
Rui Amendoeira Esteves

Master of Science

Python-based MEMS inertial sensors
design, simulation and optimization

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Micro and Nanotechnologies Engineering

Adviser: Michael Kraft, Full Professor, KU Leuven
Co-adviser: Joana Vaz Pinto, Invited Assistant Professor,

NOVA University of Lisbon

Examination Committee

Chair: Prof. Dr. Hugo Manuel Brito Águas
Rapporteur: Prof. Dr. Manuel João de Moura Dias Mendes

Member: Prof. Dr. Michael Kraft

December, 2020

Python-based MEMS design, simulation and optimization

Copyright © Rui Amendoeira Esteves, NOVA School of Science and Technology,

NOVA University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon

have the right, perpetual and without geographical boundaries, to file and publish

this dissertation through printed copies reproduced on paper or on digital form,

or by any other means known or that may be invented, and to disseminate through

scientific repositories and admit its copying and distribution for non-commercial,

educational or research purposes, as long as credit is given to the author and

editor.

This document was created using the (pdf)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by João
M. Lourenço.

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://docentes.fct.unl.pt/joao-lourenco

Scientia potentia est.

Acknowledgements

Obtaining a master degree is, so far, the greatest achievement in my life. So, I

could not let this moment pass without acknowledging the people and institutions

that supported me during these years and, in fact, made this possible.

The first acknowledgement must go to Professor Rodrigo Martins and Profes-

sor Elvira Fortunato for creating a truly pioneer degree in Portuguese science,

effectively establishing Portugal in the nanotechnology area, and allowing stu-

dents to be a part of science’s future.

I would like to express my gratitude towards my adviser Professor Michael

Kraft for taking me aboard the MNS team, allowing me to do research on a topic

of significant interest, and providing a very positive work experience and environ-

ment. I would also like to thank Professor Joana Pinto for always being available

and for the guidance, which was of great help in the writing of this work.

To Chen Wang, for all the hours, great guidance and friendship during my

time in Leuven. To Mathieu and Sina, for all the precious advice and fun at the

office. To the rest of the MNS team, for the warm reception, and for the excellent

work environment you created.

Furthermore, I would like to thank all my colleagues that shared these five

years with me. A special acknowledgement to Bernardo Madeira, Diogo Carvalho

and José Barnabé - our time in Segundo Esquerdo was one of the best things I

take from these years. Sharing this experience with you was a pleasure, and I will

always be grateful for it.

To Eduardo Oliveira, who didn’t live in the house, but was an essential part

of it and a great friend. To Gui, Dmytro, Mariana Tomé, Raquel, Mariana Abreu,

Maria Francisca, Guida, Alentejano, Diogo Lopes, Eduardo Encarnação and André

Alves, for all the memories and help. To Pipa and Miguel, for all the advice,

dinners, and very important guidance.

I want to thank my friends Madeira, Ticas, Zé Diogo, Diogo, Esha, Chico,

Cacelas, Honório, Sousa, Ospital, Crua, Cunha, Tiago, and Manel. We have been

together since elementary school, and the influence you have had in my life has

been so significant and overwhelmingly positive that it is impossible to express

vii

by words. Thank you for all the support and countless memories, I could not be

more proud and grateful to call you friends.

I would like to express my enormous gratitude to my family. To my mother

and father, for all the love, for always being present, for supporting me in every

way, for always believing in me, and for always putting us first - you will always

be an example to me. Thank you for all your sacrifices and efforts to provide for

me. To my sister, for always being ready to defend your beliefs and to think for

yourself, thus forcing me to be in touch with different points of view. Aos meus

avós, pelo vosso amor e tempo. Pela inexplicável dedicação e devoção para com

os filhos e netos, por tudo o que me ensinaram e deram ate hoje - o meu muito

obrigado, que nunca será suficiente. All of you (and Rocky) contributed to create

the best family environment I could ever wish for, thank you.

Lastly, I want to express my deepest gratitude towards my girlfriend Maria.

Having you in my life has been the greatest gift I have ever got, and I am nothing

but thankful for having you as a colleague, friend and girlfriend. Thank you for

always keeping me in the right track, for always believing in me, and for facing

this Belgian adventure with me.

viii

Abstract

With the rapid growth in microsensor technology, a never-ending range of possible

applications emerged. The developments in fabrication techniques gave room to

the creation of numerous new products that significantly improve human life.

However, the evolution in the design, simulation, and optimization process of

these devices did not observe a similar rapid growth. Thus, the microsensor

technology would benefit from significant improvements in this domain.

This work presents a novel methodology for electro-mechanical co optimiza-

tion of microelectromechanical systems (MEMS) inertial sensors. The developed

software tool comprises geometry design, finite element method (FEM) analy-

sis, damping calculation, electronic domain simulation, and a genetic algorithm

(GA) optimization process. It allows for a facilitated system-level MEMS design

flow, in which electrical and mechanical domains communicate with each other

to achieve an optimized system performance. To demonstrate the efficacy of the

co-optimization methodology, an open-loop capacitive MEMS accelerometer and

an open-loop Coriolis vibratory MEMS gyroscope were simulated and optimized -

these devices saw a sensitivity improvement of 193.77% and 420.9%, respectively,

in comparison to its original state.

Keywords: Microelectromechanical systems (MEMS), inertial sensors, Python,

finite element method, genetic algorithm, optimization, accelerometer, gyroscope

ix

Resumo

Com o rápido crescimento observado na tecnologia de micro sensores, emergiu

um vasto numero de aplicações possíveis. Os desenvolvimentos que ocorreram

nas técnicas de micro e nano fabricação deram lugar à criação de um grande

número de novos produtos que melhoram significativamente a vida humana.

No entanto, a evolução no processo de design, simulação e optimização destes

dispositivos não acompanhou o progresso previamente mencionado. A tecnologia

dos micro sensores beneficiaria, então, de um desenvolvimento significativo neste

domínio.

Este estudo apresenta uma nova metodologia para a co-optimização electro-

mecânica de microssistemas electromecânicos (MEMS) para sensores de inércia.

O software desenvolvido é composto por um bloco para design de geometria,

outro bloco para análise com método de elementos finitos (FEM), um script de

cálculo de amortecimento, uma simulação da interface electrónico e um processo

de optimização pelo algoritmo genético (GA). Esta ferramenta permite um pro-

cesso de design de MEMS facilitado, no qual os domínios electrónico e mecânico

comunicam entre si para atingir um sistema final optimizado. Para demonstrar

a eficácia da metodologia de co-optimizacao, um acelerómetro capacitivo MEMS

e um giroscópio vibratório de Coriolis MEMS foram simulados e optimizados -

estes dispositivos viram a sua sensibilidade aumentada em 193.77% e 420.9%,

respectivamente, em relação ao seu estado original.

Palavras-chave: Microssistemas electromecânicos (MEMS), sensores de inércia,

Python, método dos elementos finitos, algoritmo genético, optimização, aceleró-

metro, giroscópio

xi

Contents

List of Figures xv

List of Tables xvii

Acronyms xix

Symbols xxi

1 Motivation and objectives 1

2 Work strategy 3

3 Introduction 5

3.1 MEMS inertial sensors . 5

3.1.1 Accelerometers . 6

3.1.2 Gyroscopes . 7

3.2 Genetic Algorithm . 8

3.3 MEMS design, simulation and optimization 8

4 Simulation Methodology 11

4.1 Finite Element Method . 11

4.2 Python language and libraries . 12

5 Results and discussion 13

5.1 Python simulation and optimization software 13

5.1.1 MEMS geometry design in Python 13

5.1.2 FEM simulation for displacement and modal analysis . . . 14

5.1.3 Electronic domain simulation 16

5.1.4 Damping calculation . 19

5.1.5 Genetic algorithm optimization 21

5.2 Case study 1: MEMS capacitive accelerometer 22

5.2.1 Design analysis . 22

xiii

CONTENTS

5.2.2 Optimization results . 23

5.3 Case study 2: linear MEMS vibratory gyroscope 26

5.3.1 Design analysis . 27

5.3.2 Optimization results . 28

6 Conclusion and Future Perspectives 33

Bibliography 35

Annexes 43

I Software implementation on MEMS accelerometer 43

II Software implementation on MEMS gyroscope 57

III Permittivity values 97

xiv

List of Figures

3.1 Lumped model of accelerometer attached to a body 6

3.2 Working principle of MEMS coriolis vibratory gyroscope 7

3.3 General MEMS design, simulation and optimization process-flow . . . 8

4.1 The finite element method approach 11

5.1 General block diagram for the developed software. 13

5.2 Capacitive sensing structures present in both case studies 17

5.3 Electrostatic actuation system present in MEMS gyroscope (case study

2) . 18

5.4 Block diagram of capacitance to voltage converter circuit implemented

with both MEMS devices . 19

5.5 Viscous damping effects modelled in the software 20

5.6 Workflow of the programmed genetic algorithm 21

5.7 Mass-spring-damper model . 22

5.8 MEMS capacitive accelerometer design 23

5.9 MEMS accelerometer mode shape corresponding to the natural fre-

quency of 3284 Hz . 23

5.10 Capacitive MEMS accelerometer system-level model. 24

5.11 Mesh convergence study for MEMS accelerometer 24

5.12 Evolution of the MEMS accelerometer through the six generations of

the GA, the suspension beam width is reduced and the proof mass is

enlarged . 26

5.13 Mass-spring-damper model of MEMS gyroscope design 26

5.14 Linear vibratory MEMS gyroscope design [7] 27

5.15 Linear vibratory MEMS gyroscope system-level model. 28

5.16 Mesh convergence study for MEMS gyroscope 29

5.17 Evolution of the MEMS gyroscope through the six generations of the

GA - the proof-mass became larger; the u-beams, the sense comb fin-

gers, and the proof-mass frame became thinner 30

xv

LIST OF FIGURES

5.18 Frequency modes of original and optimized MEMS gyroscope, the

movement modes became more pronounced 31

xvi

List of Tables

5.1 Material properties of Silicon crystal (100) [53] 16

5.2 Initial geometric parameters of MEMS accelerometer 23

5.3 Geometric and performance parameters of original and final accelerom-

eter . 25

5.4 Initial geometric parameters of MEMS gyroscope 27

5.5 Geometric and performance parameters of original and optimized gy-

roscope . 30

III.1 Permittivity values . 97

xvii

Acronyms

CAD computer-assisted design

DoF degree of freedom

FEA finite element analysis

FEM finite element method

FOM figure of merit

GA genetic algorithm

GPS global positioning system

MEMS microelectromechanical system

PDEs partial differential equations

VDC vehicle dynamic control

xix

Symbols

VAC alternate-current voltage

Pa ambient pressure

A area

VC2V voltage from the conversion of capacitance

Cbottom capacitance between the bottom electrode and the proof-

mass

Ctop capacitance between the top electrode and the proof-mass

Cint reference capacitance

csqueeze squeeze damping coefficient

cslide slide damping coefficient

mm mass of the moving structure

: colon operator

mC mass subjected to Coriolis force

∆Cs capacitance variation from the sensor

Fc damping force

VDC direct-current voltage

{U } displacement function

disp displacement

u displacement vector field

d distance between electrodes

x0 drive amplitude

ωD drive mode frequency

ωS sense mode frequency

µef fsqueeze effective viscosity for squeeze film damping

µef fslide effective viscosity for slide film damping

Fbalanced electrostatic force from balanced actuation

Fcomb electrostatic force from comb fingers

xxi

SYMBOLS

λ eigenvalue

ω eigenfrequency

ε0 free space permittivity

ε symmetric strain-rate tensor

εr relative permittivity of the dielectric medium

f body force per unit of volume

I identity tensor

Kn Knudsen number

λL Lamé parameter λ

L length of the comb fingers

[M] mass matrix

y0 mechanical scale factor

λf mean free path

∆f frequency mismatch

µL Lamé parameter µ

µ mean viscosity of the medium

n outward pointing unit normal at the boundary

∇ divergence operator

N number of comb fingers

Ω body domain

ΩZ angular-rate around the z-axis

a overlapping area between electrodes and proof-mass

c ratio between the width and length

Qf actor quality factor

mS moving mass in the sense mode

Qsense quality factor of sense mode

σ stress tensor

xxii

SYMBOLS

σs squeeze number

[K] stiffness matrix

t thickness

tr trace operator

v test function

V̂ vector-valued test function space

Vcm reference voltage

VDD supply voltage

V voltage

xxiii

C
h
a
p
t
e
r

1
Motivation and objectives

In the past decade, inertial sensor technology has suffered a rapid market growth:

smartphones and tablets, gaming systems, virtual reality equipment, toys, and

power tools are good examples of the wide adoption these devices have seen on

consumer electronics products [1]. Most people already carry a microelectrome-

chanical system (MEMS) inertial sensor in their pockets - the ordinary smart-

phone combines gyroscopes and accelerometers in order to provide the user with

a global positioning system (GPS), a rotation detector and velocity measurements.

However, these mundane implementations are not alone in the inertial sensor

world - the automotive [2], aerospace [3], and military industry make use of these

devices in numerous applications. Apart from the standard GPS, modern vehicles

now possess a vehicle dynamic control (VDC) system that helps the automobiles

with regaining control in the event of skidding [4]. In the military industry there

are ongoing efforts to integrate MEMS inertial sensors with projectiles and aircraft,

providing a chance to measure in-flight dynamics [5].

In order to design, simulate, and optimize these devices, engineers have di-

vided the process into two very distinct - yet symbiotic - domains: mechanical

and electrical. This workflow is often severely divided, and usually a great deal

of simplification is applied to one of the domains in order to achieve a complete

simulation and optimization of the other one [6]. Moreover, the typical design

methodology combines multiphysics software and a programming language in-

terpreter program. The fact that there is a very restricted set of tools to choose

from, combined with the need for compatibility between different commercial

software, dramatically limits the potential for customization and adaptation to

specific designs.

This work aims to develop a novel co-simulation and co-optimization pro-

cess for MEMS devices fully based on Python, in order to provide a complete

open-source solution that provides an insight into both the mechanical and the

electrical domains, while paying attention to their interaction.

1

C
h
a
p
t
e
r

2
Work strategy

This work followed three consecutive phases:

1. The initial step was to develop the Python program. Initially, research was

conducted to find similar work as well as to search for software libraries that

could be of use in this endeavour. Then, a geometry builder part, a finite

element method (FEM) block, and an electrical script were built. Finally, a

genetic algorithm (GA) was designed and connected to the program. The

four sections assemble a complete general-purpose MEMS simulation and

optimization software.

2. The second step encompassed designing, simulating, and optimizing a ca-

pacitive MEMS accelerometer with the new program. The simulations are

compared with commercial multiphysics software, and the optimization re-

sult is analyzed. This step represents the program’s first implementation on

a MEMS inertial sensor.

3. The third step was to test the software with a MEMS gyroscope. This design

represented a remarkable challenge for the program to process, simulate

and optimize - thus, making for a reliable way to validate further the system

when applied to inertial sensors.

3

C
h
a
p
t
e
r

3
Introduction

Microelectromechanical Systems (MEMS) are defined as a combination of elec-

trical and mechanical systems at micrometer scale. These devices are fabricated

using photolithography methods. This technology allows for the fabrication of

moving microstructures on a substrate, allowing for the creation of remarkably

complex structures which turn into mechanical and electrical systems [7].

3.1 MEMS inertial sensors

MEMS inertial sensors are a group of sensors that measure acceleration or angular

motion - the first is referred to as accelerometer and the second as gyroscope. With

the advent of the micromachining technology [8], the production costs for these

devices decreased enough to oversee their expansion into consumer applications.

Previously confined to cost-heavy industries, such as military and aerospace, in-

ertial sensors rapidly grew into many other areas such as automotive, biomedical,

navigation, and smart systems [9].

One of the most prominent applications for micromachined accelerometers is

in the automotive industry [10]. A study on the perspectives of MEMS sensors

by Senturia et al. [11] stated that the silicon accelerometer dominates the mar-

ket for automotive airbag deployment, a life-saving mechanism responsible for

avoiding 2790 deaths per year in the United States of America alone [12]. MEMS

accelerometers applications in this area include crash and skid detection - both

crucial when designing stabilization systems [13].

In the biomedical industry, there is a growing interest in the integration of

MEMS accelerometers into various applications. Kusmakar et al. [14] demon-

strated the potential to build an ambulatory monitoring convulsive seizure de-

tection system, using an accelerometer. Fall detection systems using MEMS ac-

celerometers are being widely adopted [15, 16]. Van Thanh et al. [17] developed

a prototype for fall detection that alerts an emergency contact in case the el-

derly person has an accident. Furthermore, fitness trackers comprising MEMS

accelerometers are now popularly used by the general public [18].

5

CHAPTER 3. INTRODUCTION

Similarly, micromachined gyroscopes are widely adopted in the automotive

industry [2] - seeing applications in rollover protection, stability and active con-

trol systems, and inertial navigation. A gyroscope detects the angular rate of a car,

and if this value hits a critical threshold - a safety system will adjust the steering

wheel and brakes to prevent the vehicle from overturning [9]. Another common

application for MEMS gyroscopes is platform stabilization - using these sensors

to detect an angular motion and automatically adjust a platform such as a video

camera or robotic arm, to achieve a stable surface [19].

Inertial sensors have a bright future ahead of them with an endless array of

possibilities. Thus, it is of the most significant interest to research and develop

new ways of designing, simulating and optimizing MEMS inertial sensors. Novel

methodologies of co-simulation can open doors to news designs and applications,

as well as creating a more efficient work-flow.

3.1.1 Accelerometers

An accelerometer is a sensor which can detect acceleration. The general working

principle of this device is described as a body which suffers a detectable displace-

ment when it is under an external acceleration force. Despite the large number of

accelerometers types, the vast majority has a proof-mass attached to a reference

frame by a suspension system, illustrated in Figure 3.1 - this mechanical structure

is designed to move along a specific axis, in order to detect acceleration in this

direction [9].

mass

Accelerometer

Body attached to sensor

Figure 3.1: Lumped model of accelerometer attached to a body

The deflections are transformed into an electrical signal. This process of trans-

ducing can take three forms: resistive interfaces, piezoelectric interfaces, and

capacitive interfaces [20]. In this work, the studied inertial sensors have a capac-

itive transducing interface - these devices comprise a set of one or more fixed

6

3.1. MEMS INERTIAL SENSORS

electrodes and one or more moving electrode. The movement caused by an accel-

eration modifies the distance between electrodes, provoking a capacitance change

which is then captured by a readout circuit.

3.1.2 Gyroscopes

A gyroscope is a sensor that measures the angular rate of an object - the rate of ro-

tation. There are three types of gyroscopes: spinning mass, optical, and vibrating

gyroscopes [21]. For micromachined gyroscopes, the most common approach to

sense an angular rate is to use vibrating mechanical elements. This type of devices

involve no rotating parts which endure friction and wear, allowing for a successful

miniaturization under micromachining techniques. Vibrating gyroscopes induce

and detect Coriolis force in order to measure the angular motion [7].

The Coriolis force is a fictitious force that emerges from the Coriolis effect,

which only acts on an object when the motion is observed from a rotating non-

inertial reference frame. Jean Bernard Léon Foucault demonstrated this phenom

in 1851, with the Foucault pendulum [22]: when a swinging pendulum attached

to a rotating platform is observed by a stationary observer from above - the pendu-

lum oscillates along a straight line; however, an observer in the rotating platform

would see that the line precesses. That precession can only be described with

dynamic equations if the Coriolis force is included [7, 23].

Y

X

mass

Z

(around z-axis)

sense
motion

drive
motion

Figure 3.2: Working principle of MEMS coriolis vibratory gyroscope

Coriolis vibratory gyroscopes comprise an inertial mass element and a sus-

pension system that keep the proof-mass suspended above the substrate. The

sensitive element is driven to oscillation along one axis with known amplitude

(driving mode), when the device rotates around another axis, the Coriolis effect

causes the proof-mass to move in an orthogonal direction (sensing mode). In

this study, the displacement in the sense mode produces a detectable capacitance

7

CHAPTER 3. INTRODUCTION

change [24]. This working principle is illustrated in Figure 3.2, in which the

gyroscope detects angular motion around the z-axis.

3.2 Genetic Algorithm

When Charles Darwin, in the nineteenth century, revolutionized science by dis-

covering the processes by which nature selects and evolves its organisms [25],

it was not possible to foresee the numerous applications his discoveries would

inspire. In the same century, Gregor Mendel laid down the bases of genetic in-

heritance [26] - complementing Darwin’s findings. The genetic algorithm was

designed, taking the aforementioned principles as inspiration, making use of

computational resources to optimize all kinds of devices and processes.

The genetic algorithm applies evolution principles to a set of individuals: the

algorithm runs through several generations, starting from an initial population

with initial parameters and defined fitness goals, and letting the best individuals

survive and reproduce themselves - mixing the parameters of the ancestors with

random mutations, imitating the natural process until the population converges

to a higher performance state [27].

In this study, the genetic algorithm is applied to MEMS inertial sensors, setting

electro-mechanical performance parameters as fitness goals in order to achieve a

complete co-optimization.

3.3 MEMS design, simulation and optimization

The design, simulation, and optimization process of a MEMS device is illustrated

in Figure 3.3, and can be broadly described by the sequence: design of initial

geometry, mechanical parameter simulation and optimization, design of electrical

interface, and simulation of complete system [28].

Initial design

Mechanical
simulation

Electrical
interface design

Mechanical
optimization

Complete system
simulation

Figure 3.3: General MEMS design, simulation and optimization process-flow

In order to design, simulate and optimize MEMS inertial sensors, engineers

have separated the process into two very distinct - yet symbiotic - domains: me-

chanical and electrical. This workflow is often severely divided, and usually, a

8

3.3. MEMS DESIGN, SIMULATION AND OPTIMIZATION

great deal of simplification is applied to one of the domains to achieve a complete

simulation and optimization of the other.

MEMS mechanical structures are usually designed in a computer-assisted de-

sign (CAD) software and commonly comprise thousands of degree of freedom

(DoF) which lead to a high computational cost when simulating mechanical be-

haviour. To bypass this obstacle, engineers have used reduced-order modelling

methods to build system-level models [29], bringing the thousands of DoF down

to a few, with the three DoF being the most basic option, frequently used when de-

signing closed-loop control systems. For example, Hung et al. [30] used low-order

models to improve simulation time significantly, while Kudryatsev et al. [31] tried

to achieve a reduced-order model for a MEMS piezoelectric energy harvester, and

Nayfeh et al. [32] developed two reduced-order models for MEMS applications.

The aforementioned method can be helpful when designing and optimizing

the sensor’s electrical interface; however, it fails to take into consideration the

full complex mechanical structure, and consequently, the interaction between

electrical and mechanical domains.

Moreover, the typical optimization methodology combines multiphysics soft-

ware and a programming language interpreter program. Wang et al. [33] pre-

sented a MEMS mechanical optimization method that allows for the generation

of freeform geometries - combining COMSOL [34] finite element analysis and

modelling with a GA implemented in MATLAB [35], demonstrating its effective-

ness with the optimization of a MEMS accelerometer. Solouk et al. [36] used the

same methodology to optimize a MEMS gyroscope concerning an automotive

application.

Although this approach takes into consideration the complex mechanical

structure of MEMS as well as its electrical interface, it does possess several limita-

tions. It does not fully capture the interaction between mechanical and electrical

domains, and the fact that there is a very restricted set of tools to choose from,

combined with the need for compatibility between different commercial software

ends up limiting the potential for customization and adaptation to specific de-

signs.

9

C
h
a
p
t
e
r

4
Simulation Methodology

4.1 Finite Element Method

In this work, the finite element method (FEM) is implemented in the developed

software, as it is a fundamental mathematical tool to simulate mechanical struc-

tures. It is chosen over the finite difference method due to its ability to handle

complex geometries. It is also used by COMSOL [34], a simulation multiphysics

software employed to provide a viable comparison and validation means.

The finite element method approaches any problem by subdividing a contin-

uous entity into finite smaller parts, solve each one individually, and reassemble

them as seen on Figure 4.1. It is a mathematical tool necessary to apply finite

element analysis (FEA) to a physical phenom. Using numerical methods to deeply

comprehend any phenomena is essential, mostly because many of the physical

processes, and indeed the vast majority of solid mechanics ones, are described by

partial differential equations (PDEs) [37].

Problem Smaller
problems

Solved Reassemble

Figure 4.1: The finite element method approach

For a computer to solve PDEs, it applies the FEM to divide an extensive system

into smaller subparts - finite elements. This division is called space discretization,

and the generation of a mesh achieves it - this is a way of transcribing a 2D or 3D

object into a series of mathematical points that can be analyzed.

There are several categories of PDEs: elliptic, hyperbolic, and parabolic [38].

This study focuses on solid mechanics simulation, thus, the main category applied

to this area is elliptic, which can be solved using a variational method - FEM.

A variational method has its basis on the principle of energy minimization:

when a boundary condition (e.g. displacement) is applied, the configuration

where the total energy is minimum is the one that prevails. The process of solving

11

CHAPTER 4. SIMULATION METHODOLOGY

these equations with this method starts with multiplying the PDEs by a test func-

tion, then integrate the resulting equation over the domain, and finally perform

integration by parts with second-order derivatives. The unknown function to be

approximated is named trial function. The trial and test functions belong to a

particular function space, which specifies the functions properties as well as the

spatial domain in which they act [39].

4.2 Python language and libraries

The Python [40] programming language was used to develop the co-simulation

and co-optimization system in this study. Python is a high-level language ex-

ceptionally well suited for scientific and engineering environments - its highly

modular nature and clean syntax provide a simple and direct code writing suit-

able in many scientific applications [41].

The language’s open source license allows the user to use, sell, and distribute

any developed Python-based application with no need for special permissions.

Its ability to interact with a wide range of other software, to run on a significant

number of platforms, to allow realtime code development without the need to

compile every time it changes, makes the language a powerful candidate for

scientific computing and application development [42].

The advantages mentioned above contribute heavily to the selection of Python

for this work. However, the main reason for this choice lies in the countless

number of library modules provided either officially from Python or from the

global developer’s community, which opens the door to a never-ending number

of possible combinations and applications. A software was developed in Python

to simulate and optimize MEMS devices. It used different modules and libraries

like pygmsh, meshio, and FEniCS to generate and simulate 3D geometries.

The pygmsh [43] module was used to build the desired geometries. It combines

Gmsh [44], a finite element mesh generator and Python to create a versatile tool

which can create complex geometries with code. The meshio [45] module was

implemented on the software in order to perform mesh import and export opera-

tions. It is useful to allow information processing between the various program

parts and provides the possibility to visualize generated meshes.

The FEniCS [46] library is a powerful open-source computing platform for

PDEs. It enables users to translate scientific models into efficient finite element

code [47] and supports parallel processing - which allows for a significant compu-

tation speed increase. The software used this module to perform FEM simulation.

12

C
h
a
p
t
e
r

5
Results and discussion

5.1 Python simulation and optimization software

A complete MEMS co-simulation and co-optimization program comprises differ-

ent essential blocks. As introduced in Chapter 2, this type of software needs to

englobe:

1. A geometry designer or processor with meshing abilities.

2. A FEM simulation block powerful enough to process different mesh sizes

with varying degrees of complexity.

3. A personalized electrical domain script capable of interpreting the mechan-

ical results for each MEMS device.

4. A GA section that takes into consideration both mechanical and electrical

performance parameters.

A software covering all the aforementioned abilities was developed with a general

structure depicted in Figure 5.1. This program also englobed a viscous damping

calculation, which the genetic algorithm takes into consideration. In this way,

the optimization considers an important parameter that is a direct result of the

interaction between mechanical and electrical domains.

Geometry Mechanical
FEM simulation

Electrical
simulation Genetic

algorithmDamping
calculation

Figure 5.1: General block diagram for the developed software.

5.1.1 MEMS geometry design in Python

A competent geometry design and meshing system requires several fundamental

characteristics: the ability to create different shapes and perform boolean oper-

ations on them (union, difference, intersection, and complement), the capacity

13

CHAPTER 5. RESULTS AND DISCUSSION

to create a customizable mesh to be assigned to the created geometry, and the

possibility to import and export files.

For this purpose, as previously mentioned in Chapter 4.2, two Python libraries

were chosen - pygmsh and meshio. Pygmsh is used for geometry building and mesh

generation, next the meshio library is applied to generate a file that can be read by

the other software blocks. This implementation is shown in Listing I.1 and II.1.

5.1.2 FEM simulation for displacement and modal analysis

The FEM block is the most complex and vital simulation in the program, arguably

the core of the software. In this study, as stated in Chapter 4.1, this tool is used to

solve PDEs problems involving linear elasticity equations: the first is to calculate

the displacement resulting from an applied force, and the second is to perform a

modal analysis - obtaining the MEMS eigenfrequency modes.

5.1.2.1 Displacement analysis

For MEMS inertial sensors simulation, PDEs modelling small deformations of

elastic bodies become the main mechanical objects of study [20]. When a force

is applied to a body Ω, the equations describing the suffered deformations on

isotropic elastic conditions are the following [48]:

−∇ · σ = f in Ω (5.1)

σ = λL tr(ε) I + 2µLε (5.2)

ε = 1
2(∇u + (∇u)T) (5.3)

In these equations: ∇ represents the divergence operator [49], σ is the stress

tensor [50], f stands for the body force per unit of volume, λL and µL denote

the Lamé’s elasticity parameters regarding the body’s material [51], I signify the

identity tensor, tr represents the trace operator (on a tensor), ε stands for the

symmetric strain-rate tensor, and u is the displacement vector field.

Combining (5.2) and (5.3) yields

σ = λL(∇ ·u)I +µL(∇u + (∇u)T) (5.4)

As referred in Section 4.1, the variational formulation of (5.1 - 5.3) begins with

the inner product of equation (5.1) and a test function v ∈ V̂ , where V̂ stands for

a vector-valued test function space, and integrating it over the domain Ω.

−
∫
Ω

(∇ · σ) · v dx =
∫
Ω

f · v dx (5.5)

14

5.1. PYTHON SIMULATION AND OPTIMIZATION SOFTWARE

The expression ∇ · σ includes second-order derivatives that belong to the un-

known u, so the term that contains it is integrated by parts.

−
∫
Ω

(∇ · σ) · v dx =
∫
Ω

σ : ∇v dx −
∫
∂Ω

(σ ·n) · v ds (5.6)

The colon operator represents the inner product of two tensors, and n is the

outward pointing unit normal at the boundary. The expression σ ·n is known as

the stress vector and regularly designates a boundary condition - it is assumed that

it is prescribed on a part ∂ΩT of the boundary as σ ·n = T , where T is a constant.

On the rest of the boundary, the value of the displacement is represented as a

Dirichlet [52] condition. Thus, it is obtained:∫
Ω

σ : ∇v dx =
∫
Ω

f · v dx+
∫
∂ΩT

T · v ds (5.7)

Replacing the stress tensor, σ from (5.4) in the previous equation (5.7) pro-

duces the variational form with u as unknown. It is now possible to summarize

the variational formulation - find u ∈ V in a manner that

a(u,v) = L(v) ∀v ∈ V̂ (5.8)

In which

a(u,v) =
∫
Ω
σ (u) : ∇v dx (5.9)

L(v) =
∫
Ω
f · v dx+

∫
∂ΩT

T · v ds (5.10)

In the colon operator product σ : ∇v, if ∇v is represented as a sum of its sym-

metric and anti-symmetric parts, the remaining part will be the symmetric one

because σ is a symmetric tensor. This allows for the replacement of ∇v by the

symmetric gradient ε(v):

a(u,v) =
∫
Ω

σ (u) : ε(v) dx (5.11)

The equation 5.11 is the one that clearly emerges from the principle of energy

minimization applied to potential elastic energy and it is the one implemented on

the developed software, as seen on Listing I.2 and II.2. In this work, the MEMS

designer inputs the required boundary conditions and the program takes into

consideration those constants to evaluate aforementioned equation.

The software needs to possess the inertial sensor’s material properties in order

to process the devices response properly. Single crystal silicon is one of the most

common materials used in inertial sensors, and it was the one chosen in this study.

The properties Silicon crystal (100) are listed in Table 5.1 [53].

15

CHAPTER 5. RESULTS AND DISCUSSION

Table 5.1: Material properties of Silicon crystal (100) [53]

Material property Value

Young’s Modulus 131 GPa
Poisson ratio 0.28
Density 2330 kg/m3

Lamé parameter λL 8.452× 1010 N/m2

Lamé parameter µL 6.641× 1010 N/m2

5.1.2.2 Modal analysis

To study MEMS inertial sensors, the knowledge of natural frequencies and the

corresponding mode shapes of a device during free vibration becomes essential.

Modal analysis is performed to calculate said properties, making use of FEA.

The method solves an eigensystem - a group of all eigenvectors belonging to a

linear transformation matched with the corresponding eigenvalue [54], the first

represents the mode shape and the second represents the frequency.

The eigenvalue problem solved in this software is the following [55]:

[K]{U } = λ[M]{U } (5.12)

In this equation, [K] stands for the stiffness matrix - obtained from the assem-

bly of equation 5.11, [M] represents the mass matrix - assembled, taking into

account the device’s geometry and material density, {U } symbolizes the displace-

ment function, and λ is the desired eigenvalue.

With the help of PETSc linear algebra package to assemble the matrices and

of SLEPcEigenSolver to compute the solution to said matrices, the software can

now return the eigenfrequencies related to the obtained eigenvalues: λ =ω2. The

eigenvectors associated with the mentioned eigenvalues are exported to a file,

which can be opened in ParaView [56] to visually analyze the mode shapes. The

modal analysis implementation in this software is shown in Listings I.3 and II.3.

5.1.3 Electronic domain simulation

The electronic domain simulation block is the third and most variable block in

the program. Every MEMS architecture possess a different system, thus requiring

a different script for each design - this allows for total customization and an

accurate simulation.

In this work, the analyzed devices were MEMS inertial capacitive sensors - as

introduced in Subsection 3.1.1, these sensors produce a detectable signal when a

16

5.1. PYTHON SIMULATION AND OPTIMIZATION SOFTWARE

displacement causes a capacitance change between parallel plates. This general

principle leads to different capacitance sensing mechanisms which have to be

taken into account when implementing the software.

Two MEMS inertial sensors were simulated: a capacitive accelerometer and a

linear vibratory gyroscope, as shown in Figure 5.2.

bottom electrode

proof-mass

top electrode

d

d

overlapping area

(a) MEMS accelerometer principle (case study 1)

proof-mass Sense
axis

Top
anchored
electrodes

Bottom
anchored
electrodes

(b) MEMS gyroscope principle (case
study 2)

Figure 5.2: Capacitive sensing structures present in both case studies

The simulated MEMS capacitive accelerometer (Figure 5.2a) has its proof-mass

between two electrodes, which results in differential sensing defined by equations

(5.13),(5.14) [57]. In these Equations, ε0 stands for free space permittivity and εr
represents the relative permittivity of the dielectric medium - these are listed in

Table III.1. The initial vertical distance between the proof-mass and the electrodes

is designated as d, and their overlapping area is a.

Ctop = ε0εra
d−disp ,Cbottom = ε0εra

d+disp (5.13)

∆C = Ctop −Cbottom (5.14)

(5.15)

The linear vibratory gyroscope comprises a differential sensing mechanism

as well, seen in Figure 5.2b: the proof-mass contains two sets of comb-fingers

which move along the y-axis, altering the gap between the fixed electrodes and

the moving ones - the capacitance change produced by this system is described

by Equations (5.16),(5.17). In the aforementioned equations, N stands for the

number of comb fingers, t represents the thickness, L signifies the comb fingers

length, and d is the gap between said fingers.

17

CHAPTER 5. RESULTS AND DISCUSSION

Ctop =N ε0tL
d−disp ,Cbottom =N ε0tL

d+disp (5.16)

∆C = Ctop −Cbottom ≈ 2N ε0tL
d2 disp (5.17)

In order to drive the gyroscope’s proof-mass into driving resonance, electro-

static actuation is applied. Electrostatic actuators rely on the force between two

electrodes when a voltage is applied between them [58]. Parallel-plate actuation

electrodes are commonly built to apply a force in a specific direction - aligned

with the desired motion direction and DoF of the target mass.

In the designed MEMS gyroscope, the implemented mechanism is the bal-

anced actuation. The interdigitated comb-drives seen in Figure 5.3a generate the

desired force by sliding parallel to each other; this force is described by Equa-

tion 5.18. A balanced actuation system illustrated in Figure 5.3b works by apply-

ing V1 = VDC+VAC to one set of electrodes, and V2 = VDC−VAC to the opposing set.

This method allows a linearization of the force regarding a constant voltage VDC
and a varying VAC - the electrostatic force is finally described by Equation 5.19 [7].

Fcomb = −ε0t
d NV 2 (5.18)

Fbalanced = 2ε0LtN
d2 VDCVAC (5.19)

The aforementioned sensing and actuating equations are inserted in the soft-

ware, providing the possibility to study the effects of different potential on the

drive mode, and enabling the user to pass electrical performance parameters onto

the genetic algorithm - thus, achieving a co-optimization.

proof-mass

L

d
anchored
electrode

drive direction along x-axis

(a) Variable-area actuator principle

proof-mass

V1 = VDC + VAC V2 = VDC - VAC

Drive direction along x-axis

(b) Balanced actuation scheme

Figure 5.3: Electrostatic actuation system present in MEMS gyroscope (case study
2)

A capacitance to voltage converter is implemented in the code, in order to

generate a readable electronic signal from the provoked capacitance change. The

18

5.1. PYTHON SIMULATION AND OPTIMIZATION SOFTWARE

converter is a simplified version of the converting block designed by Utz et al. [59],

seen in Figure 5.4 with a governing equation stated in equation 5.20.

VC2V =
2∆Cs · (VDD −Vcm)

Cint
(5.20)

-
+

+
-

Cint

Cint

Rbias

Rbias

Vcm

Vcm

Sensor

C
-T

rim

M
od

ul
at

or

A
dj

us
ta

bl
e

ga
in

O
ut

pu
t f

ilt
er

Vout

D
em

od
ul

at
or

Figure 5.4: Block diagram of capacitance to voltage converter circuit implemented
with both MEMS devices

In Listing I.4 and II.5, it is possible to see the implementation of the electrical

domain simulation.

5.1.4 Damping calculation

Damping stands for the energy loss effects in any oscillatory system. In this

study, the modelled damping was the viscous damping. This type of damping

mechanism occurs when the gas surrounding the vibratory structures presents

viscous effects caused by the internal friction of the gas trapped in the middle of

vibratory structures such as comb fingers.

Viscous damping is the primary contributor to overall damping and poses as

an essential parameter to be estimated [60]. In this study, squeeze film damping

and slide film damping were modelled to calculate the drive and sense mode’s

quality-factor of both simulated devices. The simulated MEMS inertial sensors

were considered to be surrounded by air (εr = 1).

When two parallel plates move towards each other, they squeeze the fluid (in

this case, air) between them - creating a squeeze film damping phenom, seen in

Figure 5.5a. Additionally, slide film damping exists when two plates slide parallel

to each other - illustrated in Figure 5.5b. To model these two effects, the following

equations were implemented:

19

CHAPTER 5. RESULTS AND DISCUSSION

Kn =
λf
d (5.21)

µef fsqueeze = µ

1+9.638K1.159
n

(5.22)

Fc
z = 64σsPaA

π6d

∑
m,nodd

m2+c2n2

(mn)2[(m2+c2n2)2+σ2/π4] (5.23)

σs =
12µef fsqueezew

2

Pad2 ω (5.24)

csqueeze = Fc ·Ncombs (5.25)

µef fslide = µ

1+2Kn+0.2K0.788
n e−Kn/10 (5.26)

cslide = µef fslide
A
d ·Ncombs (5.27)

Qf actor = mm·ω
c (5.28)

moving plate

(a) Squeeze film damping effect

moving plate

(b) Slide film damping effect

Figure 5.5: Viscous damping effects modelled in the software

In Equation 5.21, Kn represents the Knudsen number which is a measure of

gas rarefaction effect - the ratio of the mean free path λf to the gap d containing

the gas [61]. For squeeze film damping modelling, Equation 5.22 denotes the

effective viscosity in which µ stands for the mean viscosity (in this study, air) [62];

Equation 5.23 represents the squeeze film damping force in which z is the plate

deflection, Pa is the ambient pressure, for a plate with width w and length l -

A = wl and c = w/l, σ is the squeeze number [63]; Equation 5.24 stands for the

aforementioned squeeze number in which ω denotes frequency; Equation 5.25

represents the viscous film damping coefficient for a sensing structure with a

number of comb fingers Ncombs.

For slide film damping modelling, Equation 5.26 refers to the effective viscos-

ity associated with this type of damping [64], and Equation 5.27 describes the

lateral damping coefficient in which A denotes the overlap area of the plates.

Equation 5.28 represents the quality factor [65, 66] associated with a move-

ment mode, in which m stands for the mass of the moving structure, ω denotes

the frequency of vibration mode, and c is the damping coefficient associated with

the movement type.

The damping calculations are implemented in the software as seen on List-

ing I.5 and II.4.

20

5.1. PYTHON SIMULATION AND OPTIMIZATION SOFTWARE

5.1.5 Genetic algorithm optimization

The GA block is the responsible for the electro-mechanical co-optimization. As

explained in Section 3.2, the algorithm starts with an initial set of individuals,

calculates the figure of merit (FOM) of each one, selects the top performers, re-

produces and mutates them, and then forms the new generation.

In this study, the genetic algorithm was developed with the following work-

flow, demonstrated in Figure 5.6:

1. The first step of the algorithm is to initialize a first generation with 100

individuals containing the initial geometric parameters listed in each case

study’s section.

2. A calculation of each device’s FOM is then executed - in the first generation

this attribute is equal for all individuals.

3. To assemble the next generation, both an integral copy and a mutated copy

of the 25 best devices are placed in the population - the remaining 50 devices

are randomly mutated.

4. This process is repeated for a designated number of generations - until half

of the population converges to a high-performance FOM and an individual

is selected.

The genetic algorithm implementation is displayed in Listing I.6 and II.6.

Initial generation with initial
geometry parameters

Figure of merit (FOM)
calculation

Copy of original and mutated
versions of 25 best individuals,

remaining 50 are randomly mutated

FOM

After N generations, half of
the population converges to

a higher FOM

Repeat for another
generation

Figure 5.6: Workflow of the programmed genetic algorithm

21

CHAPTER 5. RESULTS AND DISCUSSION

5.2 Case study 1: MEMS capacitive accelerometer

As a first implementation of the developed program, an open-loop capacitive

MEMS accelerometer is designed, simulated, and optimized. This device com-

prises four beams suspending a proof-mass above the substrate. The accelerom-

eter is designed to detect acceleration in the z-axis by displacement of the proof-

mass along said axis, with a mass-spring damper model illustrated in Figure 5.7.

To detect a capacitance change, the device’s proof-mass is located between two

electrodes with an overlap area equal to the proof-mass bottom and top surface

area. The initial distance between the proof-mass and the electrodes is changed

when the mass suffers a displacement caused by an acceleration, thus provoking

a detectable capacitance change.

Z

Y

mass

X

Figure 5.7: Mass-spring-damper model

5.2.1 Design analysis

The structure built by the developed software is illustrated in Figure 5.8, with

its geometric parameters listed in Table 5.2. The device comprises four L-shaped
beams connected to the proof-mass on one end, and fixed on the other. These

beams suspend the proof-mass above the substrate, promoting a movement along

the z-axis while restricting motion on the other directions - the mode shape cor-

responding to the natural frequency seen in Figure 5.9 confirms these character-

istics.

The ruling capacitance change equation for this accelerometer is stated in

Equation 5.14 and observed in Figure 5.8b, in which d is the distance between

proof-mass and electrodes while A stands for the overlapping area of electrodes

and proof-mass - given by the proof mass surface area.

In Table 5.2 the initial geometric parameters of the accelerometer are shown.

22

5.2. CASE STUDY 1: MEMS CAPACITIVE ACCELEROMETER

(a) 3D model generated by
the software

d

A

(b) Side view of device with electrodes in red

Figure 5.8: MEMS capacitive accelerometer design

D
is

pl
ac

em
en

t (
z-

ax
is

)

4.4 x 10-2 𝛍m

0 𝛍m

Figure 5.9: MEMS accelerometer mode shape corresponding to the natural fre-
quency of 3284 Hz

Table 5.2: Initial geometric parameters of MEMS accelerometer

Parameter Value

Suspension beam width 350 µm
Suspension beam length 3300 µm
Beam thickness 69 µm
Small beam length 500 µm
Proof-mass length 2400 µm
Proof-mass thickness 320 µm
Distance proof-mass/electrodes 22 µm

5.2.2 Optimization results

The process of simulation and optimization of the MEMS capacitive accelerometer

is based on the system-level model observed in Figure 5.10.

23

CHAPTER 5. RESULTS AND DISCUSSION

g

Acceleration input Accelerometer

μm
(z-axis)
Displacement

fF

Capacitance
change

mV

Voltage

Figure 5.10: Capacitive MEMS accelerometer system-level model.

The MEMS accelerometer takes an acceleration along the z-axis as input, caus-

ing a displacement of the proof-mass that generates a detectable capacitance

change, which is then read by the implemented capacitance-to-voltage circuit,

governed by Equation 5.20. For the the simulated accelerometer, VDD is defined

as 5V , Vcm = 2.5V , and Cint = 300f F.

The solution of a PDE is strongly related to the density of the mesh. It is,

therefore, necessary to perform a mesh convergence study - in this case, the nat-

ural frequency is analyzed for simulations with different numbers of meshing

elements in the suspension beams. As observed in Figure 5.11, for a number of

elements of 33824 - corresponding to an element size of 55µm, the change in the

first frequency mode is less than 0.15% - when compared with the next 6 points,

which corresponds to a change of 30µm in element size. Thus, the remaining sim-

ulation and optimization process will consider the optimized meshing element

size.

1 x 1 0 4 2 x 1 0 4 3 x 1 0 4 4 x 1 0 4 5 x 1 0 4 6 x 1 0 4 7 x 1 0 4 8 x 1 0 4

3 2 8 0
3 2 8 5
3 2 9 0
3 2 9 5
3 3 0 0
3 3 0 5
3 3 1 0
3 3 1 5
3 3 2 0
3 3 2 5
3 3 3 0
3 3 3 5

Na
tur

al
fre

qu
en

cy
(H

z)

N u m b e r o f m e s h i n g e l e m e n t s

P o i n t o f m e s h c o n v e r g e n c e
(< 0 . 1 5 % c h a n g e i n n a t u r a l f r e q u e n c y)

M e s h c o n v e r g e n c e s t u d y f o r M E M S a c c e l e r o m e t e r

Figure 5.11: Mesh convergence study for MEMS accelerometer

The genetic algorithm optimization process described in Subsection 5.1.5 is

applied to this device for 6 generations, taking into consideration a FOM defined

by Equation 5.29.

24

5.2. CASE STUDY 1: MEMS CAPACITIVE ACCELEROMETER

FOM = Sensitivity(mV /g) ·Frequency(Hz) ·Qf actor ·
1

1000
(5.29)

In this equation, Sensitivity stands for the output voltage when an acceleration

of 1 g is applied, Frequency is the device’s resonant frequency and Qf actor denotes

the quality-factor of the sensing mechanism considering ambient air pressure,

taking the damping into consideration.

Within 6 generations with 100 individuals each, the GA altered the chosen

initial geometric parameters: proof-mass length and suspension beam width, and

obtained an optimized device - the geometric changes and performance parame-

ters are Table 5.3. The evolution of the device observed in Figure 5.12 illustrates

the algorithm’s tendency to reduce the suspension beam’s width and to enlarge

the proof-mass - this process allows for a higher sensitivity due to lower stiffness

in the suspension system combined with a larger proof-mass, however, there is a

decrease in the resonant frequency which limits the accelerometer bandwidth.

Table 5.3: Geometric and performance parameters of original and final accelerom-
eter

Parameter Original Final Relative change

Suspension beam width (µm) 350 152 -56.57%
Proof-mass length (µm) 2400 2613 8.15%
Sensitivity (mV/g) 80.747 237.210 193.77%
Frequency (Hz) 3284 1887 -42.54%
Qf actor 0.544 0.350 -35.66%
FOM 144.25 156.67 7.93%

The parameter changes observed in Figure 5.12 produced the performance

parameters listed in Table 5.3.

To verify the accuracy of the modal analysis performed by the software, a com-

parison with COMSOL was made: the natural frequency obtained by COMSOL

was 1897.15 Hz, while the natural frequency obtained by software was 1887.9

Hz - the difference was 0.5%, and so it was possible to assume the accuracy of the

method.

The two drawbacks in the process were the reduction by 42.54% of the device’s

bandwidth and the decrease of the quality-factor by -35.66% - compensated by

an increase of 193.77% in sensitivity and of 7.93% in FOM.

25

CHAPTER 5. RESULTS AND DISCUSSION

Generation 1 Generation 2 Generation 3

Generation 6 Generation 4Generation 5

Figure 5.12: Evolution of the MEMS accelerometer through the six generations of
the GA, the suspension beam width is reduced and the proof mass is enlarged

5.3 Case study 2: linear MEMS vibratory gyroscope

The second MEMS inertial sensor simulated and optimized with the developed

software was a linear MEMS vibratory gyroscope, reproduced from [7]. This de-

vice featured a drive frame implemented to nest the proof-mass and thus decouple

the drive and sense motion - this approach avoids the deflections in both modes

present in regular linear suspension systems and it is illustrated in Figure 5.13.

An u-beam suspension system was put together in order to ensure that both the

drive and sense motion only deflect in the correct direction.

The working principle of MEMS vibratory gyroscopes was introduced in Sub-

section 3.1.2: these devices maintain a drive oscillation that allows for the detec-

tion of the Coriolis force generated by an angular rate input - the force will result

in an energy transfer from the drive axis to the sense axis which occurs in the

form of a proof-mass movement along said axis.

Sense
direction

(y)

Drive
direction

(x)

Drive frame

mass

Figure 5.13: Mass-spring-damper model of MEMS gyroscope design

26

5.3. CASE STUDY 2: LINEAR MEMS VIBRATORY GYROSCOPE

5.3.1 Design analysis

The geometry built by the software is shown in Figure 5.14, with initial geometric

parameters listed in Table 5.4. This design comprises eight anchors: four of them

anchoring the suspension u-beams connected to the drive frame, two stationary

electrodes for sensing, and two stationary drive electrodes.

The u-beams are designed to perform as a suspension system that keep the

proof-mass above the substrate while eliminating nonlinearity and axial-loading

limitations present in the simple single fixed beams. The four drive frame beams

promote movement along the x-axis - the drive direction, and the four beams that

connect the proof-mass to the drive frame facilitate a displacement by the y-axis -

the sense direction.

(a) MEMS gyroscope design, with stationary
parts in red

(b) 3D model generated by the software

Figure 5.14: Linear vibratory MEMS gyroscope design [7]

Table 5.4: Initial geometric parameters of MEMS gyroscope

Parameter Value

Suspension beam width 20 µm
Suspension beam length 194 µm
Drive frame length 970 µm
Proof-mass lateral beam width 60 µm
Proof-mass lateral beam length 430 µm
Proof-mass width 580 µm
Proof-mass length 440 µm
Comb finger width 14 µm
Drive comb finger length 48 µm
Sense comb finger length 243 µm
Thickness 50 µm

27

CHAPTER 5. RESULTS AND DISCUSSION

In this gyroscope, drive oscillation along the x-axis was possible due to bal-

anced variable-area electrostatic actuation, which was done through the lateral

electrodes seen in Figure 5.14a. The sensing principle applied in the device was

the differential sensing, made possible by two sets of variable-gap comb-fingers

observed inside the drive frame.

5.3.2 Optimization results

The simulation and optimization of the linear vibratory MEMS gyroscope is based

on the system-level model illustrated in Figure 5.15.

Drive actuation
force (N)

Gyroscope

μm
(y-axis)

Coriolis-force induced
proof-mass

displacement

fF

Capacitance
change

Angular rate
input (rad/s)

mV

Voltage

Figure 5.15: Linear vibratory MEMS gyroscope system-level model.

The device takes a drive actuation force governed by Equation 5.19 and gener-

ated by the aforementioned driving electrodes, as well as an angular-rate around

the z-axis as input. The software takes the drive actuation force and simulates its

effect on the MEMS structure, taking into consideration damping (in this mecha-

nism, slide-film damping is the most prominent damping factor), and obtaining

the resulting drive amplitude. For this actuation mechanism, a DC voltage of 8V

and an AC voltage of 4V are applied.

The gyroscope then makes use of the driving velocity along the x-axis and

the angular rate input to generate a Coriolis force along the y-axis, providing a

displacement of the proof-mass. This displacement causes a detectable capaci-

tance change, described by Equation 5.17, which is then read by the implemented

capacitance-to-voltage circuit, governed by Equation 5.20. For the the simulated

gyroscope, VDD is defined as 5V , Vcm = 2.5V , and Cint = 100f F.

For this gyroscope, the first frequency mode is analyzed for simulations with

different numbers of meshing elements. As observed in Figure 5.16, for a number

of elements of 9737 - corresponding to an element size of 80µm, the change in the

first frequency mode is less than 0.15% - when compared with the next 6 points,

which corresponds to a change of 30µm in element size. Thus, the remaining

simulation and optimization process will consider the optimized meshing element

size.

28

5.3. CASE STUDY 2: LINEAR MEMS VIBRATORY GYROSCOPE

7 x 1 0 3 8 x 1 0 3 9 x 1 0 3 1 x 1 0 4 1 x 1 0 4 1 x 1 0 4 1 x 1 0 4
3 5 0 0 0

4 0 0 0 0

4 5 0 0 0

5 0 0 0 0

5 5 0 0 0

6 0 0 0 0

6 5 0 0 0

7 0 0 0 0

7 5 0 0 0

Na
tur

al
fre

qu
en

cy
(H

z)

N u m b e r o f m e s h i n g e l e m e n t s

P o i n t o f m e s h c o n v e r g e n c e
(< 0 . 1 5 % c h a n g e i n n a t u r a l f r e q u e n c y)

M e s h c o n v e r g e n c e s t u d y f o r M E M S g y r o s c o p e

Figure 5.16: Mesh convergence study for MEMS gyroscope

The genetic algorithm optimization process described in Subsection 5.1.5 is

applied to this device for 6 generations. The FOM considered by the GA is defined

by Equation 5.30.

FOM = (Sensitivity(mV /rads−1) · 1
∆f
·Qsense) · 106 (5.30)

In this equation, Sensitivity is given by the output voltage when the device

is subjected to an angular rate of 1rads−1 around the z-axis, ∆f denotes the dif-

ference between drive and sense frequency - this parameter is of importance to

achieve maximum mechanical gain in the sense mode concerning the input an-

gular rate. Looking at Equation 5.31 [7], it becomes clear that it is desirable to

match drive and sense resonant frequencies. Lastly, Qsense represents the sense

mode quality factor.

y0 = Ωz
mCωD
mSω

2
s

2x0√
[1− (ωDωS)2] + [1

Qsense
ωD
ωS

]2
(5.31)

During the 6 generations with 100 individuals, the algorithm altered the

chosen initial geometric parameters to find the optimal device - the geometric

changes and performance parameters are listed in Table 5.5. The chosen param-

eters were: suspension beam’s width, proof-mass width and length, proof-mass

frame width and length, and sense comb fingers width. The evolution of the

optimization is illustrated in Figure 5.17, in which the best device from each

generation is displayed.

29

CHAPTER 5. RESULTS AND DISCUSSION

The suspension beam’s width saw a severe reduction (similarly to the ac-

celerometer’s springs), on the other hand, the optimized proof-mass became larger

than the original - this combination leads to an increase in compliancy of the

whole structure, and thus, in sensitivity. Moreover, the drive and sense mode

frequencies as well as the frequency split were significantly reduced. A compar-

ison between frequency modes of the original and optimized device is shown in

Figure 5.18.

Table 5.5: Geometric and performance parameters of original and optimized gy-
roscope

Parameter Original Final Relative change

Suspension beam width (µm) 20 9 -55.00%
Proof-mass frame width (µm) 430 395 -8.14%
Proof-mass frame length (µm) 60 54 -10.00%
Proof-mass width (µm) 290 309 6.15%
Proof-mass length (µm) 220 240 8.33%
Sense finger width (µm) 14 9 -35.71%
Sensitivity (mV/rads−1) 1.546 8.054 420.9%
∆f 13296 5792 -56.44%
Qsense 1.917 0.952 -50.34%
FOM 222.9 1323 493.5%

Generation 1 Generation 2 Generation 3

Generation 6 Generation 4Generation 5

Figure 5.17: Evolution of the MEMS gyroscope through the six generations of the
GA - the proof-mass became larger; the u-beams, the sense comb fingers, and the
proof-mass frame became thinner

The frequency mode shapes illustrated in Figure 5.18 represent the magni-

tude of movement in the x-axis for a driving motion, or in the y-axis for a sensing

motion. It becomes visible that in the optimized device, the undesired y-axis

movement in the drive frame is reduced, while the desired proof-mass displace-

ment is slightly enhanced.

30

5.3. CASE STUDY 2: LINEAR MEMS VIBRATORY GYROSCOPE

Original Device

Optimized Device

Drive Mode (x-axis movement)
67176 Hz

Sense Mode (y-axis movement)
80472 Hz

D
is

pl
ac

em
en

t (
m

ag
ni

tu
de

)

Sense Mode (y-axis movement)
39273 Hz

Drive Mode (x-axis movement)
33481 Hz

High

Low

Figure 5.18: Frequency modes of original and optimized MEMS gyroscope, the
movement modes became more pronounced

The changes observed in Figure 5.17 produced the performance changes listed

in Table 5.5. The only drawback of the optimization process was the decrease

of 50.34% in the sense mode’s quality factor - it was largely compensated by a

420.9% increase in sensitivity and by a decrease of 56.44% in frequency mismatch.

Overall, the FOM improved by 493.5%.

31

C
h
a
p
t
e
r

6
Conclusion and Future Perspectives

The advent of micromachining technology brought a never-ending range of pos-

sible applications for microsized sensors. In the inertial sensor’s area, the expe-

rienced growth opens the door to numerous improvements in quality of life as

well as life-saving applications in the automotive industry. This array of new

technologies in fabrication and product possibilities would benefit from a similar

development in the process of design, simulation and optimization.

This study presented a novel electro-mechanical co-optimization methodol-

ogy for MEMS inertial sensors, entirely based on Python. A software comprising

geometry design, a finite element method simulation, damping calculation, elec-

tronic domain simulation, and a genetic algorithm optimization process - was

developed and applied to two MEMS inertial sensors.

The software can build geometries with relative complexity, making use of the

Pygmsh Python library. Although the most complex geometric operations such

as filet, chamfer, bezier curve, and arrays are not available; the vast majority of

MEMS inertial sensors can be built by code within the software.

The geometry building block passes its parameters and mesh to the FEM part

of the program, which is able to process modal analysis and displacement accu-

rately - with a reported 0.5% difference to the frequency modes obtained with

COMSOL.

The damping script takes into account the geometric parameters and the re-

sults from the modal analysis, calculating the squeeze film and slide film damping

coefficient, and later the quality factor.

Depending on what type of actuation or sensing the device has, the electronic

block of the software calculates the capacitance change, passing the values to the

implemented circuit which in turn computes the voltage output of the system.

Finally, the implemented genetic algorithm takes the performance parameters

of the devices and proceeds to select the best individuals out of each generation,

achieving a co-optimized sensor in the end. To validate the software, two MEMS

inertial sensors were designed, simulated and optimized.

The first optimized device was an open-loop capacitive MEMS accelerometer:

33

CHAPTER 6. CONCLUSION AND FUTURE PERSPECTIVES

the co-optimization process increased the sensitivity by 193.77% and the FOM by

7.93%, compensating for the loss of 42.54% in resonant frequency and of 35.66%.

The first version of this implementation resulted in a publication titled “Electro-

mechanical Co-Optimization of MEMS Devices in Python” - submitted, accepted,

and presented at IEEE SENSORS 2020 conference.

The second optimized device was an open-loop Coriolis vibratory MEMS gy-

roscope: the co-optimization process improved the sensitivity by 420.9% and

the frequency mismatch decreased by 56.44%, compensating the 50.34% loss

in the quality-factor and producing an overall improvement in FOM of 493.5%.

The co-optimization of this device resulted in a publication titled “Python-based

Electro-mechanical Co-optimization of MEMS Inertial Sensors” - submitted to

IEEE MEMS21 conference.

The developed Python solution is a powerful tool that provides designers with

limitless customization freedom, presenting engineers with complete control of

all steps in simulation and optimization - allowing an efficient management of

computational resources according to specific research goals.

In order for this software to become of professional-grade, it is necessary to

implement transient and closed-loop system simulation and optimization. Also, a

non-linearity calculation and integration into the software is essential if the goal

is to simulate the real performance of the devices

34

Bibliography

[1] D. K. Shaeffer. “MEMS inertial sensors: A tutorial overview.” In: IEEE
Communications Magazine 51.4 (2013), pp. 100–109.

[2] C. Acar, A. R. Schofield, A. A. Trusov, L. E. Costlow, and A. M. Shkel.

“Environmentally Robust MEMS Vibratory Gyroscopes for Automotive Ap-

plications.” In: IEEE Sensors Journal 9.12 (2009), pp. 1895–1906.

[3] Y. Dong. “8 - MEMS inertial navigation systems for aircraft.” In: MEMS for
Automotive and Aerospace Applications. Ed. by M. Kraft and N. M. White.

Woodhead Publishing Series in Electronic and Optical Materials. Wood-

head Publishing, 2013, pp. 177–219. isbn: 978-0-85709-118-5. doi: https:

//doi.org/10.1533/9780857096487.2.177. url: http://www.sciencedirect.

com/science/article/pii/B9780857091185500084.

[4] G. Bhatt, K. Manoharan, P. S. Chauhan, and S. Bhattacharya. “MEMS Sen-

sors for Automotive Applications: A Review.” In: Sensors for Automotive and
Aerospace Applications. Ed. by S. Bhattacharya, A. K. Agarwal, O. Prakash,

and S. Singh. Singapore: Springer Singapore, 2019, pp. 223–239. isbn:

978-981-13-3290-6. doi: 10.1007/978-981-13-3290-6_12. url: https:

//doi.org/10.1007/978-981-13-3290-6_12.

[5] B. A. Abruzzo and T. G. Recchia. “Online Calibration of Inertial Sensors

for Range Correction of Spinning Projectiles.” In: Journal of Guidance, Con-
trol, and Dynamics 39.8 (2016), pp. 1918–1924. doi: 10.2514/1.G001809.

eprint: https://doi.org/10.2514/1.G001809. url: https://doi.org/

10.2514/1.G001809.

[6] J. S. Han, E. B. Rudnyi, and J. G. Korvink. “Efficient optimization of tran-

sient dynamic problems in MEMS devices using model order reduction.” In:

Journal of Micromechanics and Microengineering 15.4 (Mar. 2005), pp. 822–

832. doi: 10.1088/0960-1317/15/4/021. url: https://doi.org/10.

1088%2F0960-1317%2F15%2F4%2F021.

35

https://doi.org/https://doi.org/10.1533/9780857096487.2.177
https://doi.org/https://doi.org/10.1533/9780857096487.2.177
http://www.sciencedirect.com/science/article/pii/B9780857091185500084
http://www.sciencedirect.com/science/article/pii/B9780857091185500084
https://doi.org/10.1007/978-981-13-3290-6_12
https://doi.org/10.1007/978-981-13-3290-6_12
https://doi.org/10.1007/978-981-13-3290-6_12
https://doi.org/10.2514/1.G001809
https://doi.org/10.2514/1.G001809
https://doi.org/10.2514/1.G001809
https://doi.org/10.2514/1.G001809
https://doi.org/10.1088/0960-1317/15/4/021
https://doi.org/10.1088%2F0960-1317%2F15%2F4%2F021
https://doi.org/10.1088%2F0960-1317%2F15%2F4%2F021

BIBLIOGRAPHY

[7] C. Acar and A. Shkel. MEMS vibratory gyroscopes: structural approaches to
improve robustness. Springer Science & Business Media, 2008.

[8] T. Masuzawa. “State of the art of micromachining.” In: Cirp Annals 49.2

(2000), pp. 473–488.

[9] S. Beeby, G. Ensel, N. White, and M. Kraft. MEMS Mechanical Sensors.
Artech House MEMS Library. Artech House, 2004. isbn: 9781580535366.

url: https://books.google.be/books?id=i0UwDwAAQBAJ.

[10] Guan Xin, Yan Dong, and Gao Zhen-hai. “Study on errors compensation

of a vehicular MEMS accelerometer.” In: IEEE International Conference on
Vehicular Electronics and Safety, 2005. 2005, pp. 205–210. doi: 10.1109/

ICVES.2005.1563642.

[11] S. D. Senturia. “Perspectives on MEMS, past and future: the tortuous path-

way from bright ideas to real products.” In: TRANSDUCERS ’03. 12th
International Conference on Solid-State Sensors, Actuators and Microsystems.
Digest of Technical Papers (Cat. No.03TH8664). Vol. 1. 2003, 10–15 vol.1.

doi: 10.1109/SENSOR.2003.1215241.

[12] D. Glassbrenner and M. Starnes. Lives saved calculations for seat belts and
frontal air bags. Washington, DC: National Highway Traffic Safety Adminis-

tration, 2009.

[13] J. Marek. “MEMS for automotive and consumer electronics.” In: 2010 IEEE
International Solid-State Circuits Conference-(ISSCC). IEEE. 2010, pp. 9–17.

[14] S. Kusmakar, C. K. Karmakar, B. Yan, T. J.O’Brien, R. Muthuganapathy,

and M. Palaniswami. “Automated Detection of Convulsive Seizures Us-

ing a Wearable Accelerometer Device.” In: IEEE Transactions on Biomedical
Engineering 66.2 (2019), pp. 421–432. doi: 10.1109/TBME.2018.2845865.

[15] A. Sucerquia, J. D. López, and J. F. Vargas-Bonilla. “Real-life/real-time

elderly fall detection with a triaxial accelerometer.” In: Sensors 18.4 (2018),

p. 1101.

[16] S. B. Khojasteh, J. R. Villar, C. Chira, V. M. González, and E. De la Cal.

“Improving fall detection using an on-wrist wearable accelerometer.” In:

Sensors 18.5 (2018), p. 1350.

36

https://books.google.be/books?id=i0UwDwAAQBAJ
https://doi.org/10.1109/ICVES.2005.1563642
https://doi.org/10.1109/ICVES.2005.1563642
https://doi.org/10.1109/SENSOR.2003.1215241
https://doi.org/10.1109/TBME.2018.2845865

BIBLIOGRAPHY

[17] P. Van Thanh, D.-T. Tran, D.-C. Nguyen, N. D. Anh, D. N. Dinh, S. El-

Rabaie, and K. Sandrasegaran. “Development of a real-time, simple and

high-accuracy fall detection system for elderly using 3-DOF accelerome-

ters.” In: Arabian Journal for Science and Engineering 44.4 (2019), pp. 3329–

3342.

[18] M. Dencker and L. B. Andersen. “Accelerometer-measured daily physical

activity related to aerobic fitness in children and adolescents.” In: Journal
of sports sciences 29.9 (2011), pp. 887–895.

[19] Guangchun Li, Yunfeng He, Yanhui Wei, Shenbo Zhu, and Yanzhe Cao.

“The MEMS gyro stabilized platform design based on Kalman Filter.” In:

2013 International Conference on Optoelectronics and Microelectronics (ICOM).
2013, pp. 14–17. doi: 10.1109/ICoOM.2013.6626480.

[20] V. Kempe. Inertial MEMS: Principles and Practice. Cambridge University

Press, 2011, pp. 14–24. isbn: 9781139494823. url: https : / / books .

google.be/books?id=XzdvDGbLZ8EC.

[21] M. Armenise, C. Ciminelli, F. Dell’Olio, and V. Passaro. Advances in Gyro-
scope Technologies. Springer Berlin Heidelberg, 2010. isbn: 9783642154942.

url: https://books.google.be/books?id=lJUiyigJRBgC.

[22] W. Somerville. “The description of Foucault’s pendulum.” In: Quarterly
Journal of the Royal Astronomical Society 13 (1972), pp. 40–62.

[23] A. Persson. “The Coriolis Effect–a conflict between common sense and

mathematics.” In: Italian Meteorological Society (2005), pp. 20–31.

[24] V. Apostolyuk. Coriolis Vibratory Gyroscopes: Theory and Design. Springer

International Publishing, 2015. isbn: 9783319221984. url: https://

books.google.be/books?id=hBRcCgAAQBAJ.

[25] C. Darwin. The origin of species. PF Collier & son New York, 1909.

[26] G. Mendel. Experiments in plant hybridisation. Harvard University Press,

1965.

[27] D. S. Weile and E. Michielssen. “Genetic algorithm optimization applied to

electromagnetics: A review.” In: IEEE Transactions on Antennas and Propa-
gation 45.3 (1997), pp. 343–353.

[28] Y. Zhang, R. Kamalian, A. M. Agogino, and C. H. Séquin. “Hierarchical

MEMS synthesis and optimization.” In: Smart Structures and Materials 2005:
Smart Electronics, MEMS, BioMEMS, and Nanotechnology. Vol. 5763. Inter-

national Society for Optics and Photonics. 2005, pp. 96–106.

37

https://doi.org/10.1109/ICoOM.2013.6626480
https://books.google.be/books?id=XzdvDGbLZ8EC
https://books.google.be/books?id=XzdvDGbLZ8EC
https://books.google.be/books?id=lJUiyigJRBgC
https://books.google.be/books?id=hBRcCgAAQBAJ
https://books.google.be/books?id=hBRcCgAAQBAJ

BIBLIOGRAPHY

[29] J. S. Han, E. B. Rudnyi, and J. G. Korvink. “Efficient optimization of tran-

sient dynamic problems in MEMS devices using model order reduction.”

In: Journal of Micromechanics and Microengineering 15.4 (2005), p. 822.

[30] E. S. Hung, Y.-J. Yang, and S. D. Senturia. “Low-order models for fast

dynamical simulation of MEMS microstructures.” In: Proceedings of Inter-
national Solid State Sensors and Actuators Conference (Transducers’ 97). Vol. 2.

IEEE. 1997, pp. 1101–1104.

[31] M. Kudryavtsev, E. B. Rudnyi, J. G. Korvink, D. Hohlfeld, and T. Bechtold.

“Computationally efficient and stable order reduction methods for a large-

scale model of MEMS piezoelectric energy harvester.” In: Microelectronics
Reliability 55.5 (2015), pp. 747–757.

[32] A. H. Nayfeh, M. I. Younis, and E. M. Abdel-Rahman. “Reduced-order mod-

els for MEMS applications.” In: Nonlinear dynamics 41.1-3 (2005), pp. 211–

236.

[33] C. Wang, H. Liu, X. Song, F. Chen, I. Zeimpekis, Y. Wang, J. Bai, K. Wang,

and M. Kraft. “Genetic algorithm for the design of freeform geometries

in a MEMS accelerometer comprising a mechanical motion pre-amplifier.”

In: 2019 20th International Conference on Solid-State Sensors, Actuators and
Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS
XXXIII). IEEE. 2019, pp. 2099–2102.

[34] S. COMSOL AB Stockholm. COMSOL Multiphysics®. Version 5.4. url:

www.comsol.com.

[35] I. The Mathworks. MATLAB:2017b. Natick, Massachusetts, 2017.

[36] M. R. Solouk, M. H. Shojaeefard, and M. Dahmardeh. “Parametric topol-

ogy optimization of a MEMS gyroscope for automotive applications.” In:

Mechanical Systems and Signal Processing 128 (2019), pp. 389–404. issn:

0888-3270. doi: https://doi.org/10.1016/j.ymssp.2019.03.049.

[37] J. T. Oden. “Finite Elements : Introduction.” In: Handbook of Numerical
Analysis Volime II : Finite Element Methods (Part1) (1991), pp. 3–12.

[38] J. Fritz. Partial Differential Equations. New York: Springer-Verlag, 1982.

isbn: 0-387-90609-6.

[39] A. Logg, K.-A. Mardal, G. N. Wells, et al. Automated Solution of Differential
Equations by the Finite Element Method. Ed. by A. Logg, K.-A. Mardal, and

G. N. Wells. Springer, 2012. isbn: 978-3-642-23098-1. doi: 10.1007/978-

3-642-23099-8.

38

www.comsol.com
https://doi.org/https://doi.org/10.1016/j.ymssp.2019.03.049
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1007/978-3-642-23099-8

BIBLIOGRAPHY

[40] G. Van Rossum and F. L. Drake. Python 3 Reference Manual. Scotts Valley,

CA: CreateSpace, 2009. isbn: 1441412697.

[41] K. J. Millman and M. Aivazis. “Python for Scientists and Engineers.” In:

Computing in Science Engineering 13.2 (2011), pp. 9–12.

[42] T. E. Oliphant. “Python for Scientific Computing.” In: Computing in Science
Engineering 9.3 (2007), pp. 10–20.

[43] N. Schlömer, A. Cervone, G. McBain, Tryfon-Mw, R. V. Staden, F. Gokstorp,

Toothstone, J. S. Dokken, Anzil, and J. Sanchez. nschloe/pygmsh v6.1.1. 2020.

doi: 10.5281/zenodo.3764683.

[44] C. Geuzaine and J.-F. Remacle. “Gmsh: a three-dimensional finite ele-

ment mesh generator with built-in pre- and post-processing facilities.”

In: International Journal for Numerical Methods in Engineering 79.11 (2009),

pp. 1309–1331.

[45] N. Schlömer, G. McBain, K. Luu, christos, T. Li, V. M. Ferrándiz, C. Barnes,

L. Dalcin, eolianoe, and nilswagner. nschloe/meshio v4.0.12. 2020. doi:

10.5281/zenodo.3773318.

[46] M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richard-

son, J. Ring, M. E. Rognes, and G. N. Wells. “The FEniCS Project Version

1.5.” In: Archive of Numerical Software 3.100 (2015). doi: 10.11588/ans.

2015.100.20553.

[47] A. Logg and G. N. Wells. “DOLFIN: Automated Finite Element Comput-

ing.” In: ACM Transactions on Mathematical Software 37.2 (2010). doi: 10.

1145/1731022.1731030.

[48] A. Lurie and A. Belyaev. Theory of Elasticity. Foundations of Engineering

Mechanics. Springer Berlin Heidelberg, 2010, pp. 151–155. isbn: 9783540264552.

url: https://books.google.be/books?id=saEqz%5C_LKkdEC.

[49] J. Brewer. “Divergence of a vector field.” In: Vector Calculus 7 (1999).

[50] D. R. Smith. “The Cauchy Stress Tensor.” In: An Introduction to Continuum
Mechanics — after Truesdell and Noll. Dordrecht: Springer Netherlands,

1993, pp. 143–162. isbn: 978-94-017-0713-8. doi: 10.1007/978-94-017-

0713-8_5. url: https://doi.org/10.1007/978-94-017-0713-8_5.

[51] Z.-C. S. K. Feng. Mathematical Theory of Elastic Structures. Springer New

York, 1981, pp. 106–108. isbn: 0-387-51326-4.

39

https://doi.org/10.5281/zenodo.3764683
https://doi.org/10.5281/zenodo.3773318
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1145/1731022.1731030
https://doi.org/10.1145/1731022.1731030
https://books.google.be/books?id=saEqz%5C_LKkdEC
https://doi.org/10.1007/978-94-017-0713-8_5
https://doi.org/10.1007/978-94-017-0713-8_5
https://doi.org/10.1007/978-94-017-0713-8_5

BIBLIOGRAPHY

[52] A. H.-D. Cheng and D. T. Cheng. “Heritage and early history of the bound-

ary element method.” In: Engineering Analysis with Boundary Elements 29.3

(2005), pp. 268–302.

[53] J. Wortman and R. Evans. “Young’s modulus, shear modulus, and Poisson’s

ratio in silicon and germanium.” In: Journal of applied physics 36.1 (1965),

pp. 153–156.

[54] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
recipes 3rd edition: The art of scientific computing. Cambridge university

press, 2007.

[55] R. Clough and J. Penzien. Dynamics of Structures. McGraw-Hill, 1993,

p. 201. isbn: 9780071132411. url: https://books.google.be/books?

id=HxLakQEACAAJ.

[56] U. Ayachit. The ParaView Guide: A Parallel Visualization Applications. Kit-

ware, 2015. isbn: 978-1930934306.

[57] R. F. Harrington. Introduction to electromagnetic engineering. Courier Corpo-

ration, 2003.

[58] R. W. Johnstone and M. Parameswaran. “Electrostatic Actuators.” In: An
Introduction to Surface-Micromachining. Springer, 2004, pp. 135–152.

[59] A. Utz, C. Walk, N. Haas, T. Fedtschenko, A. Stanitzki, M. Mokhtari, M.

Görtz, M. Kraft, and R. Kokozinski. “An ultra-low noise capacitance to

voltage converter for sensor applications in 0.35 µm CMOS.” In: Journal of
Sensors and Sensor Systems 6.2 (2017), pp. 285–301.

[60] M. Bao and H. Yang. “Squeeze film air damping in MEMS.” In: Sensors and
Actuators A: Physical 136.1 (2007), pp. 3–27.

[61] Springer Verlag GmbH, European Mathematical Society. Encyclopedia of
Mathematics: Knudsen Number. Website. URL: http://encyclopediaofmath.

org/index.php?title=Knudsen_number&oldid=13592.

[62] T. Veijola, H. Kuisma, J. Lahdenperä, and T. Ryhänen. “Equivalent-circuit

model of the squeezed gas film in a silicon accelerometer.” In: Sensors and
Actuators A: Physical 48.3 (1995), pp. 239–248.

[63] J. J. Blech. “On isothermal squeeze films.” In: (1983).

[64] T. Veijola and M. Turowski. “Compact damping models for laterally moving

microstructures with gas-rarefaction effects.” In: Journal of Microelectrome-
chanical Systems 10.2 (2001), pp. 263–273.

40

https://books.google.be/books?id=HxLakQEACAAJ
https://books.google.be/books?id=HxLakQEACAAJ
http://encyclopediaofmath.org/index.php?title=Knudsen_number&oldid=13592
http://encyclopediaofmath.org/index.php?title=Knudsen_number&oldid=13592

BIBLIOGRAPHY

[65] W. Siebert. Circuits, Signals, and Systems. MIT electrical engineering and

computer science series. McGraw-Hill, 1986. isbn: 9780262192293. url:

https://books.google.be/books?id=zBTUiIrb2WIC.

[66] D. Alciatore and M. Histand. Introduction to Mechatronics and Measurement
Systems. Engineering Series. McGraw-Hill Companies,Incorporated, 2007.

isbn: 9780072963052. url: https://books.google.be/books?id=

V0FSAAAAMAAJ.

41

https://books.google.be/books?id=zBTUiIrb2WIC
https://books.google.be/books?id=V0FSAAAAMAAJ
https://books.google.be/books?id=V0FSAAAAMAAJ

A
n
n
e
x

I
Software implementation on MEMS

accelerometer

The developed software code, implemented on a MEMS accelerometer, is dis-

played on the following listings. Several software packages and Python libraries

are necessary in order to run the program:

• Software packages: Gmsh

• Python libraries: Pygmsh, meshio, FEniCS, math, numpy, random, copy

The user should build the initial device in the geometry building script and

adapt the following simulation and optimization scripts to the geometric param-

eters of said device - finally the program is ran from the genetic algorithm script.

Listing I.1: Geometry building block

1 # MEMS Accelerometer 3D Geometry

2 # @ruiesteves

3

4 # Imports

5 import pygmsh as pg # geometry & meshing definition

6 import meshio # meshing export

7

8

9 # Functions

10 def build(suspension_beam_width,proof_mass_length):

11

12 # Geometric parameters

13 cl = 55

14 proof_mass_cl = 150

15 scale = 1e-6

16 suspension_beam_length = 3300*scale

17 beam_thickness = 69*scale

18 small_beam_length = 500*scale

19 proof_mass_thickness = 320*scale

20 beam_dist = 500*scale

21 beam_l = 122.5 * scale

43

ANNEX I. SOFTWARE IMPLEMENTATION ON MEMS ACCELEROMETER

22 beam_h = 177.5 * scale

23 beam_dist2 = beam_dist + suspension_beam_length

24 beam_dist3 = proof_mass_length + suspension_beam_width + small_beam_length

25 beam_dist_final = beam_dist2 - beam_dist3

26 beam_lower = (proof_mass_thickness - beam_thickness)/2

27 beam_to_mass = (beam_dist_final+suspension_beam_width+small_beam_length +

↪→ proof_mass_length) - suspension_beam_length

28

29 # Geometry build

30 geom = pg.opencascade.Geometry()

31

32 # Beam1_1

33 p1 = [0,beam_dist_final,beam_lower]

34 p2 = [suspension_beam_length,suspension_beam_width,beam_thickness]

35 beam1_1 = geom.add_box(p1,p2,char_length=cl*scale)

36

37 # Beam1_2

38 p3 = [suspension_beam_length-suspension_beam_width,beam_dist_final +

↪→ suspension_beam_width,beam_lower]

39 p4 = [suspension_beam_width,small_beam_length,beam_thickness]

40 beam1_2 = geom.add_box(p3,p4,char_length=cl*scale)

41

42 # Beam1 complete

43 beam1 = geom.boolean_union([beam1_1,beam1_2])

44

45 # Proof mass

46 p1 = [beam_dist_final+suspension_beam_width+small_beam_length,

↪→ beam_dist_final+suspension_beam_width+small_beam_length,0]

47 p2 = [proof_mass_length,proof_mass_length,proof_mass_thickness]

48 proof_mass = geom.add_box(p1,p2,char_length=proof_mass_cl*scale)

49

50 # Beam2_1

51 p1 = [beam_dist_final,beam_dist_final+suspension_beam_width+

↪→ small_beam_length+beam_to_mass,beam_lower]

52 p2 = [suspension_beam_width,suspension_beam_length,beam_thickness]

53 beam2_1 = geom.add_box(p1,p2,char_length=cl*scale)

54

55 # Beam2_2

56 p1 = [beam_dist_final+suspension_beam_width,beam_dist_final+

↪→ suspension_beam_width+small_beam_length+beam_to_mass,beam_lower]

57 p2 = [small_beam_length,suspension_beam_width,beam_thickness]

58 beam2_2 = geom.add_box(p1,p2,char_length=cl*scale)

59

60 # Beam 2

61 beam2 = geom.boolean_union([beam2_1,beam2_2])

44

62

63

64 # Beam3_1

65 p1 = [beam_dist_final+suspension_beam_width+small_beam_length+

↪→ proof_mass_length,beam_dist_final+suspension_beam_width+

↪→ small_beam_length+proof_mass_length - beam_to_mass -

↪→ suspension_beam_width,beam_lower]

66 p2 = [small_beam_length,suspension_beam_width,beam_thickness]

67 beam3_1 = geom.add_box(p1,p2,char_length=cl*scale)

68

69 # Beam3_2

70 p1 = [beam_dist_final+suspension_beam_width+small_beam_length+

↪→ proof_mass_length+small_beam_length,0,beam_lower]

71 p2 = [suspension_beam_width,suspension_beam_length,beam_thickness]

72 beam3_2 = geom.add_box(p1,p2,char_length=cl*scale)

73

74 # Beam3

75 beam3 = geom.boolean_union([beam3_1,beam3_2])

76

77

78 # Beam4_1

79 p1 = [beam_dist_final+suspension_beam_width+small_beam_length+beam_to_mass,

↪→ beam_dist_final+suspension_beam_width+small_beam_length+

↪→ proof_mass_length,beam_lower]

80 p2 = [suspension_beam_width,small_beam_length,beam_thickness]

81 beam4_1 = geom.add_box(p1,p2,char_length=cl*scale)

82

83 # Beam4_2

84 p1 = [beam_dist_final+suspension_beam_width+small_beam_length+beam_to_mass,

↪→ beam_dist_final+suspension_beam_width+small_beam_length+

↪→ proof_mass_length+small_beam_length,beam_lower]

85 p2 = [suspension_beam_length,suspension_beam_width,beam_thickness]

86 beam4_2 = geom.add_box(p1,p2,char_length=cl*scale)

87

88 # Beam 4

89 beam4 = geom.boolean_union([beam4_1,beam4_2])

90

91

92 #Complete Union

93 final = geom.boolean_union([beam1,proof_mass,beam2,beam3,beam4])

94

95 mesh = pg.generate_mesh(geom,gmsh_path="/home/ruiesteves/Documents/Tese/

↪→ MechanicalModel/gmsh-4.5.2-Linux64/bin/gmsh") # Be sure to change the

↪→ gmsh_path to the installed folder

96 meshio.write("accelerometer.xml",mesh)

45

ANNEX I. SOFTWARE IMPLEMENTATION ON MEMS ACCELEROMETER

Listing I.2: FEM displacement script

1 # MEMS accelerometer displacement simulation script

2 # @ruiesteves

3

4 # Imports

5 from __future__ import print_function

6 from dolfin import *

7

8 # Material constants

9 E = Constant(170e9)

10 nu = Constant(0.28)

11 rho = 2329

12 mu = E/2/(1+nu)

13 lmbda = E*nu/(1+nu)/(1-2*nu)

14

15 # Mesh

16 mesh = Mesh(’accelerometer.xml’)

17

18

19 def disp(suspension_beam_width,proof_mass_length):

20

21 # Constants

22 scale = 1e-6

23 suspension_beam_length = 3300*scale

24 beam_thickness = 69*scale

25 small_beam_length = 500*scale

26 proof_mass_thickness = 320*scale

27 beam_dist = 500*scale

28 beam_l = 122.5 * scale

29 beam_h = 177.5 * scale

30 beam_dist2 = beam_dist + suspension_beam_length

31 beam_dist3 = proof_mass_length + suspension_beam_width + small_beam_length

32 beam_dist_final = beam_dist2 - beam_dist3

33 beam_lower = (proof_mass_thickness - beam_thickness)/2

34 beam_to_mass = (beam_dist_final+suspension_beam_width+small_beam_length +

↪→ proof_mass_length) - suspension_beam_length

35 anchor_top = beam_dist_final+suspension_beam_width+small_beam_length+

↪→ beam_to_mass+suspension_beam_length

36 volume_PM = proof_mass_length**2 * proof_mass_thickness

37

38 # Strain operator

39 def eps(v):

40 return sym(grad(v))

41

42 # Stress tensor

46

43 def sigma(v):

44 return lmbda*tr(eps(v))*Identity(3) + 2.0*mu*eps(v)

45

46

47 # Boundary

48 def left(x,on_boundary):

49 return near(x[0],0.)

50

51 def bottom(x,on_boundary):

52 return near(x[1],0.)

53

54 def top(x,on_boundary):

55 return near(x[1],anchor_top)

56

57 def right(x,on_boundary):

58 return near(x[0],anchor_top)

59

60 def main():

61 rho_g = 9.8*(rho)

62 print("Volume:",volume_PM)

63 print("Force:",rho_g)

64 f = Constant((0.,0.,rho_g))

65 T = Constant((0,0,0))

66 V = VectorFunctionSpace(mesh,’Lagrange’,degree=3)

67 du = TrialFunction(V)

68 u_ = TestFunction(V)

69 a = inner(sigma(du),eps(u_))*dx

70 l = dot(f,u_)*dx

71

72 bc = [DirichletBC(V, Constant((0.,0.,0.)),left),

73 DirichletBC(V, Constant((0.,0.,0.)),right),

74 DirichletBC(V, Constant((0.,0.,0.)),top),

75 DirichletBC(V, Constant((0.,0.,0.)),bottom)]

76 u = Function(V, name=’Displacement’)

77 solve(a == l, u, bc)

78 z_disp = u(beam_dist_final+suspension_beam_width+small_beam_length+

↪→ proof_mass_length/2,beam_dist_final+suspension_beam_width+

↪→ small_beam_length+proof_mass_length/2,proof_mass_thickness/2)

79

80 # Set up file for exporting results

81 file_results = XDMFFile("acc_displacement.xdmf")

82 file_results.parameters["flush_output"] = True

83 file_results.parameters["functions_share_mesh"] = True

84 file_results.write(u,0)

85

47

ANNEX I. SOFTWARE IMPLEMENTATION ON MEMS ACCELEROMETER

86 print(z_disp[2]*1e6,"um")

87 return z_disp[2]

88

89 return main()

Listing I.3: Modal analysis simulation script

1 # MEMS accelerometer modal analysis script

2 # @ruiesteves

3

4 # Imports

5 from fenics import *

6 import numpy as np

7

8 # Material constants

9 E = Constant(170e9)

10 nu = Constant(0.28)

11 rho = 2329

12 mu = E/2/(1+nu)

13 lmbda = E*nu/(1+nu)/(1-2*nu)

14

15 # Meshing

16 mesh = Mesh(’accelerometer.xml’)

17

18

19 def main(suspension_beam_width,proof_mass_length):

20

21 # Constants

22 cl = 175

23 proof_mass_cl = 150

24 scale = 1e-6

25 suspension_beam_length = 3300*scale

26 beam_thickness = 69*scale

27 small_beam_length = 500*scale

28 proof_mass_thickness = 320*scale

29 beam_dist = 500*scale

30 beam_l = 122.5 * scale

31 beam_h = 177.5 * scale

32 beam_dist2 = beam_dist + suspension_beam_length

33 beam_dist3 = proof_mass_length + suspension_beam_width + small_beam_length

34 beam_dist_final = beam_dist2 - beam_dist3

35 beam_lower = (proof_mass_thickness - beam_thickness)/2

36 beam_to_mass = (beam_dist_final+suspension_beam_width+small_beam_length +

↪→ proof_mass_length) - suspension_beam_length

37 anchor_top = beam_dist_final+suspension_beam_width+small_beam_length+

↪→ beam_to_mass+suspension_beam_length

48

38

39 # Functions

40 def eps(v):

41 return sym(grad(v))

42

43 def sigma(v):

44 return lmbda*tr(eps(v))*Identity(3) + 2.0*mu*eps(v)

45

46 # Function Space

47 V = VectorFunctionSpace(mesh,’Lagrange’,degree=3)

48 u_ = TrialFunction(V)

49 du = TestFunction(V)

50

51 # Boundary

52 def left(x,on_boundary):

53 return near(x[0],0.)

54

55 def bottom(x,on_boundary):

56 return near(x[1],0.)

57

58 def top(x,on_boundary):

59 return near(x[1],anchor_top)

60

61 def right(x,on_boundary):

62 return near(x[0],anchor_top)

63

64 bc = [DirichletBC(V, Constant((0.,0.,0.)),left),

65 DirichletBC(V, Constant((0.,0.,0.)),right),

66 DirichletBC(V, Constant((0.,0.,0.)),top),

67 DirichletBC(V, Constant((0.,0.,0.)),bottom)]

68

69 # Matrices

70 k_form = inner(sigma(du),eps(u_))*dx

71 l_form = Constant(1.)*u_[0]*dx

72 K = PETScMatrix()

73 b = PETScVector()

74 assemble_system(k_form,l_form,bc,A_tensor=K,b_tensor=b)

75

76 m_form = rho*dot(du,u_)*dx

77 M = PETScMatrix()

78 assemble(m_form, tensor=M)

79

80 # Eigenvalues/Eigensolver

81 eigensolver = SLEPcEigenSolver(K,M)

82 eigensolver.parameters[’problem_type’] = ’gen_hermitian’

49

ANNEX I. SOFTWARE IMPLEMENTATION ON MEMS ACCELEROMETER

83 #eigensolver.parameters[’spectrum’] = ’smallest real’

84 eigensolver.parameters[’spectral_transform’] = ’shift-and-invert’

85 eigensolver.parameters[’spectral_shift’] = 0.

86 N_eig = 2

87 eigensolver.solve(N_eig)

88 #print (eigensolver.parameters.str(True))

89

90 # Export results

91 file_results = XDMFFile(’acc_modal_analysis.xdmf’)

92 file_results.parameters[’flush_output’] = True

93 file_results.parameters[’functions_share_mesh’] = True

94

95 r1,c1,rx1,cx1 = eigensolver.get_eigenpair(0)

96 u = Function(V)

97 u.vector()[:] = rx1

98 file_results.write(u,0)

99

100 # Extraction

101 for i in range(N_eig):

102 r,c,rx,cx = eigensolver.get_eigenpair(i)

103 freq = sqrt(r)/2/pi

104 print(’Mode:’,i,’���’,’Freq:’,freq,’[Hz]’)
105

106

107 freq_final = sqrt(r1)/2/pi

108 return freq_final

Listing I.4: Electronic domain simulation script

1 # MEMS accelerometer electrical domain simulation

2 # @ruiesteves

3

4 # Imports

5 import acc_disp

6

7

8

9 # Constants

10 e0 = 8.85e-12 # Permitivity of free space

11 er = 1 # Relative permitivity of dielectric, in this case air

12 small_gap = 22*scale # Distance between electrodes and proof mass

13

14

15 # Functions

16

17 def main(suspension_beam_width,proof_mass_length):

50

18 disp = acc_disp.disp(suspension_beam_width,proof_mass_length)

19 A = (proof_mass_length)**2

20 def top_capacitance():

21 C = (e0*er*A)/(small_gap + disp)

22 return C

23

24 def bot_capacitance():

25 C = (e0*er*A)/(small_gap - disp)

26 return C

27

28 def capacitance_total():

29 c_total = bot_capacitance() - top_capacitance()

30 print(c_total*1e15,"fF")

31 return c_total

32

33 def c2v():

34 v = 2 * capacitance_total() * 2.5 * (1/300e-15)

35 print("Output�voltage:",v*1e3,"mV")
36 return v

37

38 voltage = c2v()

39 return voltage

Listing I.5: Damping calculation script

1 # MEMS accelerometer squeeze film damping calculation script

2 # @ruiesteves

3

4 import math

5

6 epsilon0 = 8.85e-12

7 scale = 1e-6

8 mu = 1.86e-5 # the mean viscosity of the medium

9 lamb = 0.067e-6 # mean free path

10 small_gap = 22*scale

11 thickness = 320*scale

12 rho = 2329

13

14 def q_factor(suspension_beam_width,proof_mass_length,sense_frequency):

15 A = proof_mass_length**2

16 mass_sense = A * thickness * rho

17 Kn = lamb/small_gap

18 mu_eff = mu/(1+9.638*Kn**1.159)

19 Pa = 101.3e3

20 c = 1

21 squeeze_number = (12*mu_eff*2*math.pi*L_sense**2)/(Pa*small_gap**2)

51

ANNEX I. SOFTWARE IMPLEMENTATION ON MEMS ACCELEROMETER

22 sum = 0

23 for m in range(1,10,2):

24 for n in (1,10,2):

25 sum = sum + (m**2 + c**2 * n**2)/((m*n)**2 * ((m**2 + c**2 * n**2)**2

↪→ + (squeeze_number**2 / math.pi**4)))

26

27 F_damping = ((64*squeeze_number*Pa*A)/(math.pi**6 * small_gap)) * sum

28 c_sense = F_damping

29 q_factor = mass_sense * sense_frequency*2*math.pi / c_sense

30

31 return q_factor

Listing I.6: Genetic algorithm script

1 # Python Accelerometer GA

2 # @ruiesteves

3

4 # Imports

5 import acc_geo

6 import acc_disp

7 import acc_elec

8 import acc_modal

9 import acc_damping

10 import numpy as np

11 import math as math

12 import random as rand

13 import copy

14

15 # Initial parameters of the device to be optimized

16 scale = 1e-6

17 suspension_beam_width = 350*scale

18 proof_mass_length = 2400*scale

19

20 initial = [suspension_beam_width,proof_mass_length]

21

22 # Classes

23 class GA_device:

24

25 def __init__(self,id):

26 self.list_parameters = []

27 self.id = id

28

29 def calc_sensitivity(self):

30 list = self.list_parameters

31 self.sensitivity = acc_elec.main(list[0],list[1])

32

52

33 def calc_freq(self):

34 list = self.list_parameters

35 self.freq = acc_modal.main(list[0],list[1])

36

37 def calc_qfactor(self):

38 list = self.list_parameters

39 self.qfactor = acc_damping.q_factor(list[0],list[1],self.freq)

40

41 def calc_fom(self):

42 list = self.list_parameters

43 try:

44 acc_geo.build(list[0],list[1])

45 self.calc_sensitivity()

46 self.calc_freq()

47 self.calc_qfactor()

48 self.fom = self.freq * self.sensitivity * self.qfactor * (1/1000)

49 except:

50 print("Geometry�became�invalid�for�device",self.id)
51 self.fom = 0

52

53

54 class GA: # GA class, initiated with a list of devices, a list of mutation

↪→ chances and a list of mutation relative size

55

56 def __init__(self,list_devices,mutation_chance,mutation_size):

57 self.list_devices = list_devices # Must be a list of GA_devices

58 self.mutation_chance = mutation_chance # A list, with different (or not)

↪→ mutation chances for each parameter

59 self.mutation_size = mutation_size # Same as above, this time for

↪→ mutation_sizes (IMPORTANT to check)

60

61 def mutate(self,dev): # The mutation function, mutating the parameters

↪→ according to their mutation chance and size

62 le = len(dev.list_parameters)

63 for i in range(le):

64 if rand.uniform(0,1) < self.mutation_chance[i]:

65 if rand.uniform(0,1) < 0.5:

66 dev.list_parameters[i] = dev.list_parameters[i] + dev.

↪→ list_parameters[i]*self.mutation_size[i]

67 else:

68 dev.list_parameters[i] = dev.list_parameters[i] - dev.

↪→ list_parameters[i]*self.mutation_size[i]

69

70 def reproduce(self,top_25):

71 new_population = []

53

ANNEX I. SOFTWARE IMPLEMENTATION ON MEMS ACCELEROMETER

72

73 for dev in top_25: # Passing the best 25 devices to the next generation

74 new_population.append(dev)

75

76 for dev in top_25: # Copying and mutating the best 25 devices to the next

↪→ generation

77 new_dev = copy.deepcopy(dev)

78 self.mutate(new_dev)

79 new_population.append(new_dev)

80

81 for i in range(len(self.list_devices)//2): # Randomly mutating and

↪→ passing half of the population to the next generation

82 new_dev_r = copy.deepcopy(self.list_devices[i])

83 self.mutate(new_dev_r)

84 new_population.append(new_dev_r)

85

86 return new_population

87

88

89 def one_generation(self):

90

91 for dev in self.list_devices:

92 dev.calc_fom()

93

94 le = len(self.list_devices)

95 scores = [self.list_devices[i].fom for i in range(le)]

96 max = np.amax(scores)

97 print(scores)

98 print(max)

99

100 top_25_index = list(np.argsort(scores))[3*(le//4):le]

101 top_25 = [self.list_devices[i] for i in top_25_index][::-1]

102

103 self.list_devices = self.reproduce(top_25)

104

105

106

107

108

109 # Script

110 print("Genetic�algorithm�optimization�for�MEMS�accelerometer")
111 num_pop = int(input("Size�of�the�population:�"))
112 num_gen = int(input("Number�of�generations:�"))
113

114 initial_pop = []

54

115 for i in range(num_pop):

116 initial_pop.append(GA_device(i))

117 for par in range(len(initial)):

118 initial_pop[i].list_parameters.append(initial[par])

119 initial_pop[i].calc_fom()

120

121 init_ga = GA(initial_pop,[0.6,0.6],[0.13,0.0143])

122

123 for i in range(num_gen):

124 init_ga.one_generation()

125 for dev in init_ga.list_devices:

126 print("\n","For�Device�number",dev.id,":")
127 print(dev.sensitivity*1e3,"mV/g")

128 print(dev.freq,"Hz")

129 print(dev.qfactor,"Q-factor")

130 print(dev.fom,"FOM")

131

132 max_score = 0

133

134

135 for dev in init_ga.list_devices:

136 if dev.fom > max_score:

137 max_score = dev.fom

138

139 print("Maximum�FOM:",max_score)

55

A
n
n
e
x

II
Software implementation on MEMS

gyroscope

In the following listings, the program implementation for a MEMS gyroscope

is displayed. The code makes it possible to obtain the displacement due to an

actuation force or coriolis force via FEM - however, it is recommended to make

use of the displacement equations for long optimization runs.

Listing II.1: Geometry building block

1 # MEMS Gyroscope 3D Geometry

2 # @ruiesteves

3

4 # Imports

5 import pygmsh as pg # geometry & meshing definition

6 import meshio # meshing export

7

8 # Helper functions

9 def mirror_quarter_helper(mirror_quarter,x_point):

10 dist = mirror_quarter - x_point

11 x_new = mirror_quarter + dist

12 return x_new

13

14 def mirror_half_helper(drive_frame_beam_h,y_point):

15 dist = drive_frame_beam_h - y_point

16 y_new = drive_frame_beam_h + dist

17 return y_new

18

19 # Functions

20 def build(serpentine_width,proof_mass_beam_w,proof_mass_beam_h,

21 proof_mass_w,proof_mass_h,sense_comb_finger_h):

22

23 # Constants

24 scale = 1e-6

25 cl = 80*scale

26 small_cl = 9*scale

27 thickness = 50*scale

28 small_gap = 3*scale

57

ANNEX II. SOFTWARE IMPLEMENTATION ON MEMS GYROSCOPE

29 large_gap = 4*small_gap

30 drive_anchor_width = 124*scale

31 drive_anchor_height = 126*scale

32 drive_serpentine_connector_w = 21*scale

33 drive_serpentine_connector_h = 24*scale

34 drive_serpentine_beam_h = 194*scale

35 drive_serpentine_connector2_w = 17*scale

36 drive_serpentine_connector2_h = 21*scale

37 drive_serpentine_beam2_x = drive_anchor_width + drive_serpentine_connector_w

↪→ + serpentine_width + drive_serpentine_connector2_w

38 drive_serpentine_connector3_w = 17*scale

39 drive_serpentine_connector3_h = 24*scale

40 drive_frame_beam_w = 56*scale

41 drive_frame_beam_h = 485*scale

42 drive_frame_connector_w = 72*scale

43 drive_frame_connector_h = 73*scale

44 drive_frame_serpent_beam_w = 171*scale

45 drive_frame_serpent_connector_x = drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w + drive_frame_serpent_beam_w -

↪→ drive_serpentine_connector2_h

46 drive_frame_base_w = 309*scale

47 drive_frame_base_h = 41*scale

48 sense_comb_finger_dist = (small_gap + large_gap + sense_comb_finger_h)

49 proof_mass_fingers_pole_w = 15*scale

50 proof_mass_fingers_pole_h = (3*(sense_comb_finger_dist+sense_comb_finger_h))

51 sense_comb_finger_w = 243*scale

52 sense_comb_finger_num = 3

53 drive_comb_finger_w = 48*scale

54 drive_comb_finger_h = 9*scale

55 drive_comb_finger_dist = (small_gap + large_gap + drive_comb_finger_h)

56 drive_comb_finger_num = 8

57 mirror_quarter = drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w + proof_mass_w

58 mirror_gyro = mirror_quarter*2 - drive_anchor_width/2

59 drive_coupling_beam_w = 118.5*scale

60 drive_coupling_beam_h = 21*scale

61 drive_coupling_dist = 42.75*scale

62 drive_coupling_beam_vert_w = 9*scale

63 drive_coupling_dist2 = 95*scale

64 drive_coupling_beam_vert_h = drive_coupling_dist2*2 + drive_coupling_beam_h

65 drive_coupling_connector_w = 15*scale

66 drive_coupling_connector_h = 12*scale

67

58

68 # Geometry build

69 geom = pg.opencascade.Geometry()

70

71 # Drive anchor

72 p1 = [0,0,0]

73 p2 = [drive_anchor_width,drive_anchor_height,thickness]

74 drive_anchor = geom.add_box(p1,p2,char_length=cl)

75

76 # Drive serpentine connector

77 p3 = [drive_anchor_width,0,0]

78 p4 = [drive_serpentine_connector_w,drive_serpentine_connector_h,thickness]

79 drive_serpentine_connector = geom.add_box(p3,p4,char_length=cl)

80

81 # Drive serpentine beam

82 p5 = [drive_anchor_width + drive_serpentine_connector_w,0,0]

83 p6 = [serpentine_width,drive_serpentine_beam_h,thickness]

84 drive_serpentine_beam = geom.add_box(p5,p6,char_length=cl)

85

86 # Drive serpentine connector 2

87 p7 = [drive_anchor_width + drive_serpentine_connector_w + serpentine_width,

↪→ drive_serpentine_beam_h - drive_serpentine_connector2_h,0]

88 p8 = [drive_serpentine_connector2_w,drive_serpentine_connector2_h,thickness]

89 drive_serpentine_connector2 = geom.add_box(p7,p8,char_length=cl)

90

91 # Drive serpentine beam 2

92 p9 = [drive_serpentine_beam2_x,0,0]

93 p10 = [serpentine_width,drive_serpentine_beam_h,thickness]

94 drive_serpentine_beam2 = geom.add_box(p9,p10,char_length=cl)

95

96 # Drive serpentine connector 3

97 p11 = [drive_serpentine_beam2_x + serpentine_width,0,0]

98 p12 = [drive_serpentine_connector3_w,drive_serpentine_connector3_h,thickness

↪→]

99 drive_serpentine_connector3 = geom.add_box(p11,p12,char_length=cl)

100

101 # Drive frame beam

102 p13 = [drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w,0,0]

103 p14 = [drive_frame_beam_w,drive_frame_beam_h,thickness]

104 drive_frame_beam = geom.add_box(p13,p14,char_length=cl)

105

106 # Drive frame connector

107 p15 = [drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w,0,0]

108 p16 = [drive_frame_connector_w,drive_frame_connector_h,thickness]

59

ANNEX II. SOFTWARE IMPLEMENTATION ON MEMS GYROSCOPE

109 drive_frame_connector = geom.add_box(p15,p16,char_length=cl)

110

111 # Drive frame serpent beam

112 p17 = [drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w,drive_frame_connector_h - serpentine_width,0]

113 p18 = [drive_frame_serpent_beam_w,serpentine_width,thickness]

114 drive_frame_serpent_beam = geom.add_box(p17,p18,char_length=cl)

115

116 # Drive frame serpent connector

117 p19 = [drive_frame_serpent_connector_x,drive_frame_connector_h,0]

118 p20 = [drive_serpentine_connector2_h,drive_serpentine_connector2_w,thickness

↪→]

119 drive_frame_serpent_connector = geom.add_box(p19,p20,char_length=cl)

120

121 # Drive frame serpent beam 2

122 p21 = [drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w,drive_frame_connector_h +

↪→ drive_serpentine_connector2_w,0]

123 p22 = [drive_frame_serpent_beam_w,serpentine_width,thickness]

124 drive_frame_serpent_beam2 = geom.add_box(p21,p22,char_length=cl)

125

126 # Drive frame base

127 p23 = [drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w,0,0]

128 p24 = [drive_frame_base_w,drive_frame_base_h,thickness]

129 drive_frame_base = geom.add_box(p23,p24,char_length=cl)

130

131 # Proof mass beam

132 p25 = [drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w - proof_mass_beam_w,drive_frame_connector_h +

↪→ drive_serpentine_connector2_w,0]

133 p26 = [proof_mass_beam_w,proof_mass_beam_h,thickness]

134 proof_mass_beam = geom.add_box(p25,p26,char_length=cl)

135

136 # Proof mass

137 p27 = [drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w, drive_frame_connector_h +

↪→ drive_serpentine_connector2_w + proof_mass_beam_h - proof_mass_h,0]

138 p28 = [proof_mass_w,proof_mass_h,thickness]

139 proof_mass = geom.add_box(p27,p28,char_length=cl)

60

140

141 # Proof mass fingers pole

142 p29 = [drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w + proof_mass_w - proof_mass_fingers_pole_w,

143 drive_frame_connector_h + drive_serpentine_connector2_w + proof_mass_beam_h -

↪→ proof_mass_h - proof_mass_fingers_pole_h,0]

144 p30 = [proof_mass_fingers_pole_w,proof_mass_fingers_pole_h,thickness]

145 proof_mass_fingers_pole = geom.add_box(p29,p30,char_length=cl)

146

147 # Sense comb finger array

148 sense_comb_finger_array = []

149 for i in range(sense_comb_finger_num):

150 p31 = [drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w + proof_mass_w - proof_mass_fingers_pole_w

↪→ - sense_comb_finger_w,

151 drive_frame_connector_h + drive_serpentine_connector2_w +

↪→ proof_mass_beam_h - proof_mass_h - proof_mass_fingers_pole_h + (i)

↪→ *(sense_comb_finger_h + sense_comb_finger_dist),0]

152 p32 = [sense_comb_finger_w,sense_comb_finger_h,thickness]

153 name = "".join(["sense_comb_finger",str(i)])

154 name = geom.add_box(p31,p32,char_length=cl)

155 sense_comb_finger_array.append(name)

156 sense_comb_finger_complete = geom.boolean_union(sense_comb_finger_array)

157

158 # Drive comb finger array

159 drive_comb_finger_array = []

160 for i in range(drive_comb_finger_num):

161 p33 = [drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w - drive_comb_finger_w,

162 drive_frame_beam_h - drive_comb_finger_dist/2 - drive_comb_finger_h - i*(

↪→ drive_comb_finger_h + drive_comb_finger_dist),0]

163 p34 = [drive_comb_finger_w,drive_comb_finger_h,thickness]

164 name = "".join(["drive_comb_finger",str(i)])

165 name = geom.add_box(p33,p34,char_length=cl)

166 drive_comb_finger_array.append(name)

167 drive_comb_finger_complete = geom.boolean_union(drive_comb_finger_array)

168

169

170 # Quarter union

171 print("1st�union�starts�here")
172 quarter = geom.boolean_union([drive_anchor,drive_serpentine_connector,

↪→ drive_serpentine_beam,

61

ANNEX II. SOFTWARE IMPLEMENTATION ON MEMS GYROSCOPE

173 drive_serpentine_connector2,drive_serpentine_beam2,

↪→ drive_serpentine_connector3,drive_frame_beam,

174 drive_frame_connector,drive_frame_serpent_beam,drive_frame_serpent_connector,

↪→ drive_frame_serpent_beam2,

175 drive_frame_base,proof_mass_beam,proof_mass,proof_mass_fingers_pole,

↪→ sense_comb_finger_complete,

176 drive_comb_finger_complete])

177

178

179 # QUARTER MIRROR STARTS HERE

180 # Drive anchor

181 p35 = [mirror_quarter_helper(mirror_quarter,0),0,0]

182 print("ANCHOR:",p35)

183 p36 = [-drive_anchor_width,drive_anchor_height,thickness]

184 drive_anchorq = geom.add_box(p35,p36,char_length=cl)

185

186 # Drive serpentine connector

187 p37 = [mirror_quarter_helper(mirror_quarter,drive_anchor_width),0,0]

188 p38 = [-drive_serpentine_connector_w,drive_serpentine_connector_h,thickness]

189 drive_serpentine_connectorq = geom.add_box(p37,p38,char_length=cl)

190

191 # Drive serpentine beam

192 p39 = [mirror_quarter_helper(mirror_quarter,drive_anchor_width +

↪→ drive_serpentine_connector_w),0,0]

193 p40 = [-serpentine_width,drive_serpentine_beam_h,thickness]

194 drive_serpentine_beamq = geom.add_box(p39,p40,char_length=cl)

195

196 # Drive serpentine connector 2

197 p41 = [mirror_quarter_helper(mirror_quarter,drive_anchor_width +

↪→ drive_serpentine_connector_w + serpentine_width),

↪→ drive_serpentine_beam_h - drive_serpentine_connector2_h,0]

198 p42 = [-drive_serpentine_connector2_w,drive_serpentine_connector2_h,

↪→ thickness]

199 drive_serpentine_connector2q = geom.add_box(p41,p42,char_length=cl)

200

201 # Drive serpentine beam 2

202 p9 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x),0,0]

203 p10 = [-serpentine_width,drive_serpentine_beam_h,thickness]

204 drive_serpentine_beam2q = geom.add_box(p9,p10,char_length=cl)

205

206 # Drive serpentine connector 3

207 p11 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width),0,0]

208 p12 = [-drive_serpentine_connector3_w,drive_serpentine_connector3_h,

↪→ thickness]

62

209 drive_serpentine_connector3q = geom.add_box(p11,p12,char_length=cl)

210

211 # Drive frame beam

212 p13 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w),0,0]

213 p14 = [-drive_frame_beam_w,drive_frame_beam_h,thickness]

214 drive_frame_beamq = geom.add_box(p13,p14,char_length=cl)

215

216 # Drive frame connector

217 p15 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+drive_frame_beam_w)

↪→ ,0,0]

218 p16 = [-drive_frame_connector_w,drive_frame_connector_h,thickness]

219 drive_frame_connectorq = geom.add_box(p15,p16,char_length=cl)

220

221 # Drive frame serpent beam

222 p17 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w),drive_frame_connector_h - serpentine_width,0]

223 p18 = [-drive_frame_serpent_beam_w,serpentine_width,thickness]

224 drive_frame_serpent_beamq = geom.add_box(p17,p18,char_length=cl)

225

226 # Drive frame serpent connector

227 p19 = [mirror_quarter_helper(mirror_quarter,drive_frame_serpent_connector_x),

↪→ drive_frame_connector_h,0]

228 p20 = [-drive_serpentine_connector2_h,drive_serpentine_connector2_w,

↪→ thickness]

229 drive_frame_serpent_connectorq = geom.add_box(p19,p20,char_length=cl)

230

231 # Drive frame serpent beam 2

232 p21 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w),drive_frame_connector_h +

↪→ drive_serpentine_connector2_w,0]

233 p22 = [-drive_frame_serpent_beam_w,serpentine_width,thickness]

234 drive_frame_serpent_beam2q = geom.add_box(p21,p22,char_length=cl)

235

236 # Drive frame base

237 p23 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w),0,0]

238 p24 = [-drive_frame_base_w,drive_frame_base_h,thickness]

239 drive_frame_baseq = geom.add_box(p23,p24,char_length=cl)

240

241 # Proof mass beam

63

ANNEX II. SOFTWARE IMPLEMENTATION ON MEMS GYROSCOPE

242 p25 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w - proof_mass_beam_w),drive_frame_connector_h +

↪→ drive_serpentine_connector2_w,0]

243 p26 = [-proof_mass_beam_w,proof_mass_beam_h,thickness]

244 proof_mass_beamq = geom.add_box(p25,p26,char_length=cl)

245

246 # Proof mass

247 p27 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w), drive_frame_connector_h +

↪→ drive_serpentine_connector2_w + proof_mass_beam_h - proof_mass_h,0]

248 p28 = [-proof_mass_w,proof_mass_h,thickness]

249 proof_massq = geom.add_box(p27,p28,char_length=cl)

250

251 # Proof mass fingers pole

252 p29 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w + proof_mass_w - proof_mass_fingers_pole_w),

253 drive_frame_connector_h + drive_serpentine_connector2_w + proof_mass_beam_h -

↪→ proof_mass_h - proof_mass_fingers_pole_h,0]

254 p30 = [-proof_mass_fingers_pole_w,proof_mass_fingers_pole_h,thickness]

255 proof_mass_fingers_poleq = geom.add_box(p29,p30,char_length=cl)

256

257 # Sense comb finger array

258 sense_comb_finger_array = []

259 for i in range(sense_comb_finger_num):

260 p31 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+

↪→ drive_frame_beam_w + drive_frame_connector_w + proof_mass_w -

↪→ proof_mass_fingers_pole_w - sense_comb_finger_w),

261 drive_frame_connector_h + drive_serpentine_connector2_w +

↪→ proof_mass_beam_h - proof_mass_h - proof_mass_fingers_pole_h + (i)

↪→ *(sense_comb_finger_h + sense_comb_finger_dist),0]

262 p32 = [-sense_comb_finger_w,sense_comb_finger_h,thickness]

263 name = "".join(["sense_comb_finger",str(i)])

264 name = geom.add_box(p31,p32,char_length=cl)

265 sense_comb_finger_array.append(name)

266 sense_comb_finger_completeq = geom.boolean_union(sense_comb_finger_array)

267

268 # Drive comb finger array

269 drive_comb_finger_array = []

270 for i in range(drive_comb_finger_num):

64

271 p33 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w -

↪→ drive_comb_finger_w),

272 drive_frame_beam_h - drive_comb_finger_dist/2 - drive_comb_finger_h - i*(

↪→ drive_comb_finger_h + drive_comb_finger_dist),0]

273 p34 = [-drive_comb_finger_w,drive_comb_finger_h,thickness]

274 name = "".join(["drive_comb_finger",str(i)])

275 name = geom.add_box(p33,p34,char_length=cl)

276 drive_comb_finger_array.append(name)

277 drive_comb_finger_completeq = geom.boolean_union(drive_comb_finger_array)

278

279 print("2nd�union�starts�here")
280 # Quarter union

281 quarter_right = geom.boolean_union([drive_anchorq,

↪→ drive_serpentine_connectorq,drive_serpentine_beamq,

282 drive_serpentine_connector2q,drive_serpentine_beam2q,

↪→ drive_serpentine_connector3q,drive_frame_beamq,

283 drive_frame_connectorq,drive_frame_serpent_beamq,

↪→ drive_frame_serpent_connectorq,drive_frame_serpent_beam2q,

284 drive_frame_baseq,proof_mass_beamq,proof_massq,proof_mass_fingers_poleq,

↪→ sense_comb_finger_completeq,

285 drive_comb_finger_completeq])

286

287

288

289 # HALF MIRRORING STARTS FROM HERE

290 # Drive anchor

291 p1 = [0,mirror_half_helper(drive_frame_beam_h,0),0]

292 p2 = [drive_anchor_width,-drive_anchor_height,thickness]

293 drive_anchorh = geom.add_box(p1,p2,char_length=cl)

294

295 # Drive serpentine connector

296 p3 = [drive_anchor_width,mirror_half_helper(drive_frame_beam_h,0),0]

297 p4 = [drive_serpentine_connector_w,-drive_serpentine_connector_h,thickness]

298 drive_serpentine_connectorh = geom.add_box(p3,p4,char_length=cl)

299

300 # Drive serpentine beam

301 p5 = [drive_anchor_width + drive_serpentine_connector_w,mirror_half_helper(

↪→ drive_frame_beam_h,0),0]

302 p6 = [serpentine_width,-drive_serpentine_beam_h,thickness]

303 drive_serpentine_beamh = geom.add_box(p5,p6,char_length=cl)

304

305 # Drive serpentine connector 2

65

ANNEX II. SOFTWARE IMPLEMENTATION ON MEMS GYROSCOPE

306 p7 = [drive_anchor_width + drive_serpentine_connector_w + serpentine_width,

↪→ mirror_half_helper(drive_frame_beam_h,drive_serpentine_beam_h -

↪→ drive_serpentine_connector2_h),0]

307 p8 = [drive_serpentine_connector2_w,-drive_serpentine_connector2_h,thickness

↪→]

308 drive_serpentine_connector2h = geom.add_box(p7,p8,char_length=cl)

309

310 # Drive serpentine beam 2

311 p9 = [drive_serpentine_beam2_x,mirror_half_helper(drive_frame_beam_h,0),0]

312 p10 = [serpentine_width,-drive_serpentine_beam_h,thickness]

313 drive_serpentine_beam2h = geom.add_box(p9,p10,char_length=cl)

314

315 # Drive serpentine connector 3

316 p11 = [drive_serpentine_beam2_x + serpentine_width,mirror_half_helper(

↪→ drive_frame_beam_h,0),0]

317 p12 = [drive_serpentine_connector3_w,-drive_serpentine_connector3_h,

↪→ thickness]

318 drive_serpentine_connector3h = geom.add_box(p11,p12,char_length=cl)

319

320 # Drive frame beam

321 p13 = [drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w,mirror_half_helper(drive_frame_beam_h,0)

↪→ ,0]

322 p14 = [drive_frame_beam_w,-drive_frame_beam_h,thickness]

323 drive_frame_beamh = geom.add_box(p13,p14,char_length=cl)

324

325 # Drive frame connector

326 p15 = [drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w,mirror_half_helper(

↪→ drive_frame_beam_h,0),0]

327 p16 = [drive_frame_connector_w,-drive_frame_connector_h,thickness]

328 drive_frame_connectorh = geom.add_box(p15,p16,char_length=cl)

329

330 # Drive frame serpent beam

331 p17 = [drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w,mirror_half_helper(drive_frame_beam_h,

↪→ drive_frame_connector_h - serpentine_width),0]

332 p18 = [drive_frame_serpent_beam_w,-serpentine_width,thickness]

333 drive_frame_serpent_beamh = geom.add_box(p17,p18,char_length=cl)

334

335 # Drive frame serpent connector

336 p19 = [drive_frame_serpent_connector_x,mirror_half_helper(drive_frame_beam_h,

↪→ drive_frame_connector_h),0]

66

337 p20 = [drive_serpentine_connector2_h,-drive_serpentine_connector2_w,

↪→ thickness]

338 drive_frame_serpent_connectorh = geom.add_box(p19,p20,char_length=cl)

339

340 # Drive frame serpent beam 2

341 p21 = [drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w,mirror_half_helper(drive_frame_beam_h,

↪→ drive_frame_connector_h + drive_serpentine_connector2_w),0]

342 p22 = [drive_frame_serpent_beam_w,-serpentine_width,thickness]

343 drive_frame_serpent_beam2h = geom.add_box(p21,p22,char_length=cl)

344

345 # Drive frame base

346 p23 = [drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w,mirror_half_helper(drive_frame_beam_h,0),0]

347 p24 = [drive_frame_base_w,-drive_frame_base_h,thickness]

348 drive_frame_baseh = geom.add_box(p23,p24,char_length=cl)

349

350 # Proof mass beam

351 p25 = [drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w - proof_mass_beam_w,mirror_half_helper(

↪→ drive_frame_beam_h,drive_frame_connector_h +

↪→ drive_serpentine_connector2_w),0]

352 p26 = [proof_mass_beam_w,-proof_mass_beam_h,thickness]

353 proof_mass_beamh = geom.add_box(p25,p26,char_length=cl)

354

355 # Proof mass

356 p27 = [drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w, mirror_half_helper(drive_frame_beam_h,

↪→ drive_frame_connector_h + drive_serpentine_connector2_w +

↪→ proof_mass_beam_h - proof_mass_h),0]

357 p28 = [proof_mass_w,-proof_mass_h,thickness]

358 proof_massh = geom.add_box(p27,p28,char_length=cl)

359

360 # Proof mass fingers pole

361 p29 = [drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w + proof_mass_w - proof_mass_fingers_pole_w,

362 mirror_half_helper(drive_frame_beam_h,drive_frame_connector_h +

↪→ drive_serpentine_connector2_w + proof_mass_beam_h - proof_mass_h -

↪→ proof_mass_fingers_pole_h),0]

363 p30 = [proof_mass_fingers_pole_w,-proof_mass_fingers_pole_h,thickness]

67

ANNEX II. SOFTWARE IMPLEMENTATION ON MEMS GYROSCOPE

364 proof_mass_fingers_poleh = geom.add_box(p29,p30,char_length=cl)

365

366 # Sense comb finger array

367 sense_comb_finger_array = []

368 for i in range(sense_comb_finger_num):

369 p31 = [drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w + proof_mass_w - proof_mass_fingers_pole_w

↪→ - sense_comb_finger_w,

370 mirror_half_helper(drive_frame_beam_h,drive_frame_connector_h +

↪→ drive_serpentine_connector2_w + proof_mass_beam_h - proof_mass_h -

↪→ proof_mass_fingers_pole_h + (i)*(sense_comb_finger_h +

↪→ sense_comb_finger_dist)),0]

371 p32 = [sense_comb_finger_w,-sense_comb_finger_h,thickness]

372 name = "".join(["sense_comb_finger",str(i)])

373 name = geom.add_box(p31,p32,char_length=cl)

374 sense_comb_finger_array.append(name)

375 sense_comb_finger_completeh = geom.boolean_union(sense_comb_finger_array)

376

377 # Drive comb finger array

378 drive_comb_finger_array = []

379 for i in range(drive_comb_finger_num):

380 p33 = [drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w - drive_comb_finger_w,

381 mirror_half_helper(drive_frame_beam_h,drive_frame_beam_h -

↪→ drive_comb_finger_dist/2 - drive_comb_finger_h - i*(

↪→ drive_comb_finger_h + drive_comb_finger_dist)),0]

382 p34 = [drive_comb_finger_w,-drive_comb_finger_h,thickness]

383 name = "".join(["drive_comb_finger",str(i)])

384 name = geom.add_box(p33,p34,char_length=cl)

385 drive_comb_finger_array.append(name)

386 drive_comb_finger_completeh = geom.boolean_union(drive_comb_finger_array)

387

388

389 print("3rd�union�starts�here")
390 # Quarter union

391 quarter_h = geom.boolean_union([drive_anchorh,drive_serpentine_connectorh,

↪→ drive_serpentine_beamh,

392 drive_serpentine_connector2h,drive_serpentine_beam2h,

↪→ drive_serpentine_connector3h,drive_frame_beamh,

393 drive_frame_connectorh,drive_frame_serpent_beamh,

↪→ drive_frame_serpent_connectorh,drive_frame_serpent_beam2h,

394 drive_frame_baseh,proof_mass_beamh,proof_massh,proof_mass_fingers_poleh,

↪→ sense_comb_finger_completeh,

395 drive_comb_finger_completeh])

68

396

397

398 # QUARTER MIRROR STARTS HERE

399 # Drive anchor

400 p35 = [mirror_quarter_helper(mirror_quarter,0),mirror_half_helper(

↪→ drive_frame_beam_h,0),0]

401 p36 = [-drive_anchor_width,-drive_anchor_height,thickness]

402 drive_anchorqh = geom.add_box(p35,p36,char_length=cl)

403

404 # Drive serpentine connector

405 p37 = [mirror_quarter_helper(mirror_quarter,drive_anchor_width),

↪→ mirror_half_helper(drive_frame_beam_h,0),0]

406 p38 = [-drive_serpentine_connector_w,-drive_serpentine_connector_h,thickness

↪→]

407 drive_serpentine_connectorqh = geom.add_box(p37,p38,char_length=cl)

408

409 # Drive serpentine beam

410 p39 = [mirror_quarter_helper(mirror_quarter,drive_anchor_width +

↪→ drive_serpentine_connector_w),mirror_half_helper(drive_frame_beam_h,0)

↪→ ,0]

411 p40 = [-serpentine_width,-drive_serpentine_beam_h,thickness]

412 drive_serpentine_beamqh = geom.add_box(p39,p40,char_length=cl)

413

414 # Drive serpentine connector 2

415 p41 = [mirror_quarter_helper(mirror_quarter,drive_anchor_width +

↪→ drive_serpentine_connector_w + serpentine_width),mirror_half_helper(

↪→ drive_frame_beam_h,drive_serpentine_beam_h -

↪→ drive_serpentine_connector2_h),0]

416 p42 = [-drive_serpentine_connector2_w,-drive_serpentine_connector2_h,

↪→ thickness]

417 drive_serpentine_connector2qh = geom.add_box(p41,p42,char_length=cl)

418

419 # Drive serpentine beam 2

420 p9 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x),

↪→ mirror_half_helper(drive_frame_beam_h,0),0]

421 p10 = [-serpentine_width,-drive_serpentine_beam_h,thickness]

422 drive_serpentine_beam2qh = geom.add_box(p9,p10,char_length=cl)

423

424 # Drive serpentine connector 3

425 p11 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width),mirror_half_helper(drive_frame_beam_h,0),0]

426 p12 = [-drive_serpentine_connector3_w,-drive_serpentine_connector3_h,

↪→ thickness]

427 drive_serpentine_connector3qh = geom.add_box(p11,p12,char_length=cl)

428

69

ANNEX II. SOFTWARE IMPLEMENTATION ON MEMS GYROSCOPE

429 # Drive frame beam

430 p13 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w),mirror_half_helper(

↪→ drive_frame_beam_h,0),0]

431 p14 = [-drive_frame_beam_w,-drive_frame_beam_h,thickness]

432 drive_frame_beamqh = geom.add_box(p13,p14,char_length=cl)

433

434 # Drive frame connector

435 p15 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+drive_frame_beam_w),

↪→ mirror_half_helper(drive_frame_beam_h,0),0]

436 p16 = [-drive_frame_connector_w,-drive_frame_connector_h,thickness]

437 drive_frame_connectorqh = geom.add_box(p15,p16,char_length=cl)

438

439 # Drive frame serpent beam

440 p17 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w),mirror_half_helper(drive_frame_beam_h,

↪→ drive_frame_connector_h - serpentine_width),0]

441 p18 = [-drive_frame_serpent_beam_w,-serpentine_width,thickness]

442 drive_frame_serpent_beamqh = geom.add_box(p17,p18,char_length=cl)

443

444 # Drive frame serpent connector

445 p19 = [mirror_quarter_helper(mirror_quarter,drive_frame_serpent_connector_x),

↪→ mirror_half_helper(drive_frame_beam_h,drive_frame_connector_h),0]

446 p20 = [-drive_serpentine_connector2_h,-drive_serpentine_connector2_w,

↪→ thickness]

447 drive_frame_serpent_connectorqh = geom.add_box(p19,p20,char_length=cl)

448

449 # Drive frame serpent beam 2

450 p21 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w),mirror_half_helper(drive_frame_beam_h,

↪→ drive_frame_connector_h + drive_serpentine_connector2_w),0]

451 p22 = [-drive_frame_serpent_beam_w,-serpentine_width,thickness]

452 drive_frame_serpent_beam2qh = geom.add_box(p21,p22,char_length=cl)

453

454 # Drive frame base

455 p23 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w),mirror_half_helper(drive_frame_beam_h,0),0]

456 p24 = [-drive_frame_base_w,-drive_frame_base_h,thickness]

457 drive_frame_baseqh = geom.add_box(p23,p24,char_length=cl)

458

459 # Proof mass beam

70

460 p25 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w - proof_mass_beam_w),mirror_half_helper(

↪→ drive_frame_connector_h + drive_serpentine_connector2_w),0]

461 p26 = [-proof_mass_beam_w,-proof_mass_beam_h,thickness]

462 proof_mass_beamqh = geom.add_box(p25,p26,char_length=cl)

463

464 # Proof mass

465 p27 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w), mirror_half_helper(drive_frame_beam_h,

↪→ drive_frame_connector_h + drive_serpentine_connector2_w +

↪→ proof_mass_beam_h - proof_mass_h),0]

466 p28 = [-proof_mass_w,-proof_mass_h,thickness]

467 proof_massqh = geom.add_box(p27,p28,char_length=cl)

468

469 # Proof mass fingers pole

470 p29 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w + proof_mass_w - proof_mass_fingers_pole_w),

471 mirror_half_helper(drive_frame_beam_h,drive_frame_connector_h +

↪→ drive_serpentine_connector2_w + proof_mass_beam_h - proof_mass_h -

↪→ proof_mass_fingers_pole_h),0]

472 p30 = [-proof_mass_fingers_pole_w,-proof_mass_fingers_pole_h,thickness]

473 proof_mass_fingers_poleqh = geom.add_box(p29,p30,char_length=cl)

474

475 # Sense comb finger array

476 sense_comb_finger_array = []

477 for i in range(sense_comb_finger_num):

478 p31 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+

↪→ drive_frame_beam_w + drive_frame_connector_w + proof_mass_w -

↪→ proof_mass_fingers_pole_w - sense_comb_finger_w),

479 mirror_half_helper(drive_frame_beam_h,drive_frame_connector_h +

↪→ drive_serpentine_connector2_w + proof_mass_beam_h - proof_mass_h -

↪→ proof_mass_fingers_pole_h + (i)*(sense_comb_finger_h +

↪→ sense_comb_finger_dist)),0]

480 p32 = [-sense_comb_finger_w,-sense_comb_finger_h,thickness]

481 name = "".join(["sense_comb_finger",str(i)])

482 name = geom.add_box(p31,p32,char_length=cl)

483 sense_comb_finger_array.append(name)

484 sense_comb_finger_completeqh = geom.boolean_union(sense_comb_finger_array)

485

486 # Drive comb finger array

487 drive_comb_finger_array = []

71

ANNEX II. SOFTWARE IMPLEMENTATION ON MEMS GYROSCOPE

488 for i in range(drive_comb_finger_num):

489 p33 = [mirror_quarter_helper(mirror_quarter,drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w -

↪→ drive_comb_finger_w),

490 mirror_half_helper(drive_frame_beam_h,drive_frame_beam_h -

↪→ drive_comb_finger_dist/2 - drive_comb_finger_h - i*(

↪→ drive_comb_finger_h + drive_comb_finger_dist)),0]

491 p34 = [-drive_comb_finger_w,-drive_comb_finger_h,thickness]

492 name = "".join(["drive_comb_finger",str(i)])

493 name = geom.add_box(p33,p34,char_length=cl)

494 drive_comb_finger_array.append(name)

495 drive_comb_finger_completeqh = geom.boolean_union(drive_comb_finger_array)

496

497 print("4th�union�starts�here")
498 # Quarter union

499 quarter_qh = geom.boolean_union([drive_anchorqh,drive_serpentine_connectorqh,

↪→ drive_serpentine_beamqh,

500 drive_serpentine_connector2qh,drive_serpentine_beam2qh,

↪→ drive_serpentine_connector3qh,drive_frame_beamqh,

501 drive_frame_connectorqh,drive_frame_serpent_beamqh,

↪→ drive_frame_serpent_connectorqh,drive_frame_serpent_beam2qh,

502 drive_frame_baseqh,proof_mass_beamqh,proof_massqh,proof_mass_fingers_poleqh,

↪→ sense_comb_finger_completeqh,

503 drive_comb_finger_completeqh])

504

505

506

507

508

509 print("Final�union�starts�here")
510 # Complete union

511 complete = geom.boolean_union([quarter,quarter_right,quarter_h,quarter_qh])

512

513

514

515

516

517 mesh = pg.generate_mesh(geom,gmsh_path="/home/ruiesteves/Documents/Tese/

↪→ MechanicalModel/gmsh-4.5.2-Linux64/bin/gmsh")

518 meshio.write("gyroscope.xml",mesh)

519 #meshio.write("antiphase_geo.mesh",mesh)

520

521 return mesh

Listing II.2: Displacement simulation script

72

1 # MEMS Gyroscope displacement simulation script

2 # @ruiesteves

3

4 # Imports

5 from __future__ import print_function

6 from dolfin import *

7 import math

8 import gyro_elec

9 import gyro_damping

10

11 # Helper functions

12 def mirror_quarter_helper(mirror_quarter,x_point):

13 dist = mirror_quarter - x_point

14 x_new = mirror_quarter + dist

15 return x_new

16

17 def mirror_half_helper(drive_frame_beam_h,y_point):

18 dist = drive_frame_beam_h - y_point

19 y_new = drive_frame_beam_h + dist

20 return y_new

21

22

23 # Constants

24 E = Constant(170e9)

25 nu = Constant(0.28)

26 rho = 2329

27 mu = E/2/(1+nu)

28 lmbda = E*nu/(1+nu)/(1-2*nu)

29

30

31 # The user can choose between the two ways of calculating displacement: FEM

↪→ simulation or equations. For long optimization runs, the equations

↪→ approach is preferred.

32 def disp_equations(serpentine_width,proof_mass_beam_w,proof_mass_beam_h,

↪→ proof_mass_w,proof_mass_h,sense_comb_finger_h,q_factor_sense,

↪→ q_factor_drive,drive_frequency,sense_frequency):

33

34 # Constants

35 scale = 1e-6

36 cl = 80*scale

37 small_cl = 9*scale

38 thickness = 50*scale

39 small_gap = 3*scale

40 large_gap = 4*small_gap

41 drive_anchor_width = 124*scale

73

ANNEX II. SOFTWARE IMPLEMENTATION ON MEMS GYROSCOPE

42 drive_anchor_height = 126*scale

43 drive_serpentine_connector_w = 21*scale

44 drive_serpentine_connector_h = 24*scale

45 drive_serpentine_beam_h = 194*scale

46 drive_serpentine_connector2_w = 17*scale

47 drive_serpentine_connector2_h = 21*scale

48 drive_serpentine_beam2_x = drive_anchor_width + drive_serpentine_connector_w

↪→ + serpentine_width + drive_serpentine_connector2_w

49 drive_serpentine_connector3_w = 17*scale

50 drive_serpentine_connector3_h = 24*scale

51 drive_frame_beam_w = 56*scale

52 drive_frame_beam_h = 485*scale

53 drive_frame_connector_w = 72*scale

54 drive_frame_connector_h = 73*scale

55 drive_frame_serpent_beam_w = 171*scale

56 drive_frame_serpent_connector_x = drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w + drive_frame_serpent_beam_w -

↪→ drive_serpentine_connector2_h

57 drive_frame_base_w = 309*scale

58 drive_frame_base_h = 41*scale

59 sense_comb_finger_dist = (small_gap + large_gap + sense_comb_finger_h)

60 proof_mass_fingers_pole_w = 15*scale

61 proof_mass_fingers_pole_h = (3*(sense_comb_finger_dist+sense_comb_finger_h))

62 sense_comb_finger_w = 243*scale

63 sense_comb_finger_num = 3

64 drive_comb_finger_w = 48*scale

65 drive_comb_finger_h = 9*scale

66 drive_comb_finger_dist = (small_gap + large_gap + drive_comb_finger_h)

67 drive_comb_finger_num = 8

68 mirror_quarter = drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w + proof_mass_w

69 mirror_gyro = mirror_quarter*2 - drive_anchor_width/2

70 drive_coupling_beam_w = 118.5*scale

71 drive_coupling_beam_h = 21*scale

72 drive_coupling_dist = 42.75*scale

73 drive_coupling_beam_vert_w = 9*scale

74 drive_coupling_dist2 = 95*scale

75 drive_coupling_beam_vert_h = drive_coupling_dist2*2 + drive_coupling_beam_h

76 drive_coupling_connector_w = 15*scale

77 drive_coupling_connector_h = 12*scale

78

79 Volume = ((drive_anchor_height*drive_anchor_width)*4 + (

↪→ drive_serpentine_connector_h*drive_serpentine_connector_w)*4

74

80 + (serpentine_width*drive_serpentine_beam_h)*8 + (

↪→ drive_serpentine_connector2_h*drive_serpentine_connector2_w)*8 +

81 (drive_serpentine_connector3_h*drive_serpentine_connector3_w)*4 + (

↪→ drive_frame_beam_w*drive_frame_beam_h)*4 +

82 (drive_frame_connector_h*drive_frame_connector_w)*4 + (

↪→ drive_frame_serpent_beam_w*serpentine_width)*8 +

83 (drive_frame_base_w*drive_frame_base_h)*4 + (proof_mass_beam_w*

↪→ proof_mass_beam_h)*4 +

84 (proof_mass_w*proof_mass_h)*4 + (proof_mass_fingers_pole_w*

↪→ proof_mass_fingers_pole_h)*4 +

85 (sense_comb_finger_h*sense_comb_finger_w)*12 + (drive_comb_finger_h*

↪→ drive_comb_finger_w)*32)*thickness

86

87 Volume_proof_mass = ((proof_mass_beam_w*proof_mass_beam_h)*4 +

88 (proof_mass_w*proof_mass_h)*4 + (proof_mass_fingers_pole_w*

↪→ proof_mass_fingers_pole_h)*4 +

89 (sense_comb_finger_h*sense_comb_finger_w)*12)*thickness

90

91 Volume_drive_frame = ((drive_frame_beam_w*drive_frame_beam_h)*4 + (

↪→ drive_frame_connector_w*drive_frame_connector_h)*4 +

92 (drive_frame_serpent_beam_w*serpentine_width)*8 + (

↪→ drive_serpentine_connector2_w*drive_serpentine_connector2_h)*4 +

93 (drive_frame_base_h*drive_frame_base_w)*4)*thickness

94

95 Volume_drive = Volume_proof_mass + Volume_drive_frame

96

97 # Constants

98 epsilon0 = 8.85e-12

99 L = 18*scale

100 Vdc = 8

101 Vac = 4

102 drive_frequency, sense_frequency = gyro_modal.main()

103 mu = 1.86e-5

104 lamb = 0.067e-6

105

106 def drive_amplitude(drive_frequency,q_factor):

107 drive_mass = Volume_drive*rho

108 kd = (drive_mass * (drive_frequency*2*math.pi)**2)

109 f_actuation = 2*epsilon0*L*thickness*drive_comb_finger_num*2*Vdc*Vac*(1/(

↪→ small_gap**2))

110 X0 = q_factor * f_actuation / (drive_mass * (drive_frequency*2*math.pi)

↪→ **2)

111 return X0

112

113 def coriolis_force(angular_rate,drive_frequency):

75

ANNEX II. SOFTWARE IMPLEMENTATION ON MEMS GYROSCOPE

114 mass_coriolis = Volume_drive*rho

115 X0 = drive_amplitude()

116 F_coriolis = -2*mass_coriolis*angular_rate*X0*drive_frequency*2*math.pi

117 return F_coriolis

118

119

120 def sense_disp(angular_rate,Q_factor,q_factor_drive,drive_frequency,

↪→ sense_frequency):

121 Y0 = angular_rate * ((Volume_drive*rho) * drive_frequency*2*math.pi) *

↪→ (1/(Volume_proof_mass*rho * (sense_frequency*2*math.pi)**2)) * 2 *

↪→ drive_amplitude(drive_frequency,q_factor_drive) * (1/math.sqrt

↪→ ((1-((drive_frequency*2*math.pi)/(sense_frequency*2*math.pi))**2)

↪→ **2) + (1/Q_factor * ((drive_frequency*2*math.pi)/(sense_frequency

↪→ *2*math.pi)))**2)

122 return Y0

123

124 return sense_disp(1,q_factor_sense,q_factor_drive,drive_frequency,

↪→ sense_frequency)

125

126 # Mesh

127 mesh = Mesh(’gyroscope.xml’)

128

129 def disp_fem(force,serpentine_width,proof_mass_beam_w,proof_mass_beam_h,

130 proof_mass_w,proof_mass_h,sense_comb_finger_h):

131

132 scale = 1e-6

133 cl = 80*scale

134 small_cl = 9*scale

135 thickness = 50*scale

136 small_gap = 3*scale

137 large_gap = 4*small_gap

138 drive_anchor_width = 124*scale

139 drive_anchor_height = 126*scale

140 drive_serpentine_connector_w = 21*scale

141 drive_serpentine_connector_h = 24*scale

142 drive_serpentine_beam_h = 194*scale

143 drive_serpentine_connector2_w = 17*scale

144 drive_serpentine_connector2_h = 21*scale

145 drive_serpentine_beam2_x = drive_anchor_width + drive_serpentine_connector_w

↪→ + serpentine_width + drive_serpentine_connector2_w

146 drive_serpentine_connector3_w = 17*scale

147 drive_serpentine_connector3_h = 24*scale

148 drive_frame_beam_w = 56*scale

149 drive_frame_beam_h = 485*scale

150 drive_frame_connector_w = 72*scale

76

151 drive_frame_connector_h = 73*scale

152 drive_frame_serpent_beam_w = 171*scale

153 drive_frame_serpent_connector_x = drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w + drive_frame_serpent_beam_w -

↪→ drive_serpentine_connector2_h

154 drive_frame_base_w = 309*scale

155 drive_frame_base_h = 41*scale

156 sense_comb_finger_dist = (small_gap + large_gap + sense_comb_finger_h)

157 proof_mass_fingers_pole_w = 15*scale

158 proof_mass_fingers_pole_h = (3*(sense_comb_finger_dist+sense_comb_finger_h))

159 sense_comb_finger_w = 243*scale

160 sense_comb_finger_num = 3

161 drive_comb_finger_w = 48*scale

162 drive_comb_finger_h = 9*scale

163 drive_comb_finger_dist = (small_gap + large_gap + drive_comb_finger_h)

164 drive_comb_finger_num = 8

165 mirror_quarter = drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w + proof_mass_w

166 mirror_gyro = mirror_quarter*2 - drive_anchor_width/2

167 drive_coupling_beam_w = 118.5*scale

168 drive_coupling_beam_h = 21*scale

169 drive_coupling_dist = 42.75*scale

170 drive_coupling_beam_vert_w = 9*scale

171 drive_coupling_dist2 = 95*scale

172 drive_coupling_beam_vert_h = drive_coupling_dist2*2 + drive_coupling_beam_h

173 drive_coupling_connector_w = 15*scale

174 drive_coupling_connector_h = 12*scale

175

176 Volume = ((drive_anchor_height*drive_anchor_width)*4 + (

↪→ drive_serpentine_connector_h*drive_serpentine_connector_w)*4

177 + (serpentine_width*drive_serpentine_beam_h)*8 + (

↪→ drive_serpentine_connector2_h*drive_serpentine_connector2_w)*8 +

178 (drive_serpentine_connector3_h*drive_serpentine_connector3_w)*4 + (

↪→ drive_frame_beam_w*drive_frame_beam_h)*4 +

179 (drive_frame_connector_h*drive_frame_connector_w)*4 + (

↪→ drive_frame_serpent_beam_w*serpentine_width)*8 +

180 (drive_frame_base_w*drive_frame_base_h)*4 + (proof_mass_beam_w*

↪→ proof_mass_beam_h)*4 +

181 (proof_mass_w*proof_mass_h)*4 + (proof_mass_fingers_pole_w*

↪→ proof_mass_fingers_pole_h)*4 +

182 (sense_comb_finger_h*sense_comb_finger_w)*12 + (drive_comb_finger_h*

↪→ drive_comb_finger_w)*32)*thickness

183

77

ANNEX II. SOFTWARE IMPLEMENTATION ON MEMS GYROSCOPE

184 Volume_proof_mass = ((proof_mass_beam_w*proof_mass_beam_h)*4 +

185 (proof_mass_w*proof_mass_h)*4 + (proof_mass_fingers_pole_w*

↪→ proof_mass_fingers_pole_h)*4 +

186 (sense_comb_finger_h*sense_comb_finger_w)*12)*thickness

187

188 Volume_drive_frame = ((drive_frame_beam_w*drive_frame_beam_h)*4 + (

↪→ drive_frame_connector_w*drive_frame_connector_h)*4 +

189 (drive_frame_serpent_beam_w*serpentine_width)*8 + (

↪→ drive_serpentine_connector2_w*drive_serpentine_connector2_h)*4 +

190 (drive_frame_base_h*drive_frame_base_w)*4)*thickness

191

192 Volume_drive = Volume_proof_mass + Volume_drive_frame

193 # Strain operator

194 def eps(v):

195 return sym(grad(v))

196

197 # Stress tensor

198 def sigma(v):

199 return lmbda*tr(eps(v))*Identity(3) + 2.0*mu*eps(v)

200

201 # Function Space

202 V = VectorFunctionSpace(mesh,’Lagrange’,degree=3)

203 u_ = TrialFunction(V)

204 du = TestFunction(V)

205

206

207 # Boundary Conditions

208 # Upper Left Quarter

209

210 def drive_anchor_left(x,on_boundary):

211 return near(x[0],0.)

212

213 def drive_anchor_left2(x,on_boundary):

214 return near(x[0],drive_anchor_width)

215

216 def drive_anchor_left3(x,on_boundary):

217 return near(x[1],0.) and x[0] >= 0 and x[0] <= drive_anchor_width

218

219 def drive_anchor_left4(x,on_boundary):

220 return near(x[1],drive_anchor_height) and x[0] >= 0 and x[0] <=

↪→ drive_anchor_width

221

222 def drive_anchor_left5(x,on_boundary):

223 return near(x[1],mirror_half_helper(drive_frame_beam_h,0)) and x[0] >= 0

↪→ and x[0] <= drive_anchor_width

78

224

225 def drive_anchor_left6(x,on_boundary):

226 return near(x[1],mirror_half_helper(drive_frame_beam_h,0)-

↪→ drive_anchor_height) and x[0] >= 0 and x[0] <= drive_anchor_width

227

228 def drive_middle_anchor(x,on_boundary):

229 return near(x[0],mirror_quarter_helper(mirror_quarter,0)) and x[1] >= 0

↪→ and x[1] <= drive_anchor_height

230

231 def drive_middle_anchor2(x,on_boundary):

232 return near(x[0],mirror_quarter_helper(mirror_quarter,0)-

↪→ drive_anchor_width) and x[1] >= 0 and x[1] <= drive_anchor_height

233

234 def drive_middle_anchor12(x,on_boundary):

235 return near(x[0],mirror_quarter_helper(mirror_quarter,0)) and x[1] >=

↪→ mirror_half_helper(drive_frame_beam_h,0)-drive_anchor_height and x

↪→ [1] <= mirror_half_helper(drive_frame_beam_h,0)

236

237 def drive_middle_anchor22(x,on_boundary):

238 return near(x[0],mirror_quarter_helper(mirror_quarter,0)-

↪→ drive_anchor_width) and x[1] >= mirror_half_helper(

↪→ drive_frame_beam_h,0)-drive_anchor_height and x[1] <=

↪→ mirror_half_helper(drive_frame_beam_h,0)

239

240 def drive_middle_anchor3(x,on_boundary):

241 return near(x[1],0.) and x[0] >= mirror_quarter_helper(mirror_quarter,0)-

↪→ drive_anchor_width and x[0] <= mirror_quarter_helper(

↪→ mirror_quarter,0)

242

243 def drive_middle_anchor4(x,on_boundary):

244 return near(x[1],drive_anchor_height) and x[0] >= mirror_quarter_helper(

↪→ mirror_quarter,0)-drive_anchor_width and x[0] <=

↪→ mirror_quarter_helper(mirror_quarter,0)

245

246 def drive_middle_anchor5(x,on_boundary):

247 return near(x[1],mirror_half_helper(drive_frame_beam_h,0)) and x[0] >=

↪→ mirror_quarter_helper(mirror_quarter,0)-drive_anchor_width and x

↪→ [0] <= mirror_quarter_helper(mirror_quarter,0)

248

249 def drive_middle_anchor6(x,on_boundary):

250 return near(x[1],mirror_half_helper(drive_frame_beam_h,0)-

↪→ drive_anchor_height) and x[0] >= mirror_quarter_helper(

↪→ mirror_quarter,0)-drive_anchor_width and x[0] <=

↪→ mirror_quarter_helper(mirror_quarter,0)

251

79

ANNEX II. SOFTWARE IMPLEMENTATION ON MEMS GYROSCOPE

252 bc = [DirichletBC(V, Constant((0.,0.,0.)),drive_anchor_left),

253 DirichletBC(V, Constant((0.,0.,0.)),drive_anchor_left2),

254 DirichletBC(V, Constant((0.,0.,0.)),drive_anchor_left3),

255 DirichletBC(V, Constant((0.,0.,0.)),drive_anchor_left4),

256 DirichletBC(V, Constant((0.,0.,0.)),drive_anchor_left5),

257 DirichletBC(V, Constant((0.,0.,0.)),drive_anchor_left6),

258 DirichletBC(V, Constant((0.,0.,0.)),drive_middle_anchor),

259 DirichletBC(V, Constant((0.,0.,0.)),drive_middle_anchor2),

260 DirichletBC(V, Constant((0.,0.,0.)),drive_middle_anchor12),

261 DirichletBC(V, Constant((0.,0.,0.)),drive_middle_anchor22),

262 DirichletBC(V, Constant((0.,0.,0.)),drive_middle_anchor3),

263 DirichletBC(V, Constant((0.,0.,0.)),drive_middle_anchor4),

264 DirichletBC(V, Constant((0.,0.,0.)),drive_middle_anchor5),

265 DirichletBC(V, Constant((0.,0.,0.)),drive_middle_anchor6)]

266

267 # Change the force to x and y, depending on whether the desired displacement

↪→ is from actuation force or coriolis force (a change in the volume is

↪→ also need)

268 f = Constant((0.,force/Volume_proof_mass,0.))

269 T = Constant((0,0,0))

270 V = VectorFunctionSpace(mesh,’Lagrange’,degree=3)

271 du = TrialFunction(V)

272 u_ = TestFunction(V)

273 a = inner(sigma(du),eps(u_))*dx

274 l = dot(f,u_)*dx

275

276 u = Function(V, name=’Displacement’)

277 solve(a == l, u, bc)

278 disp = u(mirror_quarter,mirror_half_helper,thickness/2)

279

280 # Set up file for exporting results

281 file_results = XDMFFile("gyro_displacement.xdmf")

282 file_results.parameters["flush_output"] = True

283 file_results.parameters["functions_share_mesh"] = True

284 file_results.write(u,0)

285

286 return disp[1]

Listing II.3: Modal analysis simulation script

1 # MEMS Gyroscope modal analysis script

2 # @ruiesteves

3

4 # Imports

5 from fenics import *

6 import numpy as np

80

7 import time

8 import math

9

10

11 # Definitions

12

13

14 # For PolySi

15 E = Constant(170e9)

16 nu = Constant(0.28)

17 rho = 2329

18 mu = E/2/(1+nu)

19 lmbda = E*nu/(1+nu)/(1-2*nu)

20

21

22 # Meshing

23 mesh = Mesh("gyroscope.xml")

24

25

26 # Helper functions

27 def mirror_quarter_helper(mirror_quarter,x_point):

28 dist = mirror_quarter - x_point

29 x_new = mirror_quarter + dist

30 return x_new

31

32 def mirror_half_helper(drive_frame_beam_h,y_point):

33 dist = drive_frame_beam_h - y_point

34 y_new = drive_frame_beam_h + dist

35 return y_new

36

37

38

39

40

41 def main(serpentine_width,proof_mass_beam_w,proof_mass_beam_h,

42 proof_mass_w,proof_mass_h,sense_comb_finger_h):

43

44 scale = 1e-6

45 cl = 80*scale

46 small_cl = 9*scale

47 thickness = 50*scale

48 small_gap = 3*scale

49 large_gap = 4*small_gap

50 drive_anchor_width = 124*scale

51 drive_anchor_height = 126*scale

81

ANNEX II. SOFTWARE IMPLEMENTATION ON MEMS GYROSCOPE

52 drive_serpentine_connector_w = 21*scale

53 drive_serpentine_connector_h = 24*scale

54 drive_serpentine_beam_h = 194*scale

55 drive_serpentine_connector2_w = 17*scale

56 drive_serpentine_connector2_h = 21*scale

57 drive_serpentine_beam2_x = drive_anchor_width + drive_serpentine_connector_w

↪→ + serpentine_width + drive_serpentine_connector2_w

58 drive_serpentine_connector3_w = 17*scale

59 drive_serpentine_connector3_h = 24*scale

60 drive_frame_beam_w = 56*scale

61 drive_frame_beam_h = 485*scale

62 drive_frame_connector_w = 72*scale

63 drive_frame_connector_h = 73*scale

64 drive_frame_serpent_beam_w = 171*scale

65 drive_frame_serpent_connector_x = drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w + drive_frame_serpent_beam_w -

↪→ drive_serpentine_connector2_h

66 drive_frame_base_w = 309*scale

67 drive_frame_base_h = 41*scale

68 sense_comb_finger_dist = (small_gap + large_gap + sense_comb_finger_h)

69 proof_mass_fingers_pole_w = 15*scale

70 proof_mass_fingers_pole_h = (3*(sense_comb_finger_dist+sense_comb_finger_h))

71 sense_comb_finger_w = 243*scale

72 sense_comb_finger_num = 3

73 drive_comb_finger_w = 48*scale

74 drive_comb_finger_h = 9*scale

75 drive_comb_finger_dist = (small_gap + large_gap + drive_comb_finger_h)

76 drive_comb_finger_num = 8

77 mirror_quarter = drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w + proof_mass_w

78 mirror_gyro = mirror_quarter*2 - drive_anchor_width/2

79 drive_coupling_beam_w = 118.5*scale

80 drive_coupling_beam_h = 21*scale

81 drive_coupling_dist = 42.75*scale

82 drive_coupling_beam_vert_w = 9*scale

83 drive_coupling_dist2 = 95*scale

84 drive_coupling_beam_vert_h = drive_coupling_dist2*2 + drive_coupling_beam_h

85 drive_coupling_connector_w = 15*scale

86 drive_coupling_connector_h = 12*scale

87

88 # Functions

89 def eps(v):

90 #return 0.5*(nabla_grad(v) + nabla_grad(v).T)

82

91 return sym(grad(v))

92

93 def sigma(v):

94 return lmbda*tr(eps(v))*Identity(3) + 2.0*mu*eps(v)

95

96 # Function Space

97 V = VectorFunctionSpace(mesh,’Lagrange’,degree=3)

98 u_ = TrialFunction(V)

99 du = TestFunction(V)

100

101 # Boundary Conditions

102 # Upper Left Quarter

103

104 def drive_anchor_left(x,on_boundary):

105 return near(x[0],0.)

106

107 def drive_anchor_left2(x,on_boundary):

108 return near(x[0],drive_anchor_width)

109

110 def drive_anchor_left3(x,on_boundary):

111 return near(x[1],0.) and x[0] >= 0 and x[0] <= drive_anchor_width

112

113 def drive_anchor_left4(x,on_boundary):

114 return near(x[1],drive_anchor_height) and x[0] >= 0 and x[0] <=

↪→ drive_anchor_width

115

116 def drive_anchor_left5(x,on_boundary):

117 return near(x[1],mirror_half_helper(drive_frame_beam_h,0)) and x[0] >= 0

↪→ and x[0] <= drive_anchor_width

118

119 def drive_anchor_left6(x,on_boundary):

120 return near(x[1],mirror_half_helper(drive_frame_beam_h,0)-

↪→ drive_anchor_height) and x[0] >= 0 and x[0] <= drive_anchor_width

121

122 def drive_middle_anchor(x,on_boundary):

123 return near(x[0],mirror_quarter_helper(mirror_quarter,0)) and x[1] >= 0

↪→ and x[1] <= drive_anchor_height

124

125 def drive_middle_anchor2(x,on_boundary):

126 return near(x[0],mirror_quarter_helper(mirror_quarter,0)-

↪→ drive_anchor_width) and x[1] >= 0 and x[1] <= drive_anchor_height

127

128 def drive_middle_anchor12(x,on_boundary):

83

ANNEX II. SOFTWARE IMPLEMENTATION ON MEMS GYROSCOPE

129 return near(x[0],mirror_quarter_helper(mirror_quarter,0)) and x[1] >=

↪→ mirror_half_helper(drive_frame_beam_h,0)-drive_anchor_height and x

↪→ [1] <= mirror_half_helper(drive_frame_beam_h,0)

130

131 def drive_middle_anchor22(x,on_boundary):

132 return near(x[0],mirror_quarter_helper(mirror_quarter,0)-

↪→ drive_anchor_width) and x[1] >= mirror_half_helper(

↪→ drive_frame_beam_h,0)-drive_anchor_height and x[1] <=

↪→ mirror_half_helper(drive_frame_beam_h,0)

133

134 def drive_middle_anchor3(x,on_boundary):

135 return near(x[1],0.) and x[0] >= mirror_quarter_helper(mirror_quarter,0)-

↪→ drive_anchor_width and x[0] <= mirror_quarter_helper(

↪→ mirror_quarter,0)

136

137 def drive_middle_anchor4(x,on_boundary):

138 return near(x[1],drive_anchor_height) and x[0] >= mirror_quarter_helper(

↪→ mirror_quarter,0)-drive_anchor_width and x[0] <=

↪→ mirror_quarter_helper(mirror_quarter,0)

139

140 def drive_middle_anchor5(x,on_boundary):

141 return near(x[1],mirror_half_helper(drive_frame_beam_h,0)) and x[0] >=

↪→ mirror_quarter_helper(mirror_quarter,0)-drive_anchor_width and x

↪→ [0] <= mirror_quarter_helper(mirror_quarter,0)

142

143 def drive_middle_anchor6(x,on_boundary):

144 return near(x[1],mirror_half_helper(drive_frame_beam_h,0)-

↪→ drive_anchor_height) and x[0] >= mirror_quarter_helper(

↪→ mirror_quarter,0)-drive_anchor_width and x[0] <=

↪→ mirror_quarter_helper(mirror_quarter,0)

145

146

147

148

149

150 bc = [DirichletBC(V, Constant((0.,0.,0.)),drive_anchor_left),

151 DirichletBC(V, Constant((0.,0.,0.)),drive_anchor_left2),

152 DirichletBC(V, Constant((0.,0.,0.)),drive_anchor_left3),

153 DirichletBC(V, Constant((0.,0.,0.)),drive_anchor_left4),

154 DirichletBC(V, Constant((0.,0.,0.)),drive_anchor_left5),

155 DirichletBC(V, Constant((0.,0.,0.)),drive_anchor_left6),

156 DirichletBC(V, Constant((0.,0.,0.)),drive_middle_anchor),

157 DirichletBC(V, Constant((0.,0.,0.)),drive_middle_anchor2),

158 DirichletBC(V, Constant((0.,0.,0.)),drive_middle_anchor12),

159 DirichletBC(V, Constant((0.,0.,0.)),drive_middle_anchor22),

84

160 DirichletBC(V, Constant((0.,0.,0.)),drive_middle_anchor3),

161 DirichletBC(V, Constant((0.,0.,0.)),drive_middle_anchor4),

162 DirichletBC(V, Constant((0.,0.,0.)),drive_middle_anchor5),

163 DirichletBC(V, Constant((0.,0.,0.)),drive_middle_anchor6)]

164

165

166 # Matrices

167 k_form = inner(sigma(du),eps(u_))*dx

168 l_form = Constant(1.)*u_[0]*dx

169 K = PETScMatrix()

170 b = PETScVector()

171 assemble_system(k_form,l_form,bc,A_tensor=K,b_tensor=b)

172

173 m_form = rho*dot(du,u_)*dx

174 M = PETScMatrix()

175 assemble(m_form, tensor=M)

176

177 # Eigenvalues/Eigensolver

178 eigensolver = SLEPcEigenSolver(K,M)

179 eigensolver.parameters[’problem_type’] = ’gen_hermitian’

180 #eigensolver.parameters[’spectrum’] = ’smallest real’

181 eigensolver.parameters[’spectral_transform’] = ’shift-and-invert’

182 eigensolver.parameters[’spectral_shift’] = 0.

183 #PETScOptions.set("st_pc_factor_mat_solver_type", "mumps")

184 N_eig = 6

185 eigensolver.solve(N_eig)

186 #print (eigensolver.parameters.str(True))

187

188 # Export results

189 file_results = XDMFFile(’gyro_modal_analysis.xdmf’)

190 file_results.parameters[’flush_output’] = True

191 file_results.parameters[’functions_share_mesh’] = True

192

193 r1,c1,rx1,cx1 = eigensolver.get_eigenpair(0)

194 r3,c3,rx3,cx3 = eigensolver.get_eigenpair(3)

195 u = Function(V)

196 u.vector()[:] = rx1

197 file_results.write(u,0)

198

199 # Extraction

200 for i in range(N_eig):

201 r,c,rx,cx = eigensolver.get_eigenpair(i)

202 freq = sqrt(r)/2/pi

203 print(’Mode:’,i,’���’,’Freq:’,freq,’[Hz]’)
204

85

ANNEX II. SOFTWARE IMPLEMENTATION ON MEMS GYROSCOPE

205 freq_final_drive = sqrt(r1)/2/pi

206 freq_final_sense = sqrt(r3)/2/pi

207

208 return freq_final_drive, freq_final_sense

Listing II.4: Damping calculation script

1 # MEMS Gyroscope squeeze and slide film damping calculation script

2 # @ruiesteves

3

4 # Imports

5 import gyro_modal

6 import math

7

8 # Constants

9 scale = 1e-6

10 L = 18*scale

11 small_gap = 3*scale

12 mu = 1.86e-5

13 lamb = 0.067e-6

14 thickness = 50*scale

15 drive_comb_finger_num = 8

16

17 # Slide damping calculation

18 def damping_drive():

19 Kn = lamb/small_gap

20 mu_eff = mu/(1 + 2*Kn + (0.2*Kn**0.788)*math.exp(-Kn/10))

21 A = L*thickness

22 c_drive = 4 * drive_comb_finger_num * mu_eff * (A/small_gap)

23 return c_drive

24

25 def q_factor_drive(serpentine_width,proof_mass_beam_w,proof_mass_beam_h,

↪→ proof_mass_w,proof_mass_h,sense_comb_finger_h,drive_frequency):

26 # Constants

27 scale = 1e-6

28 cl = 80*scale

29 small_cl = 9*scale

30 thickness = 50*scale

31 small_gap = 3*scale

32 large_gap = 4*small_gap

33 drive_anchor_width = 124*scale

34 drive_anchor_height = 126*scale

35 drive_serpentine_connector_w = 21*scale

36 drive_serpentine_connector_h = 24*scale

37 drive_serpentine_beam_h = 194*scale

38 drive_serpentine_connector2_w = 17*scale

86

39 drive_serpentine_connector2_h = 21*scale

40 drive_serpentine_beam2_x = drive_anchor_width + drive_serpentine_connector_w

↪→ + serpentine_width + drive_serpentine_connector2_w

41 drive_serpentine_connector3_w = 17*scale

42 drive_serpentine_connector3_h = 24*scale

43 drive_frame_beam_w = 56*scale

44 drive_frame_beam_h = 485*scale

45 drive_frame_connector_w = 72*scale

46 drive_frame_connector_h = 73*scale

47 drive_frame_serpent_beam_w = 171*scale

48 drive_frame_serpent_connector_x = drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w + drive_frame_serpent_beam_w -

↪→ drive_serpentine_connector2_h

49 drive_frame_base_w = 309*scale

50 drive_frame_base_h = 41*scale

51 sense_comb_finger_dist = (small_gap + large_gap + sense_comb_finger_h)

52 proof_mass_fingers_pole_w = 15*scale

53 proof_mass_fingers_pole_h = (3*(sense_comb_finger_dist+sense_comb_finger_h))

54 sense_comb_finger_w = 243*scale

55 sense_comb_finger_num = 3

56 drive_comb_finger_w = 48*scale

57 drive_comb_finger_h = 9*scale

58 drive_comb_finger_dist = (small_gap + large_gap + drive_comb_finger_h)

59 drive_comb_finger_num = 8

60 mirror_quarter = drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w + proof_mass_w

61 mirror_gyro = mirror_quarter*2 - drive_anchor_width/2

62 drive_coupling_beam_w = 118.5*scale

63 drive_coupling_beam_h = 21*scale

64 drive_coupling_dist = 42.75*scale

65 drive_coupling_beam_vert_w = 9*scale

66 drive_coupling_dist2 = 95*scale

67 drive_coupling_beam_vert_h = drive_coupling_dist2*2 + drive_coupling_beam_h

68 drive_coupling_connector_w = 15*scale

69 drive_coupling_connector_h = 12*scale

70

71 Volume = ((drive_anchor_height*drive_anchor_width)*4 + (

↪→ drive_serpentine_connector_h*drive_serpentine_connector_w)*4

72 + (serpentine_width*drive_serpentine_beam_h)*8 + (

↪→ drive_serpentine_connector2_h*drive_serpentine_connector2_w)*8 +

73 (drive_serpentine_connector3_h*drive_serpentine_connector3_w)*4 + (

↪→ drive_frame_beam_w*drive_frame_beam_h)*4 +

87

ANNEX II. SOFTWARE IMPLEMENTATION ON MEMS GYROSCOPE

74 (drive_frame_connector_h*drive_frame_connector_w)*4 + (

↪→ drive_frame_serpent_beam_w*serpentine_width)*8 +

75 (drive_frame_base_w*drive_frame_base_h)*4 + (proof_mass_beam_w*

↪→ proof_mass_beam_h)*4 +

76 (proof_mass_w*proof_mass_h)*4 + (proof_mass_fingers_pole_w*

↪→ proof_mass_fingers_pole_h)*4 +

77 (sense_comb_finger_h*sense_comb_finger_w)*12 + (drive_comb_finger_h*

↪→ drive_comb_finger_w)*32)*thickness

78

79 Volume_proof_mass = ((proof_mass_beam_w*proof_mass_beam_h)*4 +

80 (proof_mass_w*proof_mass_h)*4 + (proof_mass_fingers_pole_w*

↪→ proof_mass_fingers_pole_h)*4 +

81 (sense_comb_finger_h*sense_comb_finger_w)*12)*thickness

82

83 Volume_drive_frame = ((drive_frame_beam_w*drive_frame_beam_h)*4 + (

↪→ drive_frame_connector_w*drive_frame_connector_h)*4 +

84 (drive_frame_serpent_beam_w*serpentine_width)*8 + (

↪→ drive_serpentine_connector2_w*drive_serpentine_connector2_h)*4 +

85 (drive_frame_base_h*drive_frame_base_w)*4)*thickness

86

87 Volume_drive = Volume_proof_mass + Volume_drive_frame

88

89 drive_mass = Volume_drive*rho

90 c_drive = damping_drive()

91 q_factor = drive_mass * (drive_frequency*2*math.pi) / c_drive

92 return q_factor

93

94 # Squeeze film damping calculation

95 def damping_sense():

96 Kn = lamb/small_gap

97 mu_eff = mu/(1+9.638*Kn**1.159)

98 Pa = 101.3e3

99 A = L_sense*thickness

100 c = L_sense/thickness

101 squeeze_number = (12*mu_eff*10*2*math.pi*L_sense**2)/(Pa*small_gap**2)

102 sum = 0

103 for m in range(1,10,2):

104 for n in (1,10,2):

105 sum = sum + (m**2 + c**2 * n**2)/((m*n)**2 * ((m**2 + c**2 * n**2)**2

↪→ + (squeeze_number**2 / math.pi**4)))

106

107 F_damping = ((64*squeeze_number*Pa*A)/(math.pi**6 * small_gap)) * sum

108 c_sense = F_damping * sense_comb_finger_num * 4

109 return c_sense

110

88

111 def q_factor_sense(serpentine_width,proof_mass_beam_w,proof_mass_beam_h,

↪→ proof_mass_w,proof_mass_h,sense_comb_finger_h,sense_frequency):

112 # Constants

113 scale = 1e-6

114 cl = 80*scale

115 small_cl = 9*scale

116 thickness = 50*scale

117 small_gap = 3*scale

118 large_gap = 4*small_gap

119 drive_anchor_width = 124*scale

120 drive_anchor_height = 126*scale

121 drive_serpentine_connector_w = 21*scale

122 drive_serpentine_connector_h = 24*scale

123 drive_serpentine_beam_h = 194*scale

124 drive_serpentine_connector2_w = 17*scale

125 drive_serpentine_connector2_h = 21*scale

126 drive_serpentine_beam2_x = drive_anchor_width + drive_serpentine_connector_w

↪→ + serpentine_width + drive_serpentine_connector2_w

127 drive_serpentine_connector3_w = 17*scale

128 drive_serpentine_connector3_h = 24*scale

129 drive_frame_beam_w = 56*scale

130 drive_frame_beam_h = 485*scale

131 drive_frame_connector_w = 72*scale

132 drive_frame_connector_h = 73*scale

133 drive_frame_serpent_beam_w = 171*scale

134 drive_frame_serpent_connector_x = drive_serpentine_beam2_x +

↪→ serpentine_width + drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w + drive_frame_serpent_beam_w -

↪→ drive_serpentine_connector2_h

135 drive_frame_base_w = 309*scale

136 drive_frame_base_h = 41*scale

137 sense_comb_finger_dist = (small_gap + large_gap + sense_comb_finger_h)

138 proof_mass_fingers_pole_w = 15*scale

139 proof_mass_fingers_pole_h = (3*(sense_comb_finger_dist+sense_comb_finger_h))

140 sense_comb_finger_w = 243*scale

141 sense_comb_finger_num = 3

142 drive_comb_finger_w = 48*scale

143 drive_comb_finger_h = 9*scale

144 drive_comb_finger_dist = (small_gap + large_gap + drive_comb_finger_h)

145 drive_comb_finger_num = 8

146 mirror_quarter = drive_serpentine_beam2_x + serpentine_width +

↪→ drive_serpentine_connector3_w+drive_frame_beam_w +

↪→ drive_frame_connector_w + proof_mass_w

147 mirror_gyro = mirror_quarter*2 - drive_anchor_width/2

148 drive_coupling_beam_w = 118.5*scale

89

ANNEX II. SOFTWARE IMPLEMENTATION ON MEMS GYROSCOPE

149 drive_coupling_beam_h = 21*scale

150 drive_coupling_dist = 42.75*scale

151 drive_coupling_beam_vert_w = 9*scale

152 drive_coupling_dist2 = 95*scale

153 drive_coupling_beam_vert_h = drive_coupling_dist2*2 + drive_coupling_beam_h

154 drive_coupling_connector_w = 15*scale

155 drive_coupling_connector_h = 12*scale

156

157 Volume = ((drive_anchor_height*drive_anchor_width)*4 + (

↪→ drive_serpentine_connector_h*drive_serpentine_connector_w)*4

158 + (serpentine_width*drive_serpentine_beam_h)*8 + (

↪→ drive_serpentine_connector2_h*drive_serpentine_connector2_w)*8 +

159 (drive_serpentine_connector3_h*drive_serpentine_connector3_w)*4 + (

↪→ drive_frame_beam_w*drive_frame_beam_h)*4 +

160 (drive_frame_connector_h*drive_frame_connector_w)*4 + (

↪→ drive_frame_serpent_beam_w*serpentine_width)*8 +

161 (drive_frame_base_w*drive_frame_base_h)*4 + (proof_mass_beam_w*

↪→ proof_mass_beam_h)*4 +

162 (proof_mass_w*proof_mass_h)*4 + (proof_mass_fingers_pole_w*

↪→ proof_mass_fingers_pole_h)*4 +

163 (sense_comb_finger_h*sense_comb_finger_w)*12 + (drive_comb_finger_h*

↪→ drive_comb_finger_w)*32)*thickness

164

165 Volume_proof_mass = ((proof_mass_beam_w*proof_mass_beam_h)*4 +

166 (proof_mass_w*proof_mass_h)*4 + (proof_mass_fingers_pole_w*

↪→ proof_mass_fingers_pole_h)*4 +

167 (sense_comb_finger_h*sense_comb_finger_w)*12)*thickness

168

169 Volume_drive_frame = ((drive_frame_beam_w*drive_frame_beam_h)*4 + (

↪→ drive_frame_connector_w*drive_frame_connector_h)*4 +

170 (drive_frame_serpent_beam_w*serpentine_width)*8 + (

↪→ drive_serpentine_connector2_w*drive_serpentine_connector2_h)*4 +

171 (drive_frame_base_h*drive_frame_base_w)*4)*thickness

172

173 Volume_drive = Volume_proof_mass + Volume_drive_frame

174

175 mass_sense = Volume_proof_mass*rho

176 c_sense = damping_sense()

177 q_factor = mass_sense * sense_frequency*2*math.pi / c_sense

178 return q_factor

Listing II.5: Electrical domain simulation script

1 # MEMS Gyroscope electrical domain simulation

2 # @ruiesteves

3

90

4 # Imports

5 import gyro_disp

6

7 # Constants

8 scale = 1e-6

9 thickness = 50*scale

10 sense_comb_finger_num = 3

11 small_gap = 3*scale

12 L_sense = 18*scale

13 epsilon0 = 8.85e-12

14

15 # Functions

16 def main(serpentine_width,proof_mass_beam_w,proof_mass_beam_h,proof_mass_w,

↪→ proof_mass_h,sense_comb_finger_h,q_factor_sense,q_factor_drive,

↪→ drive_frequency,sense_frequency):

17 disp = gyro_disp.disp_equations(serpentine_width,proof_mass_beam_w,

↪→ proof_mass_beam_h,proof_mass_w,proof_mass_h,sense_comb_finger_h,

↪→ q_factor_sense,q_factor_drive,drive_frequency,sense_frequency)

18

19 def cap_change(disp):

20 C = 2*sense_comb_finger_num*2 * epsilon0 * thickness * L_sense * disp / (

↪→ small_gap**2)

21 print("Cap�change:",C*1e15,"fF")
22 return C

23

24 def c2v(cap):

25 v = 2 * cap * 2.5 * (1/100e-15)

26 print("Output�voltage:",v*1e3,"mV")
27 return v

28

29 return c2v(cap_change(disp))

Listing II.6: Genetic algorithm script for MEMS gyroscope

1 # Python Gyroscope GA

2 # @ruiesteves

3

4 # Imports

5 import gyro_geo

6 import gyro_disp

7 import gyro_elec

8 import gyro_modal

9 import gyro_damping

10 import numpy as np

11 import math as math

12 import random as rand

91

ANNEX II. SOFTWARE IMPLEMENTATION ON MEMS GYROSCOPE

13 import copy

14

15 # Initial parameters of the device to be optimized

16 scale = 1e-6

17 suspension_beam_width = 20*scale

18 proof_mass_frame_width = 430*scale

19 proof_mass_frame_length = 60*scale

20 proof_mass_width = 290*scale

21 proof_mass_length = 220*scale

22 sense_comb_finger_w = 14*scale

23

24 initial = [suspension_beam_width,proof_mass_frame_width,proof_mass_frame_length,

↪→ proof_mass_width,proof_mass_length,sense_comb_finger_w]

25

26 # Classes

27 class GA_device:

28

29 def __init__(self,id):

30 self.list_parameters = []

31 self.id = id

32

33 def calc_freq(self):

34 list = self.list_parameters

35 self.freq_drive, self.freq_sense = gyro_modal.main(list[0],list[1],list

↪→ [2],list[3],list[4],list[5])

36

37 def calc_qfactor(self):

38 list = self.list_parameters

39 self.qfactor_drive = gyro_damping.q_factor_drive(list[0],list[1],list[2],

↪→ list[3],list[4],list[5],self.freq_drive)

40 self.qfactor_sense = gyro_damping.q_factor_sense(list[0],list[1],list[2],

↪→ list[3],list[4],list[5],self.freq_sense)

41

42 def calc_sensitivity(self):

43 list = self.list_parameters

44 self.sensitivity = gyro_elec.main(list[0],list[1],list[2],list[3],list[4],

↪→ list[5],self.q_factor_drive,self.q_factor_sense,self.freq_drive,

↪→ self.freq_sense)

45

46 def calc_fom(self):

47 list = self.list_parameters

48 try:

49 gyro_geo.build(list[0],list[1],list[2],list[3],list[4],list[5])

50 self.calc_freq()

51 self.calc_qfactor()

92

52 self.calc_sensitivity()

53 self.fom = (1/(self.freq_sense - self.freq_drive) * self.sensitivity *

↪→ self.qfactor_sense * 1e6

54 except:

55 print("Geometry�became�invalid�for�device",self.id)
56 self.fom = 0

57

58

59 class GA: # GA class, initiated with a list of devices, a list of mutation

↪→ chances and a list of mutation relative size

60

61 def __init__(self,list_devices,mutation_chance,mutation_size):

62 self.list_devices = list_devices # Must be a list of GA_devices

63 self.mutation_chance = mutation_chance # A list, with different (or not)

↪→ mutation chances for each parameter

64 self.mutation_size = mutation_size # Same as above, this time for

↪→ mutation_sizes (IMPORTANT to check)

65

66 def mutate(self,dev): # The mutation function, mutating the parameters

↪→ according to their mutation chance and size

67 le = len(dev.list_parameters)

68 for i in range(le):

69 if rand.uniform(0,1) < self.mutation_chance[i]:

70 if rand.uniform(0,1) < 0.5:

71 dev.list_parameters[i] = dev.list_parameters[i] + dev.

↪→ list_parameters[i]*self.mutation_size[i]

72 else:

73 dev.list_parameters[i] = dev.list_parameters[i] - dev.

↪→ list_parameters[i]*self.mutation_size[i]

74

75 def reproduce(self,top_25):

76 new_population = []

77

78 for dev in top_25: # Passing the best 25 devices to the next generation

79 new_population.append(dev)

80

81 for dev in top_25: # Copying and mutating the best 25 devices to the next

↪→ generation

82 new_dev = copy.deepcopy(dev)

83 self.mutate(new_dev)

84 new_population.append(new_dev)

85

86 for i in range(len(self.list_devices)//2): # Randomly mutating and

↪→ passing half of the population to the next generation

87 new_dev_r = copy.deepcopy(self.list_devices[i])

93

ANNEX II. SOFTWARE IMPLEMENTATION ON MEMS GYROSCOPE

88 self.mutate(new_dev_r)

89 new_population.append(new_dev_r)

90

91 return new_population

92

93

94 def one_generation(self):

95

96 for dev in self.list_devices:

97 dev.calc_fom()

98

99 le = len(self.list_devices)

100 scores = [self.list_devices[i].fom for i in range(le)]

101 max = np.amax(scores)

102 print(scores)

103 print(max)

104

105 top_25_index = list(np.argsort(scores))[3*(le//4):le]

106 top_25 = [self.list_devices[i] for i in top_25_index][::-1]

107

108 self.list_devices = self.reproduce(top_25)

109

110

111

112 # Script

113 print("Genetic�algorithm�optimization�for�MEMS�Gyroscope")
114 num_pop = int(input("Size�of�the�population:�"))
115 num_gen = int(input("Number�of�generations:�"))
116

117 initial_pop = []

118 for i in range(num_pop):

119 initial_pop.append(GA_device(i))

120 for par in range(len(initial)):

121 initial_pop[i].list_parameters.append(initial[par])

122 initial_pop[i].calc_fom()

123

124 init_ga = GA(initial_pop

↪→ ,[0.6,0.6,0.6,0.6,0.6,0.6],[0.122,0.014,0.017,0.0105,0.01387,0.065])

125

126 for i in range(num_gen):

127 init_ga.one_generation()

128 for dev in init_ga.list_devices:

129 print("\n","For�Device�number",dev.id,":")
130 print(dev.fom,"FOM")

131

94

132 max_score = 0

133

134

135 for dev in init_ga.list_devices:

136 if dev.fom > max_score:

137 max_score = dev.fom

138

139 print("Maximum�FOM:",max_score)

95

A
n
n
e
x

III
Permittivity values

Table III.1: Permittivity values

Permittivity Value

ε0 (free space) 8.85× 10−12 F/m
εr (air) 1 F/m

97

	List of Figures
	List of Tables
	Acronyms
	Symbols
	Motivation and objectives
	Work strategy
	Introduction
	MEMS inertial sensors
	Accelerometers
	Gyroscopes

	Genetic Algorithm
	MEMS design, simulation and optimization

	Simulation Methodology
	Finite Element Method
	Python language and libraries

	Results and discussion
	Python simulation and optimization software
	MEMS geometry design in Python
	FEM simulation for displacement and modal analysis
	Electronic domain simulation
	Damping calculation
	Genetic algorithm optimization

	Case study 1: MEMS capacitive accelerometer
	Design analysis
	Optimization results

	Case study 2: linear MEMS vibratory gyroscope
	Design analysis
	Optimization results

	Conclusion and Future Perspectives
	Bibliography
	Annexes
	Software implementation on MEMS accelerometer
	Software implementation on MEMS gyroscope
	Permittivity values

