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Abstract 

Diabetes Mellitus is a metabolic disease that affects 422 million people worldwide and is directly 

responsible for 1.6 M deaths per year, with an increasing incidence especially in low – and middle- 

income countries. It is characterized by high-blood glucose levels that may lead to severe damages on 

the patients’ body tissues as blood vessels, eyes, heart, etc. The need to constantly monitor the blood 

glucose levels means a daily invasive blood collection that can be very stressful for the patient and 

frequently leads to a non-acceptance of the disease and the treatments. For this reason, glucose 

presence in other biofluids rather than blood is increasingly being studied, and it is possible to stablish 

a relation between the sweat glucose concentration values and the blood glucose levels in diabetic 

patients. Different enzymatic-based and electrochemical approaches have been taken for monitoring 

the low-glucose concentrations present in sweat, however most of these techniques are expensive 

and often relies on complex analysis of the results. For these reasons, in this work was developed a 

non-enzymatic paper-based colorimetric sensor for the detection of glucose in the range of 

hyperglycemic sweat glucose values (between 0.1 and 1 mM). The sensor is based on the glucose 

reduction of silver ions around disperse AuNPs adsorved on paper fibers, forming Au@Ag core-shell 

bimetallic NPs. The Ag-shell thickness increases with glucose concentration, resulting on colorimetric 

differences that may be quantified through digital analysis. Paper was utilized as substrate using the 

Lab-on-paper technology, where the deposition sites for glucose testing were defined by wax barriers 

diffused along the paper. Paper was chosen for being an abundant, biocompatible and low-cost 

material with good mechanical properties. Through RGB intensity measurement of the colorimetric 

results, a linear relation for glucose levels in a range from 0.12 to 1 mM was obtained. 

 

Keywords: Paper biosensor; colorimetric assay; bimetallic nanoparticles; sweat glucose; 

enzyme-free. 
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Resumo 

A Diabetes mellitus é uma doença que afecta 422 milhões de pessoas em todo o mundo, sendo 

responsável por 1.6 milhões de mortes por ano, com uma crescente incidência especialmente em 

países subdesenvolvidos. A doença manifesta-se através de elevados níveis de glucose no sangue, que 

poderão originar graves danos em diferentes tecidos do corpo, como veias, olhos, coração, etc. A 

necessidade de monitorizar constantemente o nível de glucose através de coletas de sangue, é origem 

frequente de stress e ansiedade, levando muitas vezes à não-aceitação da doença/tratamento por 

parte do individuo portador da doença. A detecção de glucose em bio-fluidos diferentes do sangue 

tem sido explorada, sendo possível estabelecer uma relação entre os níveis de glucose no sangue e no 

suor de pacientes hiperglicémicos. Existem diferentes abordagens desenvolvidas com vista a medir os 

baixos valores de glucose detectados no suor; no entanto, na sua maioria são técnicas dispendiosas 

e/ou dependentes de uma complexa análise de resultados. Por estas razões, neste trabalho foi 

desenvolvido um sensor colorimétrico não-enzimático em papel, para a detecção de glucose em 

concentrações similares às encontradas no suor humano (entre 0.1 e 1mM). O sensor baseia-se na 

formação de uma camada de iões prata, reduzidos pela glucose, em torno de nanopartículas de ouro 

adsorvidas nas fibras do papel, originando nanopartículas bimetálicas. A espessura da camada de prata 

aumenta com a concentração de glucose, produzindo diferenças colorimétricas visíveis, que podem 

ser quantificadas recorrendo a análise digital. O papel foi escolhido como substrato pela sua 

abundância, biocompatibilidade, baixo-custo e boas propriedades mecânicas, tendo sido utilizada a 

tecnologia Lab-on-paper para a definição dos poços de amostragem. Através da análise da intensidade 

da cor dos resultados obtidos em papel, foi possível definir uma relação linear entre estas intensidades 

e concentrações de glucose entre 0.12 e 1 mM. 

 

Palavras-chave: Biosensor em papel; sensor colorimétrico; nanopartículas bimetálicas; glucose 

no suor; não-enzimático. 
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Motivation and objectives 

According to the World Health Organization, Diabetes Mellitus is a chronic, metabolic disease 

that affects 422 million people worldwide and is one of the main causes of death in the world, 

especially in low- and middle-income countries. The disease is the responsible for 1.6 M deaths per 

year and is characterized by high blood glucose levels, that overtime may lead to the damage of several 

tissues of the human body as the blood vessels, eyes, kidneys, heart and nerves in general. For a 

diabetic patient who constantly needs to monitor the blood glucose levels, this means a daily invasive 

blood collection that causes stress and often leads to the non-acceptance of the disease and the 

treatments.  

In this way, the development of painless and non-invasive glucose monitoring devices is an 

urgent need to improve the quality life of diabetes patients. To do so, other biofluids can be 

considered, such as sweat glucose, whose values are already proven to be related to the blood glucose 

levels. These glucose values, however, are present in sweat in very low concentrations (0.01 to 1 mM), 

making it very difficult to detect and quantify. Different approaches based on enzymatic or electro-

chemical processes has been taken in the field of glucose detection in biofluids distinct than blood, 

however most of these techniques are expensive, time-consuming and unable to access for developing 

countries. 

The challenge in this work is then to develop a non-enzymatic sensing platform for low-glucose 

values detection, utilizing the Lab-on-Paper technology to create a simple, rapid and low-cost paper 

colorimetric sensor. Hence, the principal steps taken towards the final objective of this work were: 

i. Characterization of different paper types to be applied as substrate for the colorimetric 

sensing platform, developed using Lab-on-Paper technology; 

ii. Study and development of a non-enzymatic protocol for the synthesis of Au@Ag core-

shell bimetallic NPs with glucose, on paper;  

iii. Optimization and calibration of the colorimetric results obtained through digital 

analysis, using aqueous glucose solutions with different concentrations. 
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Introduction 

 Diabetes mellitus 

The World Health Organization classifies diabetes mellitus as a chronic disease associated to a 

low production of insulin by the pancreas, or when the body does an inefficient utilization of this 

hormone. As insulin is responsible for blood glucose regulation, diabetic patients often suffer a 

hyperglycaemic1 state, leading to severe damages in different body structures specially in the nervous 

and cardiovascular systems. [1] In the year of 2016, diabetes was the cause of 1.6 million deaths and 

its prevalence is quickly increasing, especially in middle and low-income countries, [2] as presented in 

Figure 1.  

Figure 1- Percentage and number of adults with diabetes by WHO region in 1980 and 2014. 

Symptoms and complications associated to diabetes can be successfully minimized for diabetic 

patients who control their blood glucose levels daily, compensating eventual dysregulations by taking 

periodical insulin shots. [3] The pain and stress caused by these invasive regular blood collections along 

with resource-poor settings are the main reasons for patients not having their glucose levels 

monitored, that is why the search for inexpensive, non-invasive and painless methods for glucose 

measurement are highly desirable. [4], [5] 

 

1 Condition in which an excessive amount of glucose circulates in the blood plasma. 

Adapted from: World Health Organization. “Global Report on Diabetes.” (2016) 
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1.1.1. Sweat glucose as a biomarker 

Sweat is typically a transparent biofluid with slightly acidic nature (pH between 4.5 and 7) that 

appears on the skin surface and is composed mostly of water (≈ 99%). [6] Produced by secretory glands 

that are distributed over the entire human body (eccrine sweat glands), sweat contains a wide range 

of health-related biomarkers including glucose, lactate, uric acid and electrolytes like Na+ and K+, 

making it a potential diagnostic biofluid. [7] 

Since sweat glucose levels can accurately reflect the blood glucose concentration values [8], the 

investigation of sweat for diabetes monitoring has increasingly been developed. Sweat glucose can 

achieve concentrations of approximately 0.01 mM for hypoglycaemic patients and from about 0.1 to 

1 mM in hyperglycaemic patients, [9] which is much lower than the glucose values in blood samples, 

increasing the difficulty of its detection in sweat using conventional techniques. As sweat is secreted 

on the skin surface, a non-invasive sample collection is possible using a simple sweat patch, which is a 

great advantage when comparing to the invasive commonly used blood sampling that further need to 

be processed for protein removal, increasing the difficulty and cost of the process; [10], [11] however, 

sweat testing remains a challenge as different skin areas reveal different quantities of sweat glands, 

influencing the volume and quantity of biomarkers expelled. Thus, sweat sampling is preferably done 

on the flexor surface of the forearm where the eccrine sweat glands are abundant and homogeneously 

distributed. [9], [12] 

 Biosensors 

Biosensors are analytical devices defined by its biological receptor that recognizes and interacts 

with a specific analyte. [13], [14]Depending on the biological receptor, biosensors can detect and 

quantify from complex DNA sequences to simpler molecules such as glucose or water pollutants. [15] 

The interaction of the receptor with the analyte may generate different types of signals as 

electrochemical, electroluminescent, magnetic or optical, depending on the transduction2 mechanism 

utilized. [16] Being responsible for the translation of the interaction analyte-receptor to a measurable 

signal, transducers may be more or less sensitive, depending on its detection limits.  

Several factors impact the applicability of each sensor, as the fabrication techniques, the 

materials and sources utilized, or also the required data processing system, which often relies on time-

consuming and expensive methods.[17], [18] For instance, enzyme-linked immunosorbent assay 

(ELISA) is a widely used immunological biomarker detection method to detect and quantify analytes in 

blood, urine, and serum; [19] although it provides sensitive, consistent, and very accurate results, due 

 

2 Process that converts a biochemical signal into another type of signal. 
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to long and complex procedures, the requirement of specialized personnel to both perform the assay 

and analyse the results, as well as the necessity of large volumes of reagent samples, makes it not the 

ideal analytical tool in resource-poor settings.  [20], [21] Therefore, also in the field of medical 

diagnostics arises the necessity of developing fast, accurate, simple and low-cost devices. 

1.2.1. Paper-based biosensors 

Paper as a potential substrate for microfluidic biosensors has been explored to achieve the 

manufacture of simple, low-cost, portable, and flexible medical diagnostic platforms (paper-based 

biosensors).[22] Paper is an increasingly studied material since it has characteristics that make it 

interesting not only structurally but also chemically. It can be obtained from different and abundant 

sources such as wood, cotton, hemp, etc. and its properties may be selected depending on the paper 

intended application. [23] For biosensing applications, paper intrinsic characteristics as surface 

porosity, density, weight and thickness are extremely significant, because these features will influence 

the liquid mobility trough the paper devices. [24], [25] Cellulose fibres hydrophilicity nature promote 

the wicking of liquids along the paper volume and length [26], and so, for microfluidic applications it is 

desirable a paper type with enough porosity to allow a rapid fluid diffusion; furthermore, the thickness 

of the paper has a direct impact on the device performance, as if it is too thick higher sample volumes 

will be necessary. On other hand, if the paper substrate is excessively thin, the tensile strength will be 

affected making it more delicate and so more prone to damage during handling; [23], [27] for 

colorimetric detection specifically, paper thickness may be optimized for enhancement of the signal. 

[23] 

There are different fabrication techniques for microfluidic paper-based biosensing devices 

(µPADs), such as photolithography,[28] inkjet printing, [29] stamping, [30] cutting, [31] screen-printing, 

[32] and wax printing. [33] Paper-based microfluidic technology consists, thus, of a simple approach 

that doesn’t require an external energy to function. By the use of hydrophobic materials, microfluidic 

channels are patterned on paper, creating a path that will lead the sample to the detection zone by 

capillary forces, where the detection of the analyte occurs. Here, a chemical reaction will induce a 

change in the paper color, electrochemical properties, or light absorption/emission values. [34], [35]  

Detection methods based on colorimetric variations may not simply indicate the analyte 

presence but can also provide quantitative information, meaning that it is possible to correlate the 

color change with the analyte concentration. [36] Depending on the sensor type, color change results 

can either be observed through naked-eye or also through software analysis of images taken by a 

scanner or even a mobile phone camera. Numerous paper-based colorimetric sensors have been 

developed to test different target analytes, such as glucose, protein biomarkers, and DNA sequences. 

[37]–[39] 
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 Noble metal nanoparticles in biosensors 

As mentioned before, several approaches have been taken to develop colorimetric biosensors, 

the majority of which relying on enzymatic processes. There is, however, a growing demand for non-

enzymatic methods for biomarkers detection, as enzymes require specific pH and temperature 

conditions and are generally quite sensitive and cannot be stored for long periods. [40] Also, the cost 

of manufacturing non-enzymatic biosensors is lower as enzymes are relatively expensive compared to 

reagents used in non-enzymatic reactions. [41] 

Metallic nanoparticles such as gold and silver nanoparticles (AuNPs and AgNPs, respectively) are 

increasingly being explored as colorimetric, chemical, and biological indicators, being widely used in 

biomarkers sensing for their unique optical properties. Noble metal nanoparticles show a very strong 

localized surface plasmon resonance (LSPR) (Figure 2), which can be traduced by the interaction of the 

electromagnetic field of incident light (UV-Vis) with free electrons on the NPs surface. [42] This 

interaction results in a collective oscillation of the conduction band electrons (plasmon resonance) 

with a certain frequency which strongly depends on the dimension, morphology and interparticle 

interactions of the NPs [43]-[45].  

1.3.1. Gold nanoparticles (AuNPs) 

AuNPs application in biosensing and recognition of various analytes has been increasingly 

explored in recent years. Their excellent biocompatibility, strong LSPR, conductivity, large surface to 

volume ratio and catalytic properties provide different applications for AuNPs in biosensors 

fabrication. [46] LSPR size and shape dependence in AuNPs are applied essentially in optical biosensing, 

as small NPs of around 10 nm in diameter absorb green light (absorption band at ≈ 520 nm), while in 

larger NPs the band absorption wavelength increases because light polarization of the nanoparticles 

ceases to be homogeneous. As a result, a solution containing small AuNPs appear red in colour, 

Figure 2- Localized surface plasmon resonance in metallic nanoparticles (LSPR). Adapted from[65] 
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changing to a purple/blue coloration if the particle size increase (this phenomenon is also observed 

during the aggregation of AuNPs, as it can be considered a single larger particle [47]). [48], [49] 

The operation of a colorimetric sensor based on detection with AuNPs is supported by the 

relation between the NPs size increasing/aggregation induced by a specific analyte, with the solution 

colour changes. 

1.3.2. Au@Ag core-shell bimetallic nanoparticles for glucose sensing 

Different approaches have been developed to improve the use of metallic NPs in colorimetric 

sensing. One of the most evident and simplest strategies adopted to enhance the spectral response 

of AuNPs was by changing its morphology, like oval-shape or bimetallic nanoparticles. [50], [51]  

One of the most effective methods for lowering the glucose concentration limit of detection 

on sensors are based on Au@Ag core-shell nanoparticles, where the rection product of glucose and 

glucose oxidase – hydrogen peroxide H2O2 – will etch the silver shell, causing a change in the solution 

colour.  [52], [53] These techniques, however, rely on sensitive and very unstable enzymes, along 

with a complex and time-consuming preparation of the Au@Ag core-shell NPs. [54], [55]  

These drawbacks lead to the development of a more controllable and stable system, based on 

a silver precursor - [Ag(NH3)2
+] - called Tollens’ reagent, that in the presence of glucose will do the 

inverse process instead and generate metallic Ag around the AuNPs. The reaction between glucose 

molecules and Tollens’ reagent occurs in an aqueous solution containing dispersed AuNPs, in which 

surface Ag0 is reduced, forming the Au@Ag core-shell nanoparticles which leads to a wavelength shift 

and consequentially to a change in the solution colour. [55], [56] (Figure 3) 

 

2 Ag(NH3)2OH + C6H12O6  =  2 Ag +  C6H12O7  +  4 NH3 +  H2O 

 A new approach combining this technique with a paper-based sensing platform is studied on 

the present work, with a view on the development of a simple, rapid and low-cost biosensing device 

for low glucose concentration levels. 

(1) 

Figure 3- Schematic Au@Ag core-shell bimetallic NPs formation. 
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Experimental Methods and Materials 

2.1. Reagents preparation 

2.1.1. Synthesis of gold nanoparticles by citrate reduction 

The synthesis of AuNPs was made by citrate reduction (Turkevich method) which consisted in 

boiling 95 mL of an aqueous solution of  hydrogen tetrachloroaurate (III) trihydrate (HAuCl4·3H2O) in 

reflux setting until the temperature reaches 100°C; at this point, 5mL of a sodium citrate (1% w/v) 

solution was added under vigorous stirring and the reaction was allowed to proceed for 30 min and 

subsequently cooled to room temperature. The colloidal gold solution was stored at 4°C in the dark. 

2.1.2. Diammine silver (I) hydroxide ([Ag(NH₃)₂]OH) preparation  

Tollens’ reagent ([Ag(NH₃)₂]OH) was prepared based on previous work [56]. 400 µl of AgNO3 0.1 

M was mixed with 200 µl of NaOH 0.8 M, forming a brown precipitate. Then, 70 µl of ammonia [15 M] 

was added and slightly stirred until the brown precipitate dissolved. This solution should be prepared 

just before use to prevent precipitation. 

 Glucose concentration sensing 

2.2.1. Glucose sensing in solution 

To achieve a sensitive detection of glucose in solution and according to previous work [56], 2 ml 

eppendorf tubes were placed in a ELP Scientifica vortex mixer; subsequentially, 20 µl of the colloidal 

solution of AuNPs (prepared in 2.6.1.), plus 145 µl of distilled water and 15 µl of [Ag(NH₃)₂]OH were 

added to each eppendorf. After stirring for approximately 10 min, 20 µl of glucose with increasing 

concentrations from 0 to 1 mM were added to the eppendorf tubes and manually stirred for 30 sec. 

The reaction was allowed to proceed for 15 minutes (without stirring) at room temperature.  

2.2.2. Glucose sensing on paper  

With the aim of reproducing the reaction described in 2.2.1. on paper, a variety of tests were 

performed on several paper microplates that were produced based on the Lab-on-Paper technology 

[57]. Using Adobe Illustrator, 96-well microplates were drawn (the wells are 7 mm in diameter and 1 

mm distanced from each other). The drawn microplates were wax printed on A5 size sheets of 

Whatman paper nº1, using a Xerox ColorQube 8570 printer. Lastly, the wax diffusion was made using 

a SCHOTT ROBAX hot plate at 120°C for about 3 minutes. 

https://www.sigmaaldrich.com/catalog/search?interface=All&term=hydrogen+tetrachloroaurate(III)&N=0&mode=partialmax&focus=product&lang=en&region=US
https://www.sigmaaldrich.com/catalog/search?interface=All&term=hydrogen+tetrachloroaurate(III)&N=0&mode=partialmax&focus=product&lang=en&region=US
https://www.sigmaaldrich.com/catalog/search?interface=All&term=hydrogen+tetrachloroaurate(III)&N=0&mode=partialmax&focus=product&lang=en&region=US
https://www.sigmaaldrich.com/catalog/search?interface=All&term=hydrogen+tetrachloroaurate(III)&N=0&mode=partialmax&focus=product&lang=en&region=US
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Different reagent concentrations and volumes were tested, as well as several reaction 

conditions, until the following optimal protocol was developed: 

 

 Characterization Techniques 

2.3.1. NP’s characterization on solution 

Using a TECAN SPARK 10M microplater reader, the absorbance spectrum of the Au@Ag core-

shell bimetallic NPs in response to different concentrations of glucose was analysed. To perform the 

UV-visible analysis, 200 μl of each solution with different glucose concentrations (prepared in 2.2.1) 

were deposited in a 96-well polystyrene microplate. SEM-EDS was used to characterize the bimetallic 

NPs in solution. To do so, 2 μl of solutions with different glucose concentrations were deposited on 

silicon and placed in a desiccator and left to dry overnight at room temperature.  

2.3.2. Paper characterization 

To choose the appropriate paper type for the development of a microfluidic paper-based device 

for colorimetric detection, different paper characterization tests were performed, such as: Fourier-

Transform Infrared Spectroscopy (FTIR, Nicolet 6700 from Thermo Electron Corporation), Scanning 

1. Deposition of 3 µL of AuNPs 

produced by the Turkevich method in 

microplate’s wells;

2. Placement of the paper microplate 

in a SCHOTT ROBAX at 120 °C for 2 

min until the paper dries;

3. Deposition of 3 µL of Ag(NH3)2OH 

solution with a concentration = 0.5 

M;

4. Let the paper microplate air dry for 

about 20 min.;

5. Deposition of 3 µL of glucose 

solution in each well in a concentration 

range from 0.1 to 1 mM .
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Electron Microscopy (SEM, Carl Zeiss AURIGA FIB-SEM Croossbeam) coupled with Energy Dispersive X-

ray Spectroscopy (EDS) and Xray Diffraction (XRD, PANalytical X’Pert Pro). 

2.3.3. NP’s characterization on paper 

In order to observe and characterize the formation of the Au@Ag core-shell bimetallic 

nanoparticles on paper, SEM and EDS techniques were used at different stages of the process. 

2.3.4. Digital Analysis 

To quantify the color alterations, the paper microplates were scanned with a Cannon MG5250 

scanner and later the RGB mean intensities of the wells were analysed using ImageJ software. 
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 Results and Discussion 

The results obtained in this work are presented and discussed in this chapter. Firstly, the paper 

substrate selection is made, supported by structural, morphological and chemical characterization. 

Then, the glucose detection capability of the proposed strategy is evaluated in solution, followed by 

different strategies for the optimization of the reaction on paper. Finally, validity tests on paper were 

performed for different types of environments. 

3.1. Paper CharacterizationDifferent types of paper were studied in order to select the most 

suitable substrate to develop a paper-based microfluidic device for colorimetric detection. The 

selection was made between Whatman chromatography paper grade 1 and common office paper; 

a chemical, morphological and structural analysis of both types of paper were performed.  

3.1.1. FTIR 

A chemical analysis of both paper types was done using Fourier-Transform Infrared 

Spectroscopy (FTIR) to identify the chemical bonds and functional groups present in each type of 

paper. The FTIR spectra obtained and respective peak identification are present in Figure 4. 

Analysing the FTIR spectra present in Figure 4 is possible to observe two peaks, at wavenumbers 

3303 and 2885 cm-1, characteristic of O-H and C-H bond vibrations in polysaccharides. In the range of 

1500 to 900 cm-1, several coincident peaks can be detected in both infrared spectra, corresponding to 

the characteristic peaks present in the structure of cellulose (Figure 4-B). In this spectra area named 

fingerprint region, is possible to identify at 1424, 1163 and 1023 cm-1 the peaks corresponding to 

stretching and bending vibrations of CH2-OH (red), C-O-C (yellow) and C-OH (green) bonds, 

Figure 4- FTIR spectra of Whatman and office paper (A) and cellulose chemical structure (B) with the identification of the 

chemical bonds corresponding to the characteristic peaks of cellulose. 

A 

B 
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respectively.  At wavenumber 1641 cm-1, a peak associated to the vibration of water molecules 

absorbed in cellulose can be distinguished. [58]  

Comparing both papers spectra, it can be observed the absence of a peak at 873 cm-1 in 

Whatman paper that is present in office paper. This peak corresponds to C-O vibrations associated to 

Calcium Carbonate (CaCO3), revealing the presence of this compound in office paper. [59] 

3.1.2. SEM 

The differences in surface morphology between the two types of paper substrates were 

analysed trough Scanning Electron Microscopy (SEM). Is possible to observe in Figure 5 SEM images of 

Whatman paper and Office paper. 

Through observation of the previous SEM images is possible to confirm that both paper 

substrates are composed of cellulose fibres arranged on a three-dimensional network. However, this 

arrangement of cellulose fibres has differences from one type of paper to the other, since Whatman 

paper presents higher porosity and larger pores, while office paper shows a higher density of fibres, 

being evident the presence of crystalline agglomerates filling the majority of the pores. These 

agglomerates may correspond to CaCO3 (previously detected in FTIR analysis), since it is a bright white 

mineral added during paper manufacture to increase its brightness, opacity, and whiteness.  

Regarding the fiber geometry, some distinctions are also notable, as Whatman paper fibres 

appear to be more cylindrical, whereas office paper fibres present a more flattened geometry.  These 

dissimilarities directly impact the diffusion process and volume of fluids supported by the office paper 

substrate, as its thickness is lower when compared to Whatman paper. 

Figure 5- SEM images of the studied papers. (A) Whatman paper (B) Office paper. 

10 µm 10 µm 

A B 
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3.1.3. EDS 

Energy Dispersive X-ray Spectroscopy was used to confirm the presence of CaCO3 inside the 

pores on office paper, since it provides information on relative abundances of the elements present in 

the sample. In Figure 6 is presented the cumulative EDS spectra corresponding to an office paper SEM 

image. 

The results obtained through EDXS analysis revealed that the sample is composed mainly by 

carbon and oxygen (E = 0.26 keV and E = 0.52 keV, respectively). It is also notable two peaks of 

considerable intensity associated to calcium (E = 3.7 keV and E = 4.0 keV). Three other elements were 

detected in lower amounts: sodium (E = 1.04 keV), iridium (E = 1.997 keV) and chlorine (E = 2.62 keV). 

Since carbon and oxygen are the main components of cellulose3, the high intensity peaks 

obtained for these two elements were expected. The detection of calcium peaks confirms the presence 

of CaCO3, previously seen in SEM imagens and detected by FTIR. The presence of sodium and chlorine 

elements is justified because these are part of reactants utilized in paper industry: sodium hydroxide 

is used in the treatment of the cellulose fibres and chlorine for bleaching and give paper a whiter 

coloration. The peak associated to Iridium element is related to the coating layer used in this 

technique.  

Along with information on relative abundance, EDS technique also provides information about 

the element distribution on the samples. The distribution maps of the three main components of office 

paper is presented in Figure 7. 

 

3 Note: hydrogen is also a main component of cellulose however this technique doesn’t detect this element.  

Ca 

C O 

Cl 
Ir 

Na 

Ca Kα 

Figure 6- EDS analysis of office paper: (A) Cumulative spectrum of EDS analysis and (B) SEM image of office paper. 

10 µm 

(B) (A) 

Ca Kβ 
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Through visual inspection of the element distribution maps obtained for office paper, is possible 

to confirm that carbon and oxygen are present throughout the sample. Also, distribution map of 

calcium indicates that this element is present in smaller and specific areas, particularly between the 

cellulose fibres. Thus, is possible to associate the white agglomerates observed in SEM images to 

CaCO3. 

3.1.4. X-Ray diffraction  

A structural analysis of both paper types was performed using X-Ray diffraction. In Figure 8 are 

presented the obtained diffractograms for Whatman Paper and office paper, as well as the 

identification of characteristic peaks correspondent to the crystalline structures found on the samples. 

Analysing the diffractograms is possible to identify the characteristic peaks of cellulose type I 

for both of paper types; however, while office paper presents one peak at 15.93°, in Whatman paper 

is possible to observe two separate peaks (at 14.96° and 16.50°), which are associated to two different 

crystalline structures existing in cellulose type I. This difference in the diffractograms is due to the fact 

that office paper has a greater amount of amorphous materials, such as lignin and hemicellulose, 

resulting in a singular and wide peak. Another characteristic peak for cellulose was detected in both 

paper types at 22.91°. 

 

Figure 7- EDS distribution map of elements on office paper. 
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As expected from previous analysis, it is also possible to detect in the office paper diffractogram, 

different peaks associated to the crystalline structure of CaCO3, confirming the presence of this 

compound on office paper. 

The crystallinity index (CI) refers to the relative amount of crystalline material present in the 

studied samples and was determined using Segal’s method [59], [60]:  

 

𝐶𝐼(%) =
𝐼(002) − 𝐼(𝐴𝑀)

𝐼(002)
× 100 

 

That relates the peak intensity of the (002) plane for cellulose type I  (𝐼(002)) with the intensity 

of the amorphous components of the sample (𝐼(𝐴𝑀)), that are given in the diffractograms by the 

minimum intensity peak between the (002) and (101) plans (at approximately 18.09° in Figure 8). It 

was calculated for both paper types and showed that Whatman Paper has a greater CI (74.71%) than 

office paper (67.48%), confirming the presence of a larger amount of amorphous material on office 

paper. 

3.2. Sensitive glucose measurement in solution 

Prior to any experiments on paper, the capability of the proposed strategy for low glucose 

concentration sensing was tested in solution, as described in section 2.2.1.  

The process used to form the bimetallic nanostructures is based on the reduction of silver ions 

present on Tollens’ reagent ([Ag(NH3)2]) by glucose, on a medium with disperse and stable gold 

nanoparticles. The reaction will generate Ag0 around the AuNPs that had been previously added to the 

system, forming the Au@Ag core-shell NPs. [56] 

Figure 8- XRD diffractograms of Whatman and office paper and crystalline structurespeak identification. 

(2) 
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Solutions with different glucose concentrations were tested, to identify the relation between 

the optical properties of the obtained Au@Ag core-shell NPs and the glucose concentration level of 

the samples. In this work, as the sweat values for glucose concentration in diabetic and non-diabetic 

patients go from 0.11 to 1 mM, the concentrations of glucose chosen for test went from 0.1 to 1 mM 

(Figure 9). 

Is possible to observe in Figure 9 the gradual change in solution colours, from transparent to 

brown, indicating a variation in the size of the nanoparticles with the addiction of glucose. 

3.2.1. UV-Vis Spectrophotometry 

An UV-visible spectrophotometry measurement of the distinct coloured samples was performed 

in order to determine the relation between glucose concentration and the solution absorbance. The 

obtained absorbance spectra, in a range from 300 to 800 nm, is presented in Figure 10.  

When no glucose is added to the system, it is possible to observe only one peak corresponding 

to the surface plasmon resonance of the AuNP present on the solution (Appendices-A). AuNPs 

synthetized through Turkevich method exhibit an SPR peak at a wavelength ≈ 520 nm that can be 

associated to an AuNP diameter size of approximately 10nm. [61] 

 

Figure 9- Colour differences of Au@Ag core-shell bimetallic NPs colloidal solutions obtained with different glucose 
concentrations in a range from 0 -to -1 mM (left to right). 

Figure 10- UV-Vis Absorbance spectra of solutions containing Au@Ag core-shell NPs obtained for different glucose 
concentrations. 
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The appearance of a peak at 422 nm in the UV-visible spectra presented on Figure 10, suggests 

the Ag0 shell around AuNPs is starting to form, as the SPR peak for AgNPs of approximately 40 nm of 

diameter is between 420 and 423 nm. [62] It is possible to observe by analysing the graphic, at a 

wavelength of 422 nm, an increase in the maximum absorbance when increasing the glucose 

concentration, suggesting the formation of more Au-Ag bimetallic NPs, consequentially changing the 

colour solution.  

From the detection of two absorbance peaks at 520 and 422 nm, when glucose concentration 

in the system is equal to 0.1 mM, it can be deduced that the Ag0 shell around the AuNPs starts to occur 

near this concentration value (Appendices-A). Moreover, it is only possible to observe the occurrence 

of a very distinguishable SPR peak for glucose concentrations equal or above 0.2mM. 

 A calibration curve for glucose measurement was obtained for glucose concentrations from 0 

to 1 mM, at the wavelength of 422 nm (Figure 11). Three measurements were made for each glucose 

concentration, whose standard deviation values are represented in the error bars. 

 The trendline obtained in Figure 11 relates the SPR peak variation with each glucose 

concentration value, stablishing a linear relation, at 422 nm, between the absorbance and the glucose 

concentration in solution. This method for a sensitive glucose measurement in solution has a limit of 

detection (LOD) near 0.1 mM, as this was the lowest glucose concentration tested, and so it includes 

the range of sweat glucose values for hyperglycaemic patients. 

3.2.1. SEM-EDS 

A SEM-EDS analysis of the solutions was performed to observe the morphology of the Au@Ag 

core-shell NPs and its changes in the presence of glucose. The bimetallic NPs structure in solution was 

studied for glucose concentrations of 0.2 mM and 1 mM (Figure 12). 

Figure 11- Calibration line obtained for the SPR peak absorbance variation (at wavelength = 422 nm) with glucose. 
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SEM images corresponding to bimetallic NPs produced with 0.2 mM of glucose - Figure 12- A, 

presented a homogeneous distribution of small white dots corresponding to the Au@Ag core-shell NPs 

as will be discussed below on this section. Analysing the bimetallic NPs formed with a glucose 

concentration of 1 mM - Figure 12- B, it is possible to observe that they are in small aggregates 

distributed along the sample and presented a semi-spherical shape of bigger diameter in comparison 

with the previously observed NPs. 

The EDS cumulative spectra of the samples containing 0.2 and 1 mM of glucose are presented 

in Figure 13. 

Analysisng both spectra, is possible to detect the characteristic peaks associated to carbon 

(0.277 keV), oxygen (0.525 keV), gold (2.123, 9.713 and 11.443 keV) and silver (2.983, 22.163 and 

24.941 keV). Even though the most energetic peaks associated to Au and Ag have almost negligible 

intensities in both spectra, a significant increase can be detected in the Ag peak intensity (at 2.983 keV) 

when rising the glucose concentration in the system. 

200 nm 

Figure 12- SEM images of bimetallic Au@Ag core-shell NPs obtained in solution with different glucose concentrations. (A) Glucose 
concentration of 0.2 mM. (B) Glucose concentration of 1 mM. 

A B 

200 nm 

Figure 13- Eds cumulative spectra of Au@Ag core-shell NPs obtained with: (A) 0.2 mM of glucose and (B) 1 mM of glucose. 

(A) (B) 
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In Table 1 is summarized the average diameter of the observed bimetallic NPs as well as the 

ratio of the relative concentration of Ag/Au elements, measured by EDS analysis, in the 0.1- and 1-mM 

glucose samples(Appendices- B). 

Table 1- Average diameter of the bimetallic NPs and relative concentration of Au/Ag elements for 0.1 and 1 mM of glucose  

 

 

 

 

 

The average diameter measured for the bimetallic NPs shows an overall increase (from ≈ 40 nm 

to 115 nm) when increasing glucose concentrations from 0.2 to 1mM. As expected from UV-Vis spectra 

analysis, the bimetallic is approximately 40nm 

The relative concentration of Ag and Au elements in the observed samples reinforces the idea 

of having more formation of Ag0 shell around the AuNPs when increasing the solution glucose 

concentration. Although EDS semi-quantitative analysis of chemical elements accuracy is strongly 

dependent on the nature of the sample, it can be noticed that the ratio between Ag and Au increases 

from around 3.6 to 31.30% when increasing glucose concentration. 

3.3. Sensitive glucose measurement on paper 

A sensitive detection of glucose in paper substrate was developed based on the formation of 

Au@Ag core-shell NPs using Tollens’ reagent. Several approaches were tested, as well as different 

experimental conditions, in order to verify which path exhibited better results for the bimetallic NPs 

synthesis on paper. 

Using office paper microplates as substrate, it was possible to observe some hydrophobicity of 

the material, hindering the sample adsorption onto the paper surface. This results in longer procedure 

times than the ones made with Whatman Paper nr1, and a much lesser uniform dispersion of the 

sample through the paper microplate wells. The observed experimental features, associated to the 

information acquired in section 3.1, led to the use of Whatman paper as substrate for the sensitive 

glucose detection. 

Different approaches were taken to synthetize the Au@Ag core-shell bimetallic NPs on paper, 

starting with varying the reactants deposition method. Initially, with a view to eliminate one deposition 

step, the colloidal solution of AuNPs produced by the Turkevich method was previously mixed with 

Ag(NH3)2OH solution in a proportion of 1:1. After stirring, in each well of the Whatman paper 

microplate, 2.5 and 5 µl of this pre-mixed solution were deposited, in order to also see the deposition 

Glucose concentration (mM) 
Average Diameter 

(nm) 
Relative concentration of Ag/Au 

(%) 

0.2 39.738 3.607 

1 115.707 31.308 
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volume influence on the reaction on paper; glucose was then added in different concentrations and 

the paper was left to dry in open air (Figure 14).  

Analysing Figure 14 through naked eye, it is not possible to observe a significant colour variation 

on paper wells immediately or passed 12 hours of the glucose deposition; the paper presented a dark-

brown coloration only after 72h have passed (Figure 14-B), that is believed to be silver sulfide (Ag2S), 

a black compound product of the reaction of silver with the sulfur compound in the air. [63] No 

considerable differences between the wells with distinct glucose concentration can be detected, 

showing the ineffectiveness of this approach, as the objective is to be capable of distinguish the 

different glucose concentration by colour.  

 Also, the differences observed between the volumes deposited presented no variation on the 

colour intensities, but the appearance of a white ring around the deposition wells suggests that a 

volume of 2.5 µl may be insufficient to fill in the totality of the deposition sites. 

Another deposition process was tested, which consisted of depositing separately on the paper 

wells the gold NPs in solution and the silver precursor. It was deposited 3 µL of the AuNPs colloidal 

solution and then the paper microplate was dried for 5 minutes on a heating plate. The same volume 

of Ag(NH3)2OH solution was then deposited and air dried, followed by glucose deposition in a range of 

concentrations from 0 to 1 mM (Figure 15).  

12h 

72h 

Figure 14- Whatman paper microplates containing 2.5 and 5 µl of the pre-mixed solutions of the Au-core and Ag-shell 
precursors with different glucose concentrations. Scans were taken after: (A) 12h and (B) 72h of the deposition. 

(B) 

(A) 

Glucose concentration 
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A few minutes before the silver-shell precursor (Ag(NH3)2OH) deposition, all the paper wells 

presented a light-yellow coloration but passed 72 hours it was possible to identify colour variation in 

all paper wells, revealing an intensification from light-brown to dark-grey as the glucose concentration 

increases. Observing Figure 15, the colour variation approximately corresponds to the previous 

observed colour changes in the bimetallic NPs synthesis in solution, indicating that larger particles or 

particle agglomerates are produced for higher glucose concentration on paper. However, the paper 

wells presented a non-homogeneous distribution of the sample, showing several less-colored spots on 

the center of the paper wells and also a white ring around the well limits, what may indicate an 

insufficient deposition volume. These details difficult the sample colour analysis and will lower the 

accuracy of the measurements.  

A digital analysis of the obtained results was performed using ImageJ. With this software, the 

colour intensity of the samples was determined using the average RGB (Red + Green + Blue) channel 

values of each paper microplate well, and so a relation can be made between the well colour and the 

glucose concentration (Figure 16). 

As expected from visual inspection, RGB analysis revealed significant colour intensity variation 

between the wells, being possible to distinguish in terms of intensity some of the studied glucose 

concentrations (Figure 16 - a). The RGB intensities for each channel are in a range from 0 to 255, being 

0 correspondent to black and 255 to the white colour. [64] The observed decrease in the intensity 

mean of the RGB channels as glucose concentration increases, means that the sample colours are 

approximating to black. There are however some limitations observed, as for 0 and 0.1 mM of glucose 

where the mean colour intensities have very similar values (Figure 16 - b) and so the glucose range 

values between 0 and 0.1 cannot be accurately distinguished.  Also, a great dispersion of results can 

be noticed, decreasing the assay accuracy.  

72 hrs 

Figure 15- Paper microplate after 72 hours of the deposition in separated of the Au-core and Ag-shell precursors 
with increasing glucose concentration deposition. 

Glucose concentration 
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In order to overcome this limitations, the reactants’ concentration influence on the Au@Ag 

core-shell NPs synthesis on paper was tested. Colloidal AuNPs with different concentrations were 

tested on paper, with results showing an enhancement of the signal for higher AuNPs concentration 

(Appendices- C).  The reactants volume was also adjusted and 3.5 µL of each reactant was deposited 

in each one of the 96-well paper microplate.  

The concentration of the silver-shell precursor (Ag(NH3)2OH) was then studied in a range from 

0.1 to 1 M. Both of the bimetallic NPs precursors were dried on a hot plate at 80°C for 2 minutes after 

depositions, in order to accelerate the process (Figure 17).  
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48 hrs 

Figure 17- Influence of the silver-shell precursor [Ag(NH3)2OH] concentration on the Au@Ag core-shell 
bimetallic NPs synthesis on paper with glucose. 

(a) (b) 

Figure 16- RGB channel mean intensities variation with different glucose concentrations on paper microplates 
containing the bimetallic NPs precursors deposited separately. 
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After 48 hours is possible to observe that for a Tollens’ reagent concentration of 0.1 M the wells 

presented no visible colour changes, suggesting that there are not sufficient Ag+ ions to react with 

glucose, thus the shell around AuNPs was not formed.  

The intensity of the grey colour on the wells (Figure 17) improves as increasing the silver shell 

precursor concentration, however, as observed from the previous experiments, the paper wells with 

a concentration of 1 M of the silver precursor showed stained and less homogeneous colourations that 

may be due to non-reacted silver aggregation. 

In Figure 18 are presented the RGB mean intensity values (A) and the calibration lines (B) for 

different concentrations of Ag(NH3)2OH, both relating the glucose concentration with the average of 

the three channels. The RGB analysis for all the four concentrations are presented in Appendices- D. 

Analysing Figure 18, a significant difference between intensities of the four Ag(NH3)2OH 

concentrations is observed. The decrease on the RGB channels intensity when rising Ag(NH3)2OH 

concentration, means an approximation of the black colour (intensity value = 0), in agreement with 

the observed in the paper microplate wells in Figure 17.  

It is possible to determine a linear relation for glucose concentrations between 0.1 and 1 mM 

for all the concentration tested, however, for Ag(NH3)2OH at higher concentration, a large dispersion 

of results was observed (Figure 18). This may be related to the non-homogeneity of the sample 

distribution previously noticed on the paper microplates.  

For a concentration of 0.5 M of the silver-shell precursor, the paper colorimetric analysis presented a 

greater uniformity of results, as well as a more accentuated distance between the 0 and 0.1 glucose 

concentration values when comparing to the other concentration values.  

Figure 18- Calibration lines of the RGB analysis of the paper microplates containing different Ag(NH3)2OH 
concentration. 
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The linear calibration of the results is defined by  

𝑦 = 𝑚𝑥 + 𝑏 , 

where RGB channel intensities (y) are related with the tested glucose quantities (x).  

The sensitivity and the LOD were calculated for the four calibration lines and are presented in 

Table 2. 

Table 2- Sensitivity and LOD of the calibration lines for the different Ag(NH3)2OH concentrations. 

[Ag(NH3)2OH]  0.1 M 0.5 M 0.7 M 1 M 

Sensitivity 33.173 34.089 25.299 31.874 

LOD (mM) 0.228  0.125 0.185 0.159 

 

The sensitivity is given by 𝑚 (the slope of each calibration curve) and the LOD was calculated 

based on the expression 

𝐿𝑂𝐷 =
3𝑆𝑎

𝑚
, 

where 𝑆𝑎 represents the standard deviation of the response. 

Based on the observed differences and the obtained parameters in Table 2, 0.5 M was the 

chosen concentration for Ag(NH3)2OH reactant, as it presented a lower LOD, meaning it can detect 

lower concentrations of glucose, presenting also a greater sensitivity.  

However, as is noticeable on the paper microplate wells in Figure 17 and by the higher RGB 

channel intensities initially measured, it can be assumed that the heat from the hot plate had influence 

on the colorimetric results, smoothing the colour differences. Consequentially, the heating step after 

the Ag-shell precursor deposition was eliminated and, under the optimized conditions, the colour 

variation was tested.  

The paper microplates colorimetric variation showed a good linearity and reproducibility of 

results with glucose variation under the defined conditions; however, it is only possible to obtain 

measurable colour differences between the microplate paper wells after 48 hours (Figure 19).  

In Figure 19 is possible to observe a gradual colour change from light to dark brown along the 

paper wells, meaning that glucose concentration has a direct effect on the colouration presented on 

the samples. 

(4) 

(3) 
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A calibration line was plotted to stablish a relation between the RGB channel mean intensities 

and the glucose levels for the optimized conditions (Figure 20). 

As observed, it is possible to define a linear relation between RGB intensities in a glucose range 

from 0.1 to 1mM. Regarding the linearity obtained for the RGB mean intensities, it is possible to use 

the formation of the Au@Ag core-shell NPs in detection and measurement of glucose concentrations  

The LOD of the assay was calculated and is equal to 0.121 mM. With a LOD ≈ 0.12, this strategy 

is indicated for a detection of glucose preferentially in hyperglycaemic patients, whose sweat glucose 

concentration values varies from 0.1 to 1mM. 

Figure 20- Calibration line of the RGB intensities variation with glucose under the optimized conditions on paper. 

48 hrs 

Glucose concentration 

Figure 19- Au@Ag core-shell NPs formation on paper with glucose (after 48hrs) under the optimized precursor deposition 

conditions: 3.5 µl of AuNPs, followed by 3.5 µl of 0.5 M Ag(NH3)2OH air dried. 
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Hence, sweat glucose diabetic values can be associated to RGB intensity values below 146.84, 

however the linearity obtained doesn’t include glucose values in a range from 0 to 0.1 and the 

dispersion of results its significant for higher glucose levels.  

3.3.1. SEM-EDS 

SEM-EDS analysis was performed in different stages of the process to observe and analyse the 

formation of the bimetallic Au-Ag core-shell NPs on paper. Firstly, the effect of pre-mixing the Au and 

Ag precursor solutions was studied, and SEM-EDS images of the solution deposited on paper before 

the addition of glucose are presented in Figure 21.  

 

When the AuNP colloidal solution is pre-mixed with the silver precursor solution and then 

deposited on paper, it is possible to observe the presence of plate-shape structures along the paper 

fibres; EDS analysis revealed that the structures observed consist in large agglomerates of Ag covering 

the existent AuNPs, what goes in accordance with the visual results that suggested the non-formation 

of the bimetallic NPs with this method. 

On the other hand, in SEM images of the solutions deposited and dried separately, is possible 

to observe small AuNPs adsorbed along the paper fibres. The EDS analysis revealed wide areas of 

presence of Au for all the sample, detecting also the presence of Ag surrounding the AuNPs spread 

over the sample (Figure 22). 

𝐀𝐮𝟕𝟖 
  

𝐀𝐠𝟒𝟕 
  

Figure 21- SEM image (A) and EDS element distribution map (B) of Whatman paper containing the pre-mixed solution of 
the Au-core and Ag-shell precursors. 

1 µm 

A 

B 
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Following, SEM-EDS analysis was used to study the effect of adding glucose in different 

concentrations to the paper already containing the Au@Ag core-shell NPs precursors.  

SEM images of two paper samples containing 0.2 and 1 mM of glucose (deposited 15 hours 

before the analysis) are presented on Figure 23.  

Analysing the SEM images in Figure 23 is possible to identify for both glucose concentrations 

the presence of round-shaped structures indicating the formation of the Au@Ag core-shell bimetallic 

NPs. Several differences may be pointed when comparing both images, as in the sample with less 

glucose concentration, small white dots identified as the bimetallic NPs (Figure 23-A) appear in a fewer 

200 nm  1 µm 

B A 

Figure 23- SEM images of Whatman paper containing Au@Ag core-shell bimetallic NPs obtained with (A) 0.2 mM glucose 
and (B) 1 mM glucose concentration. 

𝐀𝐮𝟕𝟖 
  

𝐀𝐠𝟒𝟕 
  

200 nm 

Figure 22- SEM image (A) and EDS element distribution map (B) of the Au-core and Ag-shell precursors deposited separately 
on Whatman paper. 

A 

B 
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amount and its diameter is substantially smaller. In SEM images of paper containing 1 mM of glucose 

(Figure 23-B) is possible to observe paper fibres impregnated with a large quantity of bimetallic NPs 

with larger diameters.  

In order to identify more accurately the differences between the bimetallic NPs formed with 

0.2- and 1 -mM glucose concentration, the average diameter of the bimetallic NPs (with n=8) was 

measured using Image J software and is presented on Table 3 

Table 3- Average diameter of the Au@Ag core-shell bimetallic NPs obtained with 0.2 mM and 1 mM of glucose. 

 

 

 

 

As observed in solution, also on paper the average diameter of the bimetallic NPs has increased 

in the presence of glucose. Comparing the NPs produced with different glucose concentrations, an 

increasement of approximately 100 nm can be associated to a glucose variation of ≈ 0.8 mM, which is 

a sufficient size variation to produce the colorimetric alterations observed on paper. 

An EDS analysis were performed to identify the Ag and Au element composition and its 

distribution on a paper sample containing Au@Ag core-shell bimetallic NPs produced with 1 mM of 

glucose (Figure 24). 

Glucose concentration 
(mM) 

Average Diameter 
(nm) 

0.2 45.429 

1 165.841 

 1 µm 

𝐀𝐮𝟕𝟖 
  

𝐀𝐠𝟒𝟕 
  

Figure 24- SEM image and EDS element distribution map of an Au@Ag bimetallic nanostructure produced on paper 
with 1 mM glucose. 

A 

B 
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Considering EDS images in Figure 24 is possible to identify a semi-spherical structure identified 

as a bimetallic NP, as the distribution map in that area reveals a very intense emission of the Ag 

element, with a corresponding but weaker emission of Au for the same analysed area.  

However, when analysing the cumulative spectrum of the larger bimetallic NPs adsorbed on the 

paper fibres, the presence of Au cannot always be detected (Figure 25).  

 

Although, this may be due to the fact that in the presence of glucose in higher concentrations, 

there is a higher quantity of generated Ag+ ions around the AuNPs, highly increasing the thickness of 

the silver shell. As the diameter of the AuNPs in the system is approximately 10 nm, it is possible that 

an Ag shell of near 1 µm of thickness inhibit the Au detection. 

1 µm 

Figure 25- Cumulative spectrum (B) of a large nanostructure (A- Spectrum 2) obtained on paper with 1 mM of glucose 
(diameter ≈ 1 µm) where Au presence is not detected. 

A B 
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 Prototype and estimated cost of the final device 

A prototype based on the lab-on-paper technology was developed for the colorimetric detection 

and quantification of glucose aqueous solutions in a concentration range from 0.1 to 1 mM (Figure 27).  

The sample well must be printed and diffused on paper and then the front and back are 

encapsulated with wax. 

In Table 4 is presented the estimated cost of the prototyped sensor taking into account the 

materials and reagents used. 

 

 

 

 

 

 

Figure 26- Prototype of the glucose sensor. (A) Schematic of the frontal, well and back part of the sensor (B) Frontal 
scheme view of the final sensor. 

(A) 

(B) 
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Table 4- Production cost of the prototyped sensor for glucose measurement. 

 

 Storage condition’s assay 

In order to determine the best storage conditions for the developed sensor, the ambient 

conditions influence on the paper devices was studied. For that propose, the average intensities of the 

RGB channels of the paper substrates was monitored over the time in different environmental 

conditions (Figure 26).  

Analyzing the graphic is possible to observe a decrease in the RGB intensity for all the papers 

after the first 24 hours, however this decrease is more accentuated for the devices stored at room 

temperature. This behavior may be explained by the previously identified reaction of Ag with the sulfur 

present in the air (5), as the samples at room temperature were also exposed to the room air.  

Material  Quantity Cost  Cost/sensor 

Whatman Paper nº 1 5.6 × 4.5 cm2 
5.30€/m2 0.0132 € 

Wax printing  3 × (5.6 × 4.5) cm2 0.28€/m2 2.11×10-3 € 

AgNO3 400 µl= 6.77 mg  4.48€/g 0.03 € 

Ammonium Hydroxide 70 µl 1.08€/ml 0.0756 € 

NaOH 200 µl= 6.43 mg 0.92€/g 5.91×10-3 € 

HAuCl4 50 µl =0.59mg 61.92€/g 0.0365 € 

Sodium Citrate 50 µl =0.49mg 0.11€/g 5.39×10-5 € 

Total  0.163 € 

Figure 27- Average RGB intensities analysis of paper substrates containing the Au@Ag core-shell NPs precursors in 
different storage conditions. 



Bimetallic nanoparticles for highly sensitive colorimetric detection of glucose on paper 

30 

 

4 𝐴𝑔 (𝑠) + 2𝐻2𝑆 (𝑔) + 𝑂2
 

⇔  2 𝐴𝑔2𝑆 (𝑠) + 2 𝐻2𝑂 (𝑙)   

The accentuated decrease in the RGB channel intensities of the devices stored in daylight 

suggests that light facilitates the above described reaction that originates the black coloured silver 

sulfide compound (a lower RGB intensity means a colour closest to black).  

  

(5) 
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Conclusions and future prespectives  

The present work was developed with the aim of creating a paper-based platform for a highly 

sensitive colorimetric glucose detection, based on the formation of Au@Ag core-shell bimetallic NPs, 

whose Ag-shell formation and thickness is glucose dependent. The described reaction was performed 

in solution and it was possible to obtain a linear relation between the glucose concentrations tested 

(from 0.1 – to 1 – mM) and the UV-Vis absorbance values measured at 422 nm. The increase on the 

absorbance values indicates that the silver-shell thickness of the bimetallic NPs in solution is increasing. 

To perform this sensitive glucose detection assay on paper, two different paper types were 

analysed in the present work: common office paper and Whatman paper nº1. Whatman paper was 

chosen for the development of the colorimetric assays for glucose detection, as it presented better 

chemical, morphological and structural features than office paper, such as an higher porosity and also 

the presence of less amorphous components, as proved by XRD structural analysis, where an higher 

crystallinity index was obtained for Whatman paper and by chemical analysis, where the presence of 

CaCO3 on office paper was revealed. 

The production of the colorimetric glucose sensing platforms was based on the Lab-on-paper 

technology, with wax printed test zones that are diffused along the Whatman paper, creating well-

defined hydrophobic barriers that constringe the deposited liquids. An unsuccessful attempt of 

eliminating one deposition step was performed by mixing the bimetallic NPs precursor solutions before 

the deposition on paper, with SEM-EDS analysis revealing the formation of large Ag aggregates on the 

paper. It was concluded that AuNPs should be stabilized on paper before the addiction of the silver 

precursor (Ag(NH3)2OH). 

After obtaining visible colorimetric variations (from light to dark brown) on paper when 

increasing the glucose concentration,  the reagents concentration influence on the results was studied, 

as well as the optimal volume for deposition, that was set as 3.5 µL (paper test zones with ≈ 7 mm 

diameter). For the colorimetric variation analysis, the paper substrates were scanned and the RGB 

channel mean intensities were obtained with Image-J software.  

The highest AuNPs colloidal solution concentration was found to be the ideal for this reaction, 

as it presented an enhancement of the visible signal. The Ag-shell precursor concentration was also 

tested, with results showing that a 0.5 M Ag(NH3)2OH concentration is the ideal to be used for a low 

concentration glucose detection. For the described optimal conditions, a linear response was obtained 

for the RGB channel intensities in function of the glucose concentration. With an estimated LOD ≈ 0.12 

mM, the proposed strategy may be developed for the measurement of glucose concentration levels in 

the range of hyperglycaemic patients’ sweat (that are typically in a known range from 0.1 to 1 mM).  
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The colorimetric differences observed are related to the size variation of the bimetallic NPs 

adsorved on the paper surface, as the SEM-EDS analysis performed on paper revealed. The particle 

medium diameters increased from ≈ 40 to 115 nm, with a glucose variation from 0.2 to 1 mM. Through 

EDS analysis of the relative Ag and Au elements concentration in solution, is possible to conclude that 

the NPs size variation is due to a growth on the thickness of the Ag-shell, with an Ag/Au ratio growth 

from ≈ 3 to 30% with a glucose variation from 0.2 to 1 mM.  A performed storage condition’s assay 

demonstrated that the paper-sensor developed is sensitive to the temperature and to room air 

exposure, therefore it must be stored at 4°C and protected from the air and the light. 

As the sweat glucose values measured for hypoglycaemic patients are near 0.01 mM, it would 

be interesting to study the application of this strategy for glucose concentrations below 0.1 mM. 

Additionally, and in order to apply the sensor in real sweat samples, interference tests with biological 

elements present in human sweat may be performed, as well as calibration optimization assays for the 

RGB measurements of the colorimetric changes on paper. 
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Appendicces 

A. Absorbance spectra of the bimetallic NPs solution   

Figure 28-UV-Vis Absorbance spectra of solutions containing Au@Ag core-shell NPs obtained for 0.1 and 1 mM 
glucose concentrations. 
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B. EDS cumulative spectra and element quantification table of a bimetallic NP in solution 

with 0.2 and 1 mM glucose. 

 

 

Table 5- EDS element quantification table of a bimetallic NP in solution with 0.2 mM glucose 

Element k Ratio Wt% Wt% Sigma 

C 0.00000 0.00 0.00 

O 0.00119 61.76 2.71 

Ag 0.00133 29.94 2.32 

Au 0.00035 8.30 2.54 

Element Wt% Atomic % Element 

C 0.00 0.00 C 

O 28.60 73.26 O 

Ag 69.19 26.28 Ag 

Au 2.21 0.46 Au 

Table 6- EDS element quantification table of a bimetallic NP in solution with 1 mM glucose 

Figure 29- EDS cumulative spectra of a bimetallic NP in solution with 0.2 mM glucose. 

Figure 30- EDS cumulative spectra of a bimetallic NP in solution with 1 mM glucose. 
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C. Variation of the AuNPs colloidal solution concentration 
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Figure 31- Influence of the AuNPs colloidal solution concentration on the Au@Ag core-shell bimetallic NPs synthesis on 
paper with glucose. 
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D. RGB analysis of the paper microplates containing different Ag(NH3)2OH concentrations 

and calibration lines 

 

Figure 33- Calibration line for 0.1 M Ag(NH3)2OH. 

Figure 32- RGB analysis of the paper microplates containing different Ag(NH3)2OH concentrations. 
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Figure 34- Calibration line for 0.5 M Ag(NH3)2OH 

 

 .  

Figure 35- Calibration line for 0.7 M Ag(NH3)2OH 
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Figure 36- Calibration line for 1 M Ag(NH3)2OH 

 

 

 

 


