
A Work Project, presented as part of the requirements for the Award of a Master's degree in Finance from the Nova School of Business and Economics.

The inefficiencies of car utilization in urban areas – characterization of utopic optimal carsharing scenario, enablers and barriers that lead to different future transports mix and the pivotal role of technology enhancements

João Pedro Viana Fragoso - 33893

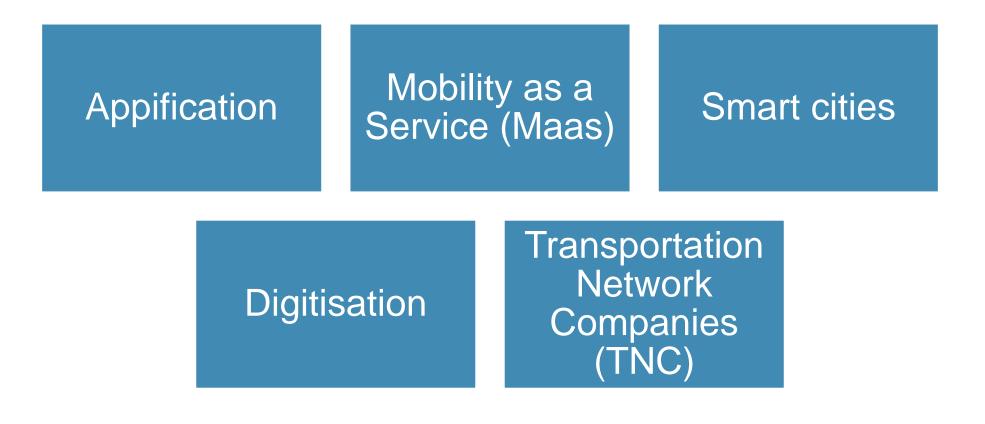
Work project carried out under the supervision of: Professor Miguel Pita

The inefficiencies of car utilization in urban areas – characterization of utopic optimal carsharing scenario, enablers and barriers that lead to different future transports mix and the pivotal role of technology enhancements



#### Abstract

Urban mobility is undergoing a very big transformation. Appification is the phenomenon enabling a rapid change and the rise of new players relying heavily on technology to reach end users. The benefits are of various kinds and have real implications on environment as well as on socioeconomic conditions of those who live in urban areas. The future of urban mobility ecosystem is not yet completely defined, although it will probably be greener and smarter.


Keywords: Appification, Mobility as a Service, Shared Mobility, Smart Cities

This work used infrastructure and resources funded by Fundação para a Ciência e a Tecnologia (UID/ECO/00124/2013, UID/ECO/00124/2019 and Social Sciences DataLab, Project 22209), POR Lisboa (LISBOA-01-0145-FEDER-007722 and Social Sciences DataLab, Project 22209) and POR Norte (Social Sciences DataLab, Project 22209).

The inefficiencies of car utilization in urban areas – characterization of utopic optimal carsharing scenario, enablers and barriers that lead to different future transports mix and the pivotal role of technology enhancements

| Current<br>Situation vs<br>Optimal  | <ul> <li>Carsharing and carpooling are two types of app-based urban mobility services.</li> <li>In a utopic optimal situation, the number of cars needed to fulfill demand would be lower than in the current situation. Assuming the utopic scenario in which all cars are shared, users would be able to save in commuting because carsharing costs are lower than ownership costs of private car.</li> <li>A lower number of cars reduces the number of parking lots needed and therefore increases available space for alternative uses.</li> </ul> |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| situation<br>Enablers &<br>Barriers | <ul> <li>Smartphone is the device that enables the operation of app-based players, which often enter the market with lower prices than incumbents.</li> <li>Generational renewal and change in mentality potentiate a social approach to mobility which is heavily reliant on technology.</li> <li>Lack of charging infrastructures and lower comparable autonomy of electric vehicles are key barriers for their growth.</li> <li>Fleet rotation from ICE cars to electric cars has a negative impact on fiscal revenues over fossil fuels.</li> </ul> |
| Transports Mix<br>Projections       | <ul> <li>Overall CO2 eq. emissions are expected to be reduced by 42% in LMA and 48% in PMA.</li> <li>The transports mix projections up to 2050 reveal a shift from ICE cars to electric cars and a higher importance of mass transports in the urban mobility mix.</li> </ul>                                                                                                                                                                                                                                                                           |

"Cities are increasingly witnessing the impact of more disruptive change, whether as a result of technological innovation, socioeconomic change or new policy interventions" (Rode and Hoffmann, 2015)





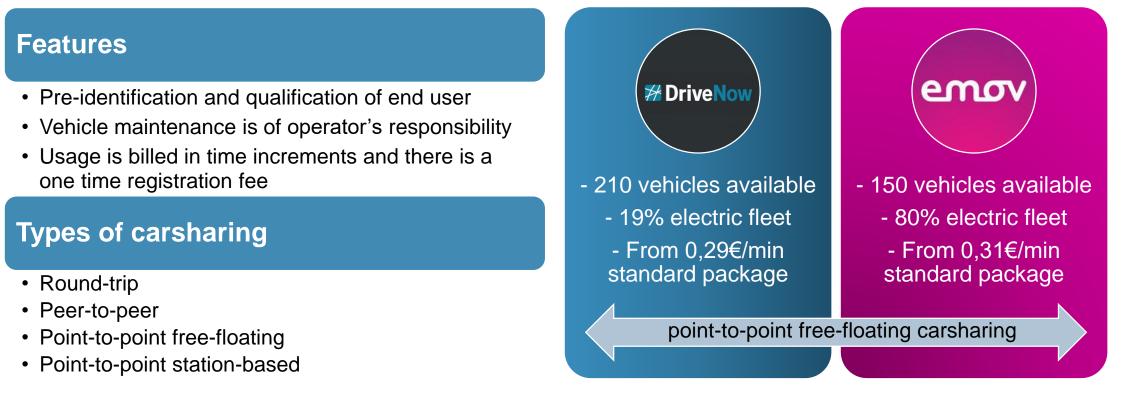
Carsharing and carpooling are shared mobility services enabled by TNCs and appification. An utopic carhsaring scenario is compared with the current situation to assess socioeconomic impact of all cars being shared

#### Carsharing

- Concept and features
- Main players operating in Portugal

#### Carpooling

- Concept and features
- Main players operating in Portugal


#### **Optimal Carsharing Scenario**

- Rationale
- Supply & Demand
- Socioeconomic impact



# Carsharing is a shared mobility service in which the user pays a fee to go from point A to B using a car he does not own. DriveNow and EMOV are the main carsharing players in Portugal

People no longer face the car as a good, but as a service instead (Mobility as a Service). This allows for commuting without bearing ownership costs and enjoy, at least in developed carsharing markets, the availability and flexibility the private car provides.





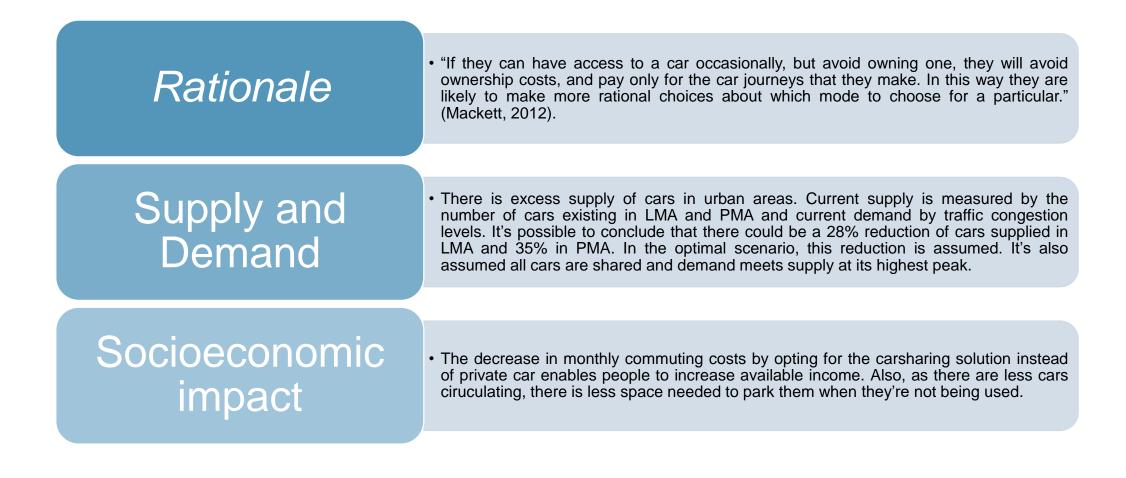
### Carpooling consists on sharing a private car and the trips' costs between the various passengers. The two main players in Portugal are Via Verde Boleias and BlaBlaCar

With the appification phenomenon, many players have seen an opportunity to enter the carpooling market. By carpooling, occupation rates increase and need for cars decreases.

Both Via Verde Boleias and BlaBlaCar allow for for on-demand ride arrangements through mobile apps.

| Travel time savings                                      | <ul> <li>Reduced traffic congestion due to<br/>increased occupancy rates.</li> </ul>                               |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| Cost savings                                             | <ul> <li>Users with higher commute distances<br/>are the ones that benefit the most</li> </ul>                     |  |
| Less cars in circulation<br>and reduced GHG<br>emissions | <ul> <li>Up to 75% GHG emissions reduction<br/>when commutting</li> </ul>                                          |  |
| Improved accessibility for households                    | <ul> <li>There are jobs outside city centres and<br/>out of reach using public transport's<br/>network.</li> </ul> |  |
| Improved safety                                          | <ul><li>Higher concentration levels</li><li>Increased attention to speed limits</li></ul>                          |  |

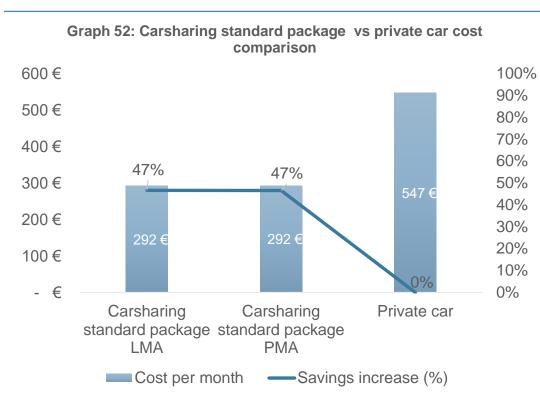


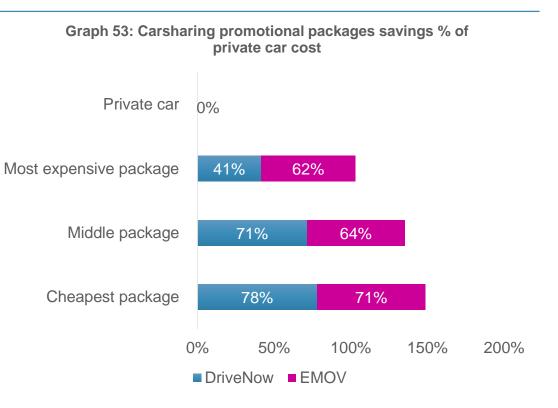

**Operating since 2017** Over 200 000 users - Recommended price per km - Launched as part of new of wave of Via Verde app-based services



- 30M users worldwide - In Portugal since 2012 Over 300 000 users in Portugal - Recommended price per km - Improvement in occupation rate (2,8 vs 1,6 average private car in Portugal)




The utopic optimal carsharing scenario evaluates the socioeconomic impact of eliminating excess supply of cars in LMA and PMA

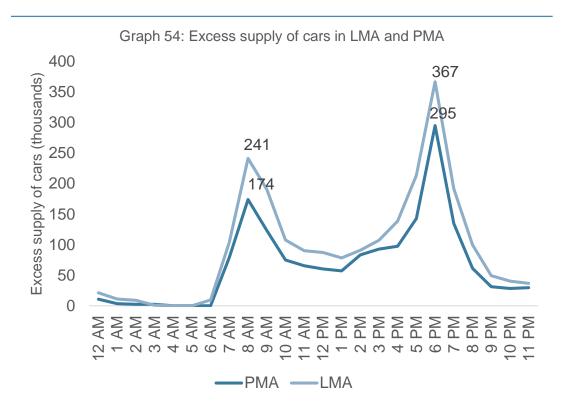




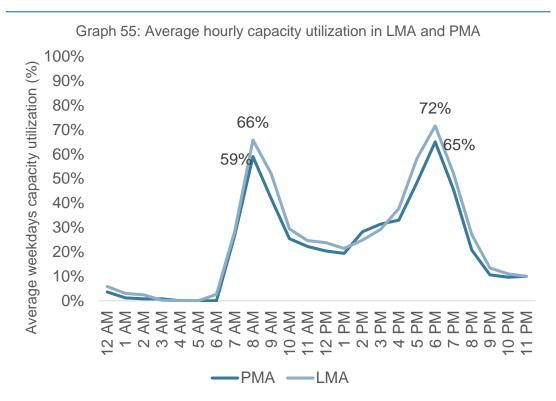

# Carsharing solutions can provide, on average, up to 47% in savings in LMA and PMA in comparison with the private car. Promotional packages of hours or km can boost savings further up to 78%

Not owning a car and opting for standard pay by trip plans offered by carsharing solutions represents an increase in savings of up to 255€ per month. By Choosing a promotional package, savings can increase up to 387€ and 427€, for EMOV and DriveNow respectively.






Source: made by the authors based on Reference list 94) and Appendix 13, part 2




# There is excess supply of cars in both LMA and PMA. Considering the 72% and 65% peaks of average capacity utilization, the number of cars in LMA and PMA could be reduced by 28% and 35% respectively

Excess supply of cars in LMA can go up to 367 000 in LMA and 295 000 in PMA.

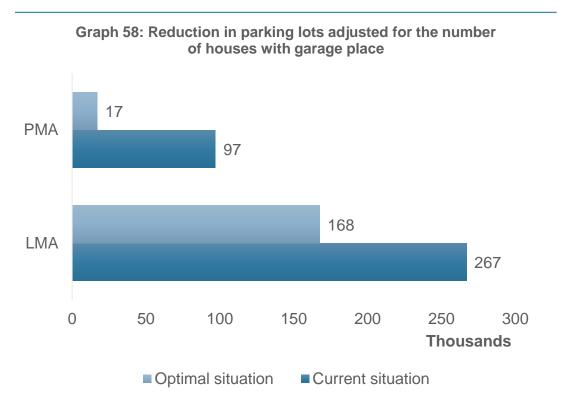


At morning and evening peaks of demand, LMA can reach higher levels of capacity utilization than PMA, although it can only achieve 66% and 72% respectively.

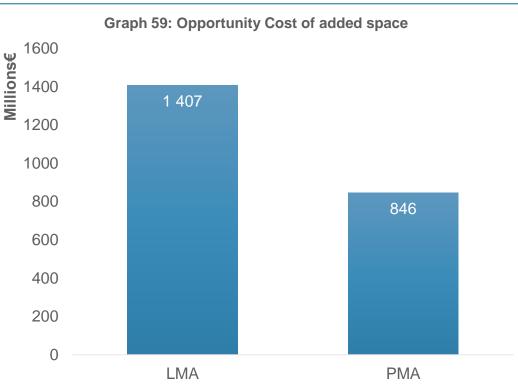




Average annual gain from leaving the private car and using exclusively carsharing solutions can reach 5 045€ and 5 201€ per individual, in LMA and PMA respectively


The optimal carsharing scenario reduction of 28% and 35% of The best carsharing option is to go for 3h promotional package cars in LMA and PMA would imply salary savings of 30% and provided by DriveNow with a cost of 120€ per month. 40%, respectively. Graph 56: Private car vs carsharing solutions cost Graph 57: Impact of carsharing costs and car ownership comparison costs on annual salary 600€ Annual salary after car ownership costs Annual salary after carsharing costs 547€ 500€ 210€ 400€ 198€ 11 549€ PMA 6 347 € 300€ 320€ 160€ 200€ 156€ 100€ 120€ LMA 10 509 € 15 554 € - € Cheapest Middle package Most expensive Average Cost package package ■ DriveNow ■ EMOV ■ Private car 5 000 € 10 000 € 15 000 € 20 000 € 25 000 € 30 000 €

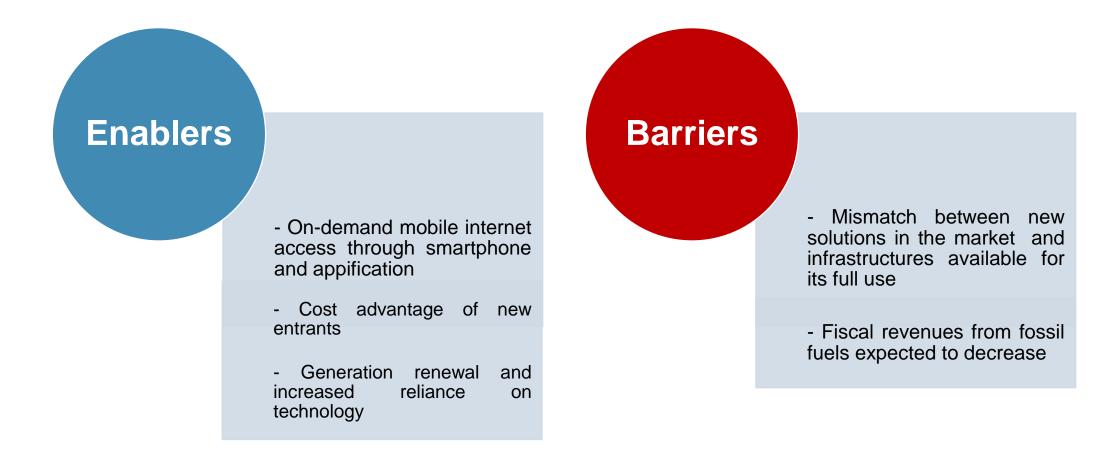
Source: made by the authors based on Reference list 109) to 111) and Appendix 15. part 1




## In an optimal scenario, number of parking lots could be reduced by 99 400 in LMA and 79 985 in PMA

The 28% and 35% reduction in number of cars in LMA and PMA respectively, would imply a decrease in need for parking lots of 37% in LMA and 82% in PMA.

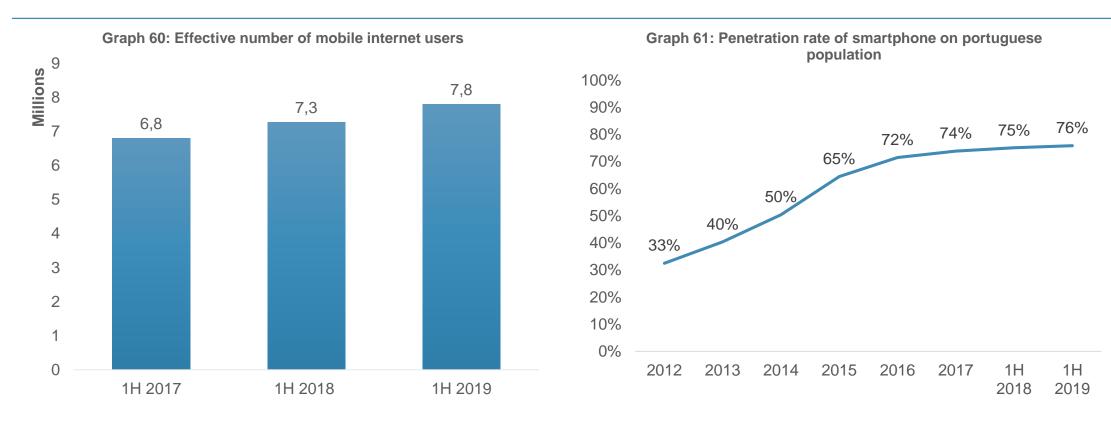



The amount of freed public space from the reduction in parking lots could have an alternative use with a reference value of 1407 M€ in LMA and 846 M€ in PMA if cost of space in considered.



Source: made by the authors based on Reference list 111 to 113) and Appendix 15, part 2



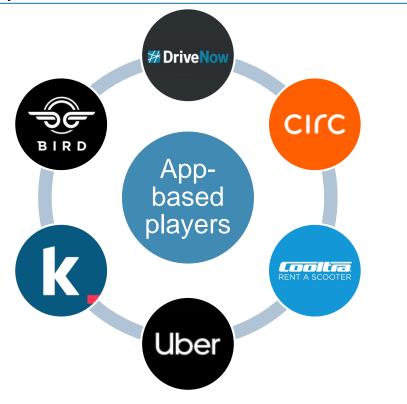

Urban mobility is being reshaped to fight GHG emissions and traffic congestion. Enablers are monetary, technological and generational. Barriers are related to infrastructures and the dependence on fossil fuels



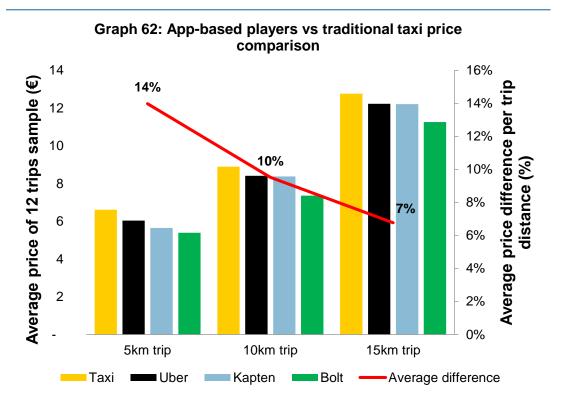


# App-based urban mobility trend surged a few years ago and is expected to last - the smartphone is the tool that allows app-based players to interact with customers

Efective number of mobile internet users increased 13% between the end of first half of 2017 and 2019. The penetration rate of smartphone on portuguese population has also been growing, from 33% in 2012 to 76% in the first half of 2019.




Source: made by the authors based on Reference list 79) and 131) and Appendix 9




### Some app-based players offer a cost advantage over traditional ones. Others only extend the range of mobility options in urban areas

New players operating in the mobility field have emerged thanks to appification. Companies such as Uber replicate already existing services while DriveNow or Circ offer completely new solutions.



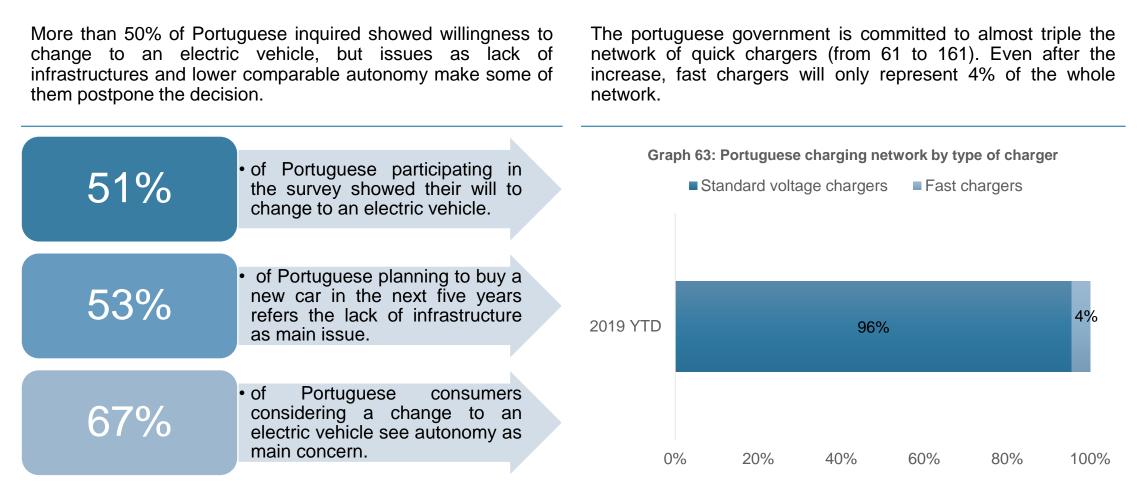
There is a cost advantage for users when going for new appbased players. On average, the top 3 new entrants can be up to 14% cheaper than traditional taxi.






# Generational renewal is shaping the urban mobility by making it more technological and oriented to the community

From Generation X (ages 39-54) to Millennials (ages 23-38) and finally to Generation Z (ages 22 & under), several technology enhancements were introduced and with it, a new way of looking at urban mobility.

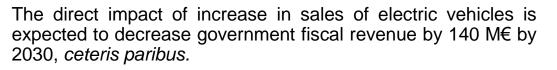

#### "

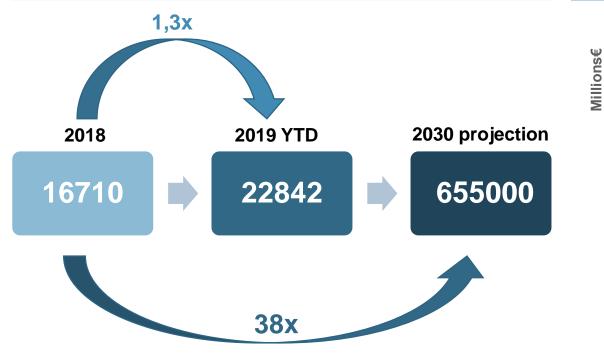
Gen X transitioned from analog to digital with the rise of the personal computer. Millennials grew up *foreverconnected* to the Internet. In this same way, Gen Z is more comfortable with connected technology, digital devices, AI and machine learning than any previous generation. (Allison+Partners, 2019)

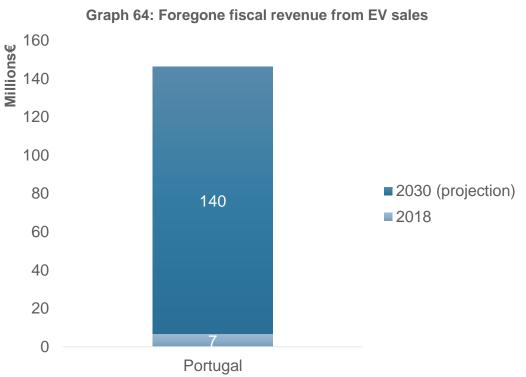




# Lack of charging infrastructures and lower comparable autonomy are the main barriers slowing down the change of portuguese consumers to electric vehicles





Source: made by the authors based on Reference list 84 and 85) and Appendix 11

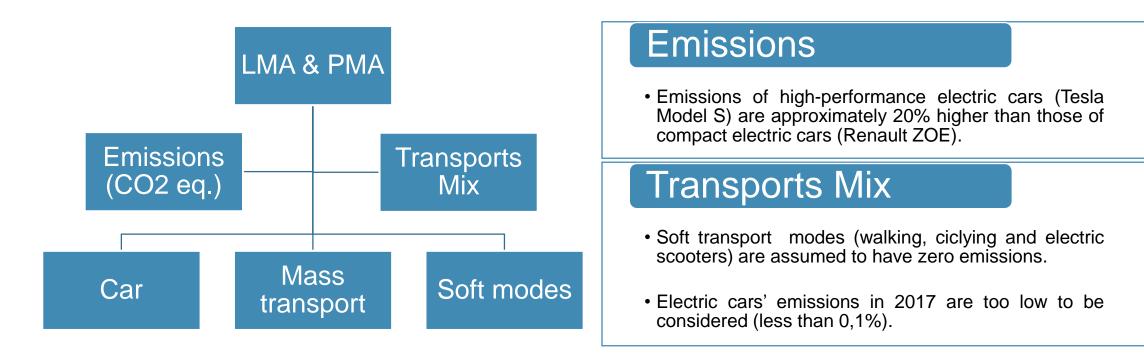



## Increase in number of electric vehicles sold has negative impact on fiscal revenues over fossil fuels

Electric vehicles' sales are expected to increase more than 38 times EV sales up to 2018.



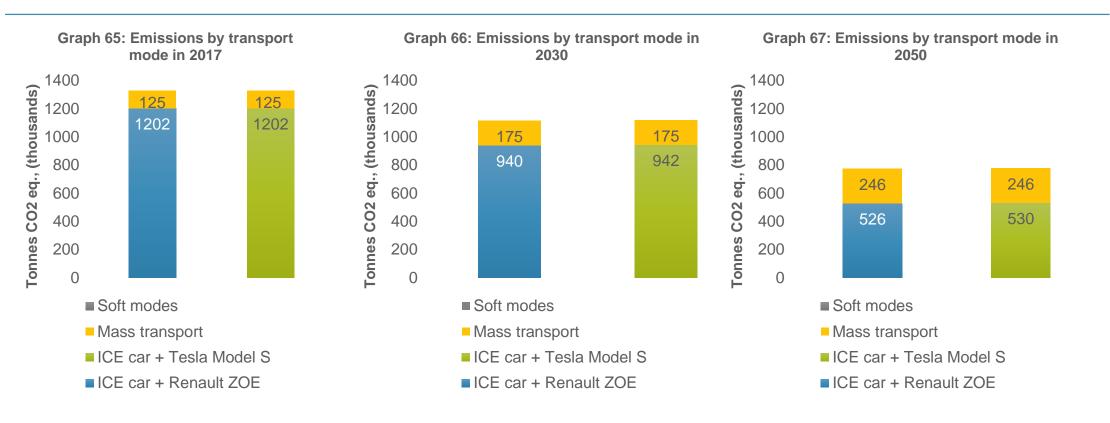







### Emissions and Transports Mix – 2017, 2030 and 2050

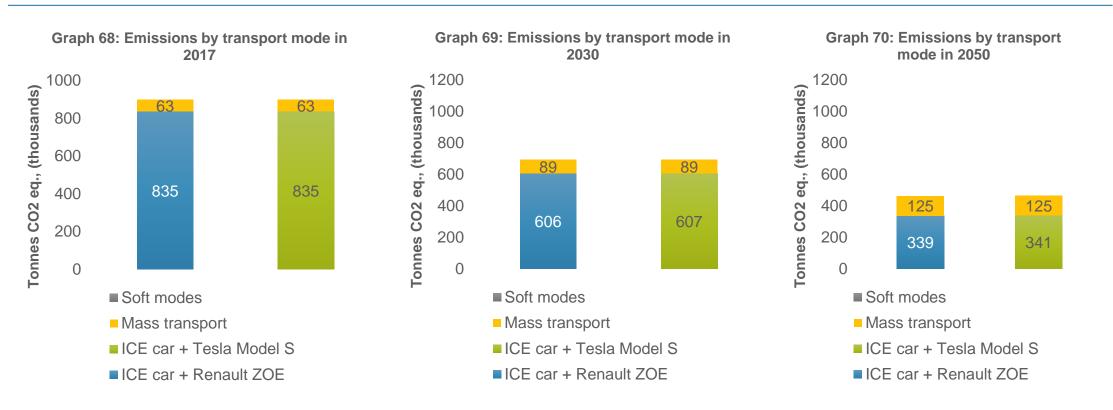
Forecasted emissions scenarios until 2050 show an overall decrease in both LMA and PMA.


Forecasted transports mix until 2050 shows a shift from ICE cars to electric cars as well as na increase in weight of mass transports.





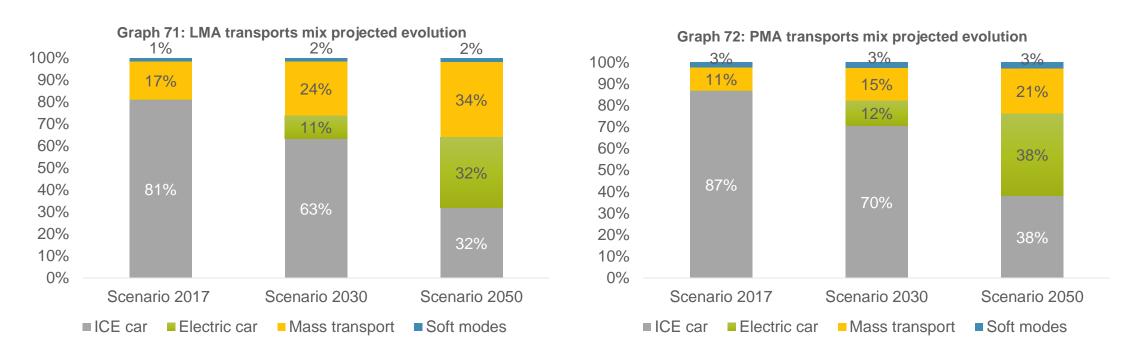
# In LMA, total CO2 eq. emissions are to decrease by approximately 42% from 2017 to 2050


Mass transports' CO2 emissios are expected to quadruple from 2017 to 2050. Despite the increase, the total CO2 emissions are a 42% lower than in 2017, mainly due to the expected shift from ICE cars to electric cars.





# In PMA, total CO2 eq. emissions are to decrease by approximately 48% from 2017 2050


As in LMA, the reduction in CO2 emissions in PMA is mainly due to the shift from internal combustion cars to electric. This change, together with the increased weight of mass transports in the mix, contributes to decrease overall emissions.





### The forecasted scenarios between 2017 and 2050 show lower dependence on ICE cars and a shift to electric cars. Mass transports are expected to double current weight on the transports mix

In both LMA and PMA, 2050 is projected to be the year in which the weight on eletric cars equals the weight of internal combustion cars, regarding the metropolitan areas transports mix.



#### **Reference list**

- 73) Bouton, Shannon, Knupfer, Stefan M., Mihov, Ivan and Swartz, Steven. 2015. "Urban mobility at a tipping point."
- 74) TIS. 2019. "Mobility as a Service". Accessed December 10. https://www.tis.pt/mobility-as-a-service-maas.html
- 75) Rode, Philipp, and Hoffmann, Christian. 2015. "Towards New Urban Mobility The case of London and Berlin". LSE Cities, 6-13.
- 76) Eggers, William D. and Skowron, John. 2018. "Forces of change: Smart cities." Deloitte insights, 2-10.
- 77) Mobility behaviour. 2017. "What are Ridesourcing / Transportation Network Company (TNC) Services?" Accessed September 30. https://mobilitybehaviour.eu/2017/07/26/what-are-ridesourcingtransportation-network-company-tnc-services/
- 78) ANACOM. 2019. "Internet móvel chega aos 7,8 milhões de utilizadores." Accessed October 30. https://www.anacom.pt/render.jsp?contentId=1483125
- 79) ANACOM. 2018. "7,2 milhões de pessoas em Portugal usam Internet móvel". Accessed October 30. https://www.anacom.pt/render.jsp?contentId=1462951
- 80) Pew Research Center. 2019. "Generations and Age". Accessed November 1. https://www.pewresearch.org/topics/generations-and-age/
- 81) Allison+Partners. 2019. "Technology's influence on how we get from here to there". The birth of mobility culture, 1-7.
- 82) MeetingoftheMinds. 2019. "How Gen Z impacts urban mobility". Accessed November 2. https://meetingoftheminds.org/how-gen-z-impacts-urban-mobility-32197
- 83) Fleet magazine. 2019." LeasePlan Mobility Monitor 2019: Portugueses favoráveis à aquisição de um veículo elétrico". Accessed October 29. https://fleetmagazine.pt/2019/10/23/leaseplan-mobility-monitor-2019/
- 84) TSF. 2019. "É já em abril. Carros elétricos podem ser carregados em parques estacionamento privados". Accessed October 30. <a href="https://www.tsf.pt/economia/e-ja-em-abril-carros-eletricos-podem-ser-carregados-em-parques-estacionamento-privados-10647987.html">https://www.tsf.pt/economia/e-ja-em-abril-carros-eletricos-podem-ser-carregados-em-parques-estacionamento-privados-10647987.html</a>
- 85) Electromaps. 2019. "charging station on Portugal". Accessed December 7. https://www.electromaps.com/en/charging-stations/portugal
- 86) Uve. 2019. "Recorde de vendas de VE em 2018 em Portugal". Accessed November 21. https://www.uve.pt/page/recorde-de-vendas-de-ve-em-2018emportugal/
- 87) Uve. 2019. "Vendas de Veículos Elétricos em Outubro 2019". Accessed November 21. https://www.uve.pt/page/vendas-portugal-outubro-2019/
- 88) Diário de Notícias. 2019. "Veículos elétricos vão aumentar 40 vezes em Portugal até 2030. Chegam aos 655 mil". Accessed October 21. <u>https://www.dn.pt/edicao-do-dia/30-abr-2019/veiculos-eletricos-vao-aumentar-40-vezes-em-portugal-ate-2030-chegam-aos-655-mil-10845132.html</u>
- 89) Pordata. 2019. "Venda de combustíveis para consumo". Accessed December 5. https://www.pordata.pt/Portugal/Venda+de+combustíveis+para+consumo-1131
- 90) Direção-Geral Energia e Geologia. 2019. "Preços de combustíveis a partir de 2004". Accessed November 25. http://www.dgeg.gov.pt/?cn=6891700270037129AAAAAAAA
- 91) Público. 2019. "Onde vai o Estado gastar em 2019? E de onde vem a receita?". Accessed October 5. https://www.publico.pt/2018/11/29/infografia/onde-estado-vai-gastar-2019-onde-vem-receita-287
- 92) Gpeari. 2019. "Orçamento do Estado explicado". Accessed November 22. http://www.gpeari.gov.pt/analise-economica/publicacoes/orcamento-do-estado/oe-explicado-20191-9-v.pdf
- 93) DriveNow. 2018. "DriveNow vai ter 40 carros eléctricos na sua frota". Accessed November 10. https://content.drive-now.com/sites/default/files/images/2018.11.09 DriveNow 40Carros Electricos 0.pdf
- 94) Emov. 2019. "Emov". Accessed November 10. https://www.emov.eco/lisboa/?lang=pt-pt
- 95) DriveNow. 2018. "DriveNow vai ter 40 carros eléctricos na sua frota". Accessed November 10. https://content.drive-now.com/sites/default/files/images/2018.11.09\_DriveNow\_40Carros\_Electricos\_0.pdf
- 96) Levine, Dr. Scott Zolfaghari, Dr. Allreza and Polak, Professor John. 2014. "Carsharing: Evolution, challenges and opportunities". Scientific Advisory Group Report, 3-13.
- 97) Pires, Osvaldo. 2019. "Serviços de carsharing em Portugal." Auto profissional, January | February 2019: 3-25.
- 98) Blog blablacar. 2019. "A plataforma de partilha de carro BlaBlaCar atinge 300.000 de membros em Portugal". Accessed November 28. <a href="https://blog.blablacar.pt/newsroom/noticias/a-plataforma-de-partilha-de-carro-blablacar-atinge-300-000-de-membros-em-portugal">https://blog.blablacar.pt/newsroom/noticias/a-plataforma-de-partilha-de-carro-blablacar-atinge-300-000-de-membros-em-portugal</a>
- 99) Shaheen, Susan, PhD, Cohen, Adam, MCRP and Bayen, Alexandre, PhD. 2018. "The Benefits of Carpooling." 3-14. DOI: 10.7922/G2DZ06GF

#### **Reference list**

- 100) Transportes em revista.. 2017. "Via Verde vai dar 'boleias' e democratizar a mobilidade". Accessed November 30. http://www.transportesemrevista.com/default.aspx?tabid=210&id=56927
- 101) Auto monitor. 2019. "App Via Verde ultrapassa o milhão de downloads". Accessed October 2019.. https://automonitor.sapo.pt/2019/01/11/novidades/noticias/app-via-verde-ultrapassa-o-milhao-de-downloads/
- 102) Mackett, Roger L. 2012. "Reducing Car Use in Urban Areas". Chapter 10: 2-16. DOI: 10.1108/S2044-9941(2012)0000003012
- 103) DriveNow. 2019. "Resumo dos preços DriveNow". Accessed September 25. https://www.drive-now.com/pt/pt/pricing/
- 104) Tomtom. 2019. "Lisbon Traffic flow". Accessed November 20. https://www.tomtom.com/en\_gb/traffic-index/lisbon-traffic
- 105) Tomtom. 2019. "Porto Traffic flow". Accessed November 20. https://www.tomtom.com/en\_gb/traffic-index/porto-traffic
- 106) Eco. 2019. "Um trabalhador em Lisboa ganha mais 335 euros do que no Porto. Veja aqui qual o salário médio no seu distrito". Accessed Septmeber 18. <a href="https://eco.sapo.pt/2019/07/08/um-trabalhador-em-lisboa-ganha-mais-335-euros-do-que-no-porto-veja-aqui-qual-o-salario-medio-do-seu-distrito/">https://eco.sapo.pt/2019/07/08/um-trabalhador-em-lisboa-ganha-mais-335-euros-do-que-no-porto-veja-aqui-qual-o-salario-medio-do-seu-distrito/</a>
- 107) Jornal Económico. 2019. "Preços das casas na Área Metropolitana do Porto atingem os 1.034 euros/m2 e superam média nacional". Accessed on December 3. <a href="https://jornaleconomico.sapo.pt/noticias/precos-das-casas-na-area-metropolitana-do-porto-atingem-os-1-034-euros-m2-e-superam-media-nacional-508046">https://jornaleconomico.sapo.pt/noticias/precos-das-casas-na-area-metropolitana-do-porto-atingem-os-1-034-euros-m2-e-superam-media-nacional-508046</a>
- 108) EMEL. 2019. "Mobilidade em números". Accessed November 10. https://www.emel.pt/pt/mobilidade/a-mobilidade/accao-emel/mobilidade-em-numeros/
- 109) Pordata. 2019. "Edifícios de habitação familiar clássica". Accessed November 11. https://www.pordata.pt/Municipios/Edifícios+de+habitação+familiar+clássica-88
- 110) Circula Seguro. 2017. "Os vários tipos de estacionamento". Accessed October 20. https://www.circulaseguro.pt/educacao-rodoviaria/os-varios-tipos-de-estacionamento
- 111) Jornal Económico. 2018.. "Só uma em cada cinco casas à venda em Portugal tem garagem". Accessed October 10. https://jornaleconomico.sapo.pt/noticias/so-uma-em-cada-cinco-casas-a-venda-em-portugal-tem-garagem-268396
- 112) Statista. 2019. "Ride Hailing Portugal". Accessed December 21. https://www.statista.com/outlook/368/147/ride-hailing/portugal?currency=eur
- 113) Cabstartup. 2019. "Success Factors of Rideshare Business Model and Future Forecasts". Accessed December 21. https://cabstartup.com/success-factors-rideshare-business-model-future-forecasts/
- 114) Marktest. 2018. "Penetração de smartphone continua a aumentar". Accessed November 1. https://www.marktest.com/wap/a/n/id~23fd.aspx
- 115) Bird. 2019. "Bird". Accessed December 5. https://www.bird.co/
- 116) Uber. 2019. "Uber". Accessed December 5. https://uberportugal.pt/portugal/
- 117) Kapten. 2019. "Kapten". Accessed December 5. https://www.kapten.com/pt/
- 118) Circ. 2019. "Circ". Accessed December 5. https://goflash.com/
- 119) Cooltra. 2019. "Cooltra". Accessed December 5. https://www.cooltra.com/en/
- 120) Via Verde Boleias. 2019. "Via Verde Boleias". Accessed October 23. https://boleias.viaverde.pt/BoleiasWeb/
- 121) Blablacar. 2019. "Blablacar". Accessed October 23. https://www.blablacar.pt/

## Appendix 9 – Mobile internet users and smartphone penetration on Portuguese population

Table 42: Efective number of mobile internet users at the end of the first halfs of 2017, 2018 and 2019..

|         | Efective number of mobile internet users |
|---------|------------------------------------------|
| 1H 2017 | 6735267                                  |
| 1H 2018 | 7270000                                  |
| 1H 2019 | 7800000                                  |

Table 43: Penetration rate of smartphone on portuguese population..

|         | Penetration rate of smartphone on portuguese population |
|---------|---------------------------------------------------------|
| 2012    | 33%                                                     |
| 2013    | 40%                                                     |
| 2014    | 50%                                                     |
| 2015    | 65%                                                     |
| 2016    | 72%                                                     |
| 2017    | 74%                                                     |
| 1H 2018 | 75%                                                     |
| 1H 2019 | 76%                                                     |

## Appendix 10 – Real time simulation of 5km, 10km and 15km for 12 consecutive weeks for the following providers: Uber, Kapten, Bolt and Taxi.

#### Table 44: 5km trip prices by provider

|        | Trip 1 | Trip 2 | Trip 3 | Trip 4 | Trip 5 | Trip 6 | Trip 7 | Trip 8 | Trip 9 | Trip 10 | Trip 11 | Trip 12 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|
| Taxi   | 6,28€  | 6,33€  | 7,03€  | 6,96€  | 6,81€  | 6,45€  | 6,37€  | 6,88€  | 7,17€  | 6,00€   | 6,46€   | 6,66€   |
| Uber   | 5,83€  | 7,00€  | 6,03€  | 5,98 € | 6,42€  | 5,76€  | 5,80€  | 6,27€  | 6,06€  | 5,65€   | 5,74€   | 5,92€   |
| Kapten | 5,59€  | 5,36€  | 5,54 € | 5,70€  | 5,66€  | 5,92€  | 5,84 € | 5,65€  | 5,55€  | 5,72€   | 5,53€   | 5,70€   |
| Bolt   | 4,94 € | 5,18€  | 5,71€  | 5,05€  | 5,59€  | 5,17€  | 6,43€  | 5,85€  | 5,38€  | 5,00€   | 5,15€   | 5,23€   |

#### Table 45: 10km trip prices by provider

|        | Trip 1 | Trip 2 | Trip 3 | Trip 4 | Trip 5 | Trip 6 | Trip 7 | Trip 8 | Trip 9 | Trip 10 | Trip 11 | Trip 12 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|
| Taxi   | 8,73€  | 8,85€  | 9,38€  | 8,67€  | 9,02€  | 8,85€  | 8,48€  | 8,93€  | 9,04€  | 8,77€   | 8,90 €  | 9,13€   |
| Uber   | 7,87€  | 8,92€  | 8,11€  | 9,61€  | 7,23€  | 7,98€  | 8,00€  | 7,47€  | 7,04€  | 8,26€   | 12,50 € | 7,91€   |
| Kapten | 7,61€  | 7,93€  | 8,27€  | 7,63€  | 7,98€  | 7,21€  | 7,74€  | 8,10€  | 9,80€  | 8,60€   | 11,90 € | 7,78€   |
| Bolt   | 6,95€  | 7,25€  | 7,41€  | 7,22€  | 7,35€  | 6,42€  | 7,95€  | 7,44€  | 7,00€  | 7,18€   | 8,80€   | 7,35€   |

Table 46: 15km trip prices by provider

|        | Trip 1  | Trip 2 | Trip 3 | Trip 4  | Trip 5 | Trip 6 | Trip 7 | Trip 8 | Trip 9 | Trip 10 | Trip 11 | Trip 12 |
|--------|---------|--------|--------|---------|--------|--------|--------|--------|--------|---------|---------|---------|
| Taxi   | 13,90 € | 12,22€ | 11,65€ | 12,56 € | 12,05€ | 11,89€ | 12,91€ | 13,11€ | 12,54€ | 13,34€  | 14,00 € | 13,02€  |
| Uber   | 11,33€  | 12,11€ | 11,86€ | 13,15€  | 11,45€ | 11,57€ | 11,78€ | 11,92€ | 11,34€ | 12,98€  | 14,70 € | 12,55€  |
| Kapten | 12,08€  | 11,46€ | 12,11€ | 11,98€  | 12,55€ | 11,28€ | 11,93€ | 12,98€ | 11,56€ | 13,06€  | 14,20 € | 11,40€  |
| Bolt   | 10,50 € | 11,12€ | 10,87€ | 11,76€  | 11,11€ | 12,20€ | 10,86€ | 10,98€ | 11,50€ | 10,35€  | 12,80 € | 11,10€  |

Table 47: Average price per trip and price difference between providers

|                    | 5km trip | 10km trip | 15km trip |
|--------------------|----------|-----------|-----------|
| Taxi               | 7€       | 9€        | 13€       |
| Uber               | 6€       | 8€        | 12€       |
| Kapten             | 6€       | 8€        | 12€       |
| Bolt               | 5€       | 7€        | 11€       |
| Average difference | 14%      | 10%       | 7%        |

<u>Note:</u> Every 5km, 10km and 15km used the same route for the 12 observations. No discounts or promotional codes were used.

### Appendix 11 – Number of charging connectors in Portugal

Table 48: Number of charging connectors in Portugal by type according to the latest data available.

|                           | 2019 YTD |
|---------------------------|----------|
| Fast chargers             | 161      |
| Normal chargers           | 3512     |
| Total                     | 3673     |
| Standard voltage chargers | 96%      |
| Fast chargers             | 4%       |

## Appendix 12 - Part 1 – Number of electric vehicles sold in Portugal up to 2018 and projected in 2030 and impact on Fiscal revenue from fossil fuels.

Table 49: Comparison between situations in 2018 and 2030 (projection). The columns 2018 Total and 2030 (projection total) show tax revenues from fossil as if all cars available were ICE cars. The columns 2018 ICE cars and 2030 (projection) ICE cars takes into consideration the number of electric cars.

|                                          | 2018 ICE Cars      | 2018 Total         | 2030 (projection) ICE cars | 2030 (projection) Total |
|------------------------------------------|--------------------|--------------------|----------------------------|-------------------------|
| Average consumption Diesel car (I/100km) | 5,05               | 5,05               | 5,05                       | 5,05                    |
| Average consumption Petrol car (I/100km) | 6,55               | 6,55               | 6,55                       | 6,55                    |
| Number of diesel cars                    | 3112172            | 3123228,507        | 2556567,971                | 2989957                 |
| Number of petrol cars                    | 1591392            | 1597045,791        | 1307287,029                | 1307287                 |
| Litres spent per diesel car per km       | 0,0505             | 0,0505             | 0,0505                     | 0,0505                  |
| Litres spent per petrol car              | 0,0655             | 0,0655             | 0,0655                     | 0,0655                  |
| Number of km per year on average         | 9000               | 9000               | 9000                       | 9000                    |
| Litres of diesel spent per year          | 1414482232         | 1419507356         | 1161960143                 | 1358935416              |
| Litres of petrol spent per year          | 938125685,1        | 941458493,8        | 770645703,8                | 770645703,8             |
| Taxes per diesel litre                   | 0,71 €             | 0,71€              | 0,71€                      | 0,71€                   |
| Taxes per petrol litre                   | 0,92€              | 0,92€              | 0,92€                      | 0,92€                   |
| Tax revenues from fossil fuels           | 1 867 819 783,78 € | 1 874 455 447,00 € | 1 534 365 080,06 €         | 1 674 020 548,61 €      |

<u>Note:</u> It's assumed the taxes over petrol and diesle remain the same and the number of cars per inhabitant is held at 0,459. The number of km per year made by car is also held constant at 9 000.

### Appendix 12 - Part 2 – Population, fuel prices and distribution of cars by type of fuel.

Table 50: Petrol price per litre decomposition

|              | Petrol          |                                 |       |             |  |  |  |  |  |  |
|--------------|-----------------|---------------------------------|-------|-------------|--|--|--|--|--|--|
|              | Price w/o taxes | Tax over petroluem prod & other | VAT   | Final price |  |  |  |  |  |  |
| 2015         | 0,45€           | 0,62€                           | 0,24€ | 1,31€       |  |  |  |  |  |  |
| 2016         | 0,50€           | 0,67€                           | 0,27€ | 1,44 €      |  |  |  |  |  |  |
| 2017         | 0,56€           | 0,65€                           | 0,28€ | 1,49€       |  |  |  |  |  |  |
| 2018         | 0,48€           | 0,66€                           | 0,26€ | 1,41€       |  |  |  |  |  |  |
| 2019 to date | 0,57€           | 0,64€                           | 0,28€ | 1,50 €      |  |  |  |  |  |  |

Table 51: Diesel Price per litre decomposition

|              | Diesel          |                                 |       |             |  |  |  |  |  |  |
|--------------|-----------------|---------------------------------|-------|-------------|--|--|--|--|--|--|
|              | Price w/o taxes | Tax over petroluem prod & other | VAT   | Final price |  |  |  |  |  |  |
| 2015         | 0,44€           | 0,40 €                          | 0,19€ | 1,03€       |  |  |  |  |  |  |
| 2016         | 0,54€           | 0,45€                           | 0,23€ | 1,21€       |  |  |  |  |  |  |
| 2017         | 0,58€           | 0,47 €                          | 0,24€ | 1,29€       |  |  |  |  |  |  |
| 2018         | 0,56€           | 0,47 €                          | 0,24€ | 1,27€       |  |  |  |  |  |  |
| 2019 to date | 0,63€           | 0,49€                           | 0,26€ | 1,37€       |  |  |  |  |  |  |

Table 52: Population, total km made per year by car and division of cars between electric and ICE cars.

|                        | 2018        | 2030 (projection) |
|------------------------|-------------|-------------------|
| Portuguese Population  | 10 283 822  | 9 845 000         |
| Km per year            | 42482468682 | 40669695000       |
| Total number of cars   | 4720274     | 4518855           |
| Number of ICE cars     | 4703564     | 3863855           |
| Number of eletric cars | 16710       | 655000            |

Table 53: Distribution of cars per type of fuel

| Percentage of diesel cars | 66% |
|---------------------------|-----|
| Percentage of diesel cars | 34% |

Table 54: Impact on fiscal revenues of 16710 electric vehicles in the portuguese fleet. This value is achieved by assuming the scenario where all cars would be ICE cars and then the real 2018 scenario where there are, in fact, 16710 electric cars. The impact on fiscal revenues of fossil fuels is the difference between the two scenarios mentioned.

|                                                 | 2018           |
|-------------------------------------------------|----------------|
| Impact on fiscal revenue of 16710 electric cars | 6 635 663,21 € |

Table 55: Impact on fiscal revenues of having 655000 electric vehicles instead of 655000 ICE cars. The same rationale applied for the estimation of fiscal revenue impact in 2018 (Table 54) was applied for 2030.

|                                                  | 2030 projection  |
|--------------------------------------------------|------------------|
| Impact on fiscal revenue of 655000 electric cars | 139 655 468,55 € |

## Appendix 13 – Part 1 – Carsharing players cost comparison – standard packages

Table 56: Inputs for calculation of average monthly cost of carsharing solutions without considering promotional packages of minutes or km.

| Average Monthly Cost Shared Solutions (standard packages average) | PMA    | LMA    |
|-------------------------------------------------------------------|--------|--------|
| Credit received                                                   | 15,00€ | 15,00€ |
| Credit received in minutes                                        | 54     | 54     |
| Number of Km                                                      | n.a    | n.a    |
| Number of trips per day                                           | 2,72   | 2,6    |
| Average time per trip (minutes)                                   | 18,1   | 21,7   |
| Cost per minute (standard fee)                                    | 0,305€ | 0,305€ |

Table 57: Average cost per month of private car vs carsharing solutions in LMA and PMA. It's assumed if carsharing operators were to offer in PMA the same services they offer in LMA, prices would be the same. The average cost is adjusted for commuting habits of different metropolitan areas, namely average time per trip and number of trips per day (Table 56).

| Cost comparison between owning car vs using only shared solutions | Cost per month | Savings increase (%) |
|-------------------------------------------------------------------|----------------|----------------------|
| Carsharing standard package LMA                                   | 292€           | 47%                  |
| Carsharing standard package PMA                                   | 292€           | 47%                  |
| Private car                                                       | 547€           | 0%                   |

## Appendix 13 – Part 2 – Carsharing players cost comparison – promotional packages

Table 58: DriveNow cheapest package cost per month computed based on commuting statistics

| Drive Now Promotional package 3h    |         |  |  |  |
|-------------------------------------|---------|--|--|--|
| Price                               | 20,00 € |  |  |  |
| Total minutes per month             | 1011    |  |  |  |
| Average time per trip (minutes)     | 21,7    |  |  |  |
| Average number of km per month      | 389,3   |  |  |  |
| Number of packages needed per month | 6       |  |  |  |
| Cost per minute                     | 0,111€  |  |  |  |
| Number of km included               | 80      |  |  |  |
| Monthly Cost                        | 120,00€ |  |  |  |

Table 59: DriveNow most expensive package cost per month computed based on commuting statistics

| Drive Now Promotional package 12h   |       |          |  |  |
|-------------------------------------|-------|----------|--|--|
| Price                               |       | 80,00€   |  |  |
| Total minutes per month             | 1011  |          |  |  |
| Average time per trip (minutes)     | 21,7  |          |  |  |
| Average number of km per month      | 389,3 |          |  |  |
| Number of packages needed per month | 4,00  |          |  |  |
| Cost per minute (12h Package)       |       | 0,111€   |  |  |
| Number of km included               | 100   |          |  |  |
| Monthly Cost                        |       | 320,000€ |  |  |

Table 60: EMOV cheapest package cost per month computed based on commuting statistics

| EMOV Promotional package "ALFAMA"             |             |  |  |
|-----------------------------------------------|-------------|--|--|
| Price                                         | 80,00€      |  |  |
| Total credit available (24€ credit bonus)     | 104,00€     |  |  |
| Average monthly time spent in trips (minutes) | 1011,0      |  |  |
| Average number of km per month                | 389,3       |  |  |
| Number Alfama packages bought per month       | 2,00        |  |  |
| Cost per minute                               | 0,20€       |  |  |
| Valid for 1 year or                           | 520 minutes |  |  |
| Monthly cost                                  | 160,00€     |  |  |

Table 61: EMOV most expensive package cost per month computed based on commuting statistics

| EMOV Promotional package "GRAÇA"              |             |  |  |
|-----------------------------------------------|-------------|--|--|
| Price                                         | 42,00€      |  |  |
| Total credit available (10€ credit bonus)     | 52,00€      |  |  |
| Average monthly time spent in trips (minutes) | 1011,0      |  |  |
| Average number of km per month                | 389,3       |  |  |
| Number of Graça packages bought per month     | 4,00        |  |  |
| Cost per minute                               | 0,21€       |  |  |
| Valid for 1 year or                           | 248 minutes |  |  |
| Monthly cost                                  | 210,00€     |  |  |

### Appendix 14 – Utopic optimal carsharing scenario characterization: Hourly supply and demand of cars in LMA and PMA

Table 62: Demand for cars measured by the traffic congestion level in PMA peaks in the evening. Optimal supply of cars was calculated by multiplying the demand for cars in percentage of total supply at the highest demand peak of the day (6 PM). The optimal supply at the demand peak implies 100% utilized capacity (all cars being used during that hour) and excess supply in other hours, although a lower excess supply than the one verified in the current situation. Only weekdays were considered.

| РМА   |                         |                |                |               |
|-------|-------------------------|----------------|----------------|---------------|
|       | Average demand weekdays | Current Supply | Optimal Supply | Excess Supply |
| 12 AM | 4%                      | 30347          | 19725          | 10621         |
| 1 AM  | 1%                      | 10116          | 6575           | 3540          |
| 2 AM  | 1%                      | 6744           | 4383           | 2360          |
| 3 AM  | 1%                      | 6744           | 4383           | 2360          |
| 4 AM  | 0%                      | 0              | 0              | 0             |
| 5 AM  | 0%                      | 0              | 0              | 0             |
| 6 AM  | 0%                      | 0              | 0              | 0             |
| 7 AM  | 27%                     | 225913         | 146843         | 79070         |
| 8 AM  | 59%                     | 497346         | 323275         | 174071        |
| 9 AM  | 42%                     | 352357         | 229032         | 123325        |
| 10 AM | 25%                     | 214112         | 139173         | 74939         |
| 11 AM | 22%                     | 187137         | 121639         | 65498         |
| 12 PM | 20%                     | 171964         | 111776         | 60187         |
| 1 PM  | 19%                     | 163534         | 106297         | 57237         |
| 2 PM  | 28%                     | 237714         | 154514         | 83200         |
| 3 PM  | 31%                     | 264689         | 172048         | 92641         |
| 4 PM  | 33%                     | 278176         | 180815         | 97362         |
| 5 PM  | 48%                     | 407992         | 265195         | 142797        |
| 6 PM  | 65%                     | 842959         | 547923         | 295036        |
| 7 PM  | 46%                     | 384389         | 249853         | 134536        |
| 8 PM  | 21%                     | 175335         | 113968         | 61367         |
| 9 PM  | 11%                     | 89354          | 58080          | 31274         |
| 10 PM | 10%                     | 80924          | 52601          | 28323         |
| 11 PM | 10%                     | 84296          | 54792          | 29504         |

Table 63: Same rationale explained in the legend for table 62 was applied for LMA.

|       | LMA                     |                |                |               |  |
|-------|-------------------------|----------------|----------------|---------------|--|
|       | Average demand weekdays | Current Supply | Optimal Supply | Excess Supply |  |
| 12 AM | 6%                      | 74879          | 53613          | 21266         |  |
| 1 AM  | 3%                      | 38731          | 27731          | 10999         |  |
| 2 AM  | 2%                      | 30984          | 22185          | 8800          |  |
| 3 AM  | 0%                      | 2582           | 1849           | 733           |  |
| 4 AM  | 0%                      | 0              | 0              | 0             |  |
| 5 AM  | 0%                      | 0              | 0              | 0             |  |
| 6 AM  | 3%                      | 33566          | 24034          | 9533          |  |
| 7 AM  | 28%                     | 366649         | 262521         | 104128        |  |
| 8 AM  | 66%                     | 849491         | 608235         | 241255        |  |
| 9 AM  | 52%                     | 671330         | 480672         | 190658        |  |
| 10 AM | 29%                     | 379560         | 271765         | 107795        |  |
| 11 AM | 25%                     | 317591         | 227395         | 90196         |  |
| 12 PM | 24%                     | 307263         | 220000         | 87263         |  |
| 1 PM  | 21%                     | 276278         | 197815         | 78463         |  |
| 2 PM  | 25%                     | 320173         | 229244         | 90929         |  |
| 3 PM  | 29%                     | 376978         | 269916         | 107062        |  |
| 4 PM  | 38%                     | 488005         | 349412         | 138593        |  |
| 5 PM  | 58%                     | 751373         | 537983         | 213390        |  |
| 6 PM  | 72%                     | 1291019        | 924370         | 366649        |  |
| 7 PM  | 52%                     | 673912         | 482521         | 191391        |  |
| 8 PM  | 27%                     | 351157         | 251429         | 99729         |  |
| 9 PM  | 13%                     | 172997         | 123866         | 49131         |  |
| 10 PM | 11%                     | 142012         | 101681         | 40331         |  |
| 11 PM | 10%                     | 129102         | 92437          | 36665         |  |

### Appendix 15- Part 1 – Utopic optimal carsharing scenario characterization: Increase in gross annual available income and reduction in need for parking lots.

Table 64: Annual gain from the choice of carsharing solution presented on Table 58 of part 2 in Appendix 13.

|                                                        | LMA        | PMA         |
|--------------------------------------------------------|------------|-------------|
| Total amount of cars                                   | 1291019    | 842959      |
| Average monthly cost of owning car                     | 540,40€    | 553,47 €    |
| Rational Carsharing choice (cheapest DriveNow package) | 120,00€    | 120,00 €    |
| Saving from opting for carsharing solution             | 420,40€    | 433,47 €    |
| Reduction in number of cars                            | 361485     | 295036      |
| Number of people opting to leave private car           | 787550     | 642779      |
| Yearly amount saved per person on average              | 5 044,80 € | 5 201,64 €  |
| Average yearly salary                                  | 16 993,92€ | 12 988,80 € |
| Share of annual salary spent with car ownership        | 38%        | 51%         |
| Share of annual salary spent with carsharing           | 8%         | 11%         |

Table 66: Number of parking lots is approximately 27% in current situation assuming the same ratio in LMA. The same ratio is assumed for PMA. For the optimal situation, only 65% of parking lots are needed in PMA and 72% in LMA. It represents a reduction of 35% and 28% respectively.

|                       | Number of parking lots |
|-----------------------|------------------------|
| Current situation PMA | 228529                 |
| Optimal situation PMA | 148544                 |
| Current situation LMA | 350000                 |
| Optimal situation LMA | 250600                 |

Table 65: Annual gain from the choice of carsharing solution presented on Table 58 of part 2 in Appendix 13.

|                                         | LMA      | PMA      |
|-----------------------------------------|----------|----------|
| Annual salary after car ownership costs | 10 509 € | 6 347 €  |
| Annual salary after carsharing costs    | 15 554 € | 11 549 € |
| Gain from carsharing                    | 30%      | 40%      |

Table 67: After adjusting for the houses with garage places, it's possible to calculate the space that is actually available for alternative uses. There is a 82% reduction in parking lots in PMA and 37% in LMA.

|     | Current situation | Optimal situation | Variation |
|-----|-------------------|-------------------|-----------|
| LMA | 266990            | 167590            | 37%       |
| PMA | 97045             | 17060             | 82%       |

### Appendix 15- Part 2 – Utopic optimal carsharing scenario characterization: Increase in gross annual available income and reduction in need for parking lots.

Table 68: The amount of freed sapce due to the reduction in need for parking lots should be adjusted for the number of houses with garage places in both metropolitan areas. It's assumed one garage place per house.

|                                         | LMA    | PMA    |
|-----------------------------------------|--------|--------|
| Number of houses                        | 456100 | 424142 |
| Proportion of houses with garage places | 18%    | 31%    |
| Number of garage places                 | 83010  | 131484 |

Table 69: By finding the average area per parking lot and the price per m2 in LMA and PMA, it's possible to quantify the value of freed space.

|                                   | LMA             | РМА           |
|-----------------------------------|-----------------|---------------|
| Reduction in parking lots         | 99400           | 79985         |
| Average area per parking lot (m2) | 10,24           | 10,24         |
| Average price per m2              | 1 383,00 €      | 1 034,00 €    |
| Added space (m2)                  | 1017359,0       | 818649,0      |
| Value of added space              | 1 407 007 497 € | 846 483 101 € |