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ABSTRACT 

Malaria is a life-threatening disease that continues to pose serious economic, social and health 

burdens. Climate plays an important role in the dynamics and distribution of malaria. In particular, 

temperature and precipitation appear to be critical in perpetuating malaria transmission. In the last 

decades, there has been an increased interest in the use of weather forecasts for predicting malaria 

epidemics and setting up early warning systems. 

In 2017, there have been almost 9 million reported cases of malaria in Mozambique. Malaria is 

considered one of the deadliest diseases in the country. Previous studies have established that 

temperature, rainfall and humidity were determinant for malaria transmission and intensity in this 

region. The purpose of this study is to apply time series analysis and regression modelling to analyse 

the relationship between malaria incidence and these climatic variables in Chimoio, a municipality 

located in central Mozambique, and possibly develop a model that can accurately predict the 

occurrence of malaria outbreaks across this region. 

With a combination of two (15-week lagged maximum temperature and 3-week lagged precipitation) 

to three (15-week lagged maximum temperature, 12-week lagged relative humidity and 3-week 

lagged precipitation) climatic variables, added to the number of malaria cases reported in the 

previous week, we were able to explain more than 70% of the variability in weekly malaria incidence. 

These models also quite accurately represent the observed trends of malaria incidence in Chimoio, 

during the study period. 

This simple and economical approach, supported by meteorological and epidemiologic data that are 

readily available, could potentially be applied by local health authorities in order to predict malaria 

outbreaks. With this information, adequate preventative interventions and resource allocation could 

be planned and deployed within a more reasonable time frame.  

Further studies are required in order to determine if this methodology can be successfully applied to 

other regions of the globe. 
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1. INTRODUCTION 

Malaria is a life-threatening disease that continues to pose serious economic, social and health 

burdens. According to World Health Organization’s (WHO) World Malaria Report for 2019, an 

estimated 228 million cases of malaria occurred worldwide during the year 2018, most of them (93%) 

in Africa. 

Malaria is caused by a protozoan parasite belonging to the genus Plasmodium. The parasite requires 

two hosts to complete its life cycle: a female Anopheles mosquito (the vector, whose bites are the 

mode of transmission of the parasite between human hosts) and a human (CDC, 2018b). 

Climate plays an important role in the dynamics and distribution of malaria. Factors such as 

temperature, humidity, precipitation (or rainfall) and wind patterns can significantly impact both 

vector and parasite’s development, reproduction and survival, therefore influencing its capacity to 

infect human hosts (Mandal, Sarkar, & Sinha, 2011). 

Adequate temperature and precipitation appear to be critical in perpetuating malaria transmission, 

having been identified as significant drivers of malaria disease considerably more than any other 

climatic variable (Reiner et al., 2015). 

Temperature can significantly alter the rate of mosquito’s development, breeding and survival, as 

well as its biting rate. In addition, the parasites’ development rate and survival within the mosquito 

also depends on environmental temperature (Blanford et al., 2013).  

On the other hand, precipitation is critical in providing stagnant water bodies, which are the most 

suitable habitats for mosquitoes to reproduce. As rainfall can significantly alter the sustainability of 

the mosquito population, the seasonality of malaria transmission is mostly driven by the annual 

cyclical changes in rainfall patterns (Morse et al., 2005; Parham & Michael, 2010). 

One of the earliest mathematical models of malaria transmission, the Ross model, was published in 

the early 1900 (Ross, 1911). Since then, many other models have been developed, introducing 

further explanatory variables and progressively increasing the complexity of interactions between 

them, in an attempt to obtain a more realistic and precise representation of the disease (Mandal et 

al., 2011). 

Following the El Nino phenomenon, which in 1998 was responsible for a major malaria outbreak 

(Brown et al., 1998), the scientific community showed an increasing interest in the use of weather 

forecasts for predicting malaria epidemics and setting up early warning systems (Githeko & Ndegwa, 

2001; WHO, 2001). 

In 2017, there have been almost 9 million reported cases of malaria in Mozambique, which means 

that this disease affected at least 30% of the country’s population (WHO, 2018). Malaria is 

considered one of the most deadly diseases in the country and is also the leading cause of death 

among hospitalized children in Mozambique (Zacarias & Andersson, 2010). 

Previous authors have established that several climatic features (temperature, rainfall and humidity) 

were determinant for malaria transmission and intensity in this country (Zacarias & Andersson, 

2011).  
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Chimoio is a municipality located in the Manica Province, in the central region of Mozambique, with 

an area of 174 km2 at an altitude of 750 m. Chimoio has a warm temperate climate with dry winters 

from April to July, hot and dry summer from August to October, and hot humid summer from 

November to March (Ferrão et al., 2016). 

Annual malaria cases have been increasing in Chimoio since 2010 (Ferrão et al., 2016), which is 

contrary to the overall decreasing trend observed in Africa, in the same period (WHO, 2015b). The 

highest number of cases occurs in February (peak of the rainy season) and the lowest in September, 

during the dry season. Malaria mortality rates are significantly higher in January, February and 

March. The seasonality of malaria incidence and mortality in Chimoio has been associated with 

temperature and rainfall (Ferrão, Mendes & Painho, 2017a; Ferrão et al., 2017b). 

 

1.1. STUDY OBJECTIVES 

The purpose of this study is to revisit the dataset analysed by Ferrão et al. (2017a), which contains 

weekly data from a nine-year period (2006 to 2014), collected in the Chimoio district. 

The available variables are the number of reported malaria cases, minimum, maximum and mean 

temperature (°C), relative humidity (%) and precipitation (mm). 

By applying time series analysis and regression modelling, we intend to further explore the 

relationship between malaria incidence and selected climatic variables (temperature, humidity and 

precipitation) and possibly develop a model that, based on these readily available features, can 

accurately predict the occurrence of malaria outbreaks across the Chimoio region. 

Considering that this type of climatic data can easily be obtained, this model could potentially be 

employed by health authorities in order to predict malaria outbreaks and allocate adequate 

resources.  

As part of the exploratory data analysis, the secondary objectives would be to: 

 Establish which subset of climatic variables generates the better representation on the 

evolution of weekly malaria incidence in this region. 

 Determine which is the best metric to represent the influence of temperature on 

malaria transmission, i.e., if among the range of different temperatures available 

(minimum, maximum and mean temperature) there is one that provides more 

accurate results. 
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2. LITERATURE REVIEW 

Malaria is a life-threatening disease that continues to pose serious economic, social and health 

burdens.  

According to the WHO’s World Malaria Report for 2019, an estimated 228 million cases of malaria 

occurred worldwide during the year 2018, most of them (93%) in Africa. In addition, from the 

estimated 405.000 global annual deaths attributed to malaria, 94% also took place in the WHO 

African Region. 

In particular, six countries located  in sub-Saharan Africa accounted for more than half of all reported 

malaria cases: Nigeria (25%), the Democratic Republic of the Congo (12%), Uganda (5%) Côte d’Ivoire, 

Mozambique and Niger (4% each). 

Despite significant global monetary investments allocated to malaria control and elimination efforts, 

there has been no significant progress in reducing malaria incidence since 2014 (WHO, 2019). 

One of the pillars of the WHO's Global technical strategy for malaria 2016–2030 (WHO, 2015a) is to 

transform malaria surveillance into a core intervention. In order to achieve this goal, effective 

surveillance systems that can collect data regarding malaria cases and deaths, as well as key 

entomological and efficacy indicators, are required. Access to this information would allow for more 

useful interventions to be planned, since vulnerable areas or population groups could be identified 

and specifically targeted. Moreover, adequate responses to predicted malaria outbreaks could be 

anticipated and implemented more efficiently. 

In order to understand whether malaria surveillance systems are fit for purpose, regular monitoring 

of their structure, core and support functions, as well as evaluation of the quality of the data is also 

strongly recommended by the WHO.  

 

2.1. MALARIA LIFECYCLE 

Malaria is caused by a protozoan parasite belonging to the genus Plasmodium. Although more than 

100 species of Plasmodium have been identified, there are only five species that are known to infect 

humans: Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae and 

Plasmodium knowlesi (CDC, 2018a).  

Plasmodium falciparum is the most common cause of infection in Africa and South East Asia, being 

responsible for approximately 99.7% and 50% of all malaria cases, in each respective region (WHO, 

2019). 

The life cycle of malaria parasites involves two different species: female Anopheles mosquitoes (the 

vectors, whose bites are the mode of transmission of the parasite between human hosts) and 

humans (Figure 2.1).  
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Figure 2.1 – Malaria life cycle (CDC, 2018b) 

 
Infected mosquitoes carry Plasmodium parasites on their salivary glands, in the form of sporozoites. 

During a blood meal, the sporozoites are injected into human hosts, travelling through the 

bloodstream until reaching the liver. Inside hepatocytes, sporozoites undergo an asexual replication 

stage, known as exo-erythrocitic schizogony, during which they mature into schizonts and multiply to 

up to tens of thousands of merozoites. After a period ranging between 8 to 30 days, mature 

schizonts rupture, releasing merozoites back into the bloodstream, where they can invade red blood 

cells. 

The erythrocitic schizogony stage is a period of asexual multiplication that occurs inside red blood 

cells, during which merozoites develops into trophozoites, which subsequently mature into schizonts. 

Each mature schizont contains around 20 merozoites that are released after rupturing the 

erythrocyte to invade further red blood cells. Each cycle takes around 48h to complete (72h for 

Plasmodium malariae). It is this synchronous lysis of erythrocytes that is responsible for the 

characteristic clinical manifestations of the disease.  

A small proportion of the merozoites within red blood cells differentiate into male or female 

gametocytes (sexual erythrocytic stage), which have no further activity within the human host. 

Gametocytogenesis can take from 5 to 23 days, depending on the infecting species. These 

gametocytes are essential for transmitting the infection to other humans, as they can be ingested by 

female Anopheles mosquitoes during a blood meal.  
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The parasites’ multiplication within the mosquito is known as the sporogonic cycle. Inside the 

mosquito's stomach, gametocytes generate zygotes, which in turn become motile ookinetes that 

invade the midgut wall where they develop into oocysts. Sporogony within each oocyst produces 

many sporozoites. When the oocyst ruptures, sporozoites are released and migrate to the salivary 

glands. The sporogonic cycle is completed after 10 to 18 days and thereafter the mosquito remains 

infective for 1 to 2 months. These infected mosquitoes inoculate the sporozoites into new human 

hosts, therefore perpetuating the malaria life cycle (CDC, 2018b; Tuteja, 2007).  

This intricate life cycle is influenced by different biological characteristics from both the parasites and 

the mosquitoes that rely not only on several climatic and environmental factors, but also on complex 

ecological and social interactions between hosts, the migration of population between endemic and 

non-endemic areas as well as on the evolutionary pressure of drugs and control measures 

contributing to drug resistance of parasite (Mandal et al., 2011). 

All of these aspects contribute to the continuously unsuccessful attempts to adequately model, 

predict or prevent malaria transmission, despite all of the global initiatives being undertaken. 

 

2.2. THE INFLUENCE OF CLIMATE ON MALARIA TRANSMISSION 

There is no doubt that climate plays an important role in the dynamics and distribution of malaria. 

Factors such as temperature, humidity and rainfall have a significant impact in mosquito 

development, reproduction and longevity and therefore impact the parasite’s survival and capacity 

to infect human hosts (Mandal et al., 2011). 

In a systematic review of 152 papers analysing the seasonality of malaria transmission, Reiner et al. 

(2015) found that temperature and precipitation have been identified as significant drivers of malaria 

considerably more than any other climatic variable. 

The majority of those studies evaluated the relationship between malaria metrics and temperature 

(40%) or rainfall (34%). Vegetation coverage indices were investigated in 11% of cases, often in 

combination with the two former variables. All other potential features, such as humidity, wind 

speed and direction or sunspots were used rarely (2.5%) or in conjunction with other main drivers 

(13%). 

 

2.2.1. Temperature effects 

Temperature can significantly influence several of the mosquito and parasite features including 

mosquito development rate, biting rate, and development rate and survival of the parasite within the 

mosquito (Blanford et al., 2013).  

Because changes in temperature affect multiple parts of the pathogen life cycle, this climatic variable 

holds the most complex relationship with malaria transmission and exerts a stronger influence on the 

rate of disease spread, as long as the remaining environmental conditions are also within an 

acceptable range (Parham & Michael, 2010). 
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When analysing temperature-based variables, researchers have almost always resorted to monthly 

data, uncovering significant relationships either with minimum, maximum or mean monthly 

temperatures. According to Reiner et al. (2015), minimum monthly temperature has been the most 

frequently found to be significantly related with malaria. Also, the range of significant time lags 

between monthly temperature and malaria metrics has considerably varied, extending from zero to 

nine months. 

Parham and Michael (2010) found that the rate of malaria transmission is significantly increased at 

temperatures around 32–33°C, with the number of cases doubling every 1.5 to 2.5 months. Outside 

of this temperature range, the doubling time would strongly depend on mosquito density. 

During the development of their weather-driven mathematical malaria model, which will be 

presented in section 2.3.1, Hoshen & Morse (2004) determined that in order to achieve effective 

parasite transmission to humans, mosquito maturation and survival requires average daily 

temperatures above 20°C and moderate rainfall (at least 10–20 mm/10 day period). 

On the other hand, mean temperatures below 5°C (Craig, Le Sueur, & Snow, 1999) or above 40°C 

(Kirby & Lindsay, 2004) are incompatible with vector survival.  

Oviposition, i.e., egg production from female mosquitoes only takes place when temperature rises 

above 10◦C. Furthermore, the speed of egg development is also strongly influenced by temperature 

conditions (Detinova, 1962). Li et al., (2002) determined that a temperature change from 12 to 31°C 

can significantly reduce the time required for mosquito breeding, decreasing from 65 to only 7 days.  

According to Bayoh (2001), who investigated the development and survival of Anopheles gambiae 

mosquitoes at various temperatures and relative humidities, the vector's development rate 

increased linearly when temperatures rose from 18ºC up to an optimum temperature of 28°C. 

Although the rate of larval development was greatest between 28-32°C, the proportion of larvae that 

developed into adults was highest between 22-26°C. The lower limit for complete development to 

adult occurred at 16°C and the upper threshold was 34°C. 

Regarding the sporogonic cycle of the parasite within mosquito vectors, while at 16°C it is completed 

after 55 days, that period reduces to 7 days at 28°C (Martens et al., 1995). 

There is a greater uncertainty concerning the minimum temperature threshold that allows for 

sporogony to occur. While some authors refer that the parasite's development within the mosquito 

ceases below 18ºC (Bouma et al., 1994; Githeko el al., 2000; Hoshen & Morse, 2004; Patz & Lindsay, 

1999; Patz & Reisen, 2001), others quote a value of 16°C or lower (Charlwood et al., 1997; Craig et 

al., 1999; Hay et al., 2000; Hay et al., 2004; Ikemoto & Takai, 2000; Kiszewski et al., 2004; Martens, 

WJ, 1998; Martens, 1999; Martens et al., 1999; Patz et al., 1996; Reiter, 2000; Sachs & Malaney, 

2002; Snow et al., 1999).  

The choice between these values can be particularly important when the temperatures from the 

regions being studied are closer to the threshold. However, it has been suggested that the data 

collected by weather stations is unlikely to match the conditions in the microhabitats where vectors 

spend most of their time (Hay et al., 1996; Kovats et al., 2001). By resting in more climatically stable 

and warmer houses, mosquitoes may avoid the restrictions caused by lower temperatures on the 

progress of parasite development (Epstein et al., 1998; Koenraadt et al., 2006; Reiter, 2001). 
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Interestingly, most studies analysing malaria–temperature relations are based solely on mean 

temperatures, although mosquitoes and parasites are exposed to temperatures that fluctuate 

throughout the day. 

In light of that, some researchers have investigated how, in addition to mean temperatures, daily 

fluctuations in temperature can affect malaria transmission and found that several essential 

biological events (parasite infection, parasite growth and development, immature mosquito 

development and survival, length of the gonotrophic cycle and adult mosquito survival) are sensitive 

to daily variation in temperature. When compared with rates at equivalent constant mean 

temperatures, temperature fluctuation around lower temperatures acts to speed up processes, 

whereas fluctuation around higher temperatures slows the processes down (Blanford et al., 2013; 

Paaijmans et al., 2009; Paaijmans et al., 2010; Waite et al., 2019). 

These findings suggest that, if mean temperatures alone are used to characterize potential malaria 

transmission, under cool conditions this approach will underestimate parasite development, while 

under warmer conditions development will be overestimated. 

The potential impact of temperature fluctuations was also highlighted by Tanser et al. (2003), who 

analyzed malaria transmission profiles in regions with stable and seasonal malaria incidence. The 

authors determined that in stable malaria areas monthly mean temperatures showed little variation 

throughout the year, whereas in regions where malaria transmission follows a seasonal pattern, the 

average monthly temperatures display a stronger fluctuation. 

 

2.2.1. Precipitation effects 

Precipitation (or rainfall) is critical in providing stagnant water bodies, which are the most suitable 

habitats for mosquitoes to reproduce.  

Despite being less predictable and more difficult to quantify in comparison to temperature, seasonal 

changes in rainfall patterns have been found to significantly alter mosquito density, therefore 

strongly impact malaria endemicity, invasion and extinction, even at optimal temperatures (Parham 

& Michael, 2010). In fact, given that the sustainability of the mosquito population depends on 

adequate precipitation, this variable seems to be a more important driver of malaria transmission in 

Africa than temperature (Morse et al., 2005). Conversely, when sufficient rainfall exists, then 

temperature exerts a stronger influence on the intensity of disease transmission (Parham & Michael, 

2010). 

At a regional level, local topography combined with precipitation will also influence the spread of 

malaria, since flat areas on the ground are more prone to accumulate water and therefore incur in an 

increased malaria risk (Chikodzi, 2013). Not surprisingly, the distance from water bodies has also 

been identified as a risk factor for increased malaria incidence (Ferrão et al., 2018; Krefis et al., 2011; 

Zhou et al., 2012). 

Mosquitoes can deposit their eggs in ponds, puddles or even hoof prints (Fontenille et al., 1997). 

These open water surfaces are created after rainfall events and persist for approximately ten days 

(Shaman & Day, 2007). Consequently, mosquito density increases rapidly following the start of the 
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rainy season (Lindsay & Birley, 1996; Omer & Cloudsley-Thompson, 1970) whereas during the dry 

season the number of available vectors for malaria transmission is much lower (MARA, 1998). 

Because the availability of adequate breeding sites strongly depends on seasonal precipitation, this is 

the reason why malaria is also mostly seasonal in Africa. 

Nevertheless, in endemic areas, malaria incidence during dry seasons will continue due to the 

presence of slow-flowing rivers, lakes, swamps or other man-made surface water sites (Hay et al., 

2000; Ijumba, Mosha, & Lindsay, 2002; Keiser, Utzinger, & Singer, 2002). 

On the other hand, excessive rainfall can be detrimental to mosquito reproduction as it leads to the 

flushing of breeding habitats (Gimnig et al., 2001; Paaijmans et al., 2007; Shaman & Day, 2005), 

hence causing a paradoxical decrease in malaria transmission (Drakeley et al., 2005). 

Consequently, it has been demonstrated that the availability of suitable mosquito habitats is not a 

simple linear function of rainfall (Shaman & Day, 2005). Probably due to this non-linear association, 

although mean monthly rainfall has been the most frequent metric to be investigated in relation to 

malaria (Reiner et al., 2015), other variables have also been employed, such as seasonal rainfall 

(Mabaso et al., 2007) or total rainfall during a fixed period (Small, Goetz, & Hay, 2003). Time lags 

found to be statistically significant varied between zero to six months (Reiner et al., 2015).  

Other factors that can influence the aquatic stage of mosquito development include water quality, 

food supply, overcrowding, cannibalism, as well as the existence of predators, parasites or other 

pathogens (Bayoh & Lindsay, 2004; Koenraadt & Takken, 2003; Munga et al., 2006; Paaijmans et al., 

2007; Service, 1973). 

 

2.2.1. Humidity effects 

Mosquitoes, like all insects, have a limited range of tolerable temperature and humidity. Their 

tracheal system of respiration, small size and large surface area makes them especially sensitive to 

desiccation at low humidity levels. As such, the ideal conditions for most vector species are met 

when relative humidity is greater than 60%. Conversely, at relative humidity levels under 10%, 

mosquitoes cannot survive more than a few hours (Fouet et al., 2012; Gray & Bradley, 2005). 

Desiccation stress and subsequent mosquito longevity decrease has been showed to begin when 

relative humidity falls below 40% (Bayoh, 2001; Liu et al., 2011; Wang et al., 2011). However, in the 

range between 10-40% there is very little information regarding the effect of humidity on mosquito 

survival (Yamana & Eltahir, 2013). 

In contrast, a highly saturated environment may lead to a reduction on mosquito survival due to 

drowning (Bayoh, 2001)  

As Bayoh (2001) pointed out, it is very difficult to separate the influence of humidity from that of 

temperature on mosquito longevity. However, there does not seem to be a direct relationship 

between survival and relative humidity. 
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2.3. MATHEMATICAL MODELS OF MALARIA 

One of the earliest mathematical models that explored the relationship between the number of 

mosquitoes and incidence of malaria in humans, now known as the Ross model, was published in the 

early 1900 by Sir Ronald Ross (Ross, 1911). In his model, Ross divided both the human and the 

mosquito population into susceptible and infected compartments, and used two differential 

equations to study the time evolution of the fraction of individuals in their respective infected 

classes. 

By placing the main burden of malaria transmission on mosquito-specific features, the Ross model 

already enlightens the importance of mosquito eradication as a strategy to control malaria 

outbreaks.  

More than 40 years later, George Macdonald (1957) enhanced Ross’s model by including other 

factors, such as the latency period required for parasite development within mosquitos (referred to 

as the "exposed mosquitoes" class) during which there is no effective malaria transmission, and 

estimations for the proportion of bites which are infective. With his work, Macdonald reinforced the 

role of mosquito longevity as the single most important factor responsible for the spread of malaria. 

The concept of latency of infection in humans was introduced by Aron & May (1982) who further 

developed Macdonald’s model by including the exposed human compartment. 

The Garki model (Dietz, Molineaux, & Thomas, 1974) accounted for acquisition, maintenance and 

loss of immunity in humans, as well as the presence of superinfection. It was subsequently modified 

for areas of unstable malaria transmission (Struchiner, Halloran, & Spielman, 1989). 

According to Mandal et al. (2011), who published a review of mathematical models of malaria in 

2011, the Ross, Macdonald and Aron-May models are the pivotal basis from which most subsequent 

models developed from. In an attempt to obtain a more realistic and precise representation of the 

disease, researchers have progressively increased the complexity of interactions between additional 

factors, such as age-related differential susceptibility to malaria (Anderson & May, 1991; Aron & 

May, 1982; Dietz, 1988), acquired human immunity (Aron & May, 1982; Aron, 1988; Filipe et al., 

2007), spatial and genetic diversity among parasites and hosts (Gupta & Hill, 1  5   upta,   inton,   

Anderson, 1     Hasibeder   Dye, 1     Rodr gue    Torres- orando, 2001  Torres- orando   

Rodr  gue , 1   ). 

The social and economic conditions of the population also appear to be intimately related to malaria 

risk. Several authors have investigated and identified socioeconomic indicators such as poverty level, 

population growth, premature mortality or misdiagnosis to be correlated with malaria incidence 

(Amexo et al., 2004; Laxminarayan, 2004; Martens et al., 1999; Sachs & Malaney, 2002; van Lieshout 

et al., 2004; Wyse et al., 2007). These conditions may not only be independently related with malaria 

risk, but can also modulate the magnitude and direction of associations between climate and malaria 

(Manh et al., 2011). 

In 2013, Tusting et al. conducted a systematic review and meta-analysis to assess whether the risk of 

malaria in children under the age of 15 years was associated with socioeconomic status and 

concluded that the odds of malaria infection were higher among the poorest children. The authors 
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went on to recommend the need for interventions to support socioeconomic development, since 

such actions could prove highly effective and sustainable against malaria in the long term. 

Furthermore, in areas where malaria is endemic, changes in social and economic conditions were 

considered to be of greater impact on malaria transmission than climate change (Yang & Ferreira, 

2000). 

Another important aspect that should be taken into account when predicting the incidence of 

malaria is the mobility of human hosts. Human migration and visitation can enhance malaria 

incidence and transmission not only in endemic region but also in areas where the disease has 

already been eradicated, therefore contributing to the spatiotemporal persistence of this disease 

(Aragón, 1992; Martens & Hall, 2000; Martens, P, 1      andia-Mago, 1     Torres- orando   

Rodr  gue , 1   ). 

Additionally, the impact of human activities such as the modification of the landscape by irrigation 

(Briët, 2002), forest clearing (Munga et al., 2006) or urbanization (Hay et al., 2005; Keiser et al., 2004) 

have also been found to significantly alter malaria transmission.  

 

2.3.1. Weather-driven malaria models 

Between 1997 and 1998, the El Nino phenomenon caused many anomalous weather conditions in 

different parts of the globe, including prolonged torrential rains over East Africa (Stockdale et al., 

1998) which were later associated with a major malaria outbreak in north-eastern Kenya (Brown et 

al., 1998). 

Following this event, the scientific community showed an increasing interest in the use of weather 

forecasts for predicting malaria epidemics and setting up early warning systems (Githeko & Ndegwa, 

2001; WHO, 2001). 

Moreover, with growing awareness about globate warming, many researchers have dedicated their 

efforts into predicting how climate change will modify the worldwide distribution of malaria, with 

conflicting results. 

For example, Craig et al. (1999) developed a fuzzy-logic model based on mean temperature and 

rainfall that could be used to represent the impact of these variables on malaria transmission. This 

model indicated that an annual average temperature of 22ºC is sufficient for perennial malaria 

transmission and the approximate temperature cut-off point between epidemic and no-malaria 

regions is around 18°C. As for precipitation, a minimum rainfall of 80 mm per month for at least five 

months would be required in order to achieve stable malaria transmission. At that time, the authors 

suggested that this could be used as a baseline against which climate change scenarios could be 

evaluated in the long term. 

Martens et al. (1995) applied a rules-based modelling approach to predict the implications of 

different climate chance scenarios on malaria transmission at a global level. Their estimations 

pointed to a widespread increase of malaria risk, particularly at the borders of malarial areas, where 

mosquitoes already existed but the development of the parasite was currently refrained by 

temperature, and also at higher altitudes within malarial areas.  
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Peterson (2009) estimated the future potential for human exposure to malaria across Africa over a 

50 year period, integrating different climate change scenarios and spatial summaries of population 

distributions. Using ecological niche models projections, the model predicted an overall reduction in 

the number of people at risk. However, although malaria vector suitability was likely to decrease in 

West Africa, it would increase in eastern and southern Africa, resulting in novel public health 

problems in areas where it has not previously been common. 

Rogers & Randolph (2000) used a statistical model applied to future global circulation models 

scenarios to predict the potential impact of global warming on malaria distribution. They determined 

that even under the most extreme scenarios, the geographical distribution of malaria would be very 

similar to what occurs today. 

However, other than geographical expansion, the changing climate can also influence the seasonality 

of malaria and result in longer periods of exposure to the disease, if favorable environmental 

conditions for both vector and parasite development persist. 

The potential effect of projected climate scenarios on malaria transmission patterns was analyzed by 

Tanser et al. (2003), whose model estimated a potential increase of 16–28% in person-months of 

exposure by the year 2100, across all scenarios. This effect was even more pronounced in areas of 

existing transmission (28–42% of new person-months of exposure) due to the increase in the length 

of transmission season in these regions.  

On the other hand, Hay et al. (2002) analysed long-term trends in meteorological data in the East 

African highlands using a 95-year data set and a regression approach. Their work showed that 

temperature, rainfall, vapour pressure and the number of months suitable for malaria transmission 

had not changed significantly during the past century neither during the period of reported malaria 

resurgence. Hence, the authors concluded that changes other than climate should have been 

responsible for the observed increases in malaria incidence. 

Similar findings were published by Gething et al. (2010), who compared historical and contemporary 

maps of malaria distribution, documenting a marked global decrease in the geographic extent and 

intensity of malaria transmission during the last century, despite the unequivocal increase in global 

temperature. Given the known biological effects of temperature on malaria epidemiology, that have 

been previously addressed in chapter 2.2.1, the authors assumed that non-climatic factors must have 

exerted a substantially greater influence on the worldwide distribution of malaria rather than 

climatic factors. 

Although this line of research has undoubtedly resulted in a much more comprehensive 

understanding of the relationships between climate and malaria (particularly concerning the effects 

of temperature, precipitation and, in a smaller extent, humidity), these models are not able to 

predict short-term variations on malaria risk, either within or between seasons.  

With this in mind, Hoshen & Morse (2004) designed a weather-driven mathematical biological model 

of malaria parasite dynamics, known as the Liverpool Malaria Model (LMM), which combines 

climate-dependent within-vector stages as well as climate-independent within-host stages. The LMM 

simulates the daily spread of malaria, using mean temperature and 10-day accumulated 

precipitation. This model can not only be used for assessing the impact of climate change on malaria 
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transmission (Ermert, 2009) but also for seasonal forecasting of the disease's progression (Jones, 

2007; Jones & Morse, 2010).  

Hence, Ermert (2009) applied the LMM to assess the occurrence of malaria in Africa under the 

influence of observed and projected climate change using regionalized climate projections. 

Underlining the importance of temperature and rainfall on malaria transmission dynamics, the 

results pointed to a significant decrease of malaria transmission in sub-Saharan Africa due to the 

predicted precipitation decline. However, significantly higher temperatures and higher rainfall will 

lead to a substantial enhance in the season length and parasite prevalence in parts of East Africa. As 

a result, malaria transmission will be markedly augmented in this region.  

Later, Ermert et al. (2011a) developed a new version of the LMM, reassessing the parameter settings 

by means of a comprehensive literature survey, as well as performing an extensive validation and 

calibration of their new LMM against meteorological data and malaria observations from West Africa 

(Ermert et al., 2011b). Unlike the original model, which could only be applied to epidemic malaria 

regions, the revised LMM's usage was also extended to endemic areas. 

 

2.4. THE IMPACT OF MALARIA IN MOZAMBIQUE 

Malaria poses a serious threat to public health in Mozambique, as it is considered one of the most 

deadly diseases in the country. According to the WHO, there have been almost 9 million reported 

cases of malaria in 201 ,  hich means that this disease affected at least 30% of the country’s 

population (WHO, 2018). The majority of cases are caused by Plasmodium falciparum.  

Malaria is responsible for 44% of all outpatient consultations and 65% of pediatric hospital 

admissions. It is also the leading cause of death among hospitalized children in Mozambique 

(Zacarias & Andersson, 2010). 

Globally, the country's favorable climatic conditions allow for sustained development and 

transmission of malaria, although some drier parts of the country are epidemic-prone. Therefore, 

malaria is considered to be endemic to Mozambique, which means that transmission takes place all 

year round. There is, however, a known seasonal peak that extends from December to April (Zacarias 

& Andersson, 2010). As previously explained, the seasonality of malaria is Mozambique is closely 

related to the duration of the rainy season, which takes place between November and March. 

Zacarias and Andersson (2011) analyzed spatial and temporal patterns of malaria incidence in 

southern Mozambique, establishing that several climatic features (temperature, rainfall and 

humidity) were determinant for malaria transmission and intensity in the region. 

Socioeconomic status can also influence malaria risk in Mozambique, as higher levels of education 

and income have been identified as being protective against malaria. The prevalence of malaria is 

also lower in urban versus rural areas (INE, 2013b). 
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2.4.1. Malaria in Chimoio 

Chimoio is a municipality located in the Manica Province, a region located in central Mozambique. It 

is the country's fifth-largest city, with an estimated population of 285 716 inhabitants (INE, 2013a) 

Contrary to the decreasing trend in Africa, annual malaria cases have been increasing in Chimoio 

since 2010. In 2014, approximately 27% of the population was diagnosed with malaria. In the same 

period, the average malaria incidence in the WHO African region was 24.6% (WHO, 2015b). It has 

been suggested that this increase could be explained by the annual increase in population, 

aggravated by persistent poverty and reduced efforts dedicated to combat malaria (Ferrão et al., 

2016). 

The disease affects both males and females equally. However, children under 5 years of age are three 

times more prone to be infected, probably due to their lack of acquired immunity against the 

parasite (Ferrão et al., 2016). 

The highest number of cases occurs in February (peak of the rainy season) and the lowest is seen in 

September, during the dry season. Correspondingly, malaria mortality rates are significantly higher in 

January, February and March, when compared to the remaining months of the year. The seasonality 

of malaria incidence and mortality in Chimoio has previously been associated with the amount of 

rainfall that occurs six to eight weeks before (Ferrão et al., 2017a; Ferrão et al., 2017b). 

The same authors found that mean temperature was also a significant predictor for malaria 

occurrence. Additionally, when weekly minimum temperature remained below 18ºC, an accentuated 

reduction in malaria cases was observed. 

Relative humidity in Chimoio rests consistently above the optimal threshold for mosquito survival. As 

such, this variable does not seem to restrict malaria incidence in Chimoio (Ferrão et al., 2017a).  
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3. METHODOLOGY 

To evaluate the association between malaria transmission and environmental variables, a wide 

variety of statistical approaches have been applied, ranging from simple descriptive analysis and 

purely correlative approaches to complex spatio-temporal methods. 

According to Ebhuoma and Gebreslasie (2016) and Reiner et al. (2015), the most frequently 

employed methods of statistical analysis in this line of research have been regression models, 

particularly linear, logistic and Poisson regression. In addition, several multivariate methods and 

mixed models were also commonly used. 

An overview of publications investigating malaria disease and its relation with numerous 

environmental/climatic variables, where these statistical methods have been applied, can be found 

in Table 9.1 (Appendix 9.1).  

For the purpose of this study, we intend to apply time series analysis and regression modelling, by 

resorting to a generalized additive model (GAM) methodology in order to further explore the 

relationship between malaria incidence and selected climatic variables. 

 

3.1. STUDY AREA 

Chimoio is a municipality located in the Manica Province, in the central region of Mozambique 

(Figure 3.1). Chimoio comprises an area of 174 km2 at an altitude of 750 m. In 2013, the population 

was 285 716 inhabitants (INE, 2013a).  

 

 

 

Figure 3.1 – Map of Chimoio (INE, 2013a) 
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This region presents a warm temperate climate with dry winters lasting between April to July, hot 

and dry summers from August to October, and hot humid summers from November to March 

(Ferrão et al., 2016).  

The mean annual temperature is 22.3°C, the mean relative humidity 67.4% and the average annual 

precipitation is 946 mm (INE, 2013a). The average annual number of dry days surpasses wet days, 

with the latter being restricted to the rainy season, between November and March (Westerink, 

1995). 

 

3.2. DATA DESCRIPTION 

A previously compiled database was provided (Ferrão et al., 2017a) containing weekly data from the 

Chimoio district, collected during a nine-year period (2006 to 2014). 

The available variables were: 

 number of reported malaria cases (Mal); 

 maximum temperature (TMax); 

 minimum temperature (Tmin); 

 mean temperature (Tmean) [°C]; 

 relative humidity (RH) [%]; 

 precipitation (P) [mm]. 

 

3.2.1. Weekly malaria cases 

The weekly number of reported malaria cases is represented in Figure 3.2. A simple visual inspection 

of the data reveals the known seasonality of malaria transmission, which is endemic to Mozambique 

(i.e., takes place all year round) with a seasonal peak that extends from December to April, slightly 

lagging after the onset and termination of the rainy season (Zacarias & Andersson, 2011). 

Also, there was an isolated rise in the number of malaria cases between late 2007 and the beginning 

of 2008, for reasons that do not seem to be related to weather conditions. In the following years, a 

slower but steady growth in the number of cases has been observed. Table 3.1 –  further depicts the 

yearly statistics associated with malaria cases. 
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Figure 3.2 – Weekly malaria cases in Chimoio from 2006 to 2014 

 

 

Table 3.1 – Characteristics of weekly malaria cases in Chimoio from 2006 to 2014 

 
2006 2007 2008 2009 2010 2011 2012 2013 2014 Total 

Mean 874 1160 1122 767 806 906 1009 1161 1629 1048 

Standard 

Deviation 
316,6 477,4 584,3 397,5 349,4 477,4 498,2 715,4 1126,6 642,1 

Median 764 1101 951 643 726 803 951 1073 1300 884 

Range 1314 2838 2689 1420 1466 1838 1832 2936 3949 4216 

Minimum 438 222 397 276 317 332 425 281 489 222 

Maximum 1751 3059 3086 1697 1783 2170 2257 3217 4438 4438 

Sum 45458 60306 58333 39874 41925 47107 52463 60381 84707 490555 
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3.2.2. Temperature 

Weekly minimum, maximum and mean temperatures in Chimoio between 2006 and 2014 are 

represented in Figure 3.3 to Figure 3.5 and Table 3.2 to Table 3.4. Other than the expected seasonal 

fluctuations, there do not appear to be significant differences in temperatures registered in Chimoio 

throughout the 9 recorded years. 

 

 

 

Figure 3.3 – Weekly maximum temperatures in Chimoio from 2006 to 2014 

 

 

Table 3.2 – Characteristics of weekly maximum temperatures in Chimoio from 2006 to 2014 

 2006 2007 2008 2009 2010 2011 2012 2013 2014 Total 

Mean 27 27 28 26 27 26 27 26 27 27 

Standard Deviation 3,2 2,9 2,7 3,4 3,6 3,5 3,3 3,4 2,6 3,2 

Median 27 27 28 26 28 26 27 26 27 27 

Range 13 14 12 15 15 19 14 15 12 19 

Minimum 20 19 21 18 20 18 20 19 21 18 

Maximum 33 33 33 33 35 37 34 34 33 37 
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Figure 3.4 – Weekly minimum temperatures in Chimoio from 2006 to 2014 

 

 

Table 3.3 – Characteristics of weekly minimum temperatures in Chimoio from 2006 to 2014 

 2006 2007 2008 2009 2010 2011 2012 2013 2014 Total 

Mean 16 17 18 17 18 16 14 14 15 16 

Standard Deviation 3,3 3,3 2,8 3,0 3,1 3,8 3,5 3,3 3,2 3,6 

Median 16 17 18 17 18 16 14 14 16 16 

Range 13 11 10 12 10 17 13 14 13 23 

Minimum 8 11 12 11 12 8 6 7 8 6 

Maximum 21 22 22 23 22 25 20 20 21 29 

 

 

 

 

 

 

 



 

19 
 

 

 
Figure 3.5 – Weekly mean temperatures in Chimoio from 2006 to 2014 

 

 

Table 3.4 – Characteristics of weekly mean temperatures in Chimoio from 2006 to 2014 

 2006 2007 2008 2009 2010 2011 2012 2013 2014 Total 

Mean 17 22 22 22 23 22 22 22 22 21 

Standard Deviation 3,4 2,7 2,4 2,9 3,4 3,1 3,0 3,0 2,6 3,3 

Median 18 22 23 22 23 22 22 22 23 22 

Range 11 12 11 12 13 12 10 11 9 17 

Minimum 12 15 16 15 16 15 17 17 18 12 

Maximum 23 27 27 27 29 27 27 28 26 29 
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3.2.3. Relative humidity 

Similarly to temperature, relative humidity in Chimoio seems to present an analogous seasonal 

variation, which has remained relatively stable between 2006 and 2014 (Figure 3.6 and Table 3.5).  

In accordance to what is expected in a tropical climate, relative humidity remains considerably 

elevated throughout the year, rarely falling below 50% and with average values consistently around 

70%. 

 

 

Figure 3.6 – Weekly relative humidity in Chimoio from 2006 to 2014 

 

 

Table 3.5 – Characteristics of weekly relative humidity in Chimoio from 2006 to 2014 

 2006 2007 2008 2009 2010 2011 2012 2013 2014 

Mean 69 72 72 75 72 73 70 71 72 

Standard Deviation 8,6 10,5 9,7 8,1 9,6 10,2 9,9 11,4 10,3 

Median 70 74 73 76 74 75 73 73 71 

Range 36 39 39 33 45 42 38 43 42 

Minimum 51 52 52 55 48 48 51 48 54 

Maximum 87 91 91 88 93 90 89 91 96 
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3.2.4. Precipitation 

As mentioned, Chimoio usually presents a dry climate from April to October and a rainy season that 

lasts between November and March. 

Accordingly, although average weekly precipitation is considerably low in Chimoio, the range and 

variability of these values are very high, which means that the number of rainy weeks is small, but 

the amount of rainfall occurring in this period can be quite elevated (Figure 3.7 and Table 3.6).  

During the study period, there were three years in which precipitation was considerably higher: 

2009, 2010 and 2013. In the remaining years, rainfall remained relatively constant. 

 

 

Figure 3.7 – Weekly precipitation in Chimoio from 2006 to 2014 

 

Table 3.6 – Characteristics of weekly precipitation in Chimoio from 2006 to 2014 

 
2006 2007 2008 2009 2010 2011 2012 2013 2014 

Mean 11 18 18 16 21 19 13 20 22 

Standard Deviation 20,4 32,6 42,4 26,9 33,1 27,8 23,9 42,4 43,1 

Median 0 0 2 8 7 2 0 5 2 

Range 111 119 262 149 193 92 91 268 220 

Minimum 0 0 0 0 0 0 0 0 0 

Maximum 111 119 262 149 193 92 91 268 220 
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3.3. GENERALIZED ADDITIVE MODELS 

Linear models are statistical models in which a univariate response is modeled as the sum of a ‘linear 

predictor’ and a  ero mean random error term. The linear predictor depends on predictor variables, 

measured with the response variable, and some unknown parameters, which must be estimated. 

Statistical inference is usually based on the assumption that the response variable is normally 

distributed. 

Generalized linear models (GLM) surpass both the strict linearity premise of linear models as well as 

the assumption that the response is normally distributed, by allowing the expected value of the 

response to depend on a smooth monotonic function of the linear predictor and permitting it to 

follow any distribution from the exponential family.  

A GAM is a GLM in which the linear predictor depends linearly on smooth functions of predictor 

variables. The degree of smoothness of the functions must be made controllable, so that models with 

varying degrees of smoothness can be explored. The selection of the most appropriate degree of 

smoothness is based on marginal likelihood maximization, cross validation, Akaike’s Information 

Criteria (AIC) or Mallo s’ statistic (Wood, 2017). 

In this case, a GAM was applied to the available data, in order to obtain the best possible explanatory 

model for the relationship between malaria incidence and selected climatic variables: TMax, Tmin, 

Tmean, RH and P. 

The statistical analysis was performed using the mgcv package version 1.8-28 in Rstudio®. 

Given the aforementioned scientific debate regarding the influence of temperature fluctuation 

rather than average temperatures on malaria transmission, we decided to experiment with the 

available temperature data separately, in an attempt to determine which of these metrics (TMax, 

Tmin or Tmean) would generate the best fitted model. 

An additional variable, Mal_1, representing the number of malaria cases observed in the previous 

week (lag = -1) was also introduced, to serve as a reference point from which the malaria incidence in 

the current week can be determined.  

Furthermore, it was also necessary to determine the appropriate time-frame between the observed 

local climate and its reflection on the occurrence of malaria. According to the available data gathered 

from the literature, the majority of studies found significant lag times ranging from 0 to 2 months for 

both temperature and rainfall, although some authors also suggested lag times as long as 4 months 

before achieving a significant effect between rainfall and malaria incidence. 

Therefore, for the purpose of this study, we decided to analyze a possible lag interval ranging 

between 0 and 16 weeks (which corresponds to approximately 4 months). To find the optimal lag-

time, an iterative step was added, in which the GAM was ran, using every possible lag-time 

combination for each climatic variable. 

Also, in order to evaluate if the combination of different variables resulted in an effective increase in 

the model’s performance, the  AM model was ran with every possible variable combination. 
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The selection of the optimal lag-time for each variable/ variable combination was based on the 

results from the AIC and Bayesian Information Criteria (BIC). 

The models were formulated according to the following expression: 

Mal = Mal_1 + s(x1 - h1) + s(x2 - h2) + s(x3 - h3) + s(xn - hn) 

Where Mal is the predicted number of weekly malaria cases for a given week, Mal_1 is the observed 

number of weekly malaria cases in the previous week, s() represents the smoothing function applied 

to each predictor variable, x1 to xn, and h1 to hn represents the lag-time (in weeks) applied to each 

predictor. 

The dataset was divided into 2 subsets, for testing and validation purposes, respectively. Hence, the 

models were tested using the data from the first six available years (2006 to 2011), while the 

remaining three years of data (from 2012 to 2014) were used for the validation step.  

To perform the validation process, an “out-of-sample” forecast approach  as used, meaning that 

after each data point was predicted, the observed result was added to the test data and used to 

recalibrate the model before calculating the following prediction. 
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4. RESULTS 

As explained, in order to characterize the relations between malaria incidence and climatic variables 

we chose to employ a statistical approach based on a GAM methodology, testing every possible 

variable combination to find the model that would yield the most accurate predictions. 

In the first part of the analysis, each variable combination was tested, in order to determine the 

optimal lag-time (between 0 to 16 weeks) after which changes in that variable would most 

significantly influence weekly malaria incidence. 

Table 4.1 displays the lag times for each variable/variable combination that resulted in the lowest AIC 

and BIC values. 

 

Table 4.1 – Selected lag times for each variable/variable combination  

Predictor variable Lag (weeks) 

One variable Temperature + RH Temperature + P Three variables 

Tmax 8 8 15 15 

Tmin 8 7 8 12 

Tmean 12 12 12 12 

 One variable Temperature + RH RH + P Three variables 

RH 4 4, 10 2 12 

 One variable Temperature + RH RH + P Three variables 

P 3 3 3 3 

P: precipitation; RH: relative humidity; Tmax: maximum temperature; Tmean: mean temperature; Tmin: minimum 

temperature 

 

It is interesting to note that when the weekly mean temperature and rainfall were used, the lag-time 

that produced the best results for each variable was the same for every combination: 12 weeks for 

mean temperature and 3 weeks for precipitation. 

All other variables presented two or more distinct lag-times for different combinations. Relative 

humidity displays the most unpredictable behavior, with five different lag-times being selected in 

separate variable combinations. 

Table 4.2 summarizes the results (adjusted R2 and mean errors) obtained for each variable and 

variable combination, applying the lag times for which the AIC and BIC results were the lowest. 

Using only one climatic variable to predict the weekly evolution of malaria incidence we are able to 

explain up to 65% of the variation in malaria cases, when the predictor is precipitation in the 3rd 

previous week. The lowest result was obtained using relative humidity lagged at 4 weeks. Among the 

possible temperature metrics, the results were very similar between themselves. 
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Models using two climatic variables as predictors, result in an improvement in the adjusted R2, 

ranging from 1.3% to 13.2%. Although the highest increase occurred when combining mean 

temperature with relative humidity, the behavior of the remaining variables did not benefit 

significantly when combined with relative humidity. On the other hand, combining rainfall and 

temperature resulted in an adjusted R2 increase from 9.3% to 12.3%, which was the highest overall 

increase for any combination. 

The best results among this subset of models were achieved using a combination of maximum 

temperature lagged at 15 weeks and precipitation in the 3rd previous week. 

 

Table 4.2 – Summarized results for each variable/variable combination applying the selected lag times 

Model 
adjR2 (%) MAE RMSE MAPE (%) 

One climatic variable 

I. Mal = Mal_1 + s(Tmax-8)*** 60.4 368.33 687.65 35.1 

II. Mal = Mal_1 + s(Tmin-8)*** 59.8 322.65 548.94 30.8 

III. Mal = Mal_1 + s(Tmean-12)*** 59 308.78 544.59 29.5 

IV. Mal = Mal_1 + s(RH-4)*** 56.3 336.03 602.67 32.1 

V. Mal = Mal_1 + s(P-3)*** 65.3 364.12 653.20 34.7 

Two climatic variables 

VI. Mal = Mal_1 + s(Tmax-8)*** + s(RH-4)*** 63.5 345.69 623.54 33.0 

VII. Mal = Mal_1 + s(Tmin-7)*** + s(RH-4)*** 61.9 315.01 557.94 30.1 

VIII. Mal = Mal_1 + s(Tmean-12)*** + s(RH-10)*** 72.2 323.97 598.35 30.9 

IX. Mal = Mal_1 + s(Tmax-15)*** + s(P-3)*** 72.7 319.85 566.03 30.5 

X. Mal = Mal_1 + s(Tmin-8)*** + s(P-3)*** 69.1 337.73 573.46 32.2 

XI. Mal = Mal_1 + s(Tmean-12)*** + s(P-3)*** 70.3 323.12 563.62 30.8 

XII. Mal = Mal_1 + s(RH-2)*** + s(P-3)*** 66.6 346.64 636.71 33.1 

Three climatic variables 

XIII. Mal = Mal_1 + s(Tmax-15)*** + s(RH-12)*** + s(P-3)*** 72.9 320,45 555,33 30.6 

XIV. Mal = Mal_1 + s(Tmin-12)*** + s(RH-12)*** + s(P-3)*** 71.7 321,16 579,04 30.6 

XV. Mal = Mal_1 + s(Tmean-12)*** + s(RH-12)*** + s(P-3)*** 71.9 320,90 555,60 30.6 

adj: adjusted; MAE: mean absolute error; MAPE: mean absolute percentage error; P: precipitation; RH: relative humidity; RMSE: 

root mean square error; Tmax: maximum temperature; Tmean: mean temperature; Tmin: minimum temperature 
*** p < 0.001 
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Interestingly, the outcome of combining three climatic variables did not improve significantly when 

compared to the models using two predictor variables, with the possible exception of minimum 

temperature, where the adjusted R2 increased from 69.1% (Tmin+P) to 71.7% (Tmin+RH+P). 

Nevertheless, the best results obtained with a three variable combination were very similar to the 

ones from the model that combined only weekly maximum temperature and precipitation. 

The resulting smoothed predictor variables and summary statistics are showed in Appendix 9.2. It 

should be noted that for every variable combination, all predictor variables employed were equally 

statistically significant at p < 0.001. 

Figure 4.1 to Figure 4.15 represent the predicted weekly malaria incidence from both test and 

validation datasets, plotted against the real observed malaria cases, for each model. As displayed in 

Table 4.2, the mean absolute error (MAE) associated with each model varied between 309 and 368 

weekly malaria cases, which correspond to a mean absolute percentage error (MAPE) ranging from 

29.5% to 35.1%.  

 

 
Model I. Mal = Mal_1 + s(Tmax-8 

A) Test data        B) Validation data 

 
Figure 4.1 – Observed (black) vs. predicted (red) malaria cases (Model I) 

 

 
Model II. Mal = Mal_1 + s(Tmin-8) 

A) Test data        B) Validation data 

 
Figure 4.2 – Observed (black) vs. predicted (blue) malaria cases (Model II) 
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Model III. Mal = Mal_1 + s(Tmean-12) 

A) Test data        B) Validation data 

 
Figure 4.3 – Observed (black) vs. predicted (yellow) malaria cases (Model III) 

 

 
Model IV. Mal = Mal_1 + s(RH-4) 

A) Test data        B) Validation data 

  
Figure 4.4 – Observed (black) vs. predicted (purple) malaria cases (Model IV) 

 

 
Model V. Mal = Mal_1 + s(P-3) 

A) Test data        B) Validation data 

 
Figure 4.5 – Observed (black) vs. predicted (green) malaria cases (Model V) 
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Model VI. Mal = Mal_1 + s(Tmax-8) + s(RH-4) 

A) Test data        B) Validation data 

 
Figure 4.6 – Observed (black) vs. predicted (red) malaria cases (Model VI) 

 

 
Model VII. Mal = Mal_1 + s(Tmin-7) + s(RH-4) 

A) Test data        B) Validation data 

 
Figure 4.7 – Observed (black) vs. predicted (blue) malaria cases (Model VII) 

 

 
Model VIII. Mal = Mal_1 + s(Tmean-12) + s(RH-10) 

A) Test data        B) Validation data 

 
Figure 4.8 – Observed (black) vs. predicted (yellow) malaria cases (Model VIII) 
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Model IX. Mal = Mal_1 + s(Tmax-15) + s(P-3) 

A) Test data        B) Validation data 

 
Figure 4.9 – Observed (black) vs. predicted (red) malaria cases (Model IX) 

 

 
Model X. Mal = Mal_1 + s(Tmin-8) + s(P-3) 

A) Test data        B) Validation data 

 
Figure 4.10 – Observed (black) vs. predicted (blue) malaria cases (Model X) 

 

 
Model XI. Mal = Mal_1 + s(Tmean-12) + s(P-3) 

A) Test data        B) Validation data 

 
Figure 4.11 – Observed (black) vs. predicted (yellow) malaria cases (Model XI) 
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Model XII. Mal = Mal_1 + s(RH-2) + s(P-3) 

A) Test data        B) Validation data 

 
Figure 4.12 – Observed (black) vs. predicted (green) malaria cases (Model XII) 

 

 
Model XIII. Mal = Mal_1 + s(Tmax-15) + s(RH-12) + s(P-3) 

A) Test data        B) Validation data 

 
Figure 4.13 – Observed (black) vs. predicted (red) malaria cases (Model XIII) 

 

 
Model XIV. Mal = Mal_1 + s(Tmin-12) + s(RH-12) + s(P-3) 

A) Test data        B) Validation data 

 
Figure 4.14 – Observed (black) vs. predicted (blue) malaria cases (Model XIV) 
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Model XV. Mal = Mal_1 + s(Tmean-12) + s(RH-12) + s(P-3) 

A) Test data           B) Validation data 

 
Figure 4.15 – Observed (black) vs. predicted (yellow) malaria cases (Model XV) 
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5. DISCUSSION 

The search for predictive models of malaria incidence has been a subject of interest for more than 

100 years, with progressively more complex models and new predictive variables being introduced. 

The purpose of this study was to determine if a simple statistical model, using meteorological data 

and a single health indicator, both of which are readily available and easy to obtain, could provide 

accurate short-term predictions of the evolution of malaria incidence in the Chimoio district, in 

Mozambique. 

The results have showed that, with a combination of two to three climatic variables we were able to 

explain more than 70% of the variability in weekly malaria incidence. These results were achieved 

using either a two-variable model, based on 15-week lagged maximum temperature and 3-week 

lagged precipitation, or a three-variable combination, employing 15-week lagged maximum 

temperature, 12-week lagged relative humidity and 3-week lagged precipitation.  

It is not surprising that these specific meteorological variables, particularly temperature and rainfall, 

have been the ones more significantly associated to malaria incidence in our study, since this 

relationship has been consistently identified throughout the literature (Reiner et al., 2015).  

Our results have also highlighted the synergy between temperature and precipitation regarding their 

impact on malaria transmission, since the combination of these variables resulted in the highest 

overall increase in the adjusted R2. 

While the majority of studies have pointed to a period between 1 to 2 months between changes in 

climate and its observed effects on malaria incidence, our analysis revealed a more protracted effect 

between changes in temperature (maximum, minimum or mean) or relative humidity and its 

repercussions on the evolution of malaria cases. Specifically, the most significant outcomes have 

been found when an interval ranging between 12 to 15 weeks has been applied to each of these 

variables. The impact of rainfall, on the other hand, showed a consistent significant relation with 

malaria incidence after three weeks.  

It should be noted that most of the available literature was performed using monthly instead of 

weekly data and therefore may not be sensitive to variations that occur bellow a 4-week interval.  

Regarding the use of different temperature measurements, no significant differences were found 

between the results from equivalent models using either maximum, minimum or mean 

temperatures. 

Given that the range of annual temperatures in Chimoio is limited and remains mostly within suitable 

limits that allow for perennial malaria transmission, this could be the reason why there is not a 

significant discriminative power between distinct temperature metrics and malaria incidence in this 

region. Possibly in a non-endemic area, where annual temperature ranges are more pronounced, the 

differences in the impact of these three variables regarding both parasite and vector development 

could be more prominent. 

The same reasoning can be applied to relative humidity, in the sense that it is consistently high in 

Chimoio and therefore usually above the 60% threshold for optimal mosquito development. 



 

33 
 

Consequently, in this study the addition of relative humidity to the models did not result in a 

significant improvement in the final outcomes. These results are in accordance with previous findings 

published by Ferrão et al. (2017a), demonstrating that relative humidity does not seem to 

significantly impact malaria incidence in Chimoio.  

However, it should be noted that for every tested model, all the predictor variables were equally 

statistically significant, with a p-value below 0.001. Further details regarding the model's statistics 

can be found in Appendix 9.2. 

When the models were tested against the validation dataset, the resulting MAE varied between 309 

and 368 weekly malaria cases, which correspond to a MAPE ranging from 29.5% to 35.1%. Although 

this is not an ideal result, one should acknowledge that attempting to predict malaria incidence 

based solely on three climacteric variables is undoubtedly an oversimplification of a very complex 

process, which to this day has not been fully understood.  

There are multiple other contributing factors, either of biological, epidemiologic or environmental 

nature that can influence malaria transmission and might play an important role in this particular 

location. For example, socioeconomic status is already known to influence malaria risk in 

Mozambique (INE, 2013b). Moreover, in most endemic areas of malaria, changes in social and 

economic conditions have been identified as being of much greater importance than temperature 

shifts (Yang & Ferreira, 2000). 

Nevertheless, despite the differences obtained between observed and predicted cases, the predicted 

values seem to effectively follow the upward and downward trends in malaria incidence, which is an 

important indicator in itself as it allows adequately allocating resources and deploying preventative 

strategies in advanced. 
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6. CONCLUSIONS 

This study adds to the growing body of knowledge confirming that climatic variables are significant 

drivers of malaria incidence and transmission and can provide meaningful information that allows for 

the anticipation of outbreaks within in a relatively short time period. 

By applying a relatively simple methodology, that combines temperature, relative humidity and 

precipitation, as well as the most recent number of reported malaria cases, we were able to develop 

a predictive model that quite accurately represents the observed trends of malaria incidence in 

Chimoio, over different years. 

This is a straightforward and economical approach, supported by meteorological and epidemiologic 

data that are already presently collected and therefore easy to incorporate in a simple predictive 

model, that could potentially be applied by local health authorities in order to predict malaria 

outbreaks. With this information, adequate preventative interventions and resource allocation can 

be planned and deployed within a more reasonable time frame.  

Furthermore, if deemed appropriate, this model could also be tested and validated for other 

endemic or non-endemic regions and provide some further benefits in reducing the burden posed by 

malaria worldwide. 
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7. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS 

The difficulty in obtaining quality data is a recurrent issue for researchers. As Hoshen and Morse 

(2004) have previously highlighted, high quality meteorological data at the pan-African level is not 

available, given the irregular positioning of stations and the occurrence of frequently missing 

measurements. 

Furthermore, the lack of access to health services is known to result in under-reporting of cases and 

over-diagnosis of malaria, which often confounds correlations (Lindsay, Parson, & Thomas, 1998; 

Snow et al., 1998). 

As such, the lack of further available data prevents additional developments on this particular model. 

If a larger time period could be used in order to perform both the testing and validation steps, 

possibly the results could be optimized. Additionally, the inclusion of other variables such as 

vegetation coverage, distance to water bodies, demographic data or the use of bed nets could 

improve the quality of the predictions. 

Another limitation of this study is that these results have been specifically tailored around a 

particular region of the globe and may not be reproducible when applied to other locations due to 

incomplete parameterization of factors that influence the geographical range and intensity of malaria 

transmission in specific regions (Confalonieri et al., 2007). 

In contrast, the simplicity of this approach makes it an attractive option to apply to larger and more 

complex malaria databases, where it might contribute to clarify specific contexts of malaria 

transmission. 

In fact, several authors have previously defended that a regional analysis is inevitably necessary since 

the horizontal resolution of the underlying climate projection is mostly inadequate and neglects local 

features (Ermert, 2009; Githeko et al., 2000; McMichael, 1997).  

Therefore, with the increase of computational power, perhaps future research could focus on the 

development of risk models specifically designed for regional settings instead of a global approach.  
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9. APPENDIXES 

9.1. OVERVIEW OF PUBLICATIONS EVALUATING THE ASSOCIATION BETWEEN MALARIA DISEASE AND ENVIRONMENTAL/CLIMATIC VARIABLES EMPLOYING 

THE MOST FREQUENTLY USED STATISTICAL METHODS 

Table 9.1 – Overview of publications investigating malaria disease and environmental/climatic variables employing the most frequently used statistical 

methods (Adapted from Ebhuoma & Gebreslasie, 2016 and Reiner et al., 2015) 

Reference Title Study area 
Climatic/Environmental 

Variables 
Statistical method 

Abeku et al. (2004) 
Effects of meteorological factors on epidemic malaria 
in Ethiopia: a statistical modeling approach based on 
theoretical reasoning 

Ethiopia Rainfall, Temperature Linear mixed model 

Abellana et al. (2008) 
Spatio-seasonal modeling of the incidence rate of 
malaria in Mozambique 

Mozambique Rainfall, Temperature Hierarchical bayesian 

Ageep et al. (2009) 

Spatial and temporal distribution of the malaria 
mosquito Anopheles arabiensis in northern Sudan: 
influence of environmental factors and implications 
for vector control 

Sudan River level, Temperature Regression 

Amek et al. (2012) 
Spatial and temporal dynamics of malaria 
transmission in rural Western Kenya 

Kenya 
Elevation, Normalized 

Difference Vegetation Index 
(NVDI), Rainfall, Temperature 

Spatio-temporal 

Balls et al. (2004) 
Effect of topography on the risk of malaria infection 
in the Usambara Mountains, Tanzania 

Tanzania Topography Logistic regression 

Bantje, (1987) Seasonality of births and birth-weights in Tanzania Tanzania Rainfall Lagged regression 

Bayoh, Thomas and Lindsay 
(2001) 

Mapping distributions of chromosomal forms of 
Anopheles gambiae in West Africa using climate data 

West Africa 
Evapotranspiration, Rainfall, 

Temperature 
Logistic regression 

Bi et al. (2003) 
Climatic variables and transmission of malaria: A 12-
year data analysis in Shuchen County, China 

China 
Rainfall, Relative humidity, 

Temperature 

Autoregressive Integrated 
Moving Average (ARIMA), 
Generalized Least Square 

(GLS) regression 

Briët et al. (2008) 
Temporal correlation between malaria and rainfall in 
Sri Lanka 

Sri Lanka Rainfall Correlation and regression 
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Table 9.1 – Cont. 

Reference Title Study area 
Climatic/Environmental 

Variables 
Statistical method 

Briët, Vounatsou and 
Amerasinghe (2008) 

Malaria seasonality and rainfall seasonality in Sri 
Lanka are correlated in space 

Sri Lanka Rainfall 

Seasonal Autoregressive 
Integrated Moving Average 
(SARIMA), Conditional Auto-

Regressive (CAR) model 

Clements et al. (2009) 
Space-time variation of malaria incidence in Yunnan 
province, China 

China Rainfall, Temperature 
Bayesian Poisson regression 

models 

Cohen et al. (2013) 
Rapid case-based mapping of seasonal malaria 
transmission risk for strategic elimination planning in 
Swaziland 

Swaziland 
Distance to water bodies, 

Rainfall, Temperature, 
Vegetation indices 

Logistic regression mixed 
model, Random forest 

Cottrell et al. (2012) 
Modeling the Influence of Local Environmental 
Factors on Malaria Transmission in Benin and Its 
Implications for Cohort Study 

Benin NVDI, Rainfall 
Three-level Poisson mixed 

regression model 

Craig et al. (2004) 
Exploring 30 years of malaria case data in KwaZulu-
Natal, South Africa: Part I. The impact of climatic 
factors 

South Africa Rainfall, Temperature Linear regression 

Craig et al. (2007) 
Developing a spatial-statistical model and map of 
historical malaria prevalence in Botswana using a 
staged variable selection procedure 

Botswana 

Elevation, NDVI, Rainfall, 
Surface water land cover, 

Temperature, Vapour 
pressure 

Logistic regression 

Drakeley et al. (2005) 
Altitude-dependent and -independent variations in 
Plasmodium falciparum prevalence in northeastern 
Tanzania 

Tanzania Rainfall Regression 

Gao et al. (2012) 
Change in Rainfall Drives Malaria Re-Emergence in 
Anhui Province, China 

China Rainfall 

Polynomial distributed lag 
time-series regression 

(Distributed Lag Non-Linear 
Model [DLNM]) 

Gaudart et al. (2009) 
Modelling malaria incidence with environmental 
dependency in a locality of Sudanese savannah area, 
Mali 

Mali NDVI ARIMA 

Gomez-Elipe et al. (2007) 
Forecasting malaria incidence based on monthly case 
reports and environmental factors in Karuzi, Burundi, 
1997–2003 

Burundi: Karuzi NVDI, Rainfall, Temperature ARIMA 
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Reference Title Study area 
Climatic/Environmental 

Variables 
Statistical method 

Gosoniu et al. (2012) 
Spatially explicit burden estimates of malaria in 
Tanzania: Bayesian geostatistical modeling of the 
malaria indicator survey data 

Tanzania 
Altitude, NDVI, Rainfall, 

Temperature, Water bodies 
Multivariate logistic 

regression, Bayesian kriging 

Gosoniu, Veta and 
Vounatsou (2010) 

Bayesian geostatistical modeling of Malaria Indicator 
Survey data in Angola 

Angola 
Altitude, NDVI, Rainfall, 

Temperature 
Bayesian logistic regression, 

Bayesian kriging 

Gosoniu et al. (2009) 
Mapping malaria risk in West Africa using a Bayesian 
nonparametric non-stationary model 

West Africa 

Agro-ecological zones, 
Altitude, Land use, NDVI, 

Rainfall, Soil Water Storage 
(SWS) index, Temperature, 

Water bodies 

Logistic and non-parametric 
regression 

Gosoniu et al. (2006) Bayesian modelling of geostatistical malaria risk data Mali 
Rainfall, Season length, 

Temperature, Water bodies 

Bayesian logistic regression, 
Bayesian non-stationary 
model, Bayesian kriging 

Graves et al. (2008) 
Effectiveness of malaria control during changing 
climate conditions in Eritrea, 1998-2003 

Eritrea NVDI, Rainfall Poisson regression 

Haghdoost, Alexander and 
Cox (2008) 

Modelling of malaria temporal variations in Iran Iran 
Humidity, Rainfall, 

Temperature, Visibility, Wind 
speed 

Poisson regression 

Haque et al. (2010) 
The Role of Climate Variability in the Spread of 
Malaria in Bangladeshi Highlands 

Bangladesh 
El Niño Southern Oscillation 
(ENSO)

 1
, Humidity, Rainfall, 

Temperature 

Generalized linear negative 
binomial regression 

Hashizume, Terao and 
Minakawa (2009) 

The Indian Ocean Dipole and malaria risk in the 
highlands of western Kenya 

Kenya 
Indian Ocean Dipole (IOD)

2
, 

Rainfall 

Poisson regression 
(Generalized Linear Model 

[GLM]) 

                                                           
1
 The El Niño-Southern Oscillation (ENSO) is a recurring climate pattern involving changes in the temperature of waters in the central and eastern tropical Pacific 

Ocean. On periods ranging from about three to seven years, the surface waters across a large swath of the tropical Pacific Ocean warm or cool by anywhere from 1°C to 3°C, 
compared to normal. This oscillating warming and cooling pattern, referred to as the ENSO cycle, directly affects rainfall distribution in the tropics and can have a strong 
influence on weather across the globe (United States National Weather Service, n.d) 

2
 The Indian Ocean Dipole (IOD) measures differences in sea surface temperatures between the Arabian Sea (western pole) and the eastern Indian Ocean south of 

Indonesia (eastern pole). Like ENSO, IOD is a coupled ocean-atmosphere phenomenon where the shifting pools of warm/cool water contribute to variations in rainfall and 
storm activities of many countries surrounding the Indian Ocean (Paul & Rashid, 2017).  
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Reference Title Study area 
Climatic/Environmental 

Variables 
Statistical method 

Jackson et al. (2010) 
Modelling the effect of climate change on prevalence 
of malaria in western Africa 

West Africa 
Atmospheric pressure, 

Rainfall, Temperature, Vapour 
pressure 

Spatial regression 

Jacob et al. (2007) 
Remote and field level quantification of vegetation 
covariates for malaria mapping in three rice agro-
village complexes in Central Kenya 

Kenya Vegetation indices Logistic regression 

Jones and Morse (2010) 
Application and Validation of a Seasonal Ensemble 
Prediction System Using a Dynamic Malaria Model 

Botswana Rainfall, Temperature Multimodel ensemble system 

Jones and Morse (2012) 
Skill of ENSEMBLES seasonal re-forecasts for malaria 
prediction in West Africa 

Cameroon Rainfall, Temperature Multimodel ensemble system 

Jones et al. (2007) 
Climate prediction of El Nino malaria epidemics in 
north-west Tanzania 

Tanzania ENSO, Rainfall, Temperature Regression 

Kalinga-Chirwa et al. (2011) 
Linking rainfall and irrigation to clinically reported 
malaria cases in some villages in Chikhwawa District, 
Malawi 

Malawi Rainfall GLM 

Kazembe, Kleinschmidt and 
Sharp (2006) 

Patterns of malaria-related hospital admissions and 
mortality among Malawian children: an example of 
spatial modelling of hospital register data 

Malawi Wet/Dry seasons 
Logistic and Poisson 
regression (spatial) 

Kazembe et al. (2008) 
Applications of Bayesian approach in modelling risk 
of malaria-related hospital mortality 

Malawi Wet/Dry seasons 
Semiparametric regression 

models (Markov Chain Monte 
Carlo [MCMC]) 

Kim, Park and Cheong 
(2012) 

Estimated Effect of Climatic Variables on the 
Transmission of Plasmodium vivax Malaria in the 
Republic of Korea 

Korea 
Rainfall, Relative humidity, 

Temperature 
GLM (Poisson); DLNM 

Kleinschmidt et al. (2001) 
Use of generalized linear mixed models in the spatial 
analysis of small-area malaria incidence rates in 
KwaZulu Natal, South Africa 

South Africa Rainfall, Temperature 
Generalized Linear Mixed 

Model (GLMM) 

Kleinschmidt et al. (2000) A spatial statistical approach to malaria mapping Mali 
Distance to water bodies, 

NVDI, Rainfall, Temperature 
Logistic regression, Kriging 

Lafferty (2009) 
The ecology of climate change and infectious 
diseases 

Poland Rainfall Log-linear regression 
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Reference Title Study area 
Climatic/Environmental 

Variables 
Statistical method 

Loha and Lindtjørn (2010) 

Model variations in predicting incidence of 
Plasmodium falciparum malaria using 1998-2007 
morbidity and meteorological data from south 
Ethiopia 

Ethiopia 
Rainfall, Relative humidity, 

Temperature 
ARIMA 

Lowe, Chirombo and 
Tompkins (2013) 

Relative importance of climatic, geographic and 
socio-economic determinants of malaria in Malawi 

Malawi 
Altitude, Rainfall, 

Temperature 
GLM, GLMM, Kernel density 

Mabaso et al. (2005) 
Towards empirical description of malaria seasonality 
in southern Africa: the example of Zimbabwe 

Zimbabwe 
NDVI, Rainfall, Temperature, 

Vapour pressure 
Bayesian Poisson model 

Mabaso et al. (2007) 
Environmental predictors of the seasonality of 
malaria transmission in Africa: the challenge 

Sub-Saharan 
Africa 

Rainfall, Temperature 
Multiple stepwise linear 

regression 

Midekisa et al. (2012) 
Remote sensing-based time series models for 
malaria early warning in the highlands of Ethiopia 

Ethiopia: Amhara 
Evapotranspiration, 

Temperature, Vegetation 
indices 

SARIMA 

Nkurunziza, Gebhardt and 
Pilz (2010) 

Bayesian modelling of the effect of climate on 
malaria in Burundi 

Burundi 
Humidity, Rainfall, 

Temperature 

Bayesian inference and MCMC 
based on GLM and 

Generalized Additive Mixed 
Effects Model (GAMM) 

Nkurunziza, Gebhardt and 
Pilz (2011) 

Geo-additive modelling of malaria in Burundi Burundi 
Humidity, Rainfall, 

Temperature 

Semi-parametric regression 
(Bayesian inference and 

MCMC) 

Noor et al. (2008) 
Spatial prediction of Plasmodium falciparum 
prevalence in Somalia 

Somalia 
Distance to water bodies, 

Enhanced Vegetation Index 
(EVI), Rainfall, Temperature 

Logistic regression 

Rahman et al. (2011) 
Modelling and prediction of malaria vector 
distribution in Bangladesh from remote-sensing data 

Bangladesh Vegetation indices Correlation and regression 

Raso et al. (2012) 
Mapping malaria risk among children in Cote d’Ivoire 
using Bayesian geo-statistical models 

Côte d’Ivoire 
Distance to water bodies, 

NVDI, Rainfall, Temperature 

Bayesian logistic regression, 
Bayesian regression, Bayesian 

kriging 

Raso et al. (2009) 
Spatial risk profiling of Plasmodium falciparum 
parasitaemia in a high endemicity area in Cote 
d’Ivoire 

Côte d’Ivoire 
Elevation, NVDI, Rainfall, 

Temperature 

Bayesian negative binomial 
regression models, Bayesian 

kriging 
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Reference Title Study area 
Climatic/Environmental 

Variables 
Statistical method 

Reid et al. (2012) 
Characterizing the spatial and temporal variation of 
malaria incidence in Bangladesh, 2007 

Bangladesh Rainfall, Temperature Bayesian poisson regression 

Riedel et al. (2010) 

Geographical patterns and predictors of malaria risk 
in Zambia: Bayesian geostatistical modelling of the 
2006 Zambia National Malaria Indicator Survey 
(ZMIS) 

Zambia 
Altitude, Land cover, NDVI, 

Rainfall, Temperature, Water 
bodies 

Bivariate and multiple 
regression analysis, Bayesian 

kriging 

Silué et al. (2008) 
Spatially-explicit risk profiling of Plasmodium 
falciparum infections at a small scale: A geostatistical 
modelling approach 

Côte d’Ivoire 
Distance to nearest river, 

NVDI, Rainfall, Temperature 
Bivariate logistic regression 

Small et al. (2003) 
Climatic suitability for malaria transmission in Africa, 
1911-1995 

Africa Rainfall, Temperature 
Ordinary Least-Squares 

regression with 
Autoregressive error structure 

Sogoba et al. (2007) 
The spatial distribution of Anopheles gambiae sensu 
stricto and An. arabiensis (Diptera : Culicidae) in Mali 

Mali 
Distance to water bodies, 
NDVI, Rainfall, SWS index, 

Temperature 

Bayesian geostatistical logistic 
regression 

Teklehaimanot et al. (2004a) 

Weather-based prediction of Plasmodium falciparum 
malaria in epidemic-prone regions of Ethiopia I. 
Patterns of lagged weather effects reflect biological 
mechanisms 

Ethiopia: 
Highlands 

Rainfall, Temperature 
Poisson regression, 

polynomial distributed lag 
model 

Teklehaimanot et al. 
(2004b) 

Weather-based prediction of Plasmodium falciparum 
malaria in epidemic-prone regions of Ethiopia II. 
Weather-based prediction systems perform 
comparably to early detection systems in identifying 
times for interventions 

Ethiopia: 
Highlands 

Rainfall, Temperature Regression 

Thomson et al. (2005) 
Use of rainfall and sea surface temperature 
monitoring for malaria early warning in Botswana 

Botswana 
Rainfall, Sea Surface 
Temperature (SST) 

Logistic regression and 
correlations 

Thomson et al. (2006) 
Malaria early warnings based on seasonal climate 
forecasts from multi-model ensembles 

Botswana Rainfall Multi-model ensemble 

Tian et al. (2008) 
One-year delayed effect of fog on malaria 
transmission: a time-series analysis in the rain forest 
area of Mengla County, south-west China 

South-West 
China: Mengla 

count 

Fog day frequency, Rainfall, 
Relative humidity, 

Temperature 
ARIMA 
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Reference Title Study area 
Climatic/Environmental 

Variables 
Statistical method 

Zacarias and Andersson 
(2010) 

Mapping malaria incidence distribution that accounts 
for environmental factors in Maputo Province - 
Mozambique 

Mozambique: 
Maputo provinc 

Rainfall, Temperature Bayesian hierarchical; MCMC 

Zacarias and Andersson 
(2011) 

Spatial and temporal patterns of malaria incidence in 
Mozambique 

Mozambique: 
Maputo province 

Rainfall, Relative humidity, 
Temperature 

Bayesian with interaction 
terms; MCMC 

Zayeri, Salehi and 
Pirhosseini (2011) 

Geographical mapping and Bayesian spatial modeling 
incidence in Sistan and Baluchistan province, Iran 

Iran: 
Baluchistand, 

Sistan 

Elevation, Humidity, Rainfall, 
Temperature 

GLMM, stationary kriging and 
variogram 

Zhang, Bi and Hiller (2010) 
Meteorological variables and malaria in a Chinese 
temperate city: A twenty-year time-series data 
analysis 

China: Jinan 
Air pressure, Humidity, 
Rainfall, Temperature 

SARIMA 

Zhang et al. (2012) 
Spatial-temporal analysis of malaria and the effect of 
environmental factors on its incidence in Yongcheng, 
China, 2006-2010 

China: 
Yongcheng 

Duration of sunshine, Rainfall, 
Relative humidity, 

Temperature, Wind velocity 
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9.2. SMOOTHED PREDICTOR VARIABLES AND SUMMARY STATISTICS 

Model I. Mal = Mal_1 + s(Tmax-8) 

 

Figure 9.1 – Smoothed weekly maximum temperatures (Model I) 

 

 

Family: poisson  
Link function: log  
 
Formula: 
Mal ~ Mal_1 + s(Tmax) 
 
Parametric coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) 6.200e+00  4.277e-03  1449.7   <2e-16 *** 
Mal_1       6.176e-04  3.531e-06   174.9   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
          edf Ref.df Chi.sq p-value     
s(Tmax) 8.968      9   4019  <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.604   Deviance explained = 64.4% 
UBRE = 78.265  Scale est. = 1         n = 312  

Figure 9.2 – Summary statistics (Model I) 
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Model II. Mal = Mal_1 + s(Tmin-8) 

 

Figure 9.3 – Smoothed weekly minimum temperatures (Model II) 

 

 

Family: poisson  
Link function: log  
 
Formula: 
Mal ~ Mal_1 + s(Tmin) 
 
Parametric coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) 6.271e+00  4.584e-03    1368   <2e-16 *** 
Mal_1       5.330e-04  4.070e-06     131   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
          edf Ref.df Chi.sq p-value     
s(Tmin) 8.909  8.997   4675  <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.598   Deviance explained = 63.9% 
UBRE = 75.806  Scale est. = 1         n = 304  

Figure 9.4 – Summary statistics (Model II) 
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Model III. Mal = Mal_1 + s(Tmean-12) 

 

Figure 9.5 – Smoothed weekly mean temperatures (Model III) 

 

 

Family: poisson  
Link function: log  
 
Formula: 
Mal ~ Mal_1 + s(Tmean) 
 
Parametric coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) 6.251e+00  4.411e-03  1417.1   <2e-16 *** 
Mal_1       5.528e-04  3.845e-06   143.8   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
           edf Ref.df Chi.sq p-value     
s(Tmean) 8.965      9   4334  <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =   0.59   Deviance explained = 63.5% 
UBRE = 76.755  Scale est. = 1         n = 300  

Figure 9.6 – Summary statistics (Model III) 
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Model IV. Mal = Mal_1 + s(RH-4) 

 

Figure 9.7 – Smoothed weekly relative humidity (Model IV) 

 

 

Family: poisson  
Link function: log  
 
Formula: 
Mal ~ Mal_1 + s(RH) 
 
Parametric coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) 6.208e+00  4.603e-03  1348.7   <2e-16 *** 
Mal_1       6.139e-04  3.979e-06   154.3   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
        edf Ref.df Chi.sq p-value     
s(RH) 8.887  8.996   3011  <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.563   Deviance explained = 61.4% 
UBRE =  83.27  Scale est. = 1         n = 312  

Figure 9.8 – Summary statistics (Model IV) 

 

 



 

61 
 

 

Model V. Mal = Mal_1 + s(P-3) 

 

Figure 9.9 – Smoothed weekly precipitation (Model V) 

 

 

Family: poisson  
Link function: log  
 
Formula: 
Mal ~ Mal_1 + s(P) 
 
Parametric coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) 6.180e+00  4.544e-03  1359.9   <2e-16 *** 
Mal_1       6.380e-04  3.887e-06   164.1   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
       edf Ref.df Chi.sq p-value     
s(P) 8.991      9   8045  <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.653   Deviance explained = 67.1% 
UBRE = 69.673  Scale est. = 1         n = 312  

Figure 9.10 – Summary statistics (Model V) 
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Model VI. Mal = Mal_1 + s(Tmax-8) + s(RH-4) 

 

Figure 9.11 – Smoothed weekly maximum temperatures (Model VI) 

 

 

 

Figure 9.12 – Smoothed weekly relative humidity (Model VI) 
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Family: poisson  
Link function: log  
 
Formula: 
Mal ~ Mal_1 + s(Tmax) + s(RH) 
 
Parametric coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) 6.247e+00  4.756e-03  1313.5   <2e-16 *** 
Mal_1       5.622e-04  4.172e-06   134.8   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
          edf Ref.df Chi.sq p-value     
s(Tmax) 8.978  9.000   3630  <2e-16 *** 
s(RH)   8.923  8.998   2704  <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.635   Deviance explained = 68.4% 
UBRE =  69.45  Scale est. = 1         n = 312  

Figure 9.13 – Summary statistics (Model VI) 

 

 

Model VII. Mal = Mal_1 + s(Tmin-7) + s(RH-4) 

 

Figure 9.14 – Smoothed weekly minimum temperatures (Model VII) 
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Figure 9.15 – Smoothed weekly relative humidity (Model VII) 

 

 

Family: poisson  
Link function: log  
 
Formula: 
Mal ~ Mal_1 + s(Tmin) + s(RH) 
 
Parametric coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) 6.280e+00  4.762e-03  1318.9   <2e-16 *** 
Mal_1       5.292e-04  4.221e-06   125.4   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
          edf Ref.df Chi.sq p-value     
s(Tmin) 8.859  8.993   3297  <2e-16 *** 
s(RH)   8.925  8.998   2382  <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.619   Deviance explained = 67.4% 
UBRE = 71.421  Scale est. = 1         n = 312  

Figure 9.16 – Summary statistics (Model VII) 
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Model VIII. Mal = Mal_1 + s(Tmean-12) + s(RH-10) 

 

Figure 9.17 – Smoothed weekly mean temperatures (Model VIII) 

 

 

 

Figure 9.18 – Smoothed weekly relative humidity (Model VIII) 
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Family: poisson  
Link function: log  
 
Formula: 
Mal ~ Mal_1 + s(Tmean) + s(RH) 
 
Parametric coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) 6.332e+00  2.812e-03  2251.6   <2e-16 *** 
Mal_1       4.899e-04  1.923e-06   254.7   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
           edf Ref.df Chi.sq p-value     
s(Tmean) 8.964      9  10671  <2e-16 *** 
s(RH)    8.972      9   3390  <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.722   Deviance explained = 75.4% 
UBRE = 81.604  Scale est. = 1         n = 456  

Figure 9.19 – Summary statistics (Model VIII) 

 

 

Model IX. Mal = Mal_1 + s(Tmax-15) + s(P-3) 

 

Figure 9.20 – Smoothed weekly maximum temperatures (Model IX) 

 



 

67 
 

 

 

Figure 9.21 – Smoothed weekly precipitation (Model IX) 

 

 

Family: poisson  
Link function: log  
 
Formula: 
Mal ~ Mal_1 + s(Tmax) + s(P) 
 
Parametric coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) 6.363e+00  3.026e-03  2102.7   <2e-16 *** 
Mal_1       4.599e-04  2.185e-06   210.5   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
          edf Ref.df Chi.sq p-value     
s(Tmax) 8.808  8.987   6606  <2e-16 *** 
s(P)    8.989  9.000   4934  <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.727   Deviance explained = 76.2% 
UBRE = 79.488  Scale est. = 1         n = 453  

Figure 9.22 – Summary statistics (Model IX) 
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Model X. Mal = Mal_1 + s(Tmin-8) + s(P-3) 

 

Figure 9.23 – Smoothed weekly minimum temperatures (Model X) 

 

 

 

Figure 9.24 – Smoothed weekly precipitation (Model X) 
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Family: poisson  
Link function: log  
 
Formula: 
Mal ~ Mal_1 + s(Tmin) + s(P) 
 
Parametric coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) 6.239e+00  4.731e-03  1318.5   <2e-16 *** 
Mal_1       5.691e-04  4.149e-06   137.2   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
          edf Ref.df Chi.sq p-value     
s(Tmin) 8.887  8.995   2287  <2e-16 *** 
s(P)    8.990  9.000   4898  <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.691   Deviance explained = 71.6% 
UBRE = 62.206  Scale est. = 1         n = 312  

Figure 9.25 – Summary statistics (Model X) 

 

 

Model XI. Mal = Mal_1 + s(Tmean-12) + s(P-3) 

 

Figure 9.26 – Smoothed weekly mean temperatures (Model XI) 
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Figure 9.27 – Smoothed weekly precipitation (Model XI) 

 

 

Family: poisson  
Link function: log  
 
Formula: 
Mal ~ Mal_1 + s(Tmean) + s(P) 
 
Parametric coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) 6.223e+00  4.906e-03    1268   <2e-16 *** 
Mal_1       5.742e-04  4.450e-06     129   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
           edf Ref.df Chi.sq p-value     
s(Tmean) 8.985      9   2382  <2e-16 *** 
s(P)     8.991      9   6114  <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.703   Deviance explained =   72% 
UBRE = 58.629  Scale est. = 1         n = 300  

Figure 9.28 – Summary statistics (Model XI) 
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Model XII. Mal = Mal_1 + s(RH-2) + s(P-3) 

 
Figure 9.29 – Smoothed weekly relative humidity (Model XII) 

 

 

 
Figure 9.30 – Smoothed weekly precipitation (Model XII) 
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Family: poisson  
Link function: log  
 
Formula: 
Mal ~ Mal_1 + s(RH) + s(P) 
 
Parametric coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) 6.182e+00  4.745e-03  1302.7   <2e-16 *** 
Mal_1       6.315e-04  4.147e-06   152.3   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
        edf Ref.df Chi.sq p-value     
s(RH) 8.777  8.984   1067  <2e-16 *** 
s(P)  8.991  9.000   6200  <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.666   Deviance explained = 68.9% 
UBRE = 65.494  Scale est. = 1         n = 311  

Figure 9.31 – Summary statistics (Model XII) 

 

 

Model XIII. Mal= Mal_1 + s(Tmax-15) + s(RH-12) + s(P-3) 

 
Figure 9.32 – Smoothed weekly maximum temperatures (Model XIII) 
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Figure 9.33 – Smoothed weekly relative humidity (Model XIII) 

 

 

 
Figure 9.34 – Smoothed weekly precipitation (Model XIII) 
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Family: poisson  
Link function: log  
 
Formula: 
Mal ~ Mal_1 + s(Tmax) + s(RH) + s(P) 
 
Parametric coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) 6.205e+00  5.007e-03  1239.2   <2e-16 *** 
Mal_1       5.881e-04  4.542e-06   129.5   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
          edf Ref.df Chi.sq p-value     
s(Tmax) 8.753  8.977   2442  <2e-16 *** 
s(RH)   8.990  9.000   1642  <2e-16 *** 
s(P)    8.994  9.000   5510  <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.729   Deviance explained = 74.9% 
UBRE = 53.123  Scale est. = 1         n = 297  

Figure 9.35 – Summary statistics (Model XIII) 

 

 

Model XIV. Mal = Mal_1 + s(Tmin-12) + s(RH-12) + s(P-3) 

 
Figure 9.36 – Smoothed weekly minimum temperatures (Model XIV) 
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Figure 9.37 – Smoothed weekly relative humidity (Model XIV) 

 

 

 
Figure 9.38 – Smoothed weekly precipitation (Model XIV) 
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Family: poisson  
Link function: log  
 
Formula: 
Mal ~ Mal_1 + s(Tmin) + s(RH) + s(P) 
 
Parametric coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) 6.210e+00  5.086e-03  1221.0   <2e-16 *** 
Mal_1       5.844e-04  4.662e-06   125.4   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
          edf Ref.df Chi.sq p-value     
s(Tmin) 8.968      9   2018  <2e-16 *** 
s(RH)   8.987      9   1360  <2e-16 *** 
s(P)    8.990      9   4466  <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.717   Deviance explained = 74.1% 
UBRE = 54.263  Scale est. = 1         n = 300  

Figure 9.39 – Summary statistics (Model XIV) 

 

 

Model XV. Mal = Mal_1 + s(Tmean-12) + s(RH-12) + s(P-3) 

 
Figure 9.40 – Smoothed weekly mean temperatures (Model XV) 
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Figure 9.41 – Smoothed weekly relative humidity (Model XV) 

 

 

 
Figure 9.42 – Smoothed weekly precipitation (Model XV) 
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Family: poisson  
Link function: log  
 
Formula: 
Mal ~ Mal_1 + s(Tmean) + s(RH) + s(P) 
 
Parametric coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) 6.209e+00  5.050e-03  1229.5   <2e-16 *** 
Mal_1       5.870e-04  4.616e-06   127.2   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
           edf Ref.df Chi.sq p-value     
s(Tmean) 8.969      9   1907  <2e-16 *** 
s(RH)    8.982      9   1202  <2e-16 *** 
s(P)     8.993      9   5461  <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.719   Deviance explained = 73.9% 
UBRE =  54.71  Scale est. = 1         n = 300  

Figure 9.43 – Summary statistics (Model XV) 
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