyde anion to stabilization of the p* valence bound state upon dissociative electron attachment

to a benzaldehyde dimer. In addition, we report the cross sections for nine fragment anions formed

through electron attachment to benzaldehyde. Investigations carried out with partially deuterated

benzaldehyde show that the hydrogen loss is site-selective with respect to the incident electron energy. In

addition, we propose several dissociation pathways, backed up by quantum chemical calculations on their

thermodynamic thresholds. The threshold calculations also support that the resonances formed at higher

energies lead to fragment anions observable by mass spectrometry, whereas the resonances at low

electron energies decay only by electron autodetachment.

1. Introduction

Benzaldehyde (C6H5CHO, Chart 1) is an aromatic aldehyde with
a wide range of applications, mainly in the food industry as a
flavouring agent or preservative. It may also serve as an important
intermediate to produce various organic compounds, e.g., drugs,
cosmetics, oils, inks, or plastics, thereby attracting the interest of
the pharmaceutical and chemical industries.1,2 Moreover, it also

occurs spontaneously in alcoholic beverages, dairy products, meat,
poultry, and in a wide variety of fruits and vegetables.3

Benzaldehyde has chemotherapeutic relevance, as proposed
in the late seventies by Takeuchi et al.4 Since then, benzalde-
hyde and its derivatives have been investigated and admini-
strated to patients with advanced inoperable carcinomas
without measurable toxicity.4–7 The in vitro studies with human
healthy and tumour cells have shown selective inhibition of the

Chart 1 Chemical structures of (A) – benzaldehyde and (B) – benzalde-
hyde-a-d1 (d-benzaldehyde).
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growth of the tumour cells without measured effects on the
healthy cells.6 Moreover, the combination of hyperthermia and
benzaldehyde at doses that are nontoxic appears to enhance the
cytotoxic effect.8 Additionally, an in vivo assay further uncovered
the inhibition of pulmonary metastasis by benzaldehyde in
tumour-inoculated mice.9 However, the underlying mode of
operation of benzaldehyde at the molecular level is still unclear.
Aldehydes, including benzaldehyde, bound to cellular macro-
molecules, in particular, to the amino group of proteins forming
Schiff base adducts, may quench protein-mediated processes in
the cell, for instance enzymes or the transport of molecules
through the cell membrane.10–12 Consequently, a hypothesis
suggested that the anti-cancer effect of benzaldehyde is based
on the inhibition of the uptake of essential nutrients, with are
required for the growth of cancer cells.13 In addition, another
hypothesis suggested that the effect in cancer cells is associated with
efficient inhibition of glutathione peroxidase (GPx) by benzaldehyde,
since GPx belongs to a family of enzymes that defend the organism
from oxidative damage, leading to an increased production of highly
reactive oxygen species (ROS), and consequently oxidative stress.14,15

The latter species, in turn, e.g., O2
��, OH�, and O�, are harmful to

DNA (free radical damage) and other biomolecules, thereby leading
to mutations, cancer, and ultimately apoptosis.16

The ROS-induced DNA damage is also highly relevant in
cancer radiotherapy. The ionisation of water following the
interaction of high energy radiation with the cell tissue leads
to the formation of ROS, which may react with DNA, as well as
to the production of a large amount of secondary low-energy
electrons (LEEs), with an energy distribution peaking around
10 eV.17–19 In this energy regime, LEEs may contribute to DNA
damage, inducing mainly single- and double strand breaks,
through dissociative electron attachment (DEA) reactions.20,21

This process occurs when a molecule resonantly captures an
electron, forming a transient negative ion (TNI) that may decay
into anionic fragment and neutral radicals.22–24

The administration of radiosensitizers should enhance the
sensitivity of tumours to high-energy radiation.25 The related
processes in the early physical–chemical stage of radiation
damage are not fully understood yet. Recently, Meißner
et al.26 have shown that the first step in the radiosensitization
of hypoxic tumour cells by nimorazole relies on the efficient
formation of the radical anion species by associative attach-
ment of LEEs. In another way of radiosensitization, LEEs may
induce the dissociation of electrophilic compounds, through
DEA reactions yielding reactive radicals that are precursors for
DNA damage. For instance, nucleobases/nucleosides with an
electrophilic group at the C5-position have been used as
radiosensitizers.27–29 These compounds exhibit high reactivity
towards LEEs due to a positive electron affinity (EA). Benzaldehyde
has an EA of B0.35 eV,30 thus it could serve as a radiosensitizer,
although knowledge about the interactions of LEEs with benz-
aldehyde is limited. To the best of our knowledge, only two gas-
phase studies on the interaction of LEEs with benzaldehyde
have been carried out so far. Hacaloglu et al.31 performed a DEA
study with benzaldehyde, while Modelli et al.32 located shape
resonances in benzaldehyde by electron transmission spectroscopy.

The studies described by Hacaloglu et al.31 show that the most
abundant anions formed through electron capture are O� and the
phenyl anion. Moreover, the parent anion was not observed in
their study. The experimental attachment energies determined by
Modelli and Burrow32 show two p* shape resonances at 2.21 and
4.34 eV in addition to a bound state.

To reach a better understanding of the interaction of LEEs
with benzaldehyde, we have investigated the formation of
anions through electron attachment by means of two experi-
mental set-ups. In addition, we performed a detailed theoretical
study by calculating elastic electron scattering cross sections,
the electronic excitation spectra for neutral benzaldehyde, and
also the thermodynamic thresholds for the formation of the
observed anions. The present experimental results show the
formation of an intact molecular anion via a dimer and a phenyl
anion that was observed as the most abundant fragment, in contrast
to previous studies. Moreover, both computational chemistry and
electron scattering calculations support our experimental results
together with those from previous ETS experiments. Finally, we
measured the DEA of benzaldehyde-a-d1 (d-benzaldehyde) to clarify
some dissociation pathways involving hydrogen loss.

2. Methods
2.1 Experimental set-up

Benzaldehyde (106 u) was purchased from Sigma-Aldrich (stated
purity Z99%). The sample is a liquid at room temperature with
a vapour pressure of 195.7 Pa.33 It was purified by performing
several freeze–pump–thaw cycles before performing the studies.
In both experimental set-ups, the vapour of the liquid was
introduced into an interaction region via a gas inlet coupled
with a precision valve. At the University of Innsbruck, a crossed
electron-molecular beam setup combined with a quadrupole
mass spectrometer (QMS) was used. The setup was described
in detail elsewhere.34 Briefly, the sample vapour enters the
interaction chamber of a hemispherical electron monochromator
(HEM), through a 1 mm-diameter, stainless-steel capillary, where it
crosses with an electron beam. The HEM was tuned to generate the
electron beam with an energy resolution of 120 meV at full width
at half maximum (FWHM) with an incident electron current of
10–30 nA. The formed anions are extracted to the QMS by a weak
electrostatic field. In the QMS, they are analysed by their mass-to-
charge ratio. Finally, the mass-separated anions were detected by a
channeltron-type secondary electron multiplier operated in single-
pulse counting mode. The presented ion yields were obtained by
recording the intensity of a given mass-separated anion as a
function of the incident electron energy. The electron energy scale
and electron energy resolution were determined by measuring the
well-known resonances for the formation of SF6

� from SF6 and Cl�

from CCl4, at B0 eV. Lastly, the electrons that pass the interaction
region were collected using a Faraday plate and the obtained
current is monitored using a picoammeter.

In this study, the dissociative electron attachment cross
section, sDEA, was determined by comparing the ion yields
of the fragment anions formed from benzaldehyde with the
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well-known cross sections occurring at 0.8 eV for Cl� from CCl4

(sDEA = 5.0 � 10�20 m2)35 or at 5.2 eV for F� from SF6 (sDEA =
5.0 � 10�22 m2).36 For a given DEA reaction, the ion yields were
corrected with respect to the partial pressures of the sample
and the intensity of incident electron current under the given
experimental conditions. The experimental uncertainty of the
determined cross-section values is within one order of magnitude.

At the Radiation Laboratory at the University of Notre Dame,
an experiment was performed consisting of a high-vacuum
chamber equipped with a QMS from Hiden Analytical, Inc.
and it has been described previously.37 First, the effusive
molecular beam is directed towards the entrance of the QMS,
using a 1 mm diameter, stainless-steel capillary. Thereafter, the
ions were formed by the interaction with electrons emitted by
the internal filament (oxide-coated iridium wire) of the QMS.
The anions were mass-analysed using the QMS and further
detected using the channeltron-type secondary electron multi-
plier. The ion yield for a particular anion was recorded as a
function of the electron energy. The electron energy scale was
calibrated by measuring the well-known resonances of SF6

�

and F� from SF6. The electron energy resolution was estimated
to be approximately 500 meV (FWHM) for an incident electron
current of 2 mA.

2.2 Computational methods

Apart from the scattering calculations and the electronic excita-
tion spectra, all computations described below were performed
with the Gaussian09 software package.38

2.2.1 Geometry optimization. The ground state geometry
of benzaldehyde was optimized using density functional theory
(DFT), employing the hybrid functional B3LYP39 and the aug-
cc-pVTZ basis.40 An essentially identical geometry was obtained
using Møller–Plesset second-order perturbation theory (MP2)
and the same basis. This geometry was employed in all calcula-
tions for the neutral and anion species, except for the vertical
attachment energy (VAE) estimates obtained as empirically
corrected virtual orbital energies (VOEs). In this case, the geometry
and VOEs were calculated using the DFT/B3LYP/6-31G* method,
following the prescription of Scheer et al.41

2.2.2 Electron scattering calculations. We have employed
the Schwinger Multichannel method42,43 implemented with the
Bachelet–Hamann–Schlüter44 pseudopotentials (SMCPP). Details of
the SMCPP variational approach to the collision problem and its
implementation can be found elsewhere.45 Here, we briefly mention
that the expansion of the scattering wave function in the configu-
ration state function (CSF) trial bases defines the static-exchange (SE)
and SE plus polarization (SEP) approximations. The former employs

CSFs given by w0m
�� �

¼ A F0j i � jm

�� Eh i
, where A is the anti-

symmetrization operator, |F0i is the target ground state obtained
in the Hartree–Fock (HF) approximation, and |jmi is the scattering
orbital. The SE scheme neglects correlation-polarization effects,
which are accounted for by augmenting the SEP expansion with

CSFs of the kind wZm
�� �

¼ A FZ

�� �
� fnj i

� �
, where |FZi is a singly

excited target state with either singlet or triplet spin coupling,
although all CSFs are doublets. The construction of the CSF space

was based on the energy criterion proposed elsewhere,40 which
considers all configurations satisfying eparticle + escattering� ehole oD,
where e corresponds to the orbital energy and is an energy cutoff.
We employed modified virtual orbitals generated from cationic
cores with charge +2 and the cutoff D = �1.24 Ha. The CSF space
was also symmetry decomposed, such that the A00 component
comprised 4824 trial basis functions in the SEP approximation.
The SMCPP calculations were restricted to the A00 irreducible
representation of the cross section, where the signatures of the
p* shape resonances should be evident. While s* resonances could
also be expected for benzaldehyde, they are usually broad and
embedded into the large background arising from the dipolar
interaction, thus having no clear signatures in the calculated cross
sections (unless heavier atoms are found46,47).

2.2.3 Dipole-bound states. The energy of the dipole bound
state (DBS) was obtained according to Skurski et al.48 In brief,
to account for the diffuse character of the state, the aug-cc-
pVTZ basis was augmented with sets of 6s6p diffuse functions
centred on the hydrogen atoms H(10) and H(11), located close
to the positive end of the dipole moment vector (atomic labels
shown in Chart 1). The vertical DBS energy was computed using
two methods, namely MP2 and coupled-clusters with single,
double, and non-iterative triple excitations (CCSD(T)).

2.2.4 Thermodynamic thresholds. The dissociation thres-
holds for several channels were calculated at the B3LYP/aug-cc-
pVTZ level of theory, firstly from enthalpy differences deduced
from harmonic frequency calculations for a number of likely
produced fragments, matching their masses with the observed
mass-to-charge ratios. Based on these structures, enthalpies of
formation for some selected fragments were further refined at
the G4(MP2)49 level of theory. In general, the zero-temperature
thresholds are 0.2–0.5 eV lower than those obtained from
enthalpy differences at room temperature (298.15 K).

2.2.5 Electronic excitation. The excited states of neutral
benzaldehyde were calculated using the complete active space self-
consistent field method and second-order perturbative corrections
(CASSCF/CASPT2), as implemented in the OpenMOLCAS50 software
package. The calculations employed the ANO-L basis set with the
contraction scheme [4s3p1d] for carbon and oxygen atoms, and
[2s1p] for the hydrogen atoms. This basis set was calibrated for
describing valence excited states at the CASPT2 level51 and it has
been employed for some systems in previous studies of neutral and
anionic species.52,53 The (12,10) active space comprised 12 electrons
and 10 active orbitals in the reference HF ground state, namely four
p-type and two n-type occupied orbitals, along with four p* virtual
orbitals. The same orbital space was employed for the anion, the
only difference being the number of active electrons, (13,10). The
occupied orbitals are labelled, from the (HOMO�5) to the HOMO
level, as p4, n2, p3, n1, p2, and p1, while the unoccupied ones, from
the LUMO to the LUMO+3 level, are labelled as p1* to p4*.

3. Results and discussion
3.1 Electron scattering calculations

The A00 symmetry component of the integral cross section (ICS),
obtained in both the SE and SEP approximations for elastic
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electron scattering, is presented in Fig. 1. The SE calculations
show four shape resonances at 1.59, 2.65, 4.98 and 9.63 eV,
which are labelled p1* to p4* sorted by increasing energy. Virtual
orbital plots generated with compact basis sets (HF/6-31G*) are
also shown to provide insight into the characters of the anion
states. The inclusion of polarization effects (SEP approximation)
shifts the resonances to lower energies, as expected, and the
lowest lying p1* state becomes stable. The diagonalization of the
scattering Hamiltonian represented in the CSF space indicates a
valence bound state (VBS) at �0.48 eV (the energies of bound
and resonance states are indicated as negative or as positive,
respectively). From more sophisticated CCSD/aug-cc-pVDZ
calculations, we obtained a vertical binding energy of �0.31 eV
for the p1* anion state, which is in good agreement with the DFT
estimation (B�0.35 eV) reported by Buonaugurio et al.30 In the
SEP cross section, the higher lying p* anion states have reso-
nances located at 0.78, 2.48 and 5.51 eV. The positions and
widths of the resonances are presented in Table 1, along with the
empirically corrected VOEs and the electron transmission
spectroscopy (ETS) values reported by A. Modelli et al.32 There
is good agreement between the SMCPP calculations and the

experimental data, except for the p4* state. The discrepancy
for the latter state is not surprising, since elastic scattering
calculations, which neglect electronic excitations channels, often
overestimate the energy of higher lying p* anion states with
mixed shape and core-excited character, by 0.5 to 1 eV (see
Kossoski et al.46 and references therein).

3.2 Excited states for neutral benzaldehyde (0 to B9.5 eV)

We calculated the electronic excitation spectrum of neutral
benzaldehyde with the CASSCF/CASPT2 method. While we
did not include electronic excitation channels in the scattering
calculations, the energy of the excited triplet and singlet states
of the target molecule might be of help in assigning the type of
core-excited resonances. The calculated values are listed in
Table 2 for energies up to 8.2 eV (the ionisation potential is
9.5 eV54). The dominant character of the excitations is also
indicated whenever they could be clearly identified.

3.3 Electron attachment to benzaldehyde

Table 3 summarizes the observed anions and positions of the
maxima for each ion yield together with the calculated thermo-
dynamic thresholds. Ten different anions were identified, and all
are formed at energies above 3.6 eV except for the benzaldehyde
anion formed at B0 eV. The lowest thermodynamic threshold
for DEA to benzaldehyde lies at 2.53 eV corresponding to the
formation of C6H5

�. Consequently, the shape resonances p2*
and p3* identified here using the electron scattering calculations
at 0.78 and 2.48 eV (see Section 3.1) are unlikely precursors for
DEA to benzaldehyde, since the measured onsets for the for-
mation of fragment anions occur at much higher energies.
Therefore, the shape resonances p2* and p3* decay via autode-
tachment. The DEA cross sections are also listed in Table 3.

Hacaloglu et al.31 studied electron attachment to a collection
of unsaturated carbonyls, including benzaldehyde, by means of
a crossed-beam experiment comprising a trochoidal electron

Fig. 1 A00 symmetry component of the elastic integral cross section (ICS).
The dotted line corresponds to the SE approximation, while the solid line
corresponds to the SEP results. The energies of the p* resonances are
indicated in the panel for the SEP calculations (p1* is a valence bound state,
not represented in the graph). Virtual orbital plots calculated with compact
basis sets are also shown to provide insight into the bound and resonance
characters.

Table 1 Positions and widths (given in parenthesis) of the shape reso-
nances of benzaldehyde (in eV). We show the results obtained with the
SMCPP method and the scaled VOEs calculated with the empirical scaling
relation of Scheer et al.41 The ETS data of Modelli et al.32 are also indicated
for comparison

p1* p2* p3* p4*

SMCPP �0.48 0.78 (0.024) 2.48 (0.48) 5.51 (0.78)
Scaled VOEs �0.46 0.61 1.79 4.43
ETS data32 o0 0.71–0.85 2.21 4.34

Table 2 Vertical electronic states for neutral benzaldehyde obtained at
the CASSCF/CASPT2 level of theory. S and T stand for singlet and triplet
spin states, respectively

Electronic state (neutral) Energy (eV)

S0 0.00
T1(n1 - p1*) 3.57
S1(n1 - p1*) 3.83
T2(p1 - p1*) 3.85
T3(p2 - p1*) 4.18
T4(p2 - p2*) 4.70
T5(p1 - p2*) 4.80
T6(p3 - p1*) 5.77
S2(p1 - p1*) 5.93
T7(n1 - p2*) 6.07
S3(n1 - p2*) 6.30
T8 6.42
T9 6.54
S4 6.69
S5 6.73
T10(p4 - p1*) 7.14
S6 7.58
T11(p2, n1 - p1*, p2*) 8.05
S7 8.19
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monochromator coupled with a QMS. Since the experimental
details such as the incident electron current, electron energy
resolution, calibration method for the electron energy scale and
the working pressure were not mentioned in their work,31 we
omit a comprehensive comparison with our results. To briefly
summarize their study, the authors reported a total of seven
anionic fragments. Six of them had the onset above 6.6 eV while the
onset for the formation of C6H5

� was 1.5 eV. The latter value is
substantially lower than the presently predicted thermodynamic
threshold of 2.53 eV. Other major differences to the present results
are related to the shape of the ion yields as well as the relative
intensities of fragment anions. For example, O� was observed as
the most abundant fragment anion in their work.31

3.3.1 Formation of the benzaldehyde anion. Fig. 2 shows
the ion yield for the intact benzaldehyde anion, m/z 106
C6H5CHO�(M), measured with the HEM instrument. The ion
yield shows a narrow peak close to 0 eV electron energy and

other structures between 6 and 10 eV. The higher energy
features are assigned to the dehydrogenated benzaldehyde
anion, (M � H)�, due to the isotopic contributions. We also
studied the dependence of the ion yield at m/z 106 as a function
of the working pressure of benzaldehyde in the chamber. The
pressure range was between 5.4 � 10�5 and 1.3 � 10�4 Pa. At
the lowest pressure, 5.4 � 10�5 Pa, the intensity of the ion yield
measured at B0 eV is comparable with the high-energy features
of (M � H)�; while at higher pressures, the ion yield at B0 eV
starts to dominate. In general, any elevated pressure in the
capillary may induce the formation of benzaldehyde dimers. It
is well-known that benzaldehyde molecules can efficiently form
linear and cyclic dimers, via intermolecular hydrogen bonds,
CQO� � �H–C, between the oxygen of a given benzaldehyde
molecule and the H atom within the formyl moiety of a
neighbouring molecule.55 At higher pressure, the neutral den-
sity of dimers of benzaldehyde in the collision chamber is
enhanced. Consequently, the intact benzaldehyde anion may
form upon DEA to a dimer, as suggested by the pressure
dependence on the ion yield obtained at B0 eV (reaction (1)).
Furthermore, due to its electron affinity, benzaldehyde admits
a VBS (p1*) that lies B0.48 eV below the ground state of the
neutral. The respective singly occupied orbital of the VBS is
shown in Fig. 3a. The experimental detection of the intact
benzaldehyde anion is thus associated with an effective stabili-
zation of the VBS by excision of the other benzaldehyde unit.

Table 3 Mass-to-charge ratio (m/z) of the observed anionic fragments formed upon electron attachment to benzaldehyde, as well as measured DEA
cross sections along with the respective resonance positions, sorted by increasing energy, and experimental thresholds. Thermodynamic thresholds
were calculated at the G4(MP2) (indicated with a) or B3LYP/aug-cc-pVTZ (indicated with b) levels of theory

m/z Anion sDEA (�10�24 m2)

Resonance position (eV) Threshold (eV)

1 2 3 Exp. Theory

106 C6H5CHO� B0 B0
105 [C6H5CHO � H]� 9.85 4.6 7.6 9.2 3.6 C1–H(14) 2.98a

C2–H(9) 2.92a

C3–H(10) 2.83a

C4–H(11) 2.86a

C5–H(12) 2.68a

C7–H(13) 2.80a

90 C6H5CH�� + O(3P) 3.84 7.4 5.9 5.92a

C6H5CH�� + O(1D) 7.97a

89 C6H5C� 31.1 6.9 7.6 6.2 5.41a

88 C6H4C� 15.8 6.8 5.9 2.92a

77 C6H5
� 95.8 4.7 6.5 7.0 3.8 2.53a

62 HC5H� 3.35 8.1 6.5 4.1b

49 C4H� 3.01 8.2 6.4 5.5b

17 OH� 46.1 7.3 8.3 9.7 6.4 4.72a

16 O� 23.5 7.8 8.9 10.5 6.5 6.02a

Fig. 2 Ion yield of C6H5CHO� measured at different working pressures in
the HEM instrument. The ion yields were normalized with respect to the
maximum of the signal at B7.13 eV.

Fig. 3 (a) SOMO of the valence bound state (VBS) of the anion (A00

symmetry); (b) the permanent dipole moment vector of the neutral and
the SOMO of the DBS (A0 symmetry).
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Under comparable pressures, the benzaldehyde anion was
not observed in the study performed using the Notre Dame
instrument. It is important to note that, when compared to the
HEM instrument, the distinct characteristics of the ion source,
e.g., physical dimensions, a lower electron current close to 0 eV,
the fact that the effusive beam is directed towards the hot
filament, or the lower detection limit of the instrument, can
influence the possibility of dimer formation and stability prior
to electron interactions and thus the observation of the ben-
zaldehyde anion. Nevertheless, besides the anionic monomer,
we rule out that any further fragment anions are formed from
DEA to dimers, since the neutral dimer density is very low.
Furthermore, this is the only anion observed at B0 eV, where
the s-wave electron attachment cross section achieves its
maximum.56

(C6H5CHO)2 + e�(B0 eV) - (C6H5CHO)2
#� (1)

- C6H5CHO� + C6H5CHO

3.3.2 Dehydrogenated benzaldehyde anion. The DEA reac-
tion (2) represents the formation of the dehydrogenated ben-
zaldehyde anion. In Fig. 4, the ion yield shows a weak
contribution at 4.6 eV, which we assign to the p4* resonance
with a mixed shape/core-excited character. The two higher-lying
contributions centred at 7.6 and 9.2 eV are assigned as core-
excited resonances. The estimated cross section for the for-
mation of the dehydrogenated benzaldehyde anion is 9.85 �
10�24 m2. This small value indicates the low effectiveness of
this fragmentation channel.

C6H5CHO + e� - C6H5CHO#� - (C6H5CHO � H)� + H (2)

C6H5CDO + e� - C6H5CDO#� - (C6H4CDO � H)� + H (3)

The dehydrogenation of biomolecules upon DEA has been
described for several nucleobases.57–59 The experimental and
theoretical studies carried out with thymine and uracil suggest
that the dehydrogenation proceeds through a dipole-bound
state (DBS)58,59 where an incoming electron is temporally
captured. Therefore, we also investigated DBS as a possible
doorway state for hydrogen loss by benzaldehyde. According to
the DFT/B3LYP/aug-cc-pVDZ calculations, neutral benzaldehyde
has a dipole moment around 3.6 D and is thus expected to hold a
DBS.60 Both the MP2 and CCSD(T) calculations performed with
the diffuse basis sets seem to indicate very shallow DBSs, with
binding energies of 1 meV and 2 meV, respectively. We note that
the binding energies lie within the uncertainty of the calcula-
tions. In Fig. 3b, we show that the positive pole of the permanent
dipole moment vector of the neutral is lying on the hydrogen
atoms H(10) and H(11) as well as on the DBS single occupied
molecular orbital (SOMO).

The calculated thermodynamic threshold values at the
G4(MP)2 level of theory are listed in Table 3 for the loss of
hydrogen from the distinct positions in benzaldehyde. The
theoretical calculations show that hydrogen loss from benzaldehyde
is always an endothermic reaction, even though the dehydrogena-
tion from the phenyl moiety (C5 position) appears to be
energetically more favourable. Usually, the electron-induced
dissociation mediated by a DBS gives rise to low-lying structures
(o3 eV) in the ion yield of the dehydrogenated parent anion
measured from uracil, thymine,58 adenine61,62 and their deriva-
tives (OTfU63 and 2-chloroadenine64), as well as 3-bromopyruvic
acid.65 In the case of benzaldehyde, however, such structures are
not observable in the ion yield shown in Fig. 4. This suggests that
the DBS does not play a role as a doorway state for the loss of
hydrogen upon electron attachment, since the experimental
onset for the observed dehydrogenated benzaldehyde anion
occurs at B3.6 eV, which is much higher than those for hydro-
gen loss in uracil, thymine, and their derivatives, due to the lack
of strong polar N–H bonds. Furthermore, the experimental
threshold is also too high in the energy scale of C–H vibrational
excitation, which is typically B0.4 eV for infra-red active modes.
Thus, even if the vibrational Feshbach resonances (VFRs) are
formed, we expect that it would be very unlikely that there would
be a high enough tunnelling barrier to give rise to long-lived
VFRs at such high energies.

The mentioned experimental onset lies above the calculated
thermodynamic threshold for all hydrogen positions, which
hinders the assignment of the dehydrogenation site to a
particular position. Therefore, we investigated the dehydrogenation
upon DEA to deuterated benzaldehyde-a-d1 (d-benzaldehyde) to
clarify the abstraction of hydrogen. Fig. 4b shows the formation of a
dehydrogenated parent anion from DEA to d-benzaldehyde, as
described by reaction (3). The intensity was normalized with respect
to the maximum of the signals, at 7.6 eV. While the two structures
at B7.6 and B9.2 eV are common for both compounds, the weak
structure at 4.6 eV is suppressed completely in d-benzaldehyde.
The suppression of this channel can be explained in terms of
autodetachment as a result of the slower dissociation dynamics
due to the presence of deuterium. The dehydrogenation from the

Fig. 4 Negative ion yields for dehydrogenated benzaldehyde. (a) Cross
section for the formation of the dehydrogenated benzaldehyde anion from
benzaldehyde measured with the HEM instrument. (b) Dehydrogenated
parent anion formation from benzaldehyde (black) and d-benzaldehyde
(red) measured with the Notre Dame instrument. The ion yield was
normalized with respect to the maxima of the signal at 7.6 eV.
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C7 position is thus triggered by B4.6 eV electrons. The selectivity of
H loss from benzaldehyde upon electron capture is then reachable
by proper tuning of the incident electron energy. The present
observations support the rationale of DEA as a non-statistical
dissociation process.66

3.3.3 Stripping of the formyl group. The phenyl anion,
C6H5

�, together with the neutral counterpart formyl CHO� is
formed through the cleavage of the C6–C7 bond upon DEA to
benzaldehyde, as described by reaction (4). The anion yield
exhibits a peak centred at about 4.7 eV, which arises from the
p4* resonance. It is followed by a sharply rising feature at about
6.5 eV, having an asymmetric shape that suggests a shoulder at
around 7.0 eV (Fig. 5a). These two contributions result from
core-excited resonances within the energy range for electronic
excitation. The phenyl anion stands as the most abundant anion
with a maximum cross section of about 95.8 � 10�24 m2 at
6.5 eV.

C6H5CHO + e� - C6H5CHO#� - C6H5
� + CHO� (4)

C6H5CDO + e� - C6H5CDO#� - C6H5
� + CDO� (5)

- C6DH4
� + CHO� (6)

Fig. 5b shows the phenyl anion formation from DEA to
d-benzaldehyde, as described by reaction (5), along with the
ion yield detected at m/z 78. The formation of the phenyl anion
either from benzaldehyde or d-benzaldehyde occurs at the
same electron energies. The anion at m/z 78 may form via
reaction (6) and is assigned to C6H4D�. It is formed not only
through resonances centred at 4.7 and 6.5 eV, but also through
higher-lying contributions at 7.5 and 8.5 eV. Its formation
involves an internal rearrangement exchanging the deuterium
atom from the formyl group with the hydrogen from the phenyl
moiety, or due to a reaction involving ring opening. The four
contributions may be attributed to these fragmentation
mechanisms. The positions were determined by fitting the

ion signal with Gaussian functions (please see Fig. S2 in the
ESI†).

3.3.4 Cleavage of the CQQQO bond: loss of O�

C6H5CHO + e� - C6H5CHO#� - C6H5CH� + O� (7)

- O� + C6H5CH (8)

The C6H5CH� anion is formed by the cleavage of the CQO
bond: loss of oxygen, as described by DEA reaction (7). This
reaction yields the reactive oxygen radical O� as a neutral.
C6H5CH� is observed through a single core-excited resonance
centred at 7.4 eV with a maximum cross section of about 3.84 �
10�24 m2 (Fig. 6). We report two thermodynamic thresholds
that differ by the spin multiplicity of the oxygen atom, i.e.
B5.9 eV for triplet O(3P) and B8.0 eV for doublet O(1D). Hence,
the experimental onset of 5.9 eV agrees with the neutral release
of the triplet oxygen atom upon electron attachment to benzal-
dehyde. O� is formed through a core-excited resonance with a
cross section of about 23.5 � 10�24 m2 peaking at 8.9 eV
(reaction (8)). The asymmetric shape of the feature seems to
indicate two further contributions centred at about 7.8 and
10.5 eV (Fig. 6). The experimental onset of about 6.5 eV is in line
with the predicted thermodynamic threshold of 6.02 eV for the
formation of O�.

3.3.5 Concomitant cleavage of the CQQQO and C–H bonds:
loss of OH�. The formation of C6H5C� and the radical OH�

occurs through a core-excited resonance with a cross section of
about 31.1 � 10�24 m2 peaking at 6.9 eV, as represented by
reaction (9). The shoulder may suggest a weaker contribution at
7.6 eV (Fig. 7). We predicted thermodynamic thresholds for loss of
OH� by considering the position of the hydrogen atom involved
in the reaction. The dehydrogenation from the formyl moiety
(C7 position) with further recombination with neutral oxygen
arises as the thermodynamically most favourable reaction. The
threshold for this reaction was estimated as 5.41 eV, which is below
the experimental threshold of 6.2 eV. On the other hand, when the
dehydrogenation occurs from the phenyl moiety, the respective

Fig. 5 (a) Cross section for the formation of the phenyl anion, m/z 77
C6H5

�, from benzaldehyde measured with the HEM instrument. (b) (black)
Formation of the phenyl anion from d-benzaldehyde, and formation of the
deuterated phenyl anion, m/z 78 C6H4D�, from d-benzaldehyde (in red)
measured with the Notre Dame instrument. The ion yield was normalized
with respect to the maxima of both signals.

Fig. 6 Cross section for the formation of C6H5CH� (top) and O� (bottom)
through DEA to benzaldehyde. The blue line corresponds to the con-
voluted Gaussian fit to guide the eye.
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thermodynamic thresholds are higher and range from 5.41 eV up
to 6.15 eV (Table S2 in the ESI†).

C6H5CHO + e� - C6H5CHO#� - C6H5C�+ OH� (9)

- OH� + C6H5CH� (10)

The hydroxide anion (OH�) is formed via reaction (10) where
C6H5C� is generated as a neutral radical. The ion yield shows a
core-excited resonance with a maximum cross section of about
46.1 � 10�24 m2 occurring at 7.3 eV (Fig. 7). Furthermore, the
slow decline of the signal may imply two further contributions
at 8.3 and 9.7 eV. The thermodynamic threshold was also
predicted by considering the various positions for dehydro-
genation. The lowest threshold of 4.72 eV is obtained when the
dehydrogenation occurs from the formyl group (C7 position),
similarly to the complementary anion, C6H5C�. The experi-
mental threshold of 6.4 eV lies above the predicted thermo-
dynamic threshold in all cases. The further thresholds for this
reaction range from 4.72 up to 5.98 eV and are presented in
Table S2 in the ESI.† Moreover, the ion yields of the above-
mentioned DEA reactions show structures occurring at about
the same electron energy, which suggests that a common
electronic state of the TNI undergoes a structural rearrange-
ment to give OH� or C6H5C� from benzaldehyde.

3.3.6 Loss of H2O. H2O/(OH + H)/(O + H + H) is the neutral
counterpart of the anion C6H4C�. The ion yield for the for-
mation of C6H4C� shows a single core-excited resonance with a
maximum cross section of 15.8 � 10�24 m2 peaking at 6.8 eV, as
described by reaction (11) and shown in Fig. 8a. This anion
arises from rearrangement following DEA to benzaldehyde;
therefore, we have investigated several possibilities for frag-
mentation and symmetry arguments were used to compact the
threshold predictions. Table S2 in the ESI† summarizes the
thermodynamic thresholds that lead to the formation of
C6H5C� along with water elimination. The experimental onset
of about 5.9 eV lies above the calculated thermodynamic
thresholds in all cases, which does not allow a clear assign-
ment. However, the lowest thermodynamic prediction of
2.92 eV for water elimination upon DEA to benzaldehyde
suggests the recombination of hydrogen and oxygen from the

formyl moiety (C7 position) together with an additional hydro-
gen from either C5 or C1 positions within the phenyl moiety.

C6H5CHO + e� - C6H5CHO#� - C6H4C� + H2O (11)

C6H5CDO + e� - C6H5CDO#� - C6H4C� + HDO (12)

- C6H3CD� + H2O (13)

Fig. 8b shows the formation of m/z 88 C6H4C� with loss of
semi-heavy water (HDO). The ion yield, represented in black,
shows features occurring at 6.5 and 8.5 eV. The neutral HDO
appears to be formed from dehydrogenation from a position
within the phenyl moiety along with recombination with
the deuterium and oxygen atoms from the formyl group
(reaction (12)). The anion detected at m/z 89 is assigned as C6H3CD�

formed with loss of neutral water upon DEA to d-benzaldehyde
(reaction (13)). The ion yield of m/z 89 C6H3CD� also shows a
contribution at B6.5 eV. Its formation involves the reaction of a
hydrogen atom removed from a position within the phenyl
group, with deuterium from the formyl group. This anion may
have a linear structure resulting from ring opening. However,
from the current standpoint, in terms of experimental and
theoretical approaches, we cannot describe the structure in
detail.

3.3.7 Ring opening. Anionic pentadiynylidene, HC5H�, is
formed through a single core-excited resonance with a max-
imum cross section of about 3.35 � 10�24 m2 at 8.1 eV, as
shown in Fig. 9. The possible thermodynamic threshold, EThr,
for the DEA reactions that may lead to the formation of HC5H�

can be predicted as follows:

C6H5CHO + e� - C6H5CHO#� - HC5H� + CH3 + CHO

EThr = 7.50 eV (14)

- HC5H� + H2CQCQO + H2 EThr = 5.20 eV (15)

- HC5H� + CH3CHO EThr = 4.10 eV (16)

Fig. 7 Cross section for the formation of C6H5C� (top) and OH� (bottom)
through DEA to benzaldehyde. The blue line corresponds to the con-
voluted Gaussian fit to aid the eye.

Fig. 8 (a) Cross section for the formation of C6H4C� with loss of
neutral water, from benzaldehyde measured with the HEM instrument.
(b) Formation of C6H4C� with loss of semi-heavy water (HDO) from
d-benzaldehyde (in black) and formation of C6H3CD� with loss of neutral
water from d-benzaldehyde (in red) measured with the Notre Dame
instrument. The ion yield was normalized with respect to the maximum
of the signal, respectively.
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The DEA reaction (14) describes the formation of HC5H� alongside
both methyl and formyl groups as neutrals. However, both neutral
products may recombine during the DEA process generating neutral
acetaldehyde. For this pattern, the thermodynamic threshold of
7.5 eV is thus reduced to 4.1 eV, as described by reaction (16). On
the other hand, reaction (15) that considers a distinct set of neutral
byproducts, such as ketene (H2CQCQO) and molecular hydrogen,
has a thermodynamic threshold of 5.2 eV. Consequently, at the onset
of the measured ion yield (6.5 eV), only the dissociation pathways
described by reactions (15) and (16) are energetically accessible.
Further studies, namely stepwise electron spectroscopy,24 would be
required in order to experimentally characterize the neutrals formed
alongside HC5H� upon DEA to benzaldehyde.

The anion C4H� is also formed through a single core-excited
resonance with a maximum cross section of 3.01 � 10�24 m2 at
8.2 eV, as shown in Fig. 9. The formation of this anion may
involve complex fragmentation within the molecule, similarly
to that suggested for HC5H�; and follows via:

C6H5CHO + e� - C6H5CHO#� - C4H� + C2H4 + CHO

EThr = 5.60 eV (17)

- C4H� + C3H3O + H2 EThr = 5.50 eV (18)

The DEA reactions (17) and (18) that represent the formation of
C4H� possess closely lying thermodynamic thresholds, although the
considered neutral by-products are different. The reaction (17)
considers the formation of ethene and formyl as neutrals, while
reaction (18) considers C3H3O and molecular hydrogen. The experi-
mental onset for the formation of C4H� is about 6.4 eV, which is
higher than both thermodynamic thresholds. Finally, it should be
noted that the anions C4H� and HC5H� display a contribution
centred at the same electron energy, which is evidence that both
anionic species may share an electronic state of the TNI.

4. Conclusions

In the present study, we have comprehensively investigated
electron attachment to benzaldehyde with three different

approaches, namely mass spectrometry, electron scattering
and quantum chemistry calculations. This combination pro-
vides an in-depth analysis of benzaldehyde’s fragmentation,
since mass spectrometry allowed the identification of long-lived
charged species, while the scattering calculations provide
the short-lived states. Furthermore, the quantum chemistry
study gives insight into the dissociation reactions and neutral
products.

The formation of the intact benzaldehyde anion at energies
close to 0 eV occurs via DEA to the dimer. This process is
associated with an effective stabilization of the valence bound
state p1* of the anion. The rich fragmentation pattern com-
prises nine fragment anions formed with modest DEA cross
sections peaking at relatively higher energies. Further, the
lower lying resonances found by theoretical calculations do
not result in DEA due to thermodynamic barriers for the
predicted fragmentation patterns. Therefore, these resonances
can only decay by electron autodetachment.

Because the phenyl moiety in benzaldehyde resembles ben-
zene, similar to the present study, three p* shape resonances
were identified for benzene using the SMCPP method.67 The
first two resonances have been pointed out as degenerate and
occurring at B1.4 eV, while the third resonance occurs at
B4.9 eV. The presence of the formyl moiety in benzaldehyde
breaks the degeneracy of the two first p* states, estimated here
at 0.78 and 2.48 eV. The same characteristic was noted pre-
viously for other benzene-related compounds, such as phenol,
by using the same method.68

The study with d-benzaldehyde clarified that H loss from
benzaldehyde is remarkably selective with respect to the inci-
dent electron energy, where the p4* shape resonance at 4.6 eV is
suppressed upon deuteration of the formyl moiety, while the
higher-lying core-excited resonances are preserved for both
compounds.

In conclusion, the results obtained here deliver a compre-
hensive description of the low-energy electron-induced disso-
ciation of benzaldehyde and may thus contribute to better
knowledge of this compound for medical applications such
as anti-cancer therapies. The electron-induced loss of O�, OH�

and a collection of further radicals and anions seem to suggest
that the anti-cancer effect of benzaldehyde may be enhanced in
concomitant radiotherapy and chemotherapy, though further
studies, e.g., in aqueous solution or in water clusters, are
required in order to model cellular conditions.
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P. Limão-Vieira, E. Illenberger and S. Denifl, Nat. Commun.,
2019, 10, 2388.

27 J. Rak, L. Chomicz, J. Wiczk, K. Westphal, M. Zdrowowicz,
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37 M. M. Dawley and S. Ptasińska, Int. J. Mass Spectrom., 2014,
365–366, 143–151.

38 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato,
A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts,
B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov,
J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini,
F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson,
D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega,
G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,

Paper PCCP

Pu
bl

is
he

d 
on

 1
6 

M
ar

ch
 2

02
0.

 D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

A
E

T
SB

IB
L

IO
T

H
E

K
 I

N
N

SB
R

U
C

K
 o

n 
4/

6/
20

20
 2

:3
6:

51
 P

M
. 

View Article Online



This journal is©the Owner Societies 2020 Phys. Chem. Chem. Phys.

Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell,
J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro,
M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin,
V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar,
J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo,
R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma,
O. Farkas, J. B. Foresman and D. J. Fox, Gaussian Inc.,
Wallingford CT, 2009.

39 A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
40 T. H. Dunning, J. Chem. Phys., 1989, 90, 1007–1023.
41 A. M. Scheer and P. D. Burrow, J. Phys. Chem. B, 2006, 110,

17751–17756.
42 K. Takatsuka and V. McKoy, Phys. Rev. A: At., Mol., Opt.

Phys., 1981, 24, 2473–2480.
43 K. Takatsuka and V. McKoy, Phys. Rev. A: At., Mol., Opt.

Phys., 1984, 30, 1734–1740.
44 G. B. Bachelet, D. R. Hamann and M. Schlüter, Phys. Rev. B:
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Chapter 8
Summary & Outlook

The goal of this PhD thesis was to extend the current knowledge on the radiosensitization

mechanism within the physico-chemical stage of radiation damage by studying the forma-

tion of ions and neutral radicals in collision processes with radiosensitizer compounds. In

order to fulfill such goal, three mass spectrometry setups were used to study electrospray

ionization of ronidazole and electron interactions with biomolecules, especially dissociative

electron attachment to 5-trifluoromethanesulfonyl-uracil (OTfU), and to benzaldehyde.

8.1 Collision-induced dissociation of biomolecules

Part I - collision-induced dissociation of biomolecules - described the study of fragmentation

of protonated ronidazole in a high-energy CID experiment. Low-energy CID experiments,

as well as density functional theory (DFT) quantum chemical calculations were also per-

formed at the Université de Lyon. The main fragmentation channel observed in both low-

and high-energy CID studies leads to m/z 140 ion formation involving the release of neutral

counterpart –NH2CO2H after intramolecular proton transfer. DFT calculations revealed

that proton transfer can proceed from (i) the N3 position of the imidazole ring, and (ii)

the -CH3 group. Electrospray ionization of a ronidazole solution prepared with deuterated

solvents showed that, in high-energy CID, the proton transfer reaction proceeds via both

channels with contributions of 81% and 19%, respectively, while in low-energy CID only
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8.2. Electron interactions with biomolecules

pathway (i) is observed. Moreover, the KER of the proton transfer reaction leading to m/z

140 ion formation was determined in the high-energy CID experiment, and it amounts to

10-23 meV, while the release of NO• radical has a KER value of 339 meV. This investiga-

tion contributes to the understanding of the nitroimidazole chemistry, in terms of fragment

formation and determination of KER values for the most important dissociation channels.

The obtained outcomes are very relevant for the development and design of nitroimida-

zolic compounds with potential radiosensitizer properties, as well as for the detection and

screening methods of such drugs in water and food.

8.2 Electron interactions with biomolecules

Part II - electron interactions with biomolecules - discussed the potential radiosensitiz-

ers 5-trifluoromethanesulfonyl-uracil (OTfU), and benzaldehyde, in terms of negative ion

formation and resonance energies.

OTfU is a modified pyrimidine, with a triflate group (-OTf, CF3SO3) at uracil (U)

C5 position. The OTf group has a large electron affinity of 6.22 eV, constituting thereby an

efficient electron scavenger. Makurat et al.[176] studied DEA to 5-trifluoromethanesulfonyl-

2’-deoxyuridine (OTfdU) in aqueous solution, a similar compound based on 2’-deoxyuridine

(dU). The study showed that OTfdU is efficiently decomposed upon dissociative electron

attachment (DEA) in an aqueous solution, in which dU formation, along with the forma-

tion of triflyl (Tf– ) anion by cleavage of the C5-O bond was observed as the dominating

ion. In a bottom-up approach, OTfU a smaller compound without the sugar unit was

investigated in the gas-phase, and quantum chemical studies provided the thermochemical

thresholds for the observed DEA reactions. OTf– formation alongside the reactive uracil-

5-yl was identified as the most abundant ion formed, in line with the formation of Br–

observed in theoretical and experimental DEA studies with 5-bromouracil (5-BrU).[70, 76,

77] Providing this, the radiosensitization mechanism by OTfU (and OTfdU), a potential

radiosensitizer of the class of the modified pyrimidines, regarding negative ion and radicals

formation was explored in the gas-phase, as well as in aqueous solution. Furthermore, as

far as the administration of a radiosensitizer is concerned, its toxicity shall be as low as
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reasonably possible. In fact, OTfdU showed low citotoxicity against human breast cancer

cells in a concentration range of 0 up to 2 × 10−4M.[176] In summary, both studies en-

dorse the use of OTfU (and OTfdU) as radiosensitizer drugs in concomitant chemo- and

radio-therapy treatments.

Benzaldehyde is a simple aromatic compound, which was investigated as a chemother-

apeutic drug to fight cancer.[177, 178] The formation of temporary negative ions, as well

as the dissociation into anionic fragment was studied with three approaches. Calculations

on electron scattering from benzaldehyde indicate a π∗ valence bound state of the anion

of -0.48 eV, and three π∗ shape resonances located at 0.78, 2.48 and 5.51 eV. In addi-

tion to mass spectrometry employed to identify the long-lived charged species produced

upon electron attachment, quantum chemical calculations predicted the thermochemical

threshold for the observed anions. The formation of the molecular anion of benzaldehyde

occurred via DEA to a dimer at electron energies close to ∼0 eV. This process is associated

with stabilization of the π∗ valence bound state of the anion. Further, nine fragment an-

ions were detected with modest DEA cross sections at relatively higher electron energies.

C6H5
– is the most abundant anion with a DEA cross section of 95.8× 10−24 m2 at 6.5 eV.

The lower-lying shape resonances identified by electron scattering calculations only lead

to spontaneous electron emission, since the DEA features were observed at higher electron

energies.

Furthermore, it was demonstrated that DEA to d-benzaldehyde shows a selective

H loss with respect to the electron energy, since the π∗4 shape resonance at 4.6 eV is

suppressed in the deuterated form. In the studies with d-benzaldehyde, the formation of

novel fragment anions containing deuterium was identified, namely C6DH4
– and C6H3CD– ,

through higher-lying features not exhibited in standard benzaldehyde. The molecular

structure of such anions is yet to be investigated. Finally, these findings present an in-depth

analysis of the electron attachment process to benzaldehyde, although the potential use

as a radiosensitizer requires further investigations, for instance in solution or in hydrated

conditions in order to tentatively mimic the conditions within biological media.
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8.3 Outlook

The investigations performed throughout this thesis represent an important progress in the

search of a complete description of the radiosensizitation mechanism. Several additional

studies can be, however, carried out in order to increase the impact of the presented find-

ings, not only in the field of radiosensitizers or radiation-induced damage to DNA. In this

respect, the home-built ESI source may be modified to yield solvated ions bridging the gap

between the gas- and the solution phases. The currently installed ion funnel is efficient

in transferring ions from the atmospheric pressure to the high vacuum stages of the ESI

source. However, the electrosprayed ions undergo several collisions with the background

gas often leading to fragmentation of weakly-bounded water clusters, though biomolecular

clusters, such as histidine clusters can be produced. Therefore, its replacement by a skim-

mer cone may avoid the fragmentation of water clusters. Nevertheless, the skimmer-based

alternative may reduce the total ion current produced by the ESI-source, since supersonic

expansion at the interface between the atmospheric and high vacuum stages of the ESI

source may lead to a highly divergent ion beam, that cannot be efficiently focused on the

entrance slit of the mass spectrometer. Hence, in principle, the formation of water clusters

in the current ESI source may be explored in the future. Another possibility for future work

is the study of electron-transfer dissociation, instead of collision-induced dissociation. The

study of electron-induced fragmentation of ions can be realized by replacing the currently

installed collision cell with a electron gun.

Regarding the electron attachment experiments, it may be relevant to explore more

complex radiosensitizer compounds and compare their reactivity towards LEEs with the

reactivity of already studied compounds, accordingly to the bottom-up approach. Studies

involving water clusters or aqueous solutions are also highly relevant to understand the

radiosensitization mechanism. Regarding the design and development of novel radiosen-

sitizer compounds, further in vitro studies with healthy and tumour cells may be carried

out, since DEA experiments are not able to assess the side-effects of the mentioned com-

pounds to the cells, and, in turn to the patient. Moreover, the determination of absolute
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DEA cross sections can be very useful in order to exactly quantify the efficiency of the

formation of negative ions upon electron attachment. Though Wippi experimental setup

can be employed to determine absolute DEA cross sections, several improvements can be

implemented to reduce the uncertainty of the measured cross section values, as previously

discussed in section 6.1.8.
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25B. Boudäıffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, “Resonant formation

of DNA strand breaks by low-energy (3 to 20 eV) electrons.”, Science 287, 1658–1660

(2000).

26F. Martin, P. D. Burrow, Z. Cai, P. Cloutier, D. Hunting, and L. Sanche, “DNA strand

breaks induced by 0-4 eV electrons: The role of shape resonances”, Physical Review

Letters 93, 068101 (2004).
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60J. M. Khreis, S. Pandeti, L. Feketeová, and S. Denifl, “High-energy collision-induced dis-

sociation of radiosensitizer anions: Nimorazole and metronidazole”, International Jour-

nal of Mass Spectrometry 431, 1–7 (2018).

61J. M. Khreis, J. Reitshammer, V. Vizcaino, K. Klawitter, L. Feketeová, and S. Denifl,
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144S. Ptasińska, S. Denifl, P. Scheier, E. Illenberger, and T. D. Märk, “Bond- and site-

selective loss of H atoms from nucleobases by very-low-energy electrons (< 3 eV)”,

Angewandte Chemie - International Edition 44, 6941–6943 (2005).

145P. D. Burrow, G. A. Gallup, A. M. Scheer, S. Denifl, S. Ptasińska, T. Märk, and P.
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