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Abstract

Magnetron sputtering system is a technique that consists in extracting atoms from a target
material by collisions of energetic ions of an inert gas. It is widely used in semiconductor in-
dustries and materials processing research for developing thin films by deposition. During this
process a low temperature capacitively coupled plasma is generated near the cathode and se-
veral variations of the properties of this plasma can affect the thin film deposition process and
quality. An approach to study these types of systems is by computational modeling. The use
of robust computational codes that can handle complicated geometries and can solve complex
systems of differential equations. In this present project we aim to model numerically a system
of magnetrons developed at the Materials Science and Renewable Energies (MatER) labora-
tory. Using the geometry measurements and the material properties of each component taken in
the laboratory, a CAD geometry was developed. Furthermore, the electric and magnetic fields
are solved for the geometry configuration and, by implementing a Monte Carlo simulation, the
electron trajectories and velocity distributions in the system are calculated. Finally, we use a
multi-fluid model to solve a simplified system of a 1 dimensional capacitively coupled plasma
and recover the system properties. The method to solve the respective system of equations is
the finite element method implemented in the software COMSOL Multiphysics.
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Chapter I

Introduction

Sputtering is a process where particles from a solid material called target are ejected from

its surface by the collisions of energetic ions with the target material. These energetic ions are

generated by the ionization of an inert gas like Argon, and the ionization occurs due to the high

intensity electric field. This field then separates charges and, particles in the gas move around

until they collide with each other [1]. The electric field is generated by a magnetron, a device

that consists of a pair of electrodes in a cylindrical configuration, one electrode is powered by

a radio frequency source operating with a maximum amplitude of 195 V and a RF electric field

is generated between these two electrodes. Additionally, the magnetron has an internal pair of

toroidally-shaped permanent magnets. These magnets generate a poloidal magnetic field with

the purpose to confine electrons and ions around the target. When the electric field is strong

enough to separate the electrons from the atoms of the inert gas, the free ions and electrons heat

the gas by colliding with the gas particles until an electrical or plasma discharge is produced

between the electrodes [2]. A plasma is a quasi-neutral gas, where microscopically positive

and negative charges are separated and move freely, while macroscopically the gas is neutral.

After a certain time, when a considerable amount of collisions between electrons, ions and

neutral particles have occurred, the plasma is self-sustainable. This ionized gas has a collective

behavior which allows it to be driven and confined by electric and magnetic fields [3]. The
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plasma produces the energetic ions that are accelerated and then extract the target material.

The extracted or sputtered particles are vaporized and conducted to a substrate where they are

deposited to form a thin film [2].

The finite element method (FEM) is a numerical method to solve systems of partial diffe-

rential equations (PDEs). This method consists of defining a set of base functions or elements,

and then multiplying these elements by random weights to construct possible solutions to the

set of dependent variables. Then a system of linear equations is solved to find the optimum

weights that solve the set of PDEs [4]. For this project, the software COMSOL Multiphysics,

which implements the finite element method, has been used.

In this present project we aim to model numerically a system of magnetrons using geometry

measurements taken at the laboratory. In Chapter II we present the theory behind the compu-

tational simulations: Maxwell’s equations, motion of charged particles and plasmas as fluids. In

Chapter III, we show the simulation results: numerical error study, electric and magnetic field

spatial configuration results, electron trajectories and the capacitively coupled plasma simula-

tion. In Chapter IV a conclusion and final remarks are presented.
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Chapter II

Theory

2.1. Maxwell’s Equations

Maxwell’s equations has to be solved with certain conditions to numerically solve the elec-

tric field generated by two electrodes and the magnetic field generated a magnet:

∇×H = J+
∂D
∂t

∇×E =−∂B
∂t

∇ ·D = ρ

∇ ·B = 0

(2.1)

The electrodes that are part of the magnetron used in the laboratory are made of 304 stainless

steel, a conductive material. To describe the electric field produced by the potential applied to

the boundary of this electrode we need to consider the third Maxwell’s equation and use the

gradient of the electric potential E =−∇V in (V/m). We get the following equations:

ε0εr∇ ·E = ρ

E =−∇V
(2.2)
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Where ε0 y εr are the electrical permittivity of vacuum and the relative electrical permittivity of

the material where the field is calculated. To solve this system we need to establish the initial

boundary conditions that are determined by the geometry of the problem and the value of the

potential V(x,y,z,t) at each point in the geometry at every time.

A magnet is an object made of a ferromagnetic material; it produces a magnetic field with

no current involved. To model a magnet’s magnetic field we need to establish a set of equations

that involve a medium with no currents or a time dependent electric field. So we start with the

first Maxwell’s equation:

∇×H = 0 (2.3)

It is convenient to define the magnetic field vector as the gradient of a magnetic scalar potential.

H =−∇Vm (2.4)

Also, for permanent magnets a magnetization vector M needs to be defined in some preferred

direction. Finally, the system of equations to be solved simultaneously is:

∇ ·B = 0

B = µ0(µrH+M)

H =−∇Vm

(2.5)

Where µ0 and µr are the magnetic permeability of vacuum and the relative magnetic permeabi-

lity of the material. The input parameter of the model is the magnetization vector M as a domain

condition. It describes how the object is magnetized in direction and magnitude. This condition

will determine the magnetic field distribution in all the domains [5].
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2.2. Single Particle Motions

The trajectory of a charged particle in the presence of an electric field and a magnetic field

is determined by Newton’s law in which the force acting on the particle of mass m and charge

q is given by the Lorentz force:

m
dv
dt

= q(E+v×B) (2.6)

The fields are described by the vectors E and B. This equation describes completely the

trajectory of a particle in any electromagnetic system. The complexity of describing these fields

arises when there are no analytical solutions available. To understand the movement of charged

particles in a plasma, we will study particular cases and semi-analytical solutions to eq. 2.6. It

should be emphasized that in these particular cases the fields will be described when they are

generated by external sources to the plasma and not by the spatial distribution of charges [6].

2.2.1. Uniform E and B fields with E = 0

Taking E = 0 in equation 2.6 we obtain:

m
dv
dt

= qv×B (2.7)

We consider the magnetic field to be oriented in the ẑ direction B = Bẑ. The resulting differential

equations for the velocities vx and vy are:

v̈x =−
(

qB
m

)2

vx

v̈y =−
(

qB
m

)2

vy

(2.8)

The solution is of a simple harmonic oscillator with cyclotron frequency

ωc ≡
|q|B
m
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and the law of motion

x(t) = x0 + rL sinωct

y(t) = y0± rL cosωct
(2.9)

where rL is the Larmor radius and is defined as

rL ≡
v⊥
ωc

=
mv⊥
|q|B

(2.10)

Where v⊥ =
√

v2
x + v2

y is the velocity magnitude perpendicular to the magnetic field. The tra-

jectory describes a circular motion around the center (x0,y0) with radius rL [6].

2.2.2. Uniform E and B fields with E 6= 0

If we consider a constant and uniform electric field E, the equation of motion is described

by:

m
dv
dt

= q(E+v×B) (2.11)

Let’s consider that the E field lies in the x-y plane and B has only a component in the ẑ direction,

then the solution to velocity in ẑ is given by:

dvz

dt
= 0

vz = vz0

(2.12)

The differential equations for the x and y directions are:

dvx

dt
=

q
m

Ex±ωcvy

dvy

dt
=

q
m

Ey∓ωcvx

(2.13)
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Where the sign depends on the particle’s charge. Differentiating both equations we have:

v̈x =
d2

dt2

(
vx−

Ey

B

)
=−ω

2
c

(
vx−

Ey

B

)
v̈y =

d2

dt2

(
vy +

Ex

B

)
=−ω

2
c

(
vy +

Ex

B

) (2.14)

The solution to this pair of differential equations is:

vx = v⊥ cosωct +
Ey

B

vy = v⊥ sinωct−
Ex

B

(2.15)

The velocity can be separated in two components, one component describes the cyclotron mo-

tion of the particle and the other component can be written as:

vE =

(
Ey

B
,−Ex

B
,0
)

vE =
E×B
‖B‖2

(2.16)

This component is known as the E×B drift, it describes the movement of the gyro-center of the

particle in the direction perpendicular to both fields. This velocity is independent of the mass

and charge of the particle so all species in a plasma will drift in the same direction due to this

effect [6]. To visualize this effect, we can numerically simulate the trajectories of a positive ion

and a negative charge with the ion heavier than the negative charge. We impose a magnetic field

in the ẑ direction and an electric field in the x̂ direction:
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Figure 2.1: Ion (red) and negative (blue) charge trajectories in uniform E and B fields

The drift velocity as predicted in 2.16 is in the ŷ direction and both particles drift in the

same direction. The theoretical value of the E×B drift calculated using equation 2.16 agrees

well with the numerical value determined using COMSOL.

2.2.3. Nonuniform E and B fields with E = 0

In this case the magnetic field is nonuniform, now it has a spatial dependence B = B(x,y,z).

From equation 2.7, since the field depends on the position and the solution to the position of the

particle changes in time, B will have to be recalculated at each time for different coordinates.

Let’s consider that the magnetic field only has a component in the ẑ direction and the variation

of the field occurs in the ŷ direction, then the force is given by:

~F = q(v×B) = q[vyBz(y),−vxBz(y),0] (2.17)

Fy =−qvxBz(y) (2.18)

To find an approximate solution, a perturbative analysis of the magnetic field can be performed.

We make a Taylor expansion of the B field around x0 = 0 and y0 = 0 and replace the solution of
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vx obtained from 2.9:

Fy =−qv⊥ cosωct
(

B0± rL cosωct
∂Bz

∂y

)
(2.19)

To determine the displacement of the gyrocenter we take the average to the expression 2.19:

F̄y =∓qv⊥rL
1
2

∂Bz

∂y
(2.20)

We can express the drift due a general force F as:

vc =
1
q

F×B∥∥B2∥∥ =∓ 1
‖B‖

v⊥rL
1
2

∂Bz

∂y
x̂ (2.21)

Then, the drift due to the gradient of the magnetic field, also called ∇B drift, is calculated as

follows

v∇B =±1
2

v⊥rL
B×∇B
‖B‖2 (2.22)

This drift velocity is generated in the presence of a nonuniform magnetic field and is perpen-

dicular to the direction of the field and the direction of the gradient of the field. Furthermore, it

depends on the sign of the charge, therefore this effect generates charge separation and a current

perpendicular to B [6].

2.2.4. Nonuniform E field

The presence of a spatial dependent electric E field will generate a drift velocity in the

particles of a plasma. The derivation of the drift velocity expression will be avoided, it can be

found in Introduction to Plasma Physics and Controlled Fusion page 35. The nonuniform E

drift has the form:

vE =

(
1+

1
4

r2
L∇

2
)

E×B
‖B‖2 (2.23)
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It is an expression similar to the E×B drift only that there is a correction factor that involves the

charge and mass of the particle. This effect also generates a charge separation between electrons

and ions, hence, a current [6].

2.3. Plasmas as Fluids

The description of plasmas can be separated in two main formalisms. On one hand, it can be

described by solving the particle trajectories and velocities at each time t, and then recovering

the main variables such as density and temperature. However, this approach is almost impossible

to carry out since millions of particles would have to be simulated. On the other hand, plasmas

can be described statistically by taking global and collective variables of each species in the

gas. The evolution of all the species in time can be described by a distribution function that

describes all the particles macroscopic properties in phase space and time. The distribution

function f obeys the following differential equation, also called the Boltzmann equation.

∂ f
∂t

+v ·∇ f +
F
m
·∇v f =

δc f
δt

(2.24)

This equation is the basis for describing all types of plasmas, it captures different types of

phenomena in different range scales [7]. The left-hand side describes the long-range interactions

between particles and the respective fields involved, while the right-hand side describes short

range collisional interactions between particles [8]. To make a simplified model one can take

the first three moments of the Boltzmann equation and describe the system with three main

macroscopic quantities: density, mean velocity and mean energy of the constituent species [9].

Equation 2.24 is applied to each species or type of particle in the gas, so we can represent

the distribution function f as fs, where s indicates the species. The zeroth moment or mass
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equation is obtained by multiplying eq. 2.24 by v0 and integrating throughout the volume.

∫
V

∂ fs

∂t
d3v+

∫
V

v ·∇ fsd3v+
∫

V

F
m
·∇v fsd3v =

∫
V

δc fs

δt
d3v

∂ns

∂t
+∇ ·nsVs = 0

(2.25)

Here ns and Vs are the density and the mean velocity of the species s respectively. The first

moment or momentum equation is obtained by multiplying eq. 2.24 by msv and integrating

throughout the volume.

ms

∫
V

v
∂ fs

∂t
d3v+ms

∫
V

v(v ·∇ fs)d3v+ms

∫
V

v
(

F
ms
·∇v fs

)
d3v = ms

∫
V

v
δc fs

δt
d3v

msns
dVs

dt
= nses

[
E+Vs×B

]
−∇ ·~Ps +

δc~Ps

δt

(2.26)

Here E and B are the electric and magnetic fields that affects all of the species in the plasma and

~Ps is the pressure tensor of the species s. The second moment or the energy equation is obtained

by multiplying eq. 2.24 by the kinetic energy 1
2msv2

s .

ms

2

∫
V

v2 ∂ fs

∂t
d3v+

ms

2

∫
V

v2(v ·∇ fsd3v)+
ms

2

∫
V

v2
(

F
ms
·∇v fs

)
d3v =

ms

2

∫
V

v2 δc fs

δt
d3v

∂Ws

∂t
+∇ ·Qs−E ·Js =

∫
V

1
2

msv2 δc f
δt

d3v

(2.27)

In this case Ws is the kinetic energy density, Qs is the kinetic energy flux and Js is the current

density of the species s [8]. These three equations represent the mass conservation, moment

conservation and energy conservation of the system. A more complicated version of this system

is implemented in COMSOL Multiphysics as part of its computational plasma fluid code [10].
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Chapter III

Numerical Simulations

3.1. Design

The magnetron sputtering system operating at the Materials Science and Renewable Ener-

gies (MatER) laboratory consists of three magnetrons pointing towards a substrate. A magnetron

is a cylindrical shaped device with a pair of electrodes, a refrigeration system to cool down the

temperature of the device and a pair of cylindrical and toroidal shaped magnets. The dimensions

of the magnetrons in the laboratory are approximately 3.15 cm of radius and 8.032 cm of height.

In the following figures we show the schematic construction of the CAD geometry in two and

three dimensions:
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Figure 3.1: CAD design of a magnetron

In red color is shown the electrode connected to the RF power supply of 10-120 W and 13.56

MHz. In blue color is shown the electrodes connected to ground and in gray are the insulator

materials and the refrigeration conducts where the cooling water passes. In orange is shown the

north pole and in green the south pole of the neodymium magnets. To see the components in a

more detailed version we plot the electrodes by separate:

Figure 3.2: Ground Powered Electrodes

On the left we have the external ground electrode, on the right the internal powered electrode

and in black is shown the target material. In the next image we show the magnets in a 3D plot:
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Figure 3.3: Neodymium Magnets

As we are modeling electric and magnetic fields in different mediums, to solve Maxwell’s

equations we require the material properties such as the electrical permittivity and the magnetic

permeability. In the next table we show the values used in the respective simulations.

Material Relative Permittivity (εr) Relative Permeability (µr)

Argon 1.0 0.99

304 Stainless Steel 1.002 1

Teflon 2.1 1

Water 60 1

Silicon 11.7 0.9983

Neodymium 1 1.05

Table 3.1: Table of permittivity and permeability of materials [11]

3.2. Mesh Study

Since we do not have an analytical solution to the system of partial differential equations

that determines the value of the electric and magnetic fields, particle trajectories or the fluid
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equations at each point in the vacuum chamber we must numerically analyze the solutions at

different points and vary the mesh element sizes to statistically establish which is the closest

solution to the real value. As the mesh is a discrete partition of space, it is permissible to think

that reducing the mesh element sizes to the minimum numerical size possible will give the

most accurate solution but, as will be shown, due to numerical stability conditions there is a

minimum mesh element size to which solutions can be acceptable. Other reasons for which it is

not necessary to minimize the partition size are the computational cost, available RAM memory,

hard disk drive (HDD) memory, and the execution time of the model.

We will perform a mesh study in a two dimensional cut of the magnetron sputtering system

and in the full three dimensional geometry. The mesh element size will be varied until seeing

a point where the solutions are independent of the partition size or until the margin of error is

less than a small ε value.

Figure 3.4: Geometry selection around the magnetron

We select a small region of space that surrounds the magnetron, see figure 3.4, because in

this region the mesh will be varied to very small sizes, if we apply the same size to the entire

camera, the study and simulations would take much longer and would be unnecessary. The

solutions to the electric and magnetic fields, and the particle trajectories are more relevant in
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this region, near the target. To have the right description we calculate the solutions for very

small and very large mesh element sizes.

Figure 3.5: Mesh visualization with sizes between (1E-8 m , 9.5E-4 m)

3.2.1. Parametric Sweep

To conduct a mesh study, we use COMSOL’s study option Parametric Sweep for different

mesh element sizes and then analyze the relationship between the size and solutions. We used

160 mesh element sizes between 3.7e-4 m and 0.04 m.

3.2.2. Mesh Study Results

We select several data points in the geometry near the target and evaluate the electric field,

magnetic field, electric potential and the scalar magnetic potential in these points and study their

values as we vary the mesh size.
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Figure 3.6: Geometry points to evaluate electromagnetic variables

We first calculate the electric potential in the data set and vary the mesh element size. Elec-

tric potential values for four points with coordinates (-0.1, 28.5) cm (blue), (0.03, 28.5) cm

(green), (1.68, 28.5) cm (red) and (2.35, 28.5) cm (cyan) in the data set are shown:

Figure 3.7: Electric potential (V) evaluated in four points

As we can observe, the values of the electric potential (V) for mesh size greater than 0.015

m reach an approximately constant value independent of the mesh size with some noise in the

solutions. On the other hand, for values smaller than 0.015 m the values start to drop and the
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error increases. The mean of the standard deviation values of the electric potential evaluated at

all points for mesh sizes smaller than 0.015 m is 0.052 and for values greater than 0.015 m the

standard deviation is 0.013. As we can observe the error decreases for values greater than 0.015

m.

Second, we calculate the electric field in the data set and vary the mesh element size. Electric

field values for four points with coordinates (1.6, 27.4) cm (cyan), (1.58, 27.4) cm (blue), (1.59,

27.4) cm (green) and (1.57, 27.4) cm (red) in the data set are shown:

Figure 3.8: Electric field norm (E) evaluated in four points

In this case, the error as the mesh size decrements increases considerably. From the value

of 0.02 m to 0.04 m the calculations of ‖E‖ remain almost constant. The mean of the standard

deviation values of the electric field norm evaluated at all points for mesh sizes smaller than

0.02 m is 11.5 and for sizes greater than 0.02 m the standard deviation is 0.6.

Third, we calculate the magnetic scalar potential in the data set and vary the mesh element

size. The values evaluated at four points with coordinates (-1.58, 27.8) cm (blue), (-1.59, 27.8)

cm (green), (1.58, 27.4) cm (red) and (1.57, 27.4) cm (cyan) in the data set are shown:
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Figure 3.9: Magnetic scalar potential evaluated in four points

As we can observe, from mesh sizes smaller than 0.02 m the error increases and the values

for the magnetic scalar potential (Vm) drops one decimal point. The mean of the standard devia-

tion values of the magnetic scalar potential evaluated at all points for mesh sizes smaller than

0.02 m is 0.25 and for sizes greater than 0.02 m the standard deviation is 0.05.

In the last case, we compute the magnetic field norm ‖B‖ in every point of the data set

for different mesh sizes. The values evaluated at four points with coordinates (0.17, 28.2) cm

(blue), (0.28, 28.2) cm (green), (0.17, 28.3) cm (red) and (0.17, 28.3) cm (cyan) are shown:
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Figure 3.10: Magnetic field evaluated in four points

As in all previous cases, the numerical noise decreases for mesh size greater than 0.02 m.

The mean of the standard deviation values of the magnetic field norm evaluated at all points for

mesh sizes smaller than 0.02 m is 0.01 and for sizes greater than 0.02 m the standard deviation

is 0.0002. Now we need to determine the mesh size that minimizes the error of the solutions

of the fields at each point of the data set. For this, we will consider that the error range of each

solution is not greater than three times the standard deviation from the mean, in other words,

solutions must be in the range of [µ−3σ,µ+3σ]. In the next figure we show the error of each

variable:
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Figure 3.11: Error of the solutions vs mesh size for the electric potential and the magnetic scalar
potential

We now show the relation between the mesh size and, the execution time and the number

of degrees of freedom. These results were obtained by running the simulations on a computer

with 16 GB of RAM, 500 GB of HDD memory and 2.60GHz of clock speed.

Figure 3.12: Execution time and degrees of freedom vs mesh size

21



Mesh Max
Element Size (mm) 2.0 4.0 10.0 20.0 30.0 40.0

Mesh Min
Element Size (mm) 9.00E-04 1.00E-03 0.5 0.9 1.8 3.0

Number of
Mesh Elements 6.45E6 4.36E6 7.49E5 2.90E5 1.18E5 7.19E4
Execution Time 5h 50min 1h 57min 17 min 5 min 2 min 1 min

Degrees of Freedom 8.63E6 5.83E6 1.0E6 3.89E5 1.59E5 9.68E4
Memory (GB) 9.53 8.72 5.47 3.37 2.69 2.56

Table 3.2: Table of mesh study parameters and results

As we can observe the execution time of the model with a mesh maximum size of 2.0 mm

can take up to 5 hours and 50 minutes while using a mesh maximum size of 40.0 mm can take

1 minute. Additionally, the HDD file size drops from 9.53 GB to 2.56 GB, HDD size saving is

an important parameter to consider in the selection of the mesh size and distribution. With this

information we can calculate the optimal maximum and minimum element sizes for modeling

the magnetron system. From the margin of error established the optimal maximum mesh size

calculated is 20.0 mm. This size will be used in all the simulations presented in this work. The

final mesh used is shown in the following figure:

Figure 3.13: Final mesh size

The color in figure 3.13 represents a measure of how much the angles in each tetrahedral
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element deviates from a regular tetrahedron. This measure, represented by a number between

0 and 1, indicates the quality of the mesh element, with 0 representing the worst quality and 1

the best quality. This parameter is important to validate the simulation results and get accurate

results [12, 13].

3.3. Results

The mesh element type that was used to discretize the geometry was the free tetrahedral

default option. It is the simplest type of element that can adapt to any type of geometry. Once

the mesh element type, optimal minimum mesh size and maximum mesh size are determined

we calculate the electric potential, electric field, magnetic field, particle trajectories and particle

velocity distributions.

3.3.1. Electric Potential and Electric Field

As shown in figure 3.1 the internal structure of the magnetron is connected to a radio-

frequency source operating at 13.56 MHz with a power range from 20 W to 110 W and the

maximum voltage that the electrode generates is 195 V. So, the boundary condition we establish

to describe the electric potential is

V(t) = 195cos(ωRFt), ωRF = 2∗π∗13.56 MHz (3.1)

For a two dimensional cut of the magnetron at a time t = 0, the electric potential has as a

symmetric spatial distribution shown in figure 3.14.
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Figure 3.14: Electric potential distribution

In color is shown the value of the electric potential and some equipotential curves are plotted

with their respective values. Near the cathode, the electric potential is near 195 V and as the

distance from the target increases the electric potential decreases. On the other hand, we plot

the electric potential and the electric field vector distribution in figure 3.15.

Figure 3.15: Electric field distribution

24



3.3.2. Magnetic Field

To calculate the magnetic field generated by the pair of permanent neodymium magnets we

define a magnetization vector for the internal and external magnets. The internal magnet has a

value of

M = (0,0,650)
kA
m

(3.2)

The external magnet has a value of

M = (0,0,−650)
kA
m

(3.3)

Both magnets have the same magnetization value in different directions so that the magnetic

field is closed and the electron trap region can be simulated. For a two dimensional cut of the

magnetron, the simulation results are shown in figure 3.16.

Figure 3.16: Magnetic field norm distribution

In color scale the magnetic field norm distribution is plotted and in arrows the magnetic field

direction and magnitude. In the surface and interior of the magnets the magnetic field has a top

value of 0.7 T and in the surface of the target, located between coordinates (-0.01925, 0.27382)
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m and (0.01925, 0.27382) m the magnetic field has a peak value of 0.055 T.

3.3.3. Particle Trajectories

Charged particle motions as mentioned in Chapter 2 are modeled by the Lorentz force, in

which the electric field and magnetic field present in equation 2.6 are calculated by the mag-

netron’s electrodes and magnets [6]. The first and more simple approach to model the Argon

ion and electron motions present in the sputtering plasma is to ignore the collisions between

the electrons and ionized argon atoms with the background gas (Argon) and also ignore the

recalculation of the electric and magnetic fields due to the current and charge densities of the

particles in the plasma [8].

The first approach consists in calculating the electric and magnetic field spatial distributions

generated by the magnetron and then the electron trajectories. Since the electron mass is about

104 times more lighter than Argon ions mass, the mean velocity of electrons is many orders

of magnitude higher than of Argon and the Larmor radius is much larger for ions, so it is not

suitable to simulate both particles simultaneously [14, 15]. We reproduced the electron trap

region in our simulation, in figure 3.17 we show the result at time t = 1.39E-7s. The electron

trap, a region where electrons are confined because of the magnetic field, is formed due to the

E×B drift, both the electric and magnetic fields are perpendicular, so a drift velocity in the

azimuthal direction is generated in the surface of the target. Hence an azimuthal electric current

is generated due to the Hall effect [16].
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Figure 3.17: Electron transport in the surface of the target due the Hall Effect

To visualize this effect in a more detailed way, figure 3.18 shows the Poincaré map of the

electron trajectories. We performed a 2D plane cut in the x-y axis at z = 0.276 m. The Poincaré

map shows the coordinates of the particles in the plane at all time steps smaller than t = 1.47E-7

s.

Figure 3.18: Cut plane at z = 0.276 m and the Poincaré map of electron trajectories

The dots in the Poincaré maps are the result of a simulation of 10000 electrons with random
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initial velocities and positions near the target. The electrons travel in an azimuthal direction in

the magnetic trap region. This effect is of great importance in the sputtering technique because

the free electrons generated at the target surface, in the magnetic trap region, collide multiple

times with the background gas and ionize a large number of neutral particles that are responsible

of the collisions with the target material [2].

For the second approach or level of complexity in the particles simulations, we will consi-

der the collisions between electrons and the background gas, in this case Argon. Three types

of collisions have been taken in consideration: Elastic collisions, excitation and ionization. In

table 3.3 we show the three collisions processes and the energy loss for each reaction.

Reaction Type Energy Loss (eV)

Ar + e→ Ar + e Elastic Collision 0.0

Ar + e→ Ar* + e Excitation 11.548

Ar + e→ Ar+ + 2e Ionization 15.80

Table 3.3: Collision types considered in the particle simulation [17]

The first type of collision is the elastic collision, an electron collides with a neutral Argon atom

and changes direction, but the internal energies of the particles are not modified in the process.

The other two reactions are called inelastic collisions, in these cases the total kinetic energy

after the reaction is less than the initial total kinetic energy. In the case of the excitation reaction

an electron collides with an Argon atom, changes direction and some energy is transferred

to the ion leading to loss of electron energy. The third process is the ionization collision, the

electron collides with an Argon atom, an ionized particle and a second electron are produced,

with momentum energy transfer [18].

To model numerically the atomic collisions the cross section parameter must be taken into

account. This parameter describes the effective area of the particle-particle interaction and de-

pends on the angle of incidence and incident particle energy [18]. For this simulation, the cross

sections for Argon as a function of the incident electron energy have been calculated and used
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from a validated free online resource [19]. In figure 3.19 the cross sections are shown for each

reaction as a function of the incident electron energy.

Figure 3.19: Argon cross sections for elastic, excitation and ionization reactions [19]

In the case of the elastic collision, the electron has a wider range of energies for which it

can interact. This is due to the fact that no energy is transferred in the collision, so there is no

need of a threshold value to excite certain quantum state in the target atom. In the case of the

excitation and ionization a minimum electron energy is required to carry out the reaction [18].

The algorithm for determining the probability of a collision taking place is called the Monte

Carlo collision method. This method consists in considering that a particle of species s, in

this case an electron, has N possible collisions, three collisions in this case, with the target or

background species. For the ith incident particle the kinetic energy is determined by

εi =
1
2

msv2
i (3.4)

Then, this energy is required to calculate the total cross section

σT (εi) =
N

∑
k=1

σk(εi) (3.5)
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The total cross section is the sum of all the individual cross sections considered in the simula-

tion. Here, σk(εi) for 1 ≤ k ≤ N is the kth type of reaction between the incident species s and

the background species. Taking into account the distance ∆si = vi∆t that the incident particle

has traveled in the time step ∆t, the collision probability between the incident particle and the

target species is calculated as follows

Pi = 1− exp(−vi∆tσT (εi)nt(xi)) (3.6)

Where nt(xi) is the background density as a function of the position. A uniformly distributed

random number U in the interval (0,1) is generated, if U ≤ Pi the collision occurs and then

another random number is generated to determine the type of collision [20, 21].

In the following simulation, the three magnetrons have been built and positioned with ap-

proximate measurements taken at the laboratory. The electric and magnetic field spatial dis-

tributions have been calculated and 120’000 electrons have been introduced in the simulation.

Elastic collisions, excitation and ionization reaction functions have been considered. The data

points were calculated using the open-access website LXCat, an open source project develo-

ped to model low temperature plasmas [19]. Then, the extracted points have been interpolated

to obtain three continuous functions. The background number density considered is a constant

value of nBG = 1E15 1/m3 and the simulation runs until t = 2.95E-7 s, equal to the time of four

RF cycles. More simulation time leads to exceedingly high execution time and a lot of RAM

memory occupation. In figure 3.20 is shown the geometry of the three magnetrons.
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Figure 3.20: System of three magnetrons

In the real design developed at the laboratory each magnetron is inclined at an angle of

25 degrees above the horizontal plane and are positioned symmetrically. On top of the three

magnetrons is positioned the substrate where the sputtered material is deposited. In this design

and simulation, the substrate has not been considered, only the magnetrons and the effect in the

electron trajectories. In figure 3.21 is shown the electron velocity distribution at final time t =

2.95E-7 s.

31



Figure 3.21: Electrons velocity distribution

Electrons are initially randomly positioned throughout the domain with initial velocities

normally distributed with mean 0 m/s and standard deviation of 10’000 m/s. Electrons suffer

different types of collisions depending on their kinetic energies at each time step. The effect of

collisions in each electron is a discrete discontinuity in the velocity and position of the electron

leading to a stochastic random walk [21]. As seen in the velocity distribution plot, fig 3.21, at

a final time the distribution has a peak at a velocity of electrons of v = 1.2E5 m/s or energy

equivalent to E = 0.04 eV. Comparing this value to figure 3.19 most of the electrons in the

simulation do not have sufficient energy to ionize or excite Argon atoms, only sufficient energy

to collide elastically with the background gas. In a more complicated simulation, more effects

like the electric potential recalculation and the magnetic field recalculation has to be taken into

account.

3.3.4. Fluid simulation of a capacitively coupled plasma

A capacitively coupled plasma (CCP) is a type of low temperature plasma that is generated

by the discharge of an inert gas like Argon or Neon between a pair of electrodes. Typically,

one electrode is powered by a sinusoidal radio frequency source and the other is connected to
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ground. Both electrodes are circular plates separated by a gap in the range 0.5 ≤ dgap ≤ 4 cm,

typical radio frequency operations are in the range of 1≤ fRF ≤ 100 MHz and voltage power in

the range of 50 V ≤V0 ≤ 100 kV. The size and pressure of the chamber plays an important role

in the electron dynamics inside the plasma, with high pressure, electrons have less mobility due

to collisions and all the energy is deposited in the bulk region [22]. Magnetrons have a similar

discharge, however in this case a static magnetic field is applied to confine the plasma near the

target [15]. Figure 3.22 shows the schematic design of a CCP, the top electrode is connected

to ground and the bottom electrode is connected to the RF-generator, the whole system is in

a vacuum and a gas mixture is injected, in the center is located the bulk region and near the

electrodes a plasma sheath is formed [22].

Figure 3.22: Diagram of a CCP [22]

One theoretical approach to model these types of plasmas is by the use of a computational

fluid model. In section 2.3 the basic equations are described and are the ones implemented in

COMSOL’s Plasma Module [10]. A 1D simulation have been performed in order to validate and

study the properties of the CCP. The geometry consists in a line cut through the plasma where

each end of the line is connected to each electrode as shown in figure 3.22. The bottom end of the

line is the contact connected to the RF source and the top end of the line is the contact connected

to ground. The initial conditions and chamber parameters that have been considered are an

electrode gap of dgap = 2.5 cm, electrode disk radius of relectrode = 15 cm, radio frequency power
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of fRF = 13.56 MHz, pressure of p0 = 133 Pa, initial gas temperature of T0 = 300 K, applied

power of 80 W and initial electron density of 1E14 1/m3. The three main reactions considered

between Argon and electrons in the simulation are specified in table 3.3 and in figure 3.19. To

solve the system of equations of a RF CCP the equations must be solved for a large integration

time, in the order of 10000 cycles. To address this problem, COMSOL approaches the solution

by solving the system of equations in the frequency domain, all solutions are the result of the

average over one period or cycle [10].

Figure 3.23 shows the results of the electron density profile as a function of the distance

between the electrodes.

Figure 3.23: Electron density profile as a function of the distance

As can be seen near the electrodes, the density drops to zero and in the center region the

density increases. This occurs because electrons traveling from one electrode to another lose all

their energy in the bulk region through collisions, therefore, a higher density and accumulation

of electrons is generated in the center [23]. In figure 3.24 is shown the electron temperature

profile.
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Figure 3.24: Electron temperature profile as a function of the distance

As can be seen, near the electrodes the electron temperature increases up to 9 eV, and in

the center it drops to 2.5 eV. This happens because near the electrodes the electric field is

higher due to the change in voltage, so electrons have higher kinetic energy in these regions.

While traveling to the central region they lose all their energy through collisions, therefore their

temperature drops [23]. Finally, in figure 3.25 the electric potential in blue (left y-axis) and the

electric field in green (right y-axis) profiles are shown.

Figure 3.25: Electric potential and electric field profiles as a function of the distance

As can be seen from the figures, near the electrodes the potential drops to zero, in the top

end of the chamber, due to the ground voltage value of 0 V and in the bottom end of the chamber

because the average voltage in a period of one RF cycle is 0 V. In the center the potential takes
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the value of the plasma potential. The region where the potential gradient or the electric field

starts to increase or decrease is called the plasma sheath region, this region forms because of

the difference in the density of electrons and positive ions. Electrons as shown in figure 3.23

accumulate in the center region of the chamber, this generates a large charge separation between

the center and the extreme sides, therefore an electric field is formed.
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Chapter IV

Conclusions

In the present project the finite element method has been implemented to solve the electric

field, electric potential, magnetic field and magnetic scalar potential distributions of a magne-

tron system design at the MatER laboratory of the Pontificia Universidad Católica del Perú.

The numerical simulation has taken into consideration the corresponding initial conditions and

boundary conditions necessary to solve Maxwell’s equations and a numerical error study has

been carried out in order to minimize the error in the solutions and optimize the solution time.

The solutions for the fields were used later to calculate the electron trajectories by the use

of the Lorentz force and a Monte Carlo collisions method. The effect of the magnetic trap

near the target was recovered and the electron velocity distribution (EVD) was calculated. On

the other hand, more complicated simulations can be performed, for instance, considering ions

and electrons in the simulation and taking into account the particle-particle interaction and the

particle-field interactions. Due to the difference in mass and velocities, running a simulation that

considers both particles will require a very small step size to recover the electron trajectories

and a large integration time to recover the ion dynamics, leading to a large number of calcu-

lations and computational power. Nevertheless, important physics phenomena and insights can

be recovered through the use of particle tracing simulations.

Finally, to study the computational fluid model of a plasma, a simulation of a capacitively
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coupled plasma was developed. By studying this system, basic properties of a two-electrode

system were recovered, such as the electron density, the electron temperature and the electric

potential distributions. These basic results are a starting point for more complicated simulations

in two or three dimensions, taking into account the magnetic field of the magnetron and the

complicated geometry configuration.

In conclusion, the finite element method implemented in COMSOL Multiphysics is a sui-

table and powerful method to obtain fast and validated computational results from complicated

physical systems. The use of this tool can lead to very good approximate results to obtain the

electric potential, magnetic field and its effect on charged particles generated by very detailed

devices, or to perform plasma simulations that can later be corroborated with rigorous experi-

ments.
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