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Abstract
More knowledge of community composition of arbuscular mycorrhizal (AM) fungi in ecosystems in relation to habitat type and
land use intensity is needed. We studied AMF in 106 soil samples from pristine natural forests and a gradient of disturbance
including semi-natural and intensively managed pastures of Terceira, Azores. Altogether, 42 spore morphotypes were detected
from eight AMF families, revealing different fungal community structures among the three land use types. Spore density was
highest in native forests and lowest in intensively managed pastures, but fungal richness was highest in semi-natural pastures and
lowest in native forests. No significant difference occurred between intensively managed pastures and native forests. Members of
Acaulosporaceae and Glomeraceae were dominant in native forests, while fungi from Gigasporaceae and Claroideoglomeraceae
were most abundant in semi-natural and intensively managed pastures respectively, indicating family-based ecological prefer-
ences. Rarefaction analysis revealed that pastures supported more diverse AMF communities than native forests, because in high
elevation pristine forests, a few rare species dominate. It is therefore likely that more species would be found with increasing
survey effort. Further research is needed to clarify the influence of land use type on AMF diversity and distribution in remote
islands, and the role of native AMF on soil ecosystem processes and the spread of exotic plants.
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Introduction

Arbuscular mycorrhizal fungi (AMF) comprise one of the
most important groups of below ground biota (Jeffries et al.
2003; Barea et al. 2005). These obligate symbionts live in
association with approximately 70% of vascular plants
(Brundrett 2009). In this symbiosis, the plant supplies the

fungus with energy for its growth and reproduction via carbon
compounds from photosynthesis, and the fungus provides the
plant and soil with several benefits: AMF colonisation con-
tribute to expand the nutrient depletion zone of plants and
increase the uptake of water and the absorption of inorganic
nutrients, such as phosphorus (Hu et al. 2009; Smith et al.
2010). Mycorrhizas may improve tolerance of crops to other
forms of biotic stress, such as nematodes (Vos et al. 2012) and
root pathogens (Pozo and Azcón-Aguilar 2007; van der
Heijden et al. 2015), as well as to abiotic stresses, such as
drought (Li et al. 2013; Chitarra et al. 2016) and metal toxicity
(González-Chávez et al. 2004; Göhre and Paszkowski 2006).
In addition, AMF accumulate carbon (Zhang et al. 2013) and
contribute to the increase of microbial biomass in the soil,
favouring the carbon sequestration process in the atmosphere.
AMF also contribute to the formation and stability of soil
aggregates by the production of glomalin (Rillig and
Mummey 2006).

AMF are therefore beneficial for plant performance,
playing a crucial role for the sustainability of natural and ag-
ricultural ecosystems (Barea et al. 2011), and important eco-
system services (Chen et al. 2018). However, the symbiotic
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benefits depend both on the host plant and the composition of
the AMF community.

AMF communities vary in species composition and have
an important role in the structuring and functioning of agro-
ecosystems (Ӧpik et al. 2006). Several studies found that some
factors such as soil characteristics and fertility (Minggui et al.
2012; Xiang et al. 2014), environmental conditions (Kivlin
et al. 2011; Davison et al. 2015), plant community composi-
tion (Ӧpik et al. 2010; Moora et al. 2014) and agricultural
activities can determine the local AMF communities (van
der Gast et al. 2011; Avio et al. 2013; Köhl et al. 2014) by
influencing the structure and function of symbiosis.

Land use changes are now playing unprecedented roles in
shaping the environment of the planet, particularly after the
mechanisation of agriculture and the creation of large areas of
monocultures (Newbold et al. 2015). Moreover, land use
changes can promote both taxonomic and functional homog-
enisation (Olden 2006) with a consequent loss of diversity at
local scales. AMF respond differently to land use intensity
(Mathimaran et al. 2007; Ciccolini et al. 2016), and several
studies point out to a decrease on AMF diversity in agricul-
tural soils compared to natural soils (Li et al. 2007; Alguacil
et al. 2008; Verbruggen and Kiers 2010; Brito et al. 2012).
The differences in richness observed between natural and cul-
tivated systems are generally attributed to the selective pres-
sure of agricultural activities, such as ploughing, fertilisation
and application of fungicides (Jansa et al. 2002; Egerton-
Warburton et al. 2007). Consequently, the intensity of soil
management could be an important factor determining the
AMF occurrence and activity in agro systems (see also
Faggioli et al. 2019).

The Azores archipelago has an extended area of grasslands
(Martins 1993) including natural grasslands, semi-natural pas-
tures and intensive pastures (Cardoso et al. 2009). In the last
600 years of human colonisation, Azorean native forests have
been destroyed by human activities and replaced by agricul-
tural land with massive impacts on species extinctions
(Alcover et al. 2015; Terzopoulou et al. 2015) and likely loss
of numerous endemic species in the near future (Triantis et al.
2010). These major land use changes and disturbances can
signif icant ly al ter the level of plant community
mycorrhisation and the proportion of different mycorrhizal
types in a community (Gerz et al. 2016), and consequently
affect the composition and dynamics of the AMF communi-
ties (Violi et al. 2008). Little is known on the AMF commu-
nities from Azores islands although a recent study has shown
that AMF diversity in native forests is higher in islands with
the least disturbance (Melo et al. 2017). Pasture management
intensity has also been found to affect in Azores the compo-
sition and abundance of AMF communities, but not their di-
versity, in Azores (Melo et al. 2014).

Based on these previous studies, this work aimed to assess
the influence of land use, from pristine forests to intensive

pastures, in the composition and structure of AMF communi-
ties along a gradient of land use disturbance in Terceira Island,
Azores.We predict that both species composition and diversity
will be affected by historical land use changes with a homog-
enisation and loss of diversity in the most disturbed systems.

Material and methods

Study sites

All data used in this study come from surveys conducted in
Terceira (Melo et al. 2014, 2017), a geologically recent vol-
canic island (0.4Myr) of the Azorean archipelago (Ávila et al.
2016). The sampling areas were cattle-grazed upland pastures
of two different types, and two fragments of native forests
(Fig. 1). The two pasture types include semi-natural pastures
with low grazing intensity and frequency (managed for more
than 50 years, with a relatively high diversity of grasses and
forbs) and intensively managed pastures with high grazing
intensity and frequency (managed for more than 30 years,
characterised by a depauperate vascular flora of five or fewer
dominant species) (Melo et al. 2014). The semi-natural pas-
tures, Pico Galhardo (SNP1) and Terra Brava (SNP2) (Fig. 1)
that are included in Terceira Natural Park and are dominated
by the perennial grasses Holcus lanatus and Agrostis
castellana, have a high floristic diversity (Dias 1996; Borges
1997), often including other grasses such as Anthoxanthum
odoratum, Lolium multiflorum, Holcus rigidus and Poa
trivialis and non-forage species, including Lotus uliginosus,
Rumex acetosella ssp. angiocarpus, Potentilla anglica,
Hydrocotyle vulgaris, Plantago lanceolata and Lobelia urens
(for more details, see Melo et al. 2014). The intensively man-
aged pastures Agualva 1 (IMP1) and Agualva 2 (IMP2) (Fig.
1) resulted from the conversion of native forest to wood pro-
duction and, finally, to permanent pastures and are surrounded
by exotic eucalyptus plantation. The vegetation is dominated
by Holcus lanatus and Lolium perenne but also have high
populations of Trifolium repens (Borges 1997; Dias 1996)
P. lanceolata, Cyperus esculentus, Mentha suaveolens,
Cerastium fontanum and Rumex conglomeratus (Dias 1996;
Borges 1997).

The native forests include two fragments from Terceira
Natural Park—Pico Galhardo (NFT1) and Lagoinha (NFT2)
(Melo et al. 2017), both dominated by the Azorean cedar
J. brevifolia, a rare conifer endemic to the Azores, which
dominates the high elevation (> 650 m), with subdominant
endemic woody perennials, including Laurus azorica
(Lauraceae), Ilex perado azorica (Aquifoliaceae), Erica
azorica (Ericaceae), Vaccinium cylindraceum (Ericaceae)
and Frangula azorica (Rhamnaceae) (Elias et al. 2016).
However, in Lagoinha, invasive woody species including
C. japonica, Pittosporum undulatum (Pittosporaceae),
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E. globulus and Acacia melanoxylon (Fabaceae) have begun
to establish.

Data analyses

Spore density, species richness and occurrence were based on
spores recovered directly from the soils. The ecological pa-
rameters were calculated as follows: Species richness was the
number of taxa per sample found in a particular type of habitat
(equivalent to alpha richness). Spore density was calculated as
the number of spore of each taxon per 50 g of dried soil.
Relative spore density (RD) was defined as the ratio of spore
density of a particular taxon to the total density of
glomeromycotan spores and it shows the degree of sporulation
of different morphotypes in a given soil. Frequency (FR),
reflecting distribution, was the percentage of samples in which
a taxon or morphotype occurred among all samples, and it
reflects the distribution status. The importance value (IV)
was used to evaluate the dominance of taxa based on FR
and RD and was calculated as IV = (FR + RD)/2. An IV ≥
50% indicates that a taxon is dominant in terms of spore pro-
duction; 10% < IV < 50% applies to common genera or spe-
cies; an IV ≤ 10% indicates that a genus or species is rare
(Chen et al. 2012).

We conducted different tests to analyse differences be-
tween habitat types. Spore density and species richness

were not normally distributed, and data transformation
was not suitable for parametric analysis application.
Therefore data were compared by Kruskal-Wallis one-
way analysis of variance by ranks and multiple compari-
sons between the samples with Mann-Whitney (Zar 1999).
Statistical analysis was conducted with MINITAB Release
13.31 (Minitab 2000). Moreover, accumulation curves
were constructed using EstimateS program v. 9.1.0
(Colwell 2013), with 100 runs, for the observed number
of species and species richness estimates, using the non-
parametric estimator Jackknife 1. Sampling completeness
was calculated as the ratio of observed richness to estimat-
ed richness with both estimators, since both showed to be
highly accurate and independent of scale (Hortal et al.
2006). Using EstimateS program v. 9.1.0 (Colwell 2013)
and rarefaction techniques, common indices of diversity
were also calculated for the three types of habitats (native
forests, semi-natural pastures and intensively managed
pastures), following the Hill series with four numbers:
q0—species richness (S); q1—Shannon-Wiener (exp H′);
q2—Simpson (1/D) and q3—Berger-Parker index (1/d)
(Magurran 2004). The rarefaction was set to 16 samples,
the minimum number of samples available for both pasture
types.

The compositional dissimilarity between all pairwise site
comparisons was calculated using the recommended Bray-

Fig. 1 Distribution of the three studied habitat types on Terceira Island



Curtis index (Clarke and Warwick 2001) with the log (x + 1)
including the density of each spore morphotype per sample in
each site in the software ‘Community Analysis Package v.
4.0’ (CAP 4) (see http://www.pisces-conservation.com)
(Seaby et al. 2004). Next, we evaluated habitat influence ac-
cording to spatial scale by a simple multiple scale approach as
used in other studies (Steffan-Dewenter et al. 2002; Schmidt
et al. 2008). The habitat-type areas around each of the 6 sam-
pling sites were analysed at ten scales, 100, 200, 400, 600,
800, 1000, 2000, 3000, 4000 and 5000 m, using Gaspar et al.
(2008) land use layers and the QGIS v.2.18.12 (QGIS
Development Team 2016). For each scale, we calculated the
percentage area of each habitat surrounding the sampling site.
Using SPSS v22 software (IBMCorp 2013), we calculated the
Spearman rank correlation coefficient values between the spe-
cies richness and spore density of the commonest families
(Acaulosporaceae, Ambisporaceae, Claroideoglomeraceae,
Gigasporaceae, Glomeraceae and Paraglomeraceae) at each
site and the area corresponding to each habitat types, repeating
the calculation for the ten different scales.

Results

A total of 21,624 glomeromycotan spores were extracted and
classified from 106 field soil samples. Forty-two distinct
morphotypes representing eight glomeromycotan families were
detected, including nine undetermined glomoid morphotypes.
Morphotypes placed in Glomeraceae (16), Acaulosporaceae
(11), Gigasporaceae (4), Claroideoglomeraceae (3),
Diversisporaceae (3), Ambisporaceae (2), Archaeosporaceae (2)
and Paraglomeraceae (1) were recognised (Table 1).

AMF richness and diversity

The total AMF species richness changed significantly among
the three types of land use (Kruskal-Wallis test; richness: H =
15.05, p < 0.01). AMF species richness was higher in semi-
natural pastures than in the native forests (Kruskal-Wallis test;
richness: H = 14.18, p < 0.001). However, no significant dif-
ferences were found between intensively managed pastures
and native forests. In fact, both intensive management pas-
tures showed higher values of the second Hill number (exp
Shannon-Wiener index) than both native sites (Table 2).
However, Jackknife 1 showed that native forests, especially
NFT1, may have more species than the other types of habitats
(Table 2). In addition, completeness showed high values for
all pastures but low for native forests suggesting that more
species are expected to be found in this habitat, which was
confirmed by the species rarefaction curves (Table 2). On the
other hand, the fourth Hill number (Berger-Parker index (1/d))
shows lower values, indicating that native forests are domi-
nated by few species which could contribute to lower values

of the second to fourth Hill numbers (Table 2). Moreover,
based on the IV, the native forests showed the highest values
(Table 1). NFT1 was dominated by A. lacunosa (RD = 27.13,
FR = 100, IV = 63.56) followed by Acaulospora sp.1 (RD =
15.65, FR = 100, IV = 57.82), while NFT2 was dominated by
A. brasiliensis (RD = 31.40, FR = 100, IV = 65.70) and
Glomeraceae sp. (RD = 30.38, FR = 100, IV = 50.90)
(Table 1). In contrast, in semi-natural pastures especially in
SNP1, A. laevis was the most abundant and frequently AMF
species (RD = 29.37, FR = 100, IV = 64.69) followed by
A. paulinae (RD = 12.96, FR = 93.75, IV = 53.35) and
S. calospora (RD = 15.77, FR = 87.50, IV = 51.63) whereas
SNP2 is dominated only by S. calospora (RD = 64.33, FR =
87.50, IV = 75.91) (Table 1). Both intensively managed pas-
tures were dominated by C. etunicatum (IMP1: RD = 32.96,
FR = 100, IV = 66.48; IMP2: RD = 32.29, FR = 100, IV =
66.14) (Table 1).

AMF density and composition

AMF spore density also varied significantly among the three
land use types (Kruskal-Wallis test; density: H = 78.13,
p < 0.001). AMF spore density was highest in native forests
and lowest in intensively managed pastures types (Kruskal-
Wallis test; density: H = 53.78, p < 0.001).

Significant differences between land use types were found
in the AMF species richness for the 6 commonest taxa
(Kruskal-Wallis test; Acaulosporaceae: H = 26.30, p < 0.001;
Ambisporaceae: H = 21.38, p < 0.001; Claroideoglomeraceae:
H = 96.34, p < 0.001; Gigasporaceae: H = 71.41, p < 0.001;
Glomeraceae: H = 21.92, p < 0.001; Paraglomeraceae: H =
42.03, p < 0.001) and in the AMF spore density (Kruskal-
Wallis test; Acaulosporaceae: H = 67.70, p < 0.001;
Ambisporaceae: H = 21.02, p < 0.001; Claroideoglomeraceae:
H = 88.33, p < 0.001; Gigasporaceae: H = 72.14, p < 0.001;
Glomeraceae: H = 81.77, p < 0.001; Paraglomeraceae: H =
42.25, p < 0.001). Indeed, native forests harboured a signifi-
cantly higher density of Acaulosporaceae and Glomeraceae
taxa than the remaining habitat types (Fig. 2a, b). However,
no differences were found in Acaulosporaceae richness be-
tween native forests and semi-natural pastures, or in
Glomeraceae richness between native forests and intensively
managed pastures (Fig. 2a). Semi-natural pastures showed the
highest AMF species richness and spore density belonging to
Ambisporaceae, and the intensively managed pastures present-
ed the lowest of both parameters (Fig. 2a, b). No differences
were found in AMF species richness and spore density of
Ambisporaceae between native forests and intensively man-
aged pastures (Fig. 2a, b).

Gigasporaceae showed the same pattern, i.e. richness and
density were highest in semi-natural pastures and lowest in
native forests (Fig. 2a, b). On the other hand, the intensively
managed pastures harboured a significantly higher richness
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and density of Claroideoglomeraceae and Paraglomeraceae
taxa than the remaining habitat types (Fig. 2a, b).

However, no differences were found in Claroideoglomeraceae
richness and density between native forests and semi-natural pas-
tures as well as in Paraglomeraceae richness and density between
the two pasture types. These differences in AMF spore density
revealed distinct assemblages in AMF community composition
(Fig. 3). Along with the log-linear analysis, the first axis of Bray-
Curtis-based NMDS analysis clearly separated the native forest
sites (NFT1; NFT2) from the two types of pastures, while the
second axis showed differences in glomeromycotan composition
between sites within the same land use type for semi-natural pas-
tures and native forests.

The influence of land use at different spatial scales

AMF richness and density of the commonest families
were influenced by habitat types at different spatial
scales. The density of Acaulosporaceae members was
significantly and positively correlated with the area of
the native forests up to 400 m, and above 600 m with
semi-natural pastures (Fig. 4a). Intensively managed pas-
tures always presented a negative correlation with the
density of this AMF group, as well as the exotic forest
but only above 400 m (Fig. 4a). On the other hand,
Acaulosporaceae richness was positively correlated only
with semi-natural pastures for all considered scales and
negatively correlated with exotic forest, but only from
200 to 5000 m, and intensively managed pastures, (Fig.
4b). The density of Ambisporaceae members was posi-
tively correlated with the area of semi-natural pastures
and negatively correlated with intensively managed pas-
tures for all considered scales in both habitat types (Fig.
4c). The density of this AMF group also showed a pos-
itive correlation with the area of native forests from 400
to 600 m and above 4000 m (Fig. 4c). The exotic forest
also presented a negative correlation with the density of
this AMF group, but only above 400 m (Fig. 4c). The

same result pattern was shown for the richness of this
AMF family (Fig. 4d). As for the Claroideoglomeraceae
family, either density or richness was negatively corre-
lated with semi-natural pastures, but when the area of
this habitat type was estimated at distances above
400 m or greater than 4000 m for density and richness,
respectively (Fig. 4e, f). Intensively managed pastures
presented a positive correlation with the density of mem-
bers of Claroideoglomeraceae from 100 to 1000 m and
at 4000 m, while its richness showed a positive correla-
tion with this habitat type from 600 to 1000 m (Fig. 4e,
f). The density of this AMF family also showed a pos-
itive correlation with the area of exotic forest from 400
to 600 m and at 3000 m (Fig. 4e). The density and
richness of Gigasporaceae members were positively cor-
related with the area of semi-natural pastures but only
for the first 100 m (Fig. 4g, h). The richness of this
AMF group also showed a negative correlation with
the area of native forests from 100 to 200 m (Fig. 4h).
The exotic forest was positively correlated with the den-
sity and richness of Glomeraceae members from 200 to
600 m and from 200 to 1000 m, respectively (Fig. 4i, j).
However, the richness of this AMF group was negative-
ly correlated with the increased area of the semi-natural
pastures until 400 m and also with the area of native
forests from 600 to 4000 m (Fig. 4j). The intensively
managed pastures always presented a positive correlation
with the density and richness of Paraglomeraceae mem-
bers (Fig. 4k, m). The same result was also shown for
the area of the exotic forest but only above 200 and
400 m for density and richness, respectively (Fig. 4k,
m). The semi-natural pastures and the native forests
were negatively correlated with the density of this
AMF group from 200 to 400 m (Fig. 4k), while its
richness showed a negative correlation with increased
area of semi-natural pastures above 200 m as well as
with the area of native forests but only at 200 and
5000 m (Fig. 4l).

Table 2 Hill diversity metrics for
the three types of habitats: native
forests of Terceira (Pico
Galhardo—NFT1; Lagoinha—
NFT2), semi-natural pastures
(Pico Galhardo—SNP1; Terra
Brava—SNP2) and intensively
managed pastures (Agualva 1—
IMP1; Agualva 2—IMP2).
Number of individuals (N); num-
ber of species (q0 = S); Jackknife
1; Completeness; Species rare-
faction (q0 rarefaction, S Raref);
Shannon-Wiener index (q1 −Exp
H′); Simpson index (q2 − 1/D);
Berger-Parker index (q3 − 1/d)

Native forests Semi-natural pastures Intensively managed pastures

Indices NFT1 NFT2 SNP1 SNP2 IMP1 IMP2

N 10,691 9398 463 485 270 319

S 20 14 17 12 13 14

Jackknife 1 28.57 17.81 19.81 12 13.94 15.88

Completeness 0.70 0.79 0.86 1.00 0.93 0.88

S Raref 16.9 13.04 17 12 13 14

Shannon (Exp H′) 4.88 4.84 9.54 4.00 8.16 8.15

Simpson (1/D) 3.96 3.93 6.72 2.30 5.85 5.88

Berger-Parker (1/d) 2.67 3.18 3.40 1.57 3.23 3.28
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Discussion

There was a clear distinction between the communities of
native forests and agricultural areas. Further distinctions be-
tween AMF communities could be explained by agricultural
practices, with more intensive production systems having both
more specialised AMF composition and reduced AMF diver-
sity and density when compared with more extensive or pas-
toral production systems (van der Gast et al. 2011; Lin et al.

2012; Melo et al. 2014; Kim et al. 2015). The current study
showed that native forests presented the highest AMF spore
density which is in accordance with other studies in natural
communities (Öpik et al. 2006; Dobo et al. 2016; Birhane
et al. 2018). This suggests that despite the low turnover rates
of fine roots in mature forest, the diversity and richness of
plants in this habitat could play an important role in determin-
ing AMF spore density (Mafaziya and Madawala 2015;
Birhane et al. 2018). Furthermore, in the harsh environment

a

b
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Fig. 2 a AMF species richness
and b density of each family of
Glomeromycota in each habitat
type: native forests (NFT;
median, N = 42), semi-natural
pastures (SNP; median, N = 32)
and intensively managed pastures
(IMP; median, N = 32) for mem-
bers of the families
Acaulosporaceae,
Ambisporaceae,
Claroideoglomeraceae,
Gigasporaceae, Glomeraceae and
Paraglomeraceae. Different letters
above each bar indicate signifi-
cant differences in AMF species
richness and density among the
three type of land uses (Mann-
Whitney test, p < 0.05)



Fig. 3 Nonmetric Dimensional Scaling (NMDS) with Bray-Curtis simi-
larities for glomeromycotan community composition between native for-
ests from (NFT1—white green squares; NFT2—dark green squares),

semi-natural pastures (SNP1—orange squares; SNP2—brown squares)
and intensively managed pastures (IMP1—dark pink squares; IMP2—
white pink squares), using all data (106 soil samples)
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of mountain ecosystems, plants tend to be more dependent on
soil microorganism such as mycorrhizal fungi, a dependency
that might contribute to the increase of AMF spore density in
natural forests (Birhane et al. 2018). Contrary to the results
showed by Melo et al. (2014) based on trap cultures data,
AMF species richness was higher in semi-natural pastures
than in intensively managed pastures, showing that although
measures of diversity estimated by trap culture may not rep-
resents the field situation they could provide a more complete
picture of AMF communities (Brundrett et al. 1999; Hijri et al.
2006; Wang et al. 2008). Interestingly, AMF species richness
did not change between intensively managed pastures and
native forests, suggesting that vegetation cover (Ndoye et al.
2012; Birhane et al. 2018) and level of disturbance may play a
role in determining the abundance and richness of AMF spe-
cies (Mafaziya and Madawala 2015).

Disturbance can play a key role in AMF diversity and com-
position depending on the type and severity of the disturbance
that alter soil characteristics (Xiang et al. 2014), such as tillage
(Alguacil et al. 2008), fertilisation (Egerton-Warburton et al.
2007; Lin et al. 2012; Zheng et al. 2014), ploughing (Jansa
et al. 2006; Alguacil et al. 2014) and crop rotation (Castillo
et al. 2006; Verbruggen and Kiers 2010). Agriculture in the
studied areas is characterised by low inputs of fertiliser and less
intensive management, with reduced tillage or no tillage com-
pared with intensive agriculture in other European regions. This
could explain the absence of differences in the AMF species
richness between intensively management pastures and native
forests. Álvarez-Sanchéz et al. (2012) in a database study from
Mexico and USA, with eight different vegetation types and land
uses, showed that low levels of disturbance did not reduce
species richness in either the Mexican or the USA sites, and in
the Mexican dataset, species richness and diversity increased

where disturbance was low. A similar result was also found by
Xu et al. (2017) in a study among three land use types (forest,
grassland and arable fields) in China. They argued that the sim-
ilarity in AMF diversity between arable land and forest could be
explained by the reduced inputs of fertiliser and by the low level
of land use intensity.

Previous studies have shown that the plant identity
(Bainard et al. 2014; Zheng et al. 2016), diversity and richness
(De Deyn et al. 2011; Lekberg and Waller 2016), as well as
plant functional group (König et al. 2010; Sun et al. 2013)
may play a critical role in deciding AMF diversity and com-
position (Johnson et al. 1992; Yang et al. 2012). The lowest
AMF richness in the native forests could be explained by the
relatively high plant diversity in pastures, because diverse
plant species provide more niches hosting AMF. A similar
result was also found by Solís-Rodríguez et al. (2020) in a
diversity and distribution study of AMF in tropical low
flooding forest (TLFF) of Yucatan, Mexico. They observed
that the AMF diversity was significantly related to the diver-
sity, abundance, richness and cover of the herbaceous vegeta-
tion, while the abundance of spores is related to basal area and
abundance of trees.

Plant species may allocate various qualitative and quanti-
tative carbon resources to their AMF partners (Jamshidi et al.
2015) or supply various root exudates; consequently, distinct
rhizospheric aspects in terms of physical, chemical or biolog-
ical conditions occur (Zangaro et al. 2008; Lazarevic et al.
2018). Dominant perennial grasses in pastureland systems
such as H. lanatus, A. castellana and L. perenne have a high
C investment enabling the high turnover of fines roots, which
may encourage a more diverse AMF community and might
improve nutrient uptake to the benefit of fast-growing plant
species. König et al. (2010) showed that AMF sequence



richness was influenced by plant richness, and the presence of
grasses as plant functional group favoured the AMF richness
at the Jena Experiment site. Dai et al. (2013) also examined
the AMF communities in wheat-growing cropland, natural
areas and semi-natural areas along roads. The authors argue
that the broad range of spatial and temporal niches in road-
sides planted with a persistent grass species could explain the
higher AMF abundance and diversity in this land use type
than in cropland, which is homogenous across the landscape,
and in natural areas, which are homogeneous within a site.

The relatively lower diversity of AMF in forests compared
to grassland is in accordance with other studies (Belay et al.
2015; Davison et al. 2015; Xu et al. 2017). Although, native
forests are dominated by J. brevifolia, the low diversity of
AMF plants in these sites and the presence of the other shrubs
(Vaccinium cylindraceum; Erica azorica) or trees
(Pittosporum undulatum; Eucalytus globulus) with different
mycorrhizal associations (ectomycorrhiza; ericoid mycorrhi-
za) could explain the lower AMF diversity. Lumini et al.
(2010) also observed that the lowest numbers of AMF
OTUs in natural ecosystems could be due to the presence of
Erica arborea, Arbutus unedo and Quercus suber, i.e. plant

species with similarly different mycorrhizal associations.
Moreover, based on Hill numbers, native forests also showed
the lowest AMF diversity, which could be explained by high
dominance of few species that display adaptive strategies to
live with hosts in the harsh environment conditions of moun-
tain habitats (Velázquez et al. 2013; Senés-Guerrero and
Schüßler 2016). Acaulosporaceae are dominant members of
native forests, this could be explained by the potential effect of
high OM content, soil available N and lower pH (Bainard
et al. 2014; Melo et al. 2019) that characterise this land use
type (Melo et al. 2017) comparatively with the other two type
of pastures (Melo et al. 2014). In addition, Acaulosporaceae is
well documented as occurring in protected areas, representing
75.7% of all the species described so far (Turrini and
Giovannetti 2012).

For example, Velázquez et al. (2013) in El Palmar National
Park (Argentina) found that Acaulosporaceae were the most
widespread and abundant (49% of spores) Glomeromycota,
followed by the Glomeraceae (40%) and Gigasporaceae
(6%). Also, Shi et al. (2014) showed that Acaulospora was
the most abundant genus along altitudinal gradients on Mt.
Taibai of the Qinling Mountains. However, an unexpected

Fig. 4 Variation in the Spearman
rank correlation values between
AMF species richness and density
and the area of the three habitat
types across ten increasing scales
for each family of
Glomeromycota. Circles
represent native forests, triangles
are exotic forest, diamonds are
semi-natural pastures and squares
represent intensively managed
pastures
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finding was the positive correlation of density and richness
from members of Gigasporaceae with the increase of the
semi-natural pastures area, whereas this family is not usually
detected in disturbed field agricultural soils (Jansa et al. 2003;
Mathimaran et al. 2007). This result is in agreement with those
of Boriello et al. (2012) who find many sequences related to
Gigasporaceae in maize fields under a different level of tillage
and N fertilisation, and also with the results of Oehl et al.
(2005, 2010) based on spore identification from field samples.
Also, Cai et al. (2014) found that A. laevis and S. calospora,
AMF species that frequently occur in less disturbed habitats,
had very strong adaptability, and were also distributed in nat-
ural grassland and all types of degraded grasslands. Although
inconsistent with other previous studies showing a decline of
AMF diversity with the land use intensification (Schneider
et al. 2010; Schnoor et al. 2011; Hartmann et al. 2015), our
result suggest that different AMF species have different re-
sponses and sensitivity to grassland disturbance in different
ecosystems.

The predominance of species belonging to Glomeraceae
confirms the well-known characteristics of the members of
this family, adaptability and stress tolerance, and that they
can be retrieved across a wide range of habitats, either natural
or agricultural (Öpik et al. 2006), such as agricultural land-
scapes (Alguacil et al. 2008; Xiang et al. 2014), restored semi-
natural grasslands (Schnoor et al. 2011) and coastal sand
dunes (Kawahara and Ezawa 2013).

It is also interesting to note the relatively high density and
richness of members of the Paraglomeraceae in intensively
managed pasture. Species in this family have not been record-
ed to sporulate densely in other tropical and temperate grass-
lands (Hijri et al. 2006; Moora et al. 2014; Xiang et al. 2014).
The high spore population of Paraglomeraceae in exotic forest
land in the Azoresmay imply adaptability to different levels of
soil disturbance. Rodríguez-Echeverría et al. (2017) also
found that Paraglomeraceae was the most abundant family
in Gorongosa National Park (GNP) grasslands. A study with
maize under conventional and no-tillage systems in fertilised
and unfertilised soils found some sequences related to
Paraglomeraceae in all soil management conditions (Boriello
et al. (2012).

Conclusion

This study confirms that the conversion of native forests to
pasturelands modifies the structure of AMF communities in a
remote volcanic oceanic island. These findings raise interest-
ing questions about the dispersal and colonisation of islands
by AMF and about the ecological specificity and role of AMF
in different island habitats. Importantly, the low input pasture
management used in this island seems to help preserving
AMF diversity but the unique diversity of native forests might

be in danger from the reduction of forest patches and the
expansion of exotic plant species.
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