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ABSTRACT 

 

There is nowadays an important trend in the habits of human food consumption in 

which natural, healthy, ready-to-eat and safe elaborates are required. An example of this 

trend is the development of fresh-cut or minimally processed fruit and vegetables. 

Legumes are an excellent source of many essential nutrients, including proteins and 

aminoacids, minerals, fiber, vitamins, slow-assimilation carbohydrates and other 

bioactive compounds, and are low in calories and fat. However, the bioavailability of 

some nutrients can be reduced by several legume compounds, which are considered to 

be antinutritional compounds. Nevertheless, such compounds have also been reported to 

have beneficial health properties. Therefore, the consumption of legumes should be 

promoted by looking for new ways of presentation in where the product can be 

consumed fresh and cooked in a suitable container.  

 

Legumes are usually consumed as fresh seeds. However, different cooking methods can 

also be used. This food preparation may cause changes in texture, colour, flavour, or 

bioactive content. One of these methods is microwave cooking, in which a healthy 

product could be obtained in a short time without loosing quality.  

 

One of the most critical steps in the development of fresh-cut products is disinfection. 

Although the use of NaOCl is widespread in the industry due to its antimicrobial 

activity and low cost, it is examined due to the appearance of toxic by-products. 

Therefore, the study of alternative sanitizing methods is necessary. Others disinfectants, 

like acidified sodium chlorite (ASC) have been largely applied for the prevention of 

enzymatic and non-enzymatic browning and, in less extent, to reduce microbial growth 

at levels that did not adversely affect the sensory quality. Furthermore, UV light can 

also be an alternative, useful for superficial decontamination, because UV light acts as 

an antimicrobial agent directly by damaging the microbial DNA and indirectly due to 

the stimulation of defence mechanisms in vegetables against pathogens, retarding decay 

and delaying senescence. In addition, edible antimicrobial films or coatings can avoid 

enzymatic browning and improve quality, safety, shelf life and functionality of food 

products by reducing moisture transfer, respiration rate and oxidative processes, while 

minimizing both spoilage and pathogenic microorganisms. 
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The general objective of this Thesis was to optimize processing steps to develop new 

fresh and processed foods from native varieties of three legumes species (faba beans, 

peas and cowpeas). Such legumes are well adapted to several European climates and 

with high nutritional quality and high content in bioactive compounds. In that way, food 

of local origin with high protein content could be easily included in the human diet.  

 

For fresh produce disinfection, the effects of NaOCl (100 ppm) or alternatively ASC 

(300 ppm) stored under modified atmosphere packaging at 1 or 4ºC, on quality of fresh-

cut immature pea seeds were evaluated. Disinfection with ASC resulted in better 

sensory quality, higher content of vitamin C and lower psychrofiles counts. Immature 

pea seeds could be stored up to 14 days at 1–4ºC under MAP with only minor quality 

changes.  

 

Subsequently, the effect of different sanitizers (NaOCl (150 ppm), NaOCl + an edible 

coating based of sucrose fatty acid esters (EC) and UV–C (3 kJ m
-2

, 90s)) on quality 

changes of minimally processed faba seeds stored for 10 days at 4ºC were studied. 

Periodically, samples were microwaved (700 W, 1 min) to obtain a ready to eat food. 

The EC treatment showed a positive effect on vitamin C, total phenolics content and 

tannins content retention, whereas UV-C treated samples showed the highest sugars 

content values. Additionally, EC or UV-C treatments extended the shelf life of fresh-cut 

faba seeds from 7 to 10 days at 4ºC regarding NaOCl treatment. As expected, 

microwaving decreased the concentration of bioactive compounds, but retained the 

quality of faba seeds allowing to obtain a ready to eat tasteful food. 

 

Furthermore, the quality of fresh-cut cowpea, prepared to be eaten raw (immature seeds) 

or microwaved (seeds and pods), was also evaluated. Fresh cowpea pods were washed 

with NaClO (150 ppm, pH 6.5, 2 min, 4ºC) and stored for 21 days at 8°C under 

modified atmosphere packaging (23 kPa CO2/1.5 kPa O2 and 19 kPa CO2/1.2 kPa O2). 

Additionally, seeds obtained from hulled pods were also disinfected, packaged and 

stored for 7 days at 4ºC. Total phenolic content (TPC), total equivalent antioxidant 

capacity (TEAC), sugars and sensory attributes, were evaluated. TPC and TEAC 

increased after microwaving (700 W, 1 min) for both seeds and pods. Concentration of 

sucrose and glucose increased after microwaving, while raffinose was not detected after 

cooking. According to sensory quality, fresh and microwaved seeds maintained all the 
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evaluated attributes above the limit of usability after 7 days at 4ºC, while pods were 

edible up to 14 days at 8ºC. 

 

Finally, the effects of a UV-C treatment (3 kJ m
-2

), compared with non-illuminated 

beans, were studied on the sensory and microbial quality and bioactive and anti-

nutritional content of fresh-cut and then microwaved faba beans. UV-C treatment 

extended the fresh-cut faba bean shelf life from 7 to 10 days at 5ºC. Nevertheless, UV-C 

improved the condensed tannins reductions through storage compared with non-

irradiated samples. Microwaving reduced the phytic acid and condensed tannins 

contents.  

 

Since the general objective of this research is to optimize several processes to develop 

new fresh and processed foods from  native varieties of three legume species (faba, pea 

and cowpea), to stimulate the consumption of these in the daily human diet, both for 

fresh and microwave consumption, It can be said that with the use of various minimal 

processing techniques using NaOCl alone or in combination with edible coatings, or 

alternatively with chemical (ASC) or physical (UV-C) disinfectants, vegetable products 

with high nutritional quality and  high content of bioactive compounds, fresh and ready 

to eat, can be obtained. 
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RESUMEN 

 

Hoy en día existe una importante tendencia en los hábitos de consumo caracterizada por 

una demanda creciente de  alimentos naturales, más sanos, listos para el consumo y 

seguros. Un ejemplo de esta tendencia es el desarrollo de frutas y hortalizas 

mínimamente procesadas. Dentro de estas últimas, las legumbres son una excelente 

fuente de muchos nutrientes esenciales, incluyendo proteínas y aminoácidos, minerales, 

fibra, vitaminas, carbohidratos de asimilación lenta y otros compuestos bioactivos, y 

son bajas en calorías y grasas. Sin embargo, la biodisponibilidad de algunos nutrientes 

puede verse reducida por diversos compuestos presentes en las legumbres, considerados 

como compuestos antinutricionales. No obstante, muchos de estos compuestos también 

han sido identificados como beneficiosos para la salud. Por lo tanto, se debe promover 

el consumo de legumbres buscando nuevas formas de presentación en las que el 

producto pueda consumirse fresco y además poder cocinarse en un envase adecuado.  

 

Las legumbres se consumen generalmente en forma de semillas frescas, como productos 

mínimamente procesados. Sin embargo, también se pueden utilizar diferentes métodos 

de cocción. Esta preparación de alimentos puede causar cambios en la textura, color, 

sabor o en el contenido de compuestos bioactivos. Uno de estos métodos es la cocción 

en microondas, en la que se puede cocinar un producto sano en poco tiempo sin perder 

mucha calidad.  

 

Uno de los pasos más críticos en el desarrollo de los productos mínimamente 

procesados es la desinfección. Aunque la utilización del hipoclorito sódico (NaOCl) 

está muy extendida en la industria debido a su actividad antimicrobiana y su bajo costo, 

su uso se encuentra en entredicho debido a la formación de subproductos tóxicos. Por lo 

tanto, es necesario el desarrollo de métodos alternativos de desinfección. Otros 

desinfectantes, como el clorito sódico acidificado (ASC), se han aplicado ampliamente 

para la prevención del pardeamiento enzimático y no enzimático y, en menor medida, 

para reducir el crecimiento microbiano a niveles que no afecten negativamente al sabor 

y el aroma de los productos vegetales. Además, la utilización de luz UV también puede 

ser una alternativa al NaOCl, ya que es efectiva para la descontaminación superficial, 

debido a que actúa como agente antimicrobiano tanto directamente, dañando el ADN 

microbiano, como indirectamente debido a la estimulación de los mecanismos de 
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defensa de las hortalizas contra los patógenos, retardando la descomposición y 

retrasando la senescencia. Así mismo, las películas o recubrimientos antimicrobianos 

comestibles pueden evitar el pardeamiento y mejorar la calidad, la inocuidad, la vida 

útil y la funcionalidad de los productos alimenticios al reducir la transferencia de 

humedad, la frecuencia respiratoria y los procesos oxidativos, al tiempo que se reducen 

al mínimo tanto el deterioro como los microorganismos patógenos. 

 

El objetivo general de esta investigación fue optimizar los principales procesos para 

desarrollar nuevos alimentos frescos y procesados a partir de variedades nativas de tres 

especies de leguminosas (habas, guisantes y caupí), bien adaptados a  diferentes climas 

europeos y con alta calidad nutricional y alto contenido en compuestos bioactivos. De 

este modo, alimentos ricos en proteína de origen local podrían ser incorporados más 

fácilmente a la dieta, mejorando asó la diversidad de las zonas productoras.  

 

En este trabajo se evaluaron los efectos de la desinfección con NaOCl (100 ppm) o 

alternativamente con clorito sódico acidificado (ASC) (300 ppm), y el envasado en 

atmósfera modificada pasiva (MAP) a 1 o 4ºC, sobre la calidad general de las semillas 

de guisantes inmaduras mínimamente procesadas. La desinfección con ASC resultó en 

una mejor calidad sensorial, un mayor contenido de vitamina C y un menor recuento en 

recuento de psicrófilos. Las semillas de guisantes inmaduras pueden almacenarse 

durante 14 días a 1-4ºC bajo MAP, con leve impacto en su calidad. 

 

Posteriormente, se estudió el efecto de diferentes desinfectantes (NaOCl (150 ppm), 

NaOCl + recubrimiento comestible a base de ésteres de ácidos grasos de sacarosa (EC), 

y UV-C (3 kJ m
-2

, 90s)) sobre los cambios de calidad de las semillas de haba 

mínimamente procesadas almacenadas durante 10 días a 4ºC. Periódicamente, las 

muestras se cocinaron en microondas (700 W, 1 min) para obtener un alimento listo 

para el consumo. El tratamiento con EC mostró un efecto positivo sobre la vitamina C, 

el contenido total de fenoles (TPC) y la retención del contenido de taninos, mientras que 

las muestras tratadas con UV mostraron los valores más altos de contenido en azúcares. 

Además, los tratamientos de EC y UV extendieron la vida útil de las semillas de haba 

mínimamente procesadas de 7 a 10 días a 4ºC con respecto al tratamiento con NaOCl. 

Como era de esperar, el microondas redujo la concentración en compuestos bioactivos, 
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pero mantuvo la calidad de las semillas de haba, lo que permitió obtener un alimento 

sabroso listo para consumir. 

 

Otro de los objetivos de este trabajo fue evaluar la calidad de caupí mínimamente 

procesado listo para su consumo en crudo (semillas inmaduras) o cocinado en 

microondas (semillas y vainas). Las vainas de caupí frescas se lavaron con NaOCl (150 

ppm) y se almacenaron durante 21 días a 8°C bajo atmósfera modificada (23 kPa 

CO2/1.5 kPa O2 and 19 kPa CO2/1.2 kPa O2), mientras que las semillas también fueron 

desinfectadas, envasadas y almacenadas durante 7 días a 4ºC. Se evaluó el TPC, la 

capacidad antioxidante equivalente total (TEAC), los azúcares y la calidad sensorial. El 

TPC y el TEAC aumentaron sus concentraciones después del cocinado con microondas 

tanto para las semillas como para las vainas. La concentración de sacarosa y glucosa 

aumentó después del microondado, mientras que la rafinosa no se detectó después de la 

cocción. Con respecto a la calidad sensorial, las semillas frescas y microondadas 

mantuvieron todos los atributos evaluados por encima del límite de aceptabilidad 

después de 7 días a 4ºC, mientras que las vainas fueron comestibles hasta 14 días a 8ºC. 

 

Finalmente, se estudiaron los efectos del tratamiento UV-C (3 kJ m
-2

), en comparación 

con semillas no tratadas, sobre la calidad sensorial y microbiana, y el contenido 

bioactivo y de antinutricionales de las semillas de haba mínimamente procesadas en 

fresco y cocinadas en microondas. El tratamiento UV-C extendió la vida útil de las 

semillas de haba frescas de 7 a 10 días a 5ºC. Además, el UV-C redujo la concentración 

de taninos condensados en comparación con las muestras no irradiadas. Así mismo, el 

cocinado con microondas redujo el contenido de ácido fítico y de taninos condensados. 

 

Teniendo en cuenta que el objetivo general de esta investigación es optimizar varios 

procesos para desarrollar nuevos alimentos frescos y procesados a partir de variedades 

nativas de tres especies de legumbres (habas, guisantes y caupí), para estimular el 

consumo de éstas en la dieta humana diaria, tanto para su consumo en fresco como 

microondado, se puede decir que con el uso de diversas técnicas de procesamiento 

mínimo utilizando NaOCl solo o en combinación con recubrimientos comestibles, o 

alternativamente con desinfectantes químicos (ASC) o físicos (UV-C), se pueden 

obtener productos vegetales con alta calidad nutricional y alto contenido de compuestos 

bioactivos, frescos y listos para consumir. 
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INTRODUCTION  

 

1. BOTANICAL AND AGRONOMICAL CHARACTERISTICS OF FABA 

BEANS, PEAS AND COWPEA 

 

1.1. Faba beans 

Faba bean (Vicia faba L.) is a legume originated in western Asia, from where it was 

spread to Europe, Africa and central Asia by humans. This legume has been known 

since Neolithic and served as food for the Mediterranean basin. In northern countries, it 

was later used in the bronze and iron age.  It is an annual plant, not very resources 

demanding and highly productive. It presents wide morphological diversity and the 

different cultivars show these variations. The seeds (1-3 cm diameter) are oblong to 

ovoid in shape (Figure 1). The color of the seeds ranges from brown to red or green. 

They are typical plants of warn zones for autumn and winter crops and in cold ones they 

must be sown in spring (Leguminosae, 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Plant of Vicia faba (in Otto Wilhelm Thomé, Flora von Deutschland, 

Österreich und der Schweiz, 1885). 
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To obtain seeds aimed for fresh consumption, the pods must be harvested at their 

optimum stage, before they become too lignified. Pods must be around 20 cm long, 1.5 

cm thick, bright green, fresh in appearance and without very pronounced bumps that 

would indicate over-maturity (Figure 2). Seeds must be attached to the pod and when 

separated from each other they must show a green hilium (the presence of black color 

indicates over-maturity). The seeds must be soft and should have a testa with little 

amount of fiber (Leguminosae, 2012). 

 

Faba bean is widely grown for its nutritious seeds and pods. As well as being an 

important food source for humans, the high protein content of faba beans means that it 

is used for animal feed. The area of production of faba beans in Spain was 22.800 ha in 

2019, with a total production of 31.000 t (MAGRAMA, 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2. Peas 

Peas (Pisun sativum L.), a very polymorphic specie that appeared in the Mediterranean 

or in the Middle East. Quoted by Columela, the roman empire´s main agricultural 

popularize, there are traces of its non-domesticated consumption by hunter-gatherers 

from Central Europe during the late Neolithic period. Peas, like many legumes, have the 

Figure 2. Flowers (left) and pods (right) of Vicia faba  
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ability to fix nitrogen from the air through a symbiotic relationship with bacteria housed 

in root nodules. 

 

Pisum sativum L. is a climbing annual plant, with pods oblong-obovate, whitish or 

yellowish when ripe, and with 6-10 globular seeds in each pod (Figure 3), harvested, for 

fresh consumption at immature physiological stage, when the pods are almost round and 

with the seeds 70% of full size. Their quality indices include that peas should be 

uniformly bright green, fully turgid, clean and free from any damage (Anurag et al., 

2016) 

 

The cultivated area of peas in Spain was 144.900 ha in 2018, with a production of 

174.000 t (MAGRAMA, 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Plant of Pisum sativum (in Otto Wilhelm Thomé, Flora von Deutschland, 

Österreich und der Schweiz, 1885). 

 

 

1.3. Cowpea 

Cowpea (Vigna unguiculata L.) was first domesticated in West Africa 5.000-6.000 

years ago and was introduced to Europe around 300 b.C. The Spanish introduced 
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cowpea to tropical America in the 17
th

 century and now is grown widely in USA, the 

Caribbean region and Brazil. Cowpea can be either annual or perennial plant and some 

types are erected while other are climbing plants (Figure 4). Their fruits are cylindrical 

seeds with 8 to 30 cm long pods (in some cases 120 cm long), pale brown when ripe and 

bears 8-30 seeds. The seeds are oblong to globose 0.5-1 cm long and can be black, 

brown, pink or white (Figure 5). The helium is oblong, covered by a white tissue with a 

blackish edge. It is considered a rustic and resistant plant, mainly due to its tolerance to 

drought, pests and fungi and not very demanding in fertilizers (Carvalho et al., 2017).  

 

Cowpea can be harvested at three different stages of maturity: a) green snaps, b) green-

mature, and c) dry. Depending on temperature and fresh-market demand, peas are ready 

for harvest 16 to 17 days after bloom (60 to 90 days after planting). Cowpea 

characteristics vary widely being the grain size the most important single factor 

influencing price. 

 

Figure 4. Plant of Vigna unguiculata (http.bibdigital.rjb.csic.esspaindex.php) 



                                                                                                                                       INTRODUCTION 

5 
 

 

  

2. NUTRITIONAL, BIOACTIVE AND NON-NUTRITIONAL COMPOSITION 

OF FABA BEANS, PEAS AND COWPEA 

 

2.1. Nutritional compounds of legumes 

Legumes have been an essential part of the human diet for centuries. They are quite 

similar in their composition but they vary in compounds concentration among different 

pulse species and varieties (Table 1). They are an excellent source of many essential 

nutrients, including proteins and aminoacids, minerals, fiber, vitamins, slow 

assimilation carbohydrates and other bioactive compounds, and are low in calories and 

fat (Dahl et al., 2012; Bouchenak et al., 2013; Singh et al., 2017). They are considered 

nutritionally recommended considering their composition. For that reason, legumes 

should be consumed as a part of a healthy diet to combat obesity and to prevent diseases 

like diabetes, heart disease and cancer (Tharanathan et al., 2003; Trinidad et al., 2010). 

 

 

 

 

 

 

 

Figure 5. Flowers (left), fresh pods (centre) and dry pods (right) of Vigna unguiculata L. 
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Table 1. Main constituents of faba beans, peas and cowpea. Data obtained from the 

USDA-ARS (2018). 

 

 

 

 

 

 

 

 

However, the consumption is limited due to the presence of a series of non-nutritional 

compounds (Table 2) that could adversely affect the digestibility of proteins and 

carbohydrates, interfering with mineral bioavailability, inhibiting some enzymes, 

making nutrients unavailable, producing intestinal gas and can also be toxic in some 

cases (Bouchenak et al., 2013). These compounds have historically been known as 

‘antinutritional factors’. Nevertheless, nowadays, there are evidences that they can play 

Constituents 
Content (per 100 g

-1
 fw) 

FABA BEANS PEAS COWPEA 

Energy (kcal) 50.4 90.7 116 

Water (g) 85.1 76.0 80 

Proteins (g) 5.4 6.9 7.73 

Carbohydrates (g) 4.2 11.3 20.76 

Fibre (g) 5.1 4.9 6.5 

Fats (g) 0.2 3.6 0.53 

Vitamins    

Vitamin B1 (mg) 0.2 0.29 0.202 

Vitamin B2 (mg) 0.1 0.16 0.055 

Vitamin B3 (mg) 4.1 4.1 0.495 

Vitamin B6 (mg) 0.06 0.17 0.1 

Vitamin C (mg) 24 21.9 2.5 

Vitamin E (mg) 0.46 0.23 0.28 

Vitamin K (µg) 43 29 1.7 

Minerals    

Ca (mg) 23 25.4 24 

Fe (mg) 1.8 1.9 2.51 

Mg (mg) 28 32.2 53 

Zn (mg) 0.9 0.7 1.29 

Na (mg) 18  2  4  

K (mg) 210  247  278  

P (mg) 98  113  156  

Mn (µg) 0.22  0.35  0.475  
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a beneficial role for human health when they are consumed in the right proportion and 

frequency (Singh et al., 2017). Therefore, in recent times these compounds are also 

known as ‘non-nutritive’ or ‘non-nutritional’ factors’. 

 

Some of these substances play an important role in plant defence mechanisms or as 

reserve compounds. They also provide several biological properties including 

antioxidant, anti-inflammatory, anti-atherogenic and antimicrobial effects (Balasundran 

et al., 2006). In essence, non-nutritional factors in pulses can potentially have beneficial 

effects in human health.  

 

Table 2. Main non-nutritive factors of faba beans, peas and cowpea and their effect on 

humans. 

NON-

NUTRITIONAL 

FACTOR 

PHYSIOLOGYCAL 

EFFECTS 
BENEFITS 

CONCENTRATION 

(in faba beans) 

SAPONINS 

- Decreases nutrient 

absorption 

- Depression of growth 

- Antimicrobial effect 

- Decreases cholesterol 

concentration 

- Positive effect on the 

intestinal tract 

0.4 g 100 g
-1

 

Savage and Deo (1989) 

TANNINS 

- Decreases availability 

of minerals, proteins 

and starch 

- Antioxidant activity 

- Decreased blood glucose 

concentration 

- Antimicrobial effect 

5 - 10 g kg
-1

 

Vilariño et al. (2009) 

RAFFINOSE 
- Gas formation in the 

colon 

- Prebiotic effect 

- Increased solubility of 

minerals 

4.03 mg g
-1

 

Goyoaga et al. (2011) 

PHYTIC ACID 

- Decreases availability 

of minerals, proteins 

and starch 

- Toxic metal bonding 

- Delayed glycemic 

response 

3.20 mg g
-1

 

Adamidou et al. (2011) 

    

2.2. Main nutritive and bioactive compounds of faba beans, peas and cowpea 

2.2.1. Vitamin C 

Vitamin C or ascorbic acid (AA) is one of the simplest structured vitamins, as it is the 

lactone of an acid-sugar. Ascorbic acid is needed in the diet of a few vertebrates, 

including humans. This is due to the lack of the enzyme flavoenzyme L-guluno-1,4-
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lactone oxidase (Davey et al., 2000; Nelson et al., 2005). Deficiencies of AA are 

responsible of scurvy.  

 

It is a potent reducer, it is stable in dry form but in solution it easily loses hydrogen 

atoms and transforms into dehydroascorbic acid (DHA), which also possesses vitamin C 

activity. However, vitamin activity is lost when the laconic ring of dehydroascorbic acid 

is hydrolyzed to 2,3-diketogulonic acid (2,3-DKG) (Figures 5 and 6). Various factors 

such as concentration, temperature, light, pH, etc., influence on the oxidation of L-AA 

and ADHA hydrolysis. ADHA and specially 2,3-DKG acid have very limited 

antiscorbutic activity and in some cases do not even have it. L-AA, however, has three 

types of biological activity: enzyme co-factor, free radical neutralizer, and as a 

donor/catcher in electron transport in plasma membranes or chloroplasts (Davey et al., 

2000). It is the main antioxidant present in plant cells, fulfilling a vital function in the 

elimination of reactive oxygen species (ROS) by means of both enzymatic and non-

enzymatic detoxification. 

 

 

 

 

 

 

 

 

 

 

Large amounts of ascorbic acid can be found in vegetable tissues, being one of the 

major vitamins in beans, peas and cowpea.  

Figure 6. Chemical formulations of ascorbic acid, 

dehydroascorbic acid and 2,3-diketogulonic 

acidCITA? 
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compounds have a wide effect in human health as these can contribute towards the 

antioxidant activities and they have many bioactive properties such as antimicrobial, 

anticancer, anti-inflammatory and reduction in heart and brain diseases (Chaieb et al., 

2011; Singh et al., 2017). Phenolic compounds are related to the sensory quality of fruit 

and vegetables, as their oxidation causes enzymatic browning in food, a phenomenon of 

great importance as a quality parameter. Likewise, a type of phenolic compounds, 

condensed tannins, is responsible for the astringency of many vegetable foods 

(Martínez-Valverde et al., 2000). 

 

Phenolic acids and their derivate flavanols, flavan-3-ols, anthocyanins, and condensed 

tannins are the main polyphenol compounds present in legumes. Flavonoids, phenolic 

acids and procyanidins are the dominant phenolic compounds present in peas and faba 

beans (Zhang et al., 2015). 

 

Phenolic compounds can be grouped, depending on their basic chemical structure, into 

flavonoids and non-flavonoids. The former are characterized by sharing a basic 

structure of two benzene rings linked by a heterocyclic ring of pyrone C, (flavonols, 

flavones, falvan-3-ols, anthocyanidins, flavanones, isoflavones and others), and the 

latter by being a more heterogeneous group (phenolics acids, hydroxycinnamates, 

stilbenes and others) (Tomás-Barberán et al., 2003). The biosynthetic pathway of some 

phenolic compounds is showed in Figure 8. The most important nutritional factors are 

briefly described below (Martínez-Valverde et al., 2000; Crozier et al., 2006; Cartea et 

al., 2011): 

 

- Phenols and phenolic acids: the simple phenols (phenol, crucible, thymol, 

resorcinol) are widely distributed among all plant species, as are phenolic acids 

(galic, vanillinic), which are abundant in upper plants and ferns. Phenolics acids 

have one carboxylic acid group and may be present in plants in free and bound 

forms.  

- Cynamic acids and coumarins: cinamic acids (caffeic, p-coumaric and synaptic) 

are rarely found free. On the other hand, coumarins are generally found in the 

form of glycosides.  

- Lignans: metabolites of low molecular weight, formed by 2 units of 

phenylpropane linked by a hydrogen bridge.  
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- Flavonoids: they are the most important group within this classification, being 

the polyphenols most distributed in plants. They have a structure of 15 carbon 

atoms (C6-C3-C6). The aromatic ring A is derived from the acetate/malonate 

pathway, and ring B is derived from phenylalanine through the shikimate 

pathway. Variations in substitution patterns to ring C result  in 13  flavonoid  

classes, being the most important flavonols, flavones, isoflavones, flavanones, 

flavanols (also called flavan-3-ols) and anthocyanidins or anthocyanins.  

- Tannins: water-soluble compounds with a molecular weight between 500-3000 

Da, able to bind proteins and other macromolecules. They can be classified into 

two groups: hydrolyzable tannins and non-hydrolizable or condensed tannins 

(also known as protoanthocyanidins).  

 

Table 3. Concentration of some phenolic compounds (mg kg
-1

fw) in immature seeds of 

faba bean (Baginsky et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMPOUND 
CONCENTRATION  

(mg kg
-1 

fw) 

Prodelphinidin  dimer  199.01 

(+)-Catechin  643.90 

Procyanidin  dimer  78.41 

Procyanidin  trimer  146.52 

(-)-Epicatechin  653.67 

Procyanidin  dimer 195.41 

Total proanthocyanidins 1916.96 

Quercetin  3-O-rutinoside  56.91 

Apigenin  7-O-galactoside  20.66 

Apigenin  7-O-galactoside  31.13 

Quercetin  3-O-galactoside  82.12 

Myricetin  3-O-glucoside  25.28 

Quercetin  derivative 19.06 

Quercetin  3-O-glucoside  22.73 

Myricetin 119.49 

Total flavonols + flavones 377.38 
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Table 4. Concentration of some phenolic compounds (mg kg
-1

 fw) in immature seeds of 

peas (Stanisavljević et al., 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMPOUND 
CONCENTRATION  

(mg kg
-1 

fw) 

Gallic acid 1.96 

Protocatechuic acid  127.22 

Gentisic acid 5.01 

Chlorogenic acid 1.59 

Cafeic acid 2.49 

p-Hydroxyphenylacetic acid 3.49 

p-Coumaric acid 2.14 

Ferulic acid 5.33 

Sinapic acid 4.56 

Syringic acid 1.87 

Rosmarinic acid 1.81 

Catechin 3.08 

Epicatechin 14.59 

Catechin gallate 2.69 

Epigallocatechin 5.96 

Quercetin 13.66 

Rutin 11.51 

Kaempferol 6.49 

Galangin 4.19 

Morin 4.93 

Luteolin 9.40 

Apigenin 3.62 

Naringin 1.68 

Hesperetin 3.15 

Pinocembrin 3.44 
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Table 5.  Concentration of some Phenolic compounds (µg g
-1

 fw) in immature seeds of 

cowpea (Adelakun et al., 2017). 

 

 

 

 

 

 

 

 

2.2.3. Antioxidant compounds 

Active molecules containing O2 are called reactive oxygen species (ROS). The ROS 

include oxygen ion (O2), free radicals (O2, -OH, NO-, etc.) and peroxides (H2O, ONOO-

, etc.). They have great reactive capacity due to the presence of odd valence membrane 

electrons. ROS are formed as by-products of the metabolism of O2 and have an 

important role in cell signaling and homeostasis (Taverne et al., 2013). However, under 

stress, whether exogenous (exposure to heat, ultraviolet light, O3, contaminants, 

additives, etc.) or endogenous (mono-electronics reduction of O2, auto-oxidation of C, 

catalytic activation of numerous enzymes, etc.), the levels of ROS can increase greatly 

and cause accumulated damage to the cellular structure, which is known as oxidative 

stress (Devasagayam et al., 2004). 

 

COMPOUND CONCENTRATION (µg g
-1

  fw) 

Gallic acid   378.00 

Protocatechuic acid  493.60 

4-hydroxybenzoic acid  81.60 

Vanillic acid   13.39 

Caffeic acid    11.90 

Syringic  acid   920.40 

p-coumaric  acid   5.20 

Ferulic acid   3.80 

Quercetin dihydrate  442.80 

Hesperidin    

Naringin   617.40 

Fisetin  403.30 

Kaempferol    

Kaemferol glucoside  184.80 

Taxifolin  430.30 

Catechin   8,799.00 

Epicatechin   1,545.20 

Tannic  acid   7,031.90 
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Antioxidants are compounds that, at low concentrations compared to the substrate, 

delay or prevent oxidation during oxidative stress (Devasagayam et al., 2004). 

According to their origin, these compounds are classified as enzymatic and non-

enzymatic (Figure 9). Total antioxidant capacity (TAC) is influenced by physiological 

factors (such as maturity, senescence) and technological factors such as storage or 

processing conditions (Tarazona-Díaz, 2011). Biosynthetic pathway of some 

antioxidant enzymes are shown in Figure 10.   

 

Diets rich in fruits and vegetables have been shown to reduce the risk of cardiovascular 

and other chronic and degenerative diseases associated with oxidative damage to cells 

(Dragsted, 2003; Balasundram et al., 2006).  This protective effect of fruit and vegetable 

consumption has been associated to the presence of antioxidants such as polyphenols 

and vitamin C in their composition (Scalbert et al., 2005). 
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Figure 8 . Biosynthetic pathway of some phenolic compounds and the influence of  

elicitationCO2—carbon dioxide; H2O—water; Acetil-CoA—AcetilCoenzyme A;  

DAHP—3-Deoxy-O-arabino-heptulosonate phosphate; DHS—3-Dehydroquinate;  

BE—biological elicitation;CE—chemical elicitation; PE-Physical elicitation; Enzymes  

involved in the biosynthesis are marked with rounded dashed black forms: 1-DAHP  

synthase (3-Deoxy-O-arabino-heptulosonate phosphate synthase); 2-PAL  

(Phenylalanine ammonia-lyase); 3-CHS (Chalcones synthase), CHI (Chalcones  

isomerase), F3H (Flavanone-3-hydroxylase); 4-FLS(Flavonol synthase); 5-LAR  

(Leucoanthocyanidin  reductase); 6-LDOX (Leucoanthocyanidin  dioxygenase). (Dias 

et al., 2016) 
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Figure 9. Antioxydant compounds classification (Artés-Hernández et al., 2009). 

 

 

Figure 10  Antioxidant enzymes pathways (Gärtner and Wese, 1986). AsA: ascorbate; 

APX: ascorbate peroxidase; CAT: catalase; GPX: guaiacol peroxidase; GR: gluaiacol  

reductase;  GSH:  glutathione;  GSSG:  glutathione  disulfide;  MDA: 

monodehydroascorbate; NAD: nicotinamide adenine  dinucleotide; NADPH: 

nicotinamide adenine dinucleotide  phosphate;  SOD: superoxide dismutase.  
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2.3. Main non-nutritional factors in legumes 

2.3.1. Condensed tannins 

Tannins are water-soluble polyphenolic compounds with high molecular weight (500-

3000 Da). They are associated with plant defense mechanism against mammalian 

herbivores, birds and insects (Hassanpour et al., 2011) due to its astringent property, and 

against bacteria, viruses and fungi, because its ability to inhibit enzymes. In addition, 

they participate in the nodulation of legumes, generating important quantities of 

nitrogen (Shirley et al., 1996). 

 

Depending on their chemical structure and properties, tannins can be divided into two 

main groups: hydrolysable and condensed tannins (Figure 11), in which each form has 

different nutritional and toxic effects (Nikmaram et al., 2017). The hydrolysable type of 

tannins is prone to hydrolysis during the digestion process. They are molecules which 

contain a carbohydrate, generally D-glucose, as a central core. These carbohydrates are 

esterified with phenolic groups. Hydrolysable tannins are usually found in lower 

concentration in plants than condensed tannins (Hassanpour et al., 2011). 

 

In contrast, condensed type of tannins is more resistant to hydrolysis; for that, it is 

neither hydrolyzed nor absorbed during digestion. They are the most common type of 

tannins found in legumes (Barry and MacNabb, 1999). The first researchers that detect 

them in seed of faba beans were Barker and Morris (1968). Condensed tannins consist 

of flavonoid units (flavan-3-ol and/or flavan-3,4-diol) linked by carbon-carbon bonds. 

In presence of heat and acid medium, they release anthocyanidins, hence they are also 

called proanthocyanidins. 
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Figure 11. Chemical structure of condensed tannins (left) and hydrolysable tannins 

(right) (Hassanpour et al., 2011). 

 

Condensed tannins have a variety of chemical structures affecting their physical and 

biological properties. Its biological effects are specially related to its polymerization 

degree, and the number of phenolic groups present in the molecule is the basis of its 

binding to proteins, carbohydrates, metal cations and free radicals (Santos-Buelga and 

Scalbert, 2000). 

 

The anti-nutritional effects of tannins include interference with digestion by binding to 

proteins or minerals. The tannin-protein complex (Figure 12) is the consequence of 

multiple hydrogen bonds forming between the hydroxyl group of tannins and the 

carbonyl group of proteins (Raes et al., 2014). However, because of this, they also have 

therapeutic or preventive properties against gastrointestinal diseases due to the binding 

with proteins of the intestinal mucous membrane, forming a protective film (Saito et al., 

1998). Tannins interfere with the assimilation of disaccharides by a strong inhibition of 

maltases, sacarases and lactases. They also inhibit the active transport of glucose 

through the intestine and reduce digestion and absorption of starch. This leads to a 

reduction in blood glucose and an increase in insulin, being useful as a treatment for 

diabetes and obesity control (Thompson et al., 1993). 

 

Protocyanidines can cause a deficiency of Fe
+2

, sometimes triggering anemia. They also 

reduce the bioavailability of Ca
+2

, Mg
+2

 and Zn
+2

, while having a little affinity with 

Cu
+3

 increase their bioavailability. Thanks to the reducing of the condensed tannins, 

oxidative damage is avoided and anti-cancer and antimutagenic activity is developed 

(Santos-Buelga and Scalbert, 2000). In addition, condensed tannins are antimicrobial 
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agents that act against a large number of bacteria, viruses and fungi (Sakanaka, et al., 

1990). On the other hand, it has also been observed that regular ingestion of large 

amounts of tannins increases the risk of developing tumor diseases due to irritation and 

cellular damage (Singleton, 1981). 

 

 

Figure 12. Interaction of tannin with protein (Nikmaram et al., 2017) 

 

2.3.2. Saponins 

Saponins are secondary metabolites which are widely distributed in the plant kingdom. 

They derive their name from their ability to form stable soap-like foams in aqueous 

solutions and they have been commonly used for centuries as household detergent due 

to its amphiphilic nature with the presence of a lipid-soluble aglycone and water-soluble 

chain in their structure (Guclu-Ustundag and Mazza, 2007). 

 

Saponins may be considered a part of plants´ defense systems since they act as a 

chemical barrier countering pathogens and herbivores (Cheok et al., 2014). Many of 

them are known to be amtimicrobial, to inhibit mould and to protect plants from insect 

attack (Francis et al., 2002). They are a very heterogeneous group of amphipathic 
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glycosides. They consisted of non-polar aglycones (triterpenoid or steroid) attached to 

one or more polar monosaccharide chains (hexose, pentose or uronic acid) (Nikmaram 

et al., 2017). The common sugars in saccharide chains are D-glucose, D-galactose, L-

arabinose, D-xylose, L-rhamnose and D-lucoronic acid (Du et al., 2002). Saponins have 

a polycyclic ring system in their aglycone (either 27 carbon sterol or 30 carbon 

triterpene). The sugar moiety in a saponin molecule is attached to aglycone at one or 

two glycosylation sites by glycosidic linkage. Saponins are glycosylated compounds or 

glycosides that are divided into three main groups according to the carbon skeleton of 

non-polar aglycone region: triterpenoidal glycosides, steroidal glycosides and steroid-

alkaloidal glycosides. Saponins that have been characterized and commonly identified 

in pulses are the triterpene glycosides (Barakat et al., 2015).  

 

They are categorized as monodesmosides (having a single sugar chain linked to carbon-

3 of the aglycone) and bidesmosides (having two sugar chains separately linked to 

carbon-3 and carbon-22 of aglycone) (Lásztity et al., 1998). These compounds show a 

variation in their structure among different plant species, depending upon the type and 

composition of the aglycone and saccharide chains. Saponins are categorized into A, B 

and E group according to their aglycone structures (Wu and Kang, 2011) (Figure 13). 

The group A have sapogenol A as the triterpenoid moiety with a hydroxyl group at 

carbon-21 and two saccharide chains attached to carbon-3 and carbon-22. 

 

The group B contains sapogenol B in their structure and differs from group A by having 

a hydrogen atom at carbon-21 of its aglycone. They are monodesmosides with one 

glycoyl group attached at carbon-3 position of aglycone and are named as soyasaponin I 

(Bb), II (Bc), III (Bb´), IV (Bc´) and V (Ba) (Wu and Kang, 2011). Group B saponins 

with 2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP) group at carbon-22 

are denoted as the DDMP saponins. DDMP saponins are named as soyasaponin αa, αg, 

βa, βg, γa and γg (Berhow et al., 2002). DDMP saponins are unstable under commonly 

used food processing conditions such as high temperature, acidic and alkaline pH and 

subsequently get converted into saponin B after losing their DDMP moiety (Heng et al., 

2006). Group E are monodesmosides that resemble group B with a single saccharide 

chain attached to carbon-3 of triterpenoid moiety, but differ from saponins B by having 

a carbonyl group at carbon-22 of aglycone (Wu and Kang, 2011). 
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Saponins are commonly identified in the seeds of edible legumes, and have a significant 

importance, mainly because of their biological activities. Several researchers have 

documented that legume seeds are the main saponin containing foods in the human diet 

(Price et al., 1986; Khalil and El-Adawy, 1994; Lásztity et al., 1998). Two kinds of 

saponins are identified in faba beans and peas, soyasaponin I and soyasaponin βg (Ha et 

al., 2014; Reim and Rohn 2015; Singh et al., 2017). In cowpea, in addition to this two 

types of saponins, have also been identified soyasaponin II and soyasaponin αg (Ha et 

al., 2014). 

 

The ingestion of large amounts of saponins can cause irritation of the intestinal 

epithelium, but they do enter to the bloodstream through lesions, and can cause hepatic 

damage, hemolysis, respiratory failure and coma. Saponins are also capable of 

hydrolyzing other cells, such as those in the intestinal mucous membrane, interfering 

with the absorption of nutrients. In addition, they inhibit metabolic and digestive 

enzymes such as proteases, amylases or lipases (Price et al., 1987; Thompson, 1993). 

 

However, small concentrations of saponins absorbed by the intestine exert a positive 

effect on the intestinal tract. Their biological effects have been attributed as they can 

enhance the permeability of intestinal mucosal cells, inhibit the transport of active 

mucosal and facilitate the uptake of substances that are normally not absorbed (Couto et 

al., 2015). Presence of saponins in food has other beneficial effects on protein digestion, 

cholesterol metabolism and immune and nervous systems (Francis et al., 2002). Also, 

they decreased bloods lipids and lowered blood glucose response, have importance in 

reducing the risk of cancer and contribute towards the antioxidant and anti-

inflammatory properties (Singh et al., 2017). 

 

2.3.3. Raffinose 

The oligosaccharides of the raffinose family (RFO): raffinose, stachyose and 

verbascous, are α-galactosides that are within the group of galactosyl sucrose 

oligosaccharides (Figure 15). These non-reducing sugars of low molecular weight 

soluble in water and solutions of water-alcohol, are reserve compounds present in 

varying quantities in organs and in seeds of numerous plants, including leguminous 

plants. These oligosaccharides are also called ‘flatulence factors’ because when 
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fermented by intestinal microflora, release considerable amounts of gases (Kadlec et al., 

2000a). 

 

 

Figure 13. Chemical structures of groups A, B, E and DDMP saponins (glcUA: β-D-

Glucuronopyranosyl, gal: β-D-Galactopyranosyl, glc: β-D-Glucopyranosyl, ara: α-L-

Arabinopyranosyl, xyl: β-D-Xylopyranosyl, rha: α-L-Rhamnopyranosyl) (Singh et al., 

2017). 
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RFOs have been proposed to act as protective agents during desiccation and storage of 

seeds in the dry state, as transport sugar in phloem sap and as storage sugars (Peterbauer 

et al., 2001; Downie et al., 2003). The mechanisms of action through which these sugars 

could confer to the seed a tolerance of drying and acclimatization against cold are based 

on the stabilization of cellular components. They participate in several cellular functions 

such as transport and storage of carbon, signal transduction (Xue et al., 2007), 

membrane trafficking (Thole and Nielsen, 2008), and mRNA export (Okada and Ye, 

2009). They also act as signaling molecule following pathogen attack and wounding 

(Couée et al., 2006; Kim et al., 2008).  

 

RFOs are α-1,6-galactosyl extensions of sucrose. The galactosyl group of RFOs is 

donated by galactinol (Gol; 1-O-α-D-galactopyranosyl-L-myo-inositol). Synthesis of 

Gol is a key and absolute requirement for entering into the pathway of RFO 

biosynthesis (Sengupta et al., 2015) (Figure 14). 

 

One of the phenomena produced by legume consumption is the formation of gases at 

the colon level, due to the absence of the enzyme α-(1-6)-galactosidase necessary to 

hydrolyse the α-galactosides. These sugars, because they cannot be digested and do not 

pass through the intestinal wall, pass intact to the colon, where they are metabolized by 

bacteria. This metabolic process produces short-chain fatty acids that reduce pH, as well 

as carbon dioxide, hydrogen and methane. These gases are responsible for flatulence, 

which manifests itself in the form of nausea, abdominal pain, cramps, constipation or 

diarrhea. 

 

Although RFOs have long been regarded as antinutritional factors in human nutrition, 

RFOs have a beneficial role as prebiotics (Voragen, 1998; Aranda et al., 2000), 

promoting the proliferation of bifidobacteria and lactobacilli that generate health 

benefits (Rubio et al., 2005). Monogastric animals cannot digest these sugars, leaving 

them available in the colon to be used by beneficial intestinal bacteria as a source of 

carbon and energy for maintenance and growth. The large number of bifidobacteria and 

lactobacilli generated in the colon synthesize antibiotic substances and produce high 

levels of short-chain fatty acids that reduce the pH of the medium. Through these 

mechanisms, these beneficial bacteria reduce the proliferation of pathogenic bacteria 

(Delzenne and Roberfroid, 1994). 
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Figure 14. The biochemical pathway of RFO synthesis (Sengupta et al., 2015) 

 

With this drop in pH, the solubility of minerals such as Ca, Mg or Fe is also increased, 

so that oligosaccharides could be used in the prevention of osteoporosis, in Mg 

deficiency states or in anemia situations (Grizard and Barthomeuf, 1999). The increase 

in bacterial mass favors a larger fecal bolus size, reducing the possibility of colon 

cancer and constipation (Delzenne and Roberfroid, 1994). 
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Figure 15. Chemical structure of sucrose and RFO (Goyoaga, 2005) 

 

2.3.4. Phytic acid 

Phytic acid (IP6) (Figure 16) is a natural antioxidant that is found in vegetables, where 

it serves as the storage form of phosphorus and represents 60% to 90% of the total 

phosphorus present in the seeds used in food and feed (Wu et al., 2009; Silva and 

Bracarense, 2016). It is a compound widely distributed in legume seeds, which can be 

degraded by phytases. These enzymes belong to the phosphatase group, and are able to 

hydrolyze sequentially IP6 to myo-inositol esters with fewer orthophosphate groups 

(myinositol pentachis-, tetrakis-, tri-, di- and monophosphate) and inorganic phosphate 

(Goyoaga, 2005). 
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Figure 16. Chemical structure of phytic acid (Wu et al., 2009) 

 

 

IP6 could be a seed dormancy inducer, since by binding to multivalent cations 

necessary for the control of cellular processes; metabolism slows down (Gibson and 

Ullah, 1990). In addition, because of its antioxidant properties, IP6 could preserve seed 

viability during the dormancy period (Graf et al., 1987). It has traditionally been 

considered as an antinutrient because of its binding to proteins, minerals and starch, 

with which it forms complexes that cannot be assimilated (Figure 17). 

 

Phytic acid has a strong ability to form a complex with multivalent metal ions, 

especially zinc, calcium and iron. This binding can result in very insoluble salts with 

poor bioavailability of the minerals (Wu et al., 2009). Monogastric animals, including 

humans, have few phytases in the stomach and small intestine, so that they cannot 

hydrolyze the phytic acid molecule and use the phosphorus found in its structure, nor 

the minerals with which it forms salts (Steer and Gibson, 2002), causing severe mineral 

ions deficiency. 

 

Another nutrient limitation is the ionic interaction of phytic acid with proteins forming 

protein-phytate complexes at acid pH and protein-mineral-phytate at basic pH. Because 

of these phytate-enzyme protein interactions, phytic acid inhibits digestive enzymes 
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such as lipases, proteases or α-amylases, paralyzing enzyme reactions at the digestive 

level (O`Dell and Boland, 1976; Knuckles and Betschart, 1987). 

The interactions of phytic acid with cations can sometimes be beneficial, as in the case 

of its binding to toxic metals such as Cd
2+

 or Al
3+

 to be excreted by faeces (Evans and 

Martin, 1988). It also has anti-cancer properties, since thanks to its combination with 

Zn
2+

 and Mg
2+

, it reduces the bioavailability of these minerals necessary for DNA 

synthesis, preventing cell proliferation (Steer and Gibson, 2002). 

 

Inositol hexaphosphate acts as a plasma hypolipidemic agent, minimizing the risk of 

cardiovascular disease. This is due to its greater affinity for Zn
2+

 versus Cu
2+

 (Zulet and 

Martínez, 2001). Phytic acid can slow down digestion and absorption of starch, 

resulting in delayed glucemic response, so less insulin is required and reduces the risk 

of diabetes (Pallauf and Rimbach, 1997). 

 

 

Figure 17. Interaction of phytate with minerals, proteins and starch. 
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3. MINIMAL PROCESSING OF LEGUMES 

 

3.1. Overview 

The current life style, with little time to cook balanced meals and the increase of interest 

about healthy food, has driven the demand towards natural, fresh and ready-to-eat 

vegetable products, as the fresh cut or minimally fresh processed (MFP) fruit and 

vegetables. In addition, there are increasing demands for extension of shelf life to better 

meet longer and more global distribution chains, and minimally processed products can 

meet that demand. In addition, after storage and commercialization, that product could 

be consumed fresh or directly microwaved if packaged in a suitable container (Klug et 

al., 2108a). Given that, a healthy cooked food with high organoleptic quality would be 

quickly obtained. 

 

Fresh and fresh-cut products continue all metabolic processes, and are susceptible to 

quality deterioration and microbial infestation mainly due to increase in respiration and 

transpiration, that play a significant role in the postharvest quality of fresh-cut 

vegetables. Passive modified atmosphere packaging (MAP) can be generated inside the 

package depending on respiration and film permeability to attain the desired gas 

composition over time. MAP offers the possibility to extend the shelf life of fresh 

product, by reducing respiration rate by decreasing O2 concentration around the fresh 

produce. Decreasing respiration rate and lowering temperature delays enzymatic 

degradation of complex substrates and reduces sensibility to ethylene synthesis (Artés et 

al., 2012). 

 

Plastic films of selective permeability must be selected taking into account the 

permeability to gases of physiological interest (O2, CO2, C2H4 and water vapour). The 

optimal balance of gases inside the package is created by diffusion of these gases, which 

are generated by the breath of the product and its interaction with the permeability of 

the polymer (Artés et al., 2012; Kader et al., 2002). Minimum O2 and maximum CO2 

concentration must be attained, but considering that excessively low O2, below 1%, may 

result in anaerobic respiration leading to tissue deterioration as well as production of 

off-odors and off-flavors (Caleb et al., 2013). Also, maintaining high levels of RH and 

reduced water loss are a common outcome of MAP which can prove beneficial for 

many fruit and vegetables (Wilson et al., 2017).  
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For fresh-cut products, sanitation is one of the most critical steps in their production 

process, due to the effects it has on microbial load and, consequently, on quality, safety 

and shelf-life (Otón et al., 2015). In general, the industry has widely used sodium 

hypochlorite (NaOCl) due to its antimicrobial activity and low cost. However, it is 

controversial because it can be potentially harmful due to the formation of toxic by-

products like trihalomethanes and chloramines (Otón et al., 2014; Artés et al., 2009), 

and because several studies have reported that NaOCl could be insufficient to reduce 

normal microflora in fresh-cut products (Foley et al., 2004). Therefore, others 

disinfectants, both chemical (acidified sodium chlorite, ascorbic acid, citric acid, etc.) 

and physical (UV light), as well as edible coatings, are increasingly being studied as 

alternative to NaOCl disinfection (Otón et al., 2016; Artés-Hernández et al., 2014 and 

2017). 

 

Fresh-cut industries are continuously looking for and applying new technologies to 

extend the commercial life of their products keeping the best sensory, nutritional and 

microbial quality. All these aspects, in addition to their high nutritional value, confer 

great advantages for consumers and food services (Artés y Artés-Hernández, 2012; 

Artés-Hernández et al., 2017):  

 

 Reduces preparation time, as they are ready for consumption  

 They have characteristics very similar to the original product  

 Present uniform and consistent high quality  

 Encourage the supply of healthy products  

 Reasonably priced  

 Easy to store  

 Produce little or no waste 

 

3.2. Current state of the fresh-cut market 

These companies were born in the early 1970s in the U.S. to meet the demand for fresh 

salads in fast food shops. During the 1980s, they spread to European countries such as 

Germany or Switzerland, and years later followed their development in the United 

Kingdom, France, the Netherlands and Italy. In Spain, MFP products did not appear on 

the market until the early 1990s (Artés and Artés-Hernández, 2003).  
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The European fresh-cut industry has shown exponential growth since its appearance in 

the early 1980s. UK is the major fresh-cut produce consumer because the ready-to-eat 

product culture is deeply established in that country. In countries like Germany and 

Spain, in which fresh-cut fruit and vegetables market is still emerging, the market 

growth in the last years was higher than other countries in which this market is already 

established, for instance Italy and the Netherlands. In the 2015-2016 campaign, the 

fresh-cut market in Spain increased 15%. Concerning the features of the fresh-cut 

market, packaged salads appear to be the leader of fresh-cut products, in fact they hold 

about 50% of total fresh-cut market volume. The other 50% is shared by the fresh-cut 

fruit (10%) and the other categories as ready-to-cook, crudités and other with 40% 

(MAGRAMA, 2019). 

 

3.3. Units operations during minimally fresh product processing 

The units operations during fresh-cut products production depend on the fruit or 

vegetable used for each case. However, the general steps as unit operations in the fresh-

cut products elaboration are presented in Figure 18 and subsequently described. 
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3.3.1. Raw material 

The physiological behavior and the suitability for the fresh cut vegetable processing that 

ensure a good postharvest quality and shelf–life may be influenced by the following 

preharvest factors (Yildiz et al., 1994): 

 

- Genetic factors: varieties, etc. 

- Climate conditions: light, temperature, relative humidity, rainfall, etc. 

- Soil conditions: soil type, pH, humidity, microbiota, mineral composition, etc. 

-Agricultural practices: fertilization, pesticides, irrigation type, pollinisation, etc. 

 

Figure 18. Flow chart of the general minimal processing steps and recommended 

temperatures (Artés-Hernández et al., 2013)  
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When referred to legumes, pods must be picked up at the appropriate ripening stage 

(Figure 19), as if they are harvested too early, the economic yield will not be as high as 

can be expected and, if harvesting is delayed, the pods will harden and the product will 

be much less valuable (MAPAMA, 2019). The harvest season depends on the variety 

and climatic conditions. Green grain harvesting can be done manually or mechanically 

with combine harvesters, when the grains have an average moisture content between 70-

75% (in case of peas) or when the pod reaches 3/4 of the final size and before the hilum 

turns black (in case of beans). These values are for open field crops.  

 

Pods should be uniformly green (light to deep green but not yellow-green), fully turgid, 

clean, and free from damage (thrips injury, broken pods). The stem and calyxes should 

be green and there should be very few blossoms attached to the pods (Suslow and 

Cantwell, 1998). 

 

The green pods, if they are intended for fresh consumption, must be quickly classified, 

packaged and marketed in order to avoid losses in quality and losses in production.  

  

 

3.3.2. Transportation and reception 

It should take less than an hour between harvesting and arrival at the processing plant. 

A refrigerated transport (5ºC) is recommended if distance is far. When the raw material 

arrives at the processing plant it is selected according to quality standards. If it is 

inadequate or deficient, it must be rejected and it will not be possible to process this 

Figure 19.Growing filed of faba beans (left) and collected beans (right) 
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way. In this step, the product is also weighed once it has been classified, both for 

control during processing, product formulation and quality control.  

 

3.3.3. Precooling and storage 

Pre-cooling should be performed to rapidly decrease product temperature. This is one of 

the most important steps to extend the shelf–life of these high–metabolic–rate 

vegetables, slows down the stress generated during the processing stages and maintains 

better product quality. Pre-cooling also has the advantages of reducing (Artés-

Hernández et al., 2013):  

 

 weight loss and withering  

 microbial growth  

 deterioration  

 the emission of and sensitivity to ethylene  

 

Raw material is usually pre-cooled with forced air and stored between 0 to 4ºC and 95% 

RH for a few hours or a day to  regulate the supply to the processing line before 

processing (Artés-Hernández et al., 2013). 

 

3.3.4. Sorting, classification and peeling  

Good sorting and classification will facilitate subsequent processes, increasing line 

productivity and the quality of the final product. The selected seeds must be of a similar 

size, be of an intense green color, uniformly developed, and free of damages and 

pathogens (Acuña, 2011). The selection is manually made by choosing or separating 

grains of another colour, broken, deformed or immature, and other materials such as 

pods or leaves, to obtain a clean and quality product. 

 

Legume seeds have one of the highest respiration rates (RR) among fruit and vegetables 

(27-38 mL CO2 kg
–1

 h
–1

 at 5ºC in peas) (Suslow and Cantwell, 1998). The peeling of 

pods increases the RR, ethylene emission and tissue damage of the product and 

therefore accelerates the velocity of senescence of the tissue and reduces resistance to 

microbial contamination (Artés et al., 2009). 
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In order to minimize these undesirable effects of shelling, the operation must be done in 

a cold room (5 ± 1°C) and the obtained seeds must be immediately immersed in cold 

water at 4 ± 1°C. Pods can be manually or mechanically shelled in a chamber 

previously disinfected (Figure 20). The cutting equipment must be cleaned, disinfected 

and sharpened at regular intervals every working day. 

 

The conditioned product must be directly conducted from the dirty to the clean area for 

further processing.  

 

 

3.3.5. Washing, disinfection and rinsing 

Washing and disinfection reduces the microbial load of the product (Suslow, 1997; 

Artés et al., 2009; Otón et al., 2015), since fresh products that have not undergone any 

heat treatment may transmit infectious diseases (Leistner and Gould, 2002; Harris et al., 

2003; Allende and Artés, 2005). Also, microbial load affects postharvest life, since it 

might cause produce deterioration and senescense. Chlorine (in various forms) has been 

widely used as a disinfectant in the fresh cut industry. NaClO is the most commonly 

used disinfectant in the fresh cut industry due to its strong oxidizing properties, 

antimicrobial activity and low cost. In this way, the washing and disinfection of 

legumes are made with cold chlorinated water (4°C; 150 mg L
–1

 free Cl2), which is 

acidified (pH 6.5–7.5) with citric acid to increase the bacteriostatic effect of chlorine. 

The ideal contact time is around 2 min. 

 

A rinsing step of the product with cold tap water (1–2 °C). The washing and rinsing 

efficacy can be improved by the generation of turbulences by pressure–air injection in 

Figure 20. Peeling of faba beans (left), peas (center) and cowpea (right) in a cold room 
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the water baths, although pressure showers, drive chains or rotating drums can be 

alternatively used (Artés–Hernández et al., 2017). 

 

Sodium hypochlorite is controversial because it can be potentially harmful due to the 

formation of toxic by-products like trihalomethanes and chloramines (López-Gálvez et 

al., 2010, Otón et al., 2014), that have known or suspected carcinogenic or mutagenic 

potential effect with proved toxicity to liver and kidney (Nieuwenhuijsen et al., 2000; 

Hrudey, 2009; Ölmez and Kretzschmar, 2009). Also several studies have reported that 

NaOCl could be insufficient to reduce normal microflora in fresh-cut products (Foley et 

al., 2004). These negative aspects related to chlorine have induced some European 

countries (Germany, The Netherlands, Denmark, Switzerland and Belgium) to forbid 

the use of NaClO for disinfection of fresh cut produces (Artés et al., 2011). 

 

Consequently, the food industry is now looking for alternatives to chlorine which may 

assure the safety of the fresh cut products and maintain the quality and shelf–life, while 

also reducing the rate of water consumption during processing. Thus, sustainable 

sanitising alternatives to NaClO have been proposed. Among these techniques UV–C 

light, edible coatings and alternative acids can be considered. 

 

3.3.5.1. UV-C radiation 

The use of non-ionizing, germicidal, artificial and most energetic fraction of the UV 

spectra UV light (wavelength of 190–280 nm, corresponding to the UV-C range) could 

be effective for surface decontamination of fresh cut products using germicidal lamps 

(254 nm) (Selma et al., 2008, Artés et al., 2009). 

 

UV-C affects several physiological processes in plant tissues and damages microbial 

DNA. UV–C acts indirectly by stimulating plant defense mechanisms, but also UV light 

promotes photo-oxidative reactions in plants producing reactive oxygen species (ROS). 

The major ROS are singlet oxygen, hydrogen peroxide and hydroxyl radicals. The free 

radicals generated from UV radiation can target cell membranes, nucleic acids, cell 

walls and enzymes, inducing the acceleration of senescence (Turtoi, 2013). For this 

reason, it is very important to find a safe dose which greatly weakens microbial 

development without damaging the product (Artés-Hernández et al., 2010). 
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The antimicrobial effect of UV-C light is due to its ability to damage microbial DNA 

and to a lesser extend denatures proteins. The damage caused by UV-C probably 

involves specific target molecules and a dose in the range from 0.5 to 20 KJ m
-2

 leads to 

lethality by directly altering microbial DNA (Bintsis et al., 2000). Furthermore, it 

induces the formation of pyrimidine dimers, which distort the DNA helix and block cell 

replication, compromising cellular functions and eventually leading to cell death. 

(Manzocco et al., 2011). 

 

The effectiveness of UV–C seems to be independent of the temperature in the range of 

5–37°C but depends on the incident irradiation, as determined by the structure and 

surface of treated product (Bintsis et al., 2000; Gardner and Shama, 2000; Lado and 

Yousef, 2002). Furthermore, the germicidal action of UV light is strongly dependent on 

the natural resistance of the microorganisms. Also, it was established that bacterial 

spores and stationary phase cells are more resistant to UV–C than vegetative and 

exponential phase cells (Warriner et al., 2009). The germicidal effect occurs over 

relatively short time that is essentially limited to the time of exposure of the 

microorganism to the UV source (Turtoi et al., 2013).  

 

The use of UV-C light has been proposed for surface disinfection of fresh cut fruit and 

vegetables. Some studies have reported that UV-C inhibited microbial growth, delaying 

decay and senescence. In zucchini squash slices UV-C exposure reduced microbial 

activity and deterioration during subsequent storage at 5 or 10 ◦C (Erkan et al., 2001). 

Robles et al. (2007) indicated that UV-C–treated tomatoes showed retarded ripening 

and kept better firmness and sensory attributes than those air–stored. This process could 

be related to an increased enzymatic activity caused by membrane disruption with the 

consequent loss of compartmentalization (Gómez et al., 2010). Similarly, exposure to 

UV-C doses (4.5–9 kJ m
−2

) of kalian-hybrid broccoli reduced mesophilic loads by 

approximately 1.2 log units while enterobacteria and psychrophilic were unaffected 

(Martínez-Hernández et al., 2011, 2013d).  

  

It has been reported that abiotic stresses such as that from UV-C light may enhance the 

nutraceutical content of fresh fruit and vegetables. It would affect secondary metabolism 

of fresh produce and would increase synthesis of phytochemicals with nutraceutical 

activity or reduce synthesis of undesirable compounds (Cisneros-Zevallos, 2003). 
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Treatment with ultraviolet energy offers several advantages to food processors as it does 

not leave any residue, is easy to use and lethal to most types of microorganisms (Bintsis 

et al., 2000), the equipment is relatively inexpensive (Yaun et al., 2004) and does not 

have legal restrictions since Food and Drug Administration approved UV-C light as a 

disinfectant technology for surface treatment of food (USDA-FDA, 2002).  

 

The best equipment for application of the UV–C technique in the fresh cut industry are 

the UV–C tunnels, where the product would circulate on a conveyor belt. There are 

other discontinuous systems (UV–C drums, UV–C hoods, etc.) used at pilot plant scale 

or for the small production industries. The Figure 21 shows a faba beans sanitation in a 

UV–C hood. 

 

 

 

 

 

 

  

 

 

3.3.5.2. Edible coatings 

Edible antimicrobial films or coatings (EC) can avoid browning and improve the 

quality, safety, shelf life and functionality of foods products by reducing moisture 

transfer, respiration rate and oxidative processes, while minimizing both spoilage and 

pathogenic microorganisms (Raybaudi-Massilia et al., 2016).  

 

Edible coatings are defined as a thin layer of material that covers the surface and can be 

ingested as part of the entire product. Its composition must comply with all regulations 

that apply to the product used (Guilbert et al., 1995). In accordance with the European 

Guidelines (ED, 1995; 1998) and FDA (2006), edible coatings must be made from 

Figure 21. Faba beans sanitation with UV–C light at a pilot plant scale (discontinuous 

system). 
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ingredients suitable for food consumption. Ingredients that can be incorporated into 

their formulations include: karaya and Arabic resin, pectins, shellac, beeswax and 

carnauba wax, lecithin, polysorbates, fatty acids and fatty acid salts (ED, 1995 and 

1998).  

 

The functional characteristics required for a coating depends on the product matrix and 

the deterioration processes that the product is subjected to. However, edible coatings 

must meet a number of functional requirements (Kester and Fennema, 1986): 

  

 Sensory properties: transparent, tasteless and odourless. 

 Barrier properties: suitable permeability to water vapour and solutes and 

selective permeability to gases and volatile compounds. 

 

In addition, formulations should be microbiologically safe, suitable for human 

consumption and the cost of technology and materials used during processing should be 

relatively low. 

 

The use of EC in food applications and especially highly perishable products such as 

horticultural ones, is conditioned by the achievement of diverse characteristics such as 

cost, availability, functional attributes, mechanical properties (flexibility, tension), 

optical properties (brightness and opacity), the barrier effect against gases flow, 

structural resistance to water and microorganisms and sensory acceptability (Falguera et 

al., 2011).  

Edible coatings can create a modified atmosphere by modifying internal gas 

composition retarding ripening and reducing decay. However, a certain degree of 

oxygen and carbon dioxide permeability is necessary to avoid anaerobic respiration, 

which would result in physiological disorders and a rapid loss of quality. (Moldao-

Martins et al., 2003). Application of EC on faba bean seeds at pilot plant scale is 

showed in Figure 22. 

 

Edible coatings and films are usually classified according to their structural material. In 

this way, films and coatings are based on proteins, lipids, polysaccharides or composite. 

For example, a composite film may consist of an oil-in-water emulsion. 
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The ASC is approved by FDA as a secondary additive in the food industry. The 

antimicrobial activity of ASC is attributed to the oxidative effect of chlorous acid 

(HClO2), which is derived from the conversion of chlorite ion into its acid form under 

strong acidic conditions (Tomás-Callejas et al., 2012). When ASC comes into contact 

with organic matter, a number of oxychlorous antimicrobial intermediates are formed. 

These substances are broad-spectrum germicides that act by breaking oxidative bonds 

on cell membrane surfaces. The fundamental nonspecific oxidative mode of action of 

this chemistry is thought to also minimize the potential problem of acquired resistance 

that often arises in bacterial populations following prolonged exposure to antimicrobial 

procedures (Yousuf et al., 2018). 

 

Inatsu et al. (2005) evaluated the efficacy of ASC in reducing the load of pathogenic 

microorganisms in lightly fermented chinese cabbage: washing the inoculated leaves 

with distilled water reduced the load of E. coli O157: H7 in less than 1 UFC g
-1

 log 

while a dilution of 0.5 g L
-1

 ASC reduced the population by more than 2 log UFC g
-1

. 

Allende et al. (2009) found a reduction of 3 log UFC g
-1

 in the population of E. coli 

O157: H7 in washed MFP cilantro with 1 g ASC L
-1

 compared to control. Also, Tomás-

Callejas et al. (2012) observed that after using ASC (300mg L
−1

) on fresh-cut tatsoi 

baby leaves the total aerobic mesophilic bacteria remained stable throughout storage for 

11 days at 5ºC.  

 

Organic acids such as CA or AA, which are in GRAS status, have been described as 

strong antimicrobial agents against psychrophilic and mesophilic microorganisms in 

fresh-cut fruit and vegetables (Uyttendaele et al., 2004; Bari et al., 2005). The 

antimicrobial action of organic acids is due to environment pH reduction, disturbance of 

membrane transport and/or permeability, anion accumulation, or a reduction in internal 

cellular pH (Neal et al., 2012). Less direct antibacterial activities include interference 

with nutrient transport, cytoplasm membrane damage resulting in leakage, disruption of 

outer membrane permeability, and influence on macromolecular synthesis (Beuchat, 

1998; Inatsu et al., 2005; Miller et al., 2009). 

 

Fresh cut ‘Amarillo’ melon dipped in 0.52 mM CA for 30 s before MAP reached a 

shelf-life of 10 d at 5ºC. This treatment maintained microbial safety and avoided 
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It is important avoiding O2 concentrations exceeding the permissible lower limits, as 

anaerobic disease can occur inside the package and cause tissue damage and foreign 

flavours and flavours (Watada et al., 1996).  

 

The main benefits of MAP are (Artés-Hernández et al., 2017): 

 Reduction of RR. 

 Reduction of heat emission from respiration. 

 Lowering ethylene activity and subsequent senescence. 

 Lowering sugar, vitamin and organic acid losses. 

 Total or partial limitation of physiological changes, such as chilling injuries, 

scalding, browning, etc. 

 Lowering microbial growth. 

 

Finally, the containers must be properly labelled including the processing date, 

expiration date, net weight, producer details and the lot code, which will ensure a good 

traceability of the final product. 

 

3.3.8. Quality control and cold storage 

Before the shipment of the product, it must pass a thorough control to ensure the safety 

and compliance of all quality specifications. In addition, a procedure of product recall 

when the specifications are not meet must be accomplished. These control measures are 

normally carried out with machines that have to be adjusted, checked and continuously 

calibrated. 

 

The bags or trays with the final product shall be placed in boxes which must be quickly 

stored between 1 and 4ºC until their distribution, normally within a period of less than 

one day. 

 

3.3.9. Cold transportation and distribution 

The recommendable temperature range throughout distribution chain is 0 to 5ºC. 

However, it is practically impossible to guarantee that this range will be always 

maintained during transit, distribution and retail display. Temperature is the most 
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important factor that influences the shelf–life of fresh cut products. For retail sale, the 

fresh cut products must be placed in special display cabinets at 0–5ºC (although 0–1ºC 

is preferable) in the food supply chains. However, it has already been demonstrated that 

fresh cut products are often subjected to temperature abuse of about 12ºC in the display 

cabinets of supermarkets. The inadequate temperature management during distribution 

and marketing, together with excessive temperature fluctuations during storage, can 

result in changes of the gas partial pressures within the MA packages. These MA 

alterations induce a consequent RR increment, heat production and water condensation 

within the package. In this way, the latter effects will reduce the shelf–life of the fresh 

cut product with high microbial spoilage risk. Sometimes, time–temperature integrators 

are used on packages to prevent abusive temperatures during transport and distribution. 

However, financial and environmental costs have limited the implantation of this 

technique (Artés and Artés–Hernández, 2003). 

 

3.4. Overall quality and safety of fresh cut vegetables 

The expected characteristics of fresh cut products by consumers are freshness, optimum 

overall quality (general appearance, sensory quality –texture/firmness, aroma and taste– 

and nutritional quality) and safety. However, during fresh cut processing and retail 

period some physiological, physical and nutritional changes may occur, reducing the 

expected quality attributes. Furthermore, some pathological disorders can appear in the 

fresh cut products, which can highly limit the shelf–life and safety of the fresh cut 

product (Artés–Hernández et al., 2013). 

 

3.4.1. Physiological, physical and pathological disorders 

The fresh-cut processing steps may increase the metabolism of the plant material, 

reflected in higher respiration rates (RR) and C2H4 emission, which usually leads to a 

faster deterioration rate (Artés et al., 2007). Temperature is the most important factor 

that affects the metabolism of these products, and the optimal conservation will depend 

on the type of product, the cultivar and exposure time. They are also very sensitive to 

weight loss, because when peeling, seeds are exposed to the absence of protection of the 

pod. 
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However, RH is generally very high within the package and dehydration is not a big 

problem. MAP can be beneficial for keeping RH and maintaining the product quality 

(Artés et al., 2009). 

 

The action of the enzyme lipoxygenase, which catalyzes peroxidation reactions, should 

also be taken into account as it can lead to the formation of aldehydes and ketones that 

are responsible for off–odours during the product's lifetime. These changes in the 

metabolism of fresh cut legume seeds may be reflected in the following physiological 

disorders (Suslow and Cantwell, 1998).  

 Freezing injury. Appears as water-soaked areas, which subsequently deteriorate 

and decay. Freezing injury occurs at temperatures of -0.7°C or below (Figure 

25). 

 

Physical disorders like rough handling at harvest or damage from shipping containers 

that can result in translucent areas that are susceptible to decay, should be also 

minimized (Suslow and Cantwell, 1998). 

Common postharvest decay organisms on green seeds are the fungi Pythium, Rhizopus, 

and Sclerotinia, all of which may occur as ’nests’ of decay or on broken or damaged 

seeds. 

 

3.4.2. Nutritional and bioactive compounds changes 

The fresh cut processing keys that highly influence the nutritional and bioactive 

contents are cutting, washing, dewatering, packaging, and processing and storage 

temperatures (Francis et al., 2012). The most important tool to extend the shelf–life and 

maintain the quality of the fresh cut fruit and vegetables is the temperature management. 

 

Storage conditions strongly influence the stability of postharvest seed colour in many 

types of beans. In other legumes there is some evidence that temperature, relative 

humidity (RH), seed moisture content (SMC) and light are the main factors that affect 

the stability of seed colour during storage (Hughes and Sandsted, 1975; Nordstorm and 

Sistrunk, 1977; Nozzolillo and De Bezada, 1984; Park and Maga, 1999). 

 



                                                                                                                                       INTRODUCTION 

45 
 

3.4.3. Use of microwaves for cooking 

After storage and marketing, the product could be consumed fresh or directly 

microwaved if packaged in a suitable container, providing a product of high sensory 

quality and intact nutritional properties. However, cooking methods may affect the 

nutrient content and health–promoting compounds of fresh cut products, such as 

vitamin C, polyphenols and glucosinolates (Martínez-Hernández et al., 2013). 

Nonetheless, Microwaving is more efficient than conventional cooking methods 

(boiling, high pressure boiling, steaming, etc.) since it takes shorter cooking times with 

consequent lower nutritional and sensory losses (Castillejo et al., 2018; Martínez-

Hernández et al., 2013a, 2013b), so cooking in a microwave oven could be an 

interesting alternative to conventional cooking due to high efficiency and faster 

processing time (Alajaji and El-Adawy 2006). It has been reported that microwaved 

faba beans (6 min) achieved the same anti-nutritional reductions as conventional boiling 

(30 min) (Luo and Xie, 2013). Also, LasoYadav et al. (2018) studied the impact of 

microwave (MW) cooking (800 W, 15 min) and boiling (90 min) on the total phenolic 

compounds of cowpea dry seeds and observed a higher preservation in MW-treated 

samples regarding boiling samples. 

 

3.4.4. Safety aspects of fresh cut vegetables 

The regulation of substances that are used to reduce the microbial load of fresh fruits 

and vegetables is complex and in some areas uncertain. In each country, the regulatory 

status of sanitizing solutions is different. The definition of the product used to disinfect 

wash water depends on 1) the type of product to be washed, and in some cases, 2) to the 

location where the disinfectant is used (IFPA, 2001). In the USA, the wash water 

disinfectants used for fresh-cut produce are regulated by the FDA as a secondary direct 

food additive, unless they are considered to be Generally Recognized As Safe (GRAS) 

(Gil et al., 2009). 

 

The European Council Directive 94/34/EC (amending Directive 89/107/EEC), on food 

additives comprises the lists of substances which may legally be added to food if they 

perform a useful purpose, are safe and do not mislead the consumer. The detailed 

controls made under the Framework Directive are implemented into the national law of 

each EU member state and stipulate which food additives are permitted for use, the 
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specific purity criteria and conditions of use, including maximum levels for specific 

additives (Gil et al., 2009). 

 

Spain has adopted the EU legislation (94/34/EC) with the RD 3177/1983 approving the 

Technical-Sanitary Regulation on Food Additives, RD 111/1991 amending the RD 

3177/1983, and RD 1359/1998 approving the procedure for incorporating into the 

Spanish positive lists of additives authorized in other Member States of the EU which 

are not included in the Spanish lists, or in doses different from those permitted in these 

lists. 

 

When the mentioned programs are not properly applied, outbreaks may occur with 

disastrous consequences (Table 6). According to this, these outbreaks associated with 

fresh cut products have pointed microbiological safety as the major issue of concern in 

the fresh cut industry. The microbiological risks which may occur in the fresh cut 

products can be classified into two categories (Hurst et al., 2002): 

 

 The contamination of the plant material happens during cultivation or harvest by 

indigenous pathogens. 

 The microbiological risk is present during the fresh cut processing, mainly in the 

cutting and washing steps, since the natural barriers of plant material (waxy 

outer skins) against microbiological invasion are damaged. Furthermore, cutting 

operation releases nutrients which can accelerate microbiological growth. 
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Table 6. Outbreaks linked to fresh and fresh cut produce from 2005 to 2011 (Olaimat 

and Holley, 2012). 

Location Year Pathogen Produce 
Cases 

(deaths) 

Canada 2005 Salmonella Mung bean 592 

USA 2005 Salmonella Tomatoes 459 

USA 2006 E. coli O157:H7 Spinach   199 (3) 

Australia 2006 Salmonella Alfalfa sprouts   125 

USA, Canada 2006 Salmonella Fruit salad   41 

USA 2006 Salmonella Tomatoes   183 

USA 2006 E. coli O157:H7 Lettuce  81 

Australia 2006 Salmonella Cantaloupe   115 

USA 2006 E. coli O157:H7 Spinach 22 

Europe 2007 Salmonella Baby spinach   354 

North America, 

Europe 
2007 Salmonella Basil   51 

Australia, Europe 2007 Shigella sonnei Baby carrots   230 

Europe 2007 Salmonella Alfalfa sprouts   45  

USA, Canada 2008 Salmonella Peppers 1442 (2)  

USA, Canada 2008 E. coli O157:H7 Lettuce   134 

UK 2008 Salmonella Basil 32 

USA 2008 Salmonella Cantaloupe   51 

USA, Canada 2008 Salmonella Peanut butter   714 (9) 

USA 2009 Salmonella Alfalfa sprouts   235  

USA 2010 E. coli O157:H7 Lettuce 26 

USA 2010 Salmonella Alfalfa sprouts   44 

USA 2010 L. monocytogenes fresh cut celery   10 (5) 

USA 2011 Salmonella Alfalfa 140 

USA 2011 Salmonella Cantaloupe   20 

USA 2011 Salmonella Papaya   106 

Europe 2011 E. coli O157:H7 Vegetable   3911 (47) 

USA 2011 L. monocytogenes Cantaloupe   146 (31) 

USA 2011 E. coli O157:H7 Strawberries     15 (1) 

USA 2011 E. coli O157:H7 Lettuce 60 

 

EU regulation establishes some pathogenic microorganisms as the unique 

microbiological criteria. Then, fresh-cut and fruit and vegetables beverages with mild 

heat treatments or non-thermal treatments are regulated by the EU Regulation 
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1441/2007 (2007). Table 7 includes the applicable microbial criteria of the latter 

Regulation. 

 

Table 7. Food safety criteria applied to the fresh-cut products food (Regulation EC 

1441/2007, 2007). 

 

 

 

 

 

 

 

 

Food category Microorganism 

Sampling 

plan 
1
 

Limits 
2
 Stage where the 

criterion applies 
n c m M 

Pre-cut fruit and 

vegetables 

(ready–to–eat). 

E. coli 5 2 
100 

CFU g-1 

 

1,000 

CFU g–1 
Manufacturing process. 

Pre-cut fruit and 

vegetables 

(ready–to–eat). 

Salmonella 5 0 Absence in 25 g 
Products placed on the market 

during their shelf– life. 

Ready–to–eat 

foods able to 

support the 

growth of Listeria 

monocytogenes, 

other than those 

intended for 

infants and for 

special medical 

purposes. 

L. monocytogenes 5 0 

100 CFU g
–1

 
3
 

 

Products placed on the market 

during their shelf– life. 

Absence in 25 g 
4
 

 

Before the food has left the 

immediate control of the food 

business operator. 

(1) n = number of units comprising the sample; c = number of sample units giving values between m and M // (2) 

For points 1.1–1.25; m = M. // (3) This criterion shall apply if the manufacturer is able to demonstrate, to the 

satisfaction of the competent authority, that the product will not exceed the limit 100 CFU/g throughout the shelf–

life. The operator may fix intermediate limits during the process that must be low enough to guarantee that the limit 

of 100 CFU/g is not exceeded at the end of shelf–life. // (4) This criterion shall apply  to  products  before  they  

have  left  the  immediate  control  of  the  producing  food  business  operator, when  he  is  not  able  to 

demonstrate, to the satisfaction of the competent authority, that the product will not exceed the limit of 100 CFU/g 

throughout the shelf–life. 
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OBJETIVES 

 

The general objective of this research is to optimize several processes to develop new 

fresh and processed human food from native varieties of three legumes species (faba 

beans, peas and cowpeas) with high nutritional quality and high bioactive compounds 

content. Such legumes species are well adapted to several European climates. In that 

way, legumes of local origin and rich in proteins could be easily included in daily 

human diet.  

The general objective can be achieved through the following specific objectives: 

 

1. Optimize minimal processing and packaging technologies for faba beans, peas 

and cowpeas to be microwaved during the refrigerated shelf life serving as a 

‘ready to cook and eat product’. 

2. Evaluate the new elaborates in relation of their physical, biochemical, 

microbiological and sensory characteristics throughout a refrigerated shelf life. 

3. Guarantee the nutritional value of these foods, as well as to reduce or eliminate 

the presence of anti-nutritional factors. 

4. Study of the use of alternative chemical and physical disinfectants to NaOCl 

during legumes minimal processing. 

5. Study of the use of edible coatings to avoid quality looses in the developed 

minimally processed products. 
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ABSTRACT 

Peas (Pisum sativum L. var. saccharatum) are an important source of protein, 

carbohydrates, vitamins and minerals. Pods are harvested before physiological maturity 

and stored at temperatures near 0°C. Due to their very high respiration rate, and even 

when classified as non-climacteric product, loss of quality is fast. Most studies 

conducted on fresh peas have dealt with the fresh pod but very little information is 

available on the optimum storage conditions of immature pea seeds, which are well 

adapted to be prepared as a minimally processed product. Appropriate sanitation is a 

priority for extending the shelf life and promoting the consumption of immature pea 

seeds, as processing accelerates quality deterioration and microbial growth. The effects 

of sanitation with chlorine (100 ppm, pH 6.5) or alternatively with acidified sodium 

chlorite (300 ppm, pH 1.8) and passive modified atmosphere packaging  on overall 

quality of fresh pea seeds (var. Lincoln) were assessed during storage at 1 and 4°C. 

After 12 days, atmospheres within packages were 8 kPa CO2 / 12 kPa O2 and 11 kPa 

CO2 / 10 kPa O2 at 1 and 4°C, respectively. Compared with the initial microbial load, 

samples stored at 1°C showed an increase of 1 log CFU g
−1

 in psychrophiles when 

treated with NaOCl, whereas no increase of note occurred with ASC. In general, 

microbial counts were always below 3 log CFU g
−1

 for all the treatments. Greenness 

and vitamin C had decreased, especially in the NaOCl-disinfected samples. Total 

phenols and antioxidant capacity were not affected by disinfection. Proteins levels fell 

by around 27%, regardless of the sanitizer and storage temperature. Low temperature 

storage allowed obtaining a high quality product even after 12 days of storage, being 

ASC a good alternative to chlorine. In conclusion, immature pea seeds could be stored 

for 14 days at 1–4°C under MAP with only minor quality changes. Disinfection with 

ASC resulted in better sensory quality, higher content of vitamin C and lower 

psychrophile counts.  
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ABSTRACT 

Numerous studies have shown that regular consumption of vegetables is associated with 

beneficial properties for human health. At the same time, today, there by consumers an 

interest in functional, healthy and ready to eat foods. Currently they are developing new 

ways of presenting the bean as minimally processed fresh food as well as its cooked in 

microwave, trying to encourage consumption, given its advantages as part of a 

nutritious and healthy diet. Disinfection prior to packaging fresh immature seeds is done 

usually with sodium hypochlorite. In this study the effect of two alernative treatments 

were analyzed: the effect of different sanitizers (an edible coating (EC) based on sucrose 

fatty acid esters, and UV–C (3 kJ m
–2

), compared with a control consisting of a 

conventional NaOCl washing (CTRL)) on the quality changes of fresh–cut faba (Vicia 

faba L.) seeds stored for 10 d at 4 °C. Additionally, domestic cooking of samples was 

assessed by periodically microwaving (3 min, 700 W) during fresh–cut samples storage 

to obtain a ready–to–eat product. Sensorial attributes, microbial growth, and evolution 

of vitamin C, total phenolics content (TPC), sugars and tannins were studied on 

uncooked and cooked faba beans. These analyzes were performed for minimally 

processed product during storage at 5°C for 10 days, so to this same product 

immediately after microwave cooking. The modified atmosphere gas composition at the 

steady was the same for all treatments. Sensorial attributes were above the limit of 

acceptability for fresh and microwaved beans, subjected to treatment with UV-C light 

and antibrowing edible coating Naturcover P until the last day of storage. Beans treated 

with sodium hypochlorite maintained their sensory acceptance until day 7, both in fresh 

and microwaved product. The EC treatment better retained vitamin C, total phenolics 

content (TPC) and tannins, while UV–C better maintained the sugars levels of samples. 

EC and UV–C controlled mesophilic and enterobacteria growth with 1 and 2–log units 

lower contents than CTRL after 10 d at 4°C. Microwaving reduced the microbial loads 

below detection limits. EC or UV–C treatments extended the shelf–life of fresh–cut faba 

seeds from 7 to 10 days at 4°C comparing with CTRL. As expected, microwaving 

decreased the bioactive compounds contents, but retained the quality of faba seeds 

allowing to obtain a ready–to–eat tasteful food. A UV–C pretreatment (3 kJ m
–2

) or a 

conventional NaOCl sanitizing step plus an edible coating (Naturcover® P; EC) during 

processing of fresh–cut faba seeds could be considered as important tools to improve 

their sensory, microbial and nutritional quality. Our results suggest that a typical quality 

loss during shelf–life can be reduced by using such coadjutants in the processing steps. 





to reduce microbial loads of the product ensuring its safety.
Consequently, sanitation aims to maintain the product quality ex
tending its shelf life. The FC industry has widely used sodium hypo
chlorite (NaOCl) due to its high antimicrobial activity and low cost
(Artés Hernández et al., 2009). However, NaOCl may be potentially
harmful due to the formation of toxic by products like trihalomethanes
and chloramines (López Gálvez et al., 2010). Furthermore, several
studies have reported that NaOCl could be insufficient to reduce normal
microflora in FC products (Foley et al., 2004).

UV C sanitation has been proposed as an alternative to NaOCl
(Artés et al., 2009). UV C radiation damages microbial DNA and, in
directly, stimulates the defence mechanisms of plants, retarding decay
and senescence processes. In addition, UV C is considered an eco sus
tainable sanitation method, due to the absent of residues, with rela
tively low cost (Rico et al., 2007; Artés et al., 2009).

Edible coatings (EC) can improve the quality, safety, shelf life and
functionality of FC products by reducing moisture transfer, respiration
rate and browning, while minimizing both spoilage and pathogenic
microorganisms depending of the EC type (Raybaudi Massilia et al.,
2016). Particularly, EC based on sucrose fatty acid esters improved the
moisture barrier properties and maintained the quality of FC broccoli
(Navarro Rico et al., 2015).

Cooking methods may affect the nutrient content and health pro
moting compounds of FC products, such as vitamin C, polyphenols and
glucosinolates (Martínez Hernández et al., 2013). Furthermore,
cooking of legumes reduces the content of several anti nutritional
factors (Revilla, 2015). Cooking techniques with short cooking times,
such as microwaves, may have beneficial effects on food quality when
compared with other long cooking techniques (boiling, high pressure
boiling, etc.) (Revilla, 2015).

Nevertheless, there are no studies on quality changes of FC faba
beans, which may be consumed fresh or after domestic cooking. This
study aimed to evaluate the effects of a conventional NaOCl washing,
used as control (CTRL), alone or combined with an EC based on sucrose
fatty acid esters, or alternatively after a UV C pretreatment on the
overall quality of FC immature faba seeds, which were also periodically
microwaved, during refrigerated storage.

2. Materials and methods

2.1. Plant material

Faba beans (Vicia faba var. Palenca) were grown in the Southeast of
Spain (Balsapintada, Murcia) according to integrated pest management
cultural practices. Faba beans were harvested on February at immature
physiological stage when the pods were almost round (seeds 70% of full
size; Anurag et al., 2016). Beans were cold transported (5 ± 1 °C)≈28
km to the Pilot Plant of the Institute of Plant Biotechnology. Then,
beans were stored at 1 °C and 90 95% relative humidity (RH) until the
next day when they were processed.

2.2. Processing, packaging and storage

The next day, faba beans pods were shelled by hand in a cold room
(5 °C) and the obtained seeds were immersed in cold water (4 °C) to
slow down the seeds metabolism. The obtained seeds were then sani
tized using the following treatments:

• CTRL: A standard industrial sanitation with NaOCl washing
(150mg L 1; 2 min; 4 °C; pH 6.5 ± 0.1) was used as the sanitizing
control treatment. NaOCl was prepared from a stock solution (50 g
L 1; Panreac, Spain). A ratio of 1 kg plant material:2 L disinfectant
(w:v) was used. The sanitized material was rinsed for 1min with tap
water (4 °C) and subsequently drained for 1min.

• EC: An EC based on sucrose fatty acid esters was prepared diluting
(1:10) Naturcover P® (oil in water emulsion of sucrose fatty acid

esters at 230 g L 1; Decco Ibérica S.A.U., Spain) in tap water. Prior to
EC, samples were treated by the standard CTRL treatment.
Subsequently, samples were immersed for 2min in the prepared EC
and allowed to drain for 5min in a perforated stainless steel basket.

• UV C: The UV C treatment chamber (Artés Hernández et al., 2009)
consisted of a reflective stainless steel chamber with two UV C
banks of 15 unfiltered germicidal emitting lamps (> 80% emitted
spectrum at λ=254.7 nm; TUV 36W/G36 T8, Philips, The Neth
erlands) each one. One bank was horizontally suspended 17.5 cm
over the radiation vessel and the other was placed 17.5 cm below it.
The applied UV C dose (3 kJ m 2; 90 s) was calculated as the mean
of 18 UV C readings on each side of the net using a VLX 254
radiometer at λ=254 nm (Vilber Lourmat, France). Thus, both
sides received the same UV C intensity. The UV C light intensity
was kept constant and the applied dose was varied by altering the
exposure time at the fixed distance. The UV C dose was selected
based on our previous experiments.

Treated seeds (≈125 g) were packaged in a bioriented poly
propylene (BOPP; 25+ 25 μm) bag (150×150mm) and then heat
sealed to generate a modified atmosphere packaging. O2 permeability
of the BOPP film was 700 cm3 m ² d 1 at 23 °C 0% RH according to the
supplier (Plásticos del Segura, Murcia, Spain). The film was selected
based on earlier studies performed by our research group. Empty bags
were previously sanitized with UVeC light (8 kJ m 2) to avoid any kind
of microbial contamination. Bags with samples were stored in darkness
at 4 ± 0.5 °C and 90% RH up to 10 d. Sampling days were 0 (proces
sing day), 3, 7 and 10. Four bags were taken on each sampling time (per
treatment) to be analysed as fresh product while another four bags (per
treatment) were taken and microwaved (700W, 1min; Moulinex BH7,
France). Thirty holes (0.2 mm Ø) were done on each bag prior to mi
crowaving to allow an adequate vapour gas flushing. A total of 128 bags
(4 treatments×2 cooking treatments×4 sampling times×4 replicates)
were prepared. All fresh and microwaved samples were analysed for
physicochemical determinations on the same sampling day while
sample portions for nutritional/anti nutritional contents were frozen
( 80 °C) until analysed.

2.3. Gas analysis within modified atmosphere packages

Headspace gas composition (O2 and CO2) inside the packages was
monitored throughout storage. Samples of 1mL were taken with a
syringe and analysed in a gas chromatograph (GC; 7820 A GC Agilent
Technologies, Germany). The GC conditions for CO2/O2 determination
were: oven at 80 °C, injector and detector at 250 °C, and H2 and air as
gas carriers at 35 and 350mL min 1, respectively. A PorapakQ GC
column (1/8″, 80/100 mesh size; Supelco Inc., Bellefonte PA, USA) was
used. Gases calibration was done by comparison with an external CO2/
O2 standard (Praxair, Spain). Gas sampling was made after 1, 3, 5, 7 and
10 d.

2.4. Microbial analyses

Standard enumeration methods were used to determine mesophilic,
psychrophilic, enterobacteria and yeast and mould growth as indicated
by Castillejo et al. (2016). All used microbial media was acquired from
Scharlau Chemie (Barcelona, Spain). The following media and incuba
tion conditions were used: Plate Count Modified Agar for mesophilic
and psychotropic aerobic bacteria with incubations of 30 °C/48 h and
5 °C/7 d, respectively; Violet Red Bile Dextrose Agar for enterobacteria
with an incubation of 37 °C/48 h; and Rose Bengal Agar for yeasts and
moulds (Y+M) with an incubation of 22 °C/7 d. All microbial counts
were reported as log colony forming units per gram of product (log CFU
g−1). Each of the four replicates was analysed in duplicate.
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Microbial quality of samples was highly controlled during storage
with microbial loads below 6 log units at the end of product shelf life.
On processing day, all sanitizing treatments achieved similar
(p < 0.05) reductions among all studied microbial groups. CTRL re
gistered the highest microbial growth during storage of samples.
However, the lower microbial loads of EC indicates its synergetic effect
when combined with sanitizers such as NaOCl. Similar results were
reported by Navarro Rico (2015) for FC broccoli. Additionally, UVeC
treatment showed a similar effect to EC (including NaOCl). UVeC (4.93
and 9.86 kJ m 2) also showed an important reduction of aerobic bac
terial counts in FC zucchini squash slices (Erkan et al., 2001). Moreover,
Graça et al. (2017) reported that UVeC treatment (2.5 10 kJm 2) was
more effective to reduce Escherichia coli, Salmonella enterica and Listeria
spp. than NaOCl sanitation, without highly affecting the quality of FC
Rocha pears.

5. Conclusion

A UV C pretreatment (3 kJ m 2) or a conventional NaOCl sanitizing
step plus an edible coating (Naturcover® P; EC) during processing of
fresh cut faba seeds could be considered as important tools to improve
their sensory, microbial and nutritional quality. Both fresh and micro
waved EC samples showed the highest vitamin C and phenolics content
retention after 10 d at 4 °C, while UV treated samples presented the
highest sugars content. Therefore, these samples (EC and UV treated)
achieved the highest sensory quality. Our results suggest that a typical
quality loss during shelf life can be reduced by using such coadjutants
in the processing steps. However, further studies are needed to optimize
the UV C treatment conditions for enhancing the antioxidant com
pounds content. As hereby proposed, fresh seeds can be microwaved
within the same package obtaining a very tasteful product with reduced
tannins content.
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ABSTRACT 

Numerous studies show that regular vegetable consumption is associated with beneficial 

properties for human health. At the same time, there is an interest in functional, healthy 

and ready-to-consume foods from consumers. In this sense, cowpea (Vigna 

unguiculata) is an excellent source of many essential nutrients, including proteins and 

aminoacids of vegetable origin, complex carbohydrates, minerals, fiber, vitamins, and 

other bioactive compounds, and is low in calories and fat. Dry grains are the most 

common produce used for human food, but leaves and immature seeds and pods are also 

consumed.In this context, the consumption of cowpea beans as a fresh food minimally 

processed, as well as, cooked in microwaves, can be alternatives to stimulate the 

consumption of legumes. The objective of this work was to evaluate the quality of 

fresh-cut cowpea prepared to be eaten raw (immature seeds) or microwaved (seeds and 

pods). Fresh cowpea pods were washed with NaOCl (150 mg L
−1

, pH 6.5) and stored 

for 21 days at 8°C under modified atmosphere packaging. Additionally, seeds obtained 

from hulled pods were equally disinfected, packaged, and stored for 7 days at 4°C. The 

total phenolic content (TPC), total antioxidant capacity (TAC), sugars (raffinose, 

sucrose, glucose), and sensory attributes were evaluated in microwaved pods (700 W, 1 

min), fresh seeds, and microwaved seeds. TPC and TAC increased after microwaving in 

both seeds and pods. Sucrose and glucose concentrations increased after microwaving, 

while raffinose was not detected after cooking. According to sensory quality, fresh 

(4°C) and microwaved seeds maintained all the above attributes above the limit of 

usability until day 7, while pods were edible for up to 14 days if kept at 8°C. These 

results indicate that cowpea seeds and pods (fresh-cut and then microwaved) are 

feasible and practical products to stimulate legume consumption from local landraces, 

especially in the absence of raffinose, which improves product digestibility. 

 

 

 

 

 

 

 

 

 





There is a growing consumer demand for natural, fresh, and
ready-to-eat vegetable products, as those represented by fresh-
cut or minimally fresh processed fruits and vegetables (Artés-
Hernández et al. 2009). In light of this, the development of
fresh-cut immature cowpea pods and seeds may help in pro-
moting the consumption of this vegetable. In addition, after
storage and marketing, the product could be consumed fresh
or directly microwaved if packaged in a suitable container, pro-
viding a product of high sensory quality and intact nutritional
properties. However, it is known that cooking methods can
affect both bioactive and nutritional components (Yasmin
et al. 2008; Deng et al. 2015). Thus, cooking in a microwave
oven could be an interesting alternative to conventional cooking
(e.g., boiling) due to high efficiency and faster processing time
(Alajaji and El-Adawy 2006). Yadav et al. (2018) studied the
impact of microwave (MW) cooking (800 W, 15 min) and
boiling (90 min) on the total phenolic compounds of cowpea
dry seeds cv. Kohinoor and observed a higher preservation
(39.1%) in MW-treated samples regarding boiling samples
(27.3%).

Although there are many studies dealing with the nutrition-
al properties of the most common legumes, there is limited
information about the nutritional value of fresh cowpea.
Promoting its inclusion in diets is important because of its
protein content and also because of other functional proper-
ties, such as its phenolic content and high antioxidant activity.
Therefore, the objective of this study was to evaluate quality
changes of fresh-cut cowpea during storage at 4 °C for 7 days
(green seeds) and at 8 °C for 21 days (pods). Then, seeds and
pods were microwaved at certain fixed times and the resulting
changes in sensory attributes, total phenols, antioxidant capac-
ity, and sugars content were assessed.

Material and Methods

Plant Material

Cowpea pods from a local European landrace (accession
BGE038474) were harvested in the Agri-food Experimental
Station Tomás Ferro (La Palma, Cartagena, Spain) at an im-
mature physiological stage. This landrace, which was selected
based on previous experiments carried out at the UPCT, is
notable for its high yield (226.45 ± 60.19 g m 2) and having
rather small seeds (14.59 ± 1.79 g 100 1 seeds) and short pods
(16.14 ± 1.18 cm) (Martos-Fuentes et al. 2017), which makes
it very suitable for minimal processing. It also has a high
protein content (24.35 ± 1.63 g 100 1 g d.w.) and it is well
adapted to the local climate (Martos-Fuentes et al. 2017).
Immediately after harvest, pods were cold transported (7 ±
1 °C, 20 min) to the laboratory, where they were kept in
darkness at 8 °C and 90–95% relative humidity (RH).

Processing, Packaging, and Storage

The following day, half of the pull of pods was shelled by
hand in a cold room (5 °C) and the seeds were immersed in
cold water at 4 ± 1 °C, 5 min, until disinfection. The seeds and
the remaining unshelled pods were sanitized by immersion in
NaOCl (150 mg L 1, pH 6.5, 2 min, 4 °C), and subsequently
rinsed in cold tap water for 1 min.

Fifty ± 5 g of seeds and pods were packaged in 50-μm-thick
polypropylene bags (O2 permeability, 700 cm3 m 2 d 1; CO2

permeability, 1100 cm3 m 2 d 1, at 23 °C and 0% RH). This
film was selected based on own previous studies performed by
the research group. Before packaging, the bags (15 × 30 cm for
pods and 15 × 15 cm for seeds) were sterilized with UV-C light
(8 kJ m 2) to prevent microbial contamination.

The bags were heat-sealed to generate a passive modified
atmosphere (PMA) and stored at 90% RH for 7 days at 4 ±
0.5 °C (seeds) and for 21 days at 8 ± 0.5 °C (pods) to avoid
chilling injury. After 0, 3, and 7 (seeds) and 0, 7, 14, and
21 days (pods) of storage, four bags of seeds and pods were
analyzed for different quality parameters. Another four bags
of seeds and pods were also removed and microwaved
(700 W, 1 min). Thirty holes (0.2-mm diameter) were made
in the bags before microwaving. These samples were then
analyzed for the same quality parameters as for the fresh prod-
uct, as described below. Except for sensory quality, all the
remaining quality parameters for both seeds and pods were
assessed on frozen samples stored at − 80 °C until analysis.

Headspace Analysis

Throughout storage, headspace gas composition (O2 and CO2)
within the packages was monitored following the method de-
scribed by Rodríguez-Hidalgo et al. (2010). Samples of 1 mL
were taken with a syringe and analyzed in a gas chromatograph
(GC) (7820AGCAgilent Technologies,Waldbroon, Germany)
with a molecular sieve Molsieve 5A 80/100 (Teknokroma,
Barcelona, Spain) and Hayesep Q 80/100 column
(Teknocroma, Barcelona, Spain). GC was fitted with a thermal
conductivity detector (TCD), using He as carrier gas, with an
oven temperature of 80 °C and a detector temperature of
200 °C. Calibration was done based on external standard (O2

10%, CO2 10%, N2 80%). Atmospheric pressure was measured
(Brooks Instruments BV, Netherlands) to convert percentage
readings to kilopascal. Three replicates were used per treatment
and evaluation day. Samples were taken on days 1, 3, 4, and 5
of storage in the case of seeds and on days 0, 3, 7, 11, 13, 17,
and 19 for pods.

Total Phenolic Content

The total phenolic content (TPC) was determined by the meth-
od developed by Singleton and Rossi (1965) with some
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modifications introduced by Martínez-Hernández et al.
(2011). Briefly, frozen samples (2 g) were placed in glass
bottles, and 3 mL of methanol was added. The extraction
was carried out in an orbital shaker (Stuart, Staffordshire,
UK) for 1 h at 200×g in darkness inside a polystyrene box
with an ice bed. The extracts were centrifuged at 15,000×g for
10 min at 4 °C. Supernatant samples (19 μL) and 1 N Folin–
Ciocalteu reagent (29 μL) were mixed in a 96-well plate and
incubated for 3 min at room temperature in darkness. Then,
192 μL of a solution containing Na2CO3 (0.4%) and NaOH
(2%) was added. After 1 h of incubation at room temperature
in darkness, the absorbance was measured at 750 nm with a
multiscan plate reader (Tecan Infininte M200, Männedorf,
Switzerland). The TPC was expressed as milligrams of gallic
acid equivalents (GAE) per kilogram fresh weight. All sam-
ples were tested in triplicate.

Total Equivalent Antioxidant Capacity

The same sample extracts to determine TPC were used to
evaluate the antioxidant capacity (TAC) by 2,2-diphenyl-1-
picrylhydrazil (DPPH) (Brand-Williams et al. 1995) and ferric
reducing antioxidant power (FRAP) (Benzie and Strain 1999)
assays:

& DPPH assay: the free radical scavenging activity using the
free radical DPPH was evaluated by measuring the de-
crease in absorbance at 515 nm for 30 min at room tem-
perature, with measurements every 5 min to determine the
right time to measure TAC. A volume (194 μL) of DPPH
solution (0.7 mM) was added to each extract sample
(21 μL).

& FRAP assay: the freshly made up FRAP solution contain-
ing sodium acetate buffer (pH 3.6), 10 mMTPTZ solution
(in 40mMHCl), and 20mMFeCl3 was prepared in a v/v/v
proportion of 10:1:1. A volume (198 μL) of FRAP solu-
tion was added to each extract sample (6 μL) and left to
stand for 45 min at room temperature in darkness, mea-
suring the increase in absorbance at 593 nm.

The antioxidant activity for the DPPH and FRAP assays
was expressed as milligrams of Trolox equivalent antioxidant
capacity (TAC) per kilogram fresh weight.

Sugars

The raffinose, glucose, and sucrose content was analyzed as
described by Flores et al. (2012) with some modifications.
Samples (3 g) were homogenized (Ultra-turrax T-25, Ika-
Labortechnik, Staufen, Germany) with 10 mL ofMilliQ water
for 40 s. The extracts were filtered through cheesecloth and
centrifuged at 12,000×g for 20 min. The supernatant was pu-
rified by passing through a solid-phase extraction column in a

parallel Strata C18-E column (55 um, 70 A; Phenomenex,
Macclesfield, UK) and then filtered through a 0.45-μm
PTFE syringe filter. Then, 20 μL was injected in an ultra-
high-performance liquid chromatograph (Shimadzu, Kyoto,
Japan). Chromatographic analyses were carried out in a
RAM-Carbohydrate Ag+ column (100 mm 4.6 mm, 2.6 mm
particle size; Phenomenex, Macclesfield, UK). The mobile
phase used was MilliQ water with an isocratic flow rate of
0.6 mL min 1. Quantification and assignment of peaks were
based on the peak areas and retention times of known standard
curves for fructose, sucrose, and raffinose (Sigma, St Louis,
MO, USA). Results were expressed as milligrams per 100 g
fresh weight. All samples were tested in triplicate.

Sensory Evaluation

Sensory analyses were carried out according to international
standards (ASTM 1986). Tests were conducted in a standard
room (ISO 2012) equipped with ten individual taste boxes
using white light. Samples (about 20 g) of fresh and
microwaved seeds and microwaved pods were served at room
temperature. Still mineral water was used as palate cleanser.
The evaluation of fresh and microwaved samples was per-
formed by a panel of seven people (aged 24–60) trained in
sensory quality analysis. A 9-point hedonic scale was scored
for visual symptoms of browning and dehydration (9 = none;
5 = limit of usability; 1 = extreme), and the rest of the param-
eters, i.e., flavor, aroma, visual appearance, texture, lightness,
and overall quality, were scored as 1 = extremely bad, 5 = limit
of usability, and 9 = excellent.

Statistical Analyses

Analysis of variance (ANOVA)was performed to compare the
differences at different storage times for fresh (at days 1, 3, 4,
and 5 for seeds and on days 0, 3, 7, 11, 13, 17, and 19 for pods)
and microwaved cowpea, at a significance level of α ≤ 0.05
using PASW Statistics 23 for Windows (SPSS Inc., Chicago,
IL, USA). When significant differences were observed,
Tukey’s HSD (honestly significant difference) test was
applied.

Results and Discussion

Headspace Analysis

The generated passive atmosphere was analyzed to monitor the
gas composition within the PMA packages (Fig. 1). As expect-
ed, there was an increase in the partial pressure of CO2 and a
decrease in that of O2 from the first day of storage, reaching a
steady state at day 3 (23 kPa CO2/1.5 kPa O2 and 19 kPa CO2/
1.2 kPa O2, for fresh seeds and pods, respectively).
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Limited information is available about the effect of pro-
cessing and cooking on the nutritional and quality parameters
of fresh-cut cowpea seeds and pods. The immature seeds have
a short shelf life due to rapid dehydration (they have a high
water content of around 50–70%) (Oliveira et al. 2001) and a
high respiration rate (Pinto and Morais 2000). Both aspects
could have an effect on main quality changes that can be
reduced by using a package with suitable permeability to gen-
erate a passive modified atmosphere. In the experiments pre-
sented here, bags containing seeds had a higher CO2 partial
pressure than those with pods, indicating their higher respira-
tion rate. As the respiration is an indicator of metabolic activ-
ity, it is expected that seeds will deteriorate faster. Reducing
respiration is one of the key benefits from cooling and PMA.
The high CO2 partial pressure reached within packages prob-
ably had a bacteriostatic activity against the fungi and bacteria
responsible for deterioration. However, it did not affect senso-
ry attributes, since no off-flavors were detected by the
panelists.

Total Phenolic Content

On day 0, the TPC (Fig. 2) was slightly higher for fresh seeds
than for pods (950 ± 28.85 mg GAE kg 1 fw and 885 ±
8.55 mg GAE kg 1 fw respectively). Variable results have
been found in the literature about the total phenolic content
of different cowpea cultivars, with TPC values reported from
465 to 14,000 mg GAE kg 1 (Deng et al. 2013; Zia-Ul-Haq
et al. 2013; Adjei-Fremah et al. 2015). Values found here were
higher than those previously reported by Adjei-Fremah et al.
(2015) (465 mg GAE kg 1) and lower than those reported by
Deng et al. (2013), who measured up to 8280 mg GAE kg 1.
The TPC content found here partially agree with the contents
repor ted by Ali e t a l . (2014) for cowpea seeds
(1230 mg GAE kg 1 fw) and Karapanos et al. (2017) in cow-
pea pods (839.40 ± 39.5 mg GAE kg 1 fw). Genetic factors

and environmental conditions can influence the concentration
of TPC in vegetables (Hoeck et al. 2000) and the variability
observed in our results may be attributed to these factors. Due
to their potential positive effect on consumer’s health, it is
convenient to consider phenolic content as a quantitative trait
of cowpea in cultivar development programs.

When microwaved on day 0, TPC increased by around
57% for seeds, and about 13% for pods. This agrees with
the increase of more than 100% in the total phenolic content
observed by Chumyam et al. (2013) and Sharma et al. (2015)
after heating eggplants (microwaving, 5 min) and onions (ov-
en 80 °C, 30 min). Moreover, Zhou et al. (2016) observed that
domestic microwaving increased the total phenolic content
from 12.8 to 29.0% in defatted avocado puree in comparison
with untreated samples. This increase could be due to the fact
that heat treatments probably facilitate the extraction of phe-
nolic compounds after cooking. Heating might cause severe
fractures to the seed physical structures and could facilitate the
release of cell components, making them more available. On
the contrary, Hithamani and Srinivasan (2014) found that
microwaving (450 W, 4 min) significantly decreased (25%)
the total polyphenol content in green gram (Vigna radiate).

Fresh seeds maintained similar TPC values throughout
storage, whereas the TPC of fresh pods decreased by 55%
after 21 days. The decreasing trend observed was also detect-
ed when microwaved, with TPC always higher in cooked
pods than in the fresh ones. At the end of storage, non-
significant differences were observed between fresh and
microwaved seed samples, and significant differences be-
tween fresh and microwaved pods, but very close one to the
other.

Total Antioxidant Capacity

The TAC of fresh cowpea seeds and pods as evaluated by
FRAP and DPPH assays is presented in Tables 1 and 2,

Fig. 1 Gas changes within packages of fresh cowpea seeds (left) and pods (right) stored in PMA for 7 and 21 days, respectively. Data are mean (n = 3) ±
standard deviation
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respectively. In the FRAP assay, the initial TAC value of fresh
seeds was 1383.9 ± 130.7 mg TEAC kg 1 fw. After 1 min of
microwaving, the TAC of fresh seeds increased by 52%. At
the end of storage, a decrease of 56% was observed for both
fresh and MW seeds, with significant differences between
them. With regard to fresh pods, the TAC value was 751.1 ±
78.7 mg TEAC kg 1 fw, which increased by 60% after pro-
cessing in the microwave. However, at day 21, a decrease of
84% and 62% was observed for fresh and MW cowpea pods,
respectively, related to the initial day.

The TAC evaluated by DPPH assay showed an increase of
56% and 23% after microwave processing in seeds and pods,
respectively. After 7 days of storage, a decrease of 50% was
observed in fresh seeds, with non-significant differences be-
tween fresh and microwaved seeds. The TAC values de-
creased by 90% and 80% at the end of 21 days of storage in
fresh and MW pods, respectively, the MW pods showing
higher values of TAC with the DPPH assay than by FRAP.

The values obtained for the antioxidant capacity were
much higher than those found in the literature (Adjei-
Fremah et al. 2015; Nassourou et al. 2016), perhaps due
to differences among varieties of cowpea. The results re-
ported here regarding the considerable retention of pheno-
lic compounds and antioxidant capacity are health-relevant
since phenolic compounds have therapeutic properties in
different diseases. As with the phenolic content, the con-
centration of TAC increased after microwaving, possibly
due to the increased extraction of the compounds after
heating and to the moisture loss taking place during
cooking. The higher antioxidant capacity observed in our
study related to that cited in the references could be attrib-
uted to the low degradation of total phenolics. A decrease
in antioxidant activity was recorded in pea seeds (Collado
et al. 2017) as storage progressed.

At the end of storage, both seeds and MW pods showed
lower losses of antioxidant capacity and total phenols com-
pared to fresh samples. This may be due to the thermal inac-
tivation of enzymes responsible for their degradation.

Sugars

The concentration of the three most relevant sugars (raffinose,
sucrose and glucose) of cowpea seeds and pods is presented in
Tables 3 and 4, respectively. Values for sucrose and glucose
were higher in pods than in seeds, while for raffinose the
concentration was very similar in fresh seeds and pods.

Few data have been published on the effects of fresh-cut
processing on the soluble sugars of cowpea. Of importance in
this context is raffinose, which is considered a non-nutritional
and Bflatulence factor^ because, when fermented by intestinal
microflora, it releases considerable amounts of gases (Singh
and Kayastha 2013). The concentration at day 0 in fresh seeds
and pods was very similar (83 mg 100 g 1 fw). Our results
agree with previous data on cowpea seeds. Khattab and
Arntfield (2009), Sreerama et al. (2012), and Kalpanadevi
and Mohan (2013) reported concentrations of 84, 103, and
68 mg 100 g 1, respectively. After microwaving, raffinose

Table 1 Total antioxidant capacity measured by FRAP and DPPH
assays (mg TAC kg 1 fw) of cowpea seeds stored under PMA at 4 °C
and then microwaved

Day Sample FRAP DPPH

0 Fresh seeds 1383.0 ± 130.8 Ba 2079.4 ± 180.4 Ba

MW seeds 2108.0 ± 163.3 Aa 3243.6 ± 49.1 Aa

3 Fresh seeds 999.4 ± 97.8 NSab 1418.6 ± 133.1 Bb

MW seeds 1180.9 ± 46.0 NSb 2116.3 ± 191.4 Ab

7 Fresh seeds 606.1 ± 41.7 Bb 1105.3 ± 56.6 NSb

MW seeds 920.3 ± 77.8 Ab 1527.1 ± 162.3 NSb

Treatments *** ***

Days *** ***

Days × treatments * *

FRAP, ferric reducing antioxidant power; DPPH, 2,2 diphenyl 1
picrylhydrazil; NS, non significant. Data are mean ± standard deviation
(n = 3). Different capital letters within the same column show significant
differences between fresh and microwaved samples. Different lowercase
letters within the same column show significant differences between stor
age times. ***P < 0.001; **P < 0.01; *P < 0.05

Fig. 2 Total phenolic content of fresh cowpea seeds (left) and pods (right) stored under PMA and then microwaved. Full lines represent fresh samples
while dotted lines represent microwaved samples. Data are mean (n = 3) ± standard deviation
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was not detected in any sample. This reduction in the raffinose
content is a relevant factor for a legume-based product.
Onigbinde and Akinyele (1983) proposed that the decrease
in raffinose during cooking may be attributed to heat hydro-
lysis or raffinose to disaccharides and monosaccharides or to
the formation of other compounds. The raffinose content de-
creased during storage and was more affected by storage time
than the other sugars. We have not found any clear relation-
ship between the decrease in raffinose and the increase in
glucose and fructose. Probably, it could be related, at least
partially, to moisture loss occurring in cooking. In fresh seeds,
there was a decrease of 45% of raffinose concentration from

day 0 to day 3, while it was undetected on the last day of
storage. In the case of fresh pods, the raffinose concentration
had fallen by 65% after 14 days with respect to day 0 and was
undetectable at day 21 of storage.

The observed sucrose content (64.75 ± 21.48 and 178.83 ±
44.48 mg 100 g 1 fw in seeds and pods, respectively) (Tables 3
and 4) was in agreement with previously reported data.
Tchiagam et al. (2011) evaluated the sucrose content in cowpea
seeds, finding values of 53.2 ± 5.7 mg 100 g 1 fw. Moreover,
Karapanos et al. (2017) reported a sucrose concentration of
194.2 ± 5.20 mg 100 g 1 fw in cowpea pods. The sucrose con-
tent increased by 43% and 17% after microwaving seeds and
pods, respectively, on day 0 (Tables 3 and 4). Klug et al. (2018)
evaluated the sucrose content of a faba bean pesto sauce, after
cooking in a microwave (11 kW, 30 s), and observed an in-
crease of 77%. On the contrary, Alajaji and El-Adawy (2006)
showed that the content of sucrose of chickpea seeds after mi-
crowave cooking was reduced by 28%. In the experiments
presented here, even when some moisture loss occurred, it
was an increasing trend. As storage progressed, a significant
decrease in the sucrose content of around 75% in fresh and
MW seeds was observed, while for pods there was a decrease
of about 80% and 63% for the fresh and MW, respectively.

Karapanos et al. (2017) studied the glucose content of 37
varieties of cowpea pods, finding that it ranged from 247 to
1082 mg 100 g 1 fw. This wide variation could be due to dif-
ferent pre-harvest factors but it agrees, in general, with our
results (300.74 ± 35.53 mg 100 g 1 fw) (Table 4). After
microwaving at day 0, the glucose concentration increased by
67% and 17%, in seeds and pods, respectively. The glucose
concentration was significantly affected throughout storage in
the case of seeds, where the reduction in both the fresh andMW
products was around 85%. In the case of fresh pods, the de-
crease was about 40% and only 3.5% for microwaved pods
(Tables 3 and 4).

Table 3 Sugar (raffinose,
sucrose, and galactose) content
(mg 100 g 1 fw) of cowpea seeds
stored under PMA at 4 °C and
then microwaved

Day Sample Raffinose Sucrose Glucose

0 Fresh seeds 83.8 ± 22.3 Aa 64.8 ± 21.5 NS a 170.2 ± 13.2 NS a

MW seeds ND B ns 92.5 ± 15.2 NS a 285.1 ± 25.6 NS a

3 Fresh seeds 45.4 ± 4.8 Ab 43.0 ± 4.6 NS a 39.1 ± 14.5 NS b

MW seeds ND B ns 66.8 ± 9.3 NS a 130.6 ± 119.0 NS b

7 Fresh seeds ND NS C 15.6 ± 1.8 NS b 26.7 ± 4.2 NS b

MW seeds ND NS ns 24.3 ± 2.8 NS b 47.6 ± 10.3 NS b

Treatments * *

Days *** ***

Days × treatments NS **

ND, non detectable;NS or ns, non significant. Data are mean ± standard deviation (n = 3). Different capital letters
within the same column show significant differences between fresh and microwaved samples. Different lower
case letters within the same column show significant differences between storage times.***P < 0.001; **P < 0.01;
*P < 0.05

Table 2 Total antioxidant capacity measured by FRAP and DPPH
assays (mg TAC kg 1 fw) of cowpea pods stored under PMA
conditions at 8 °C and then microwaved

Day Sample FRAP DPPH

0 Fresh pods 751.1 ± 78.8 Ba 1883.2 ± 164.2 NSa

MW pods 1205.2 ± 136.0 Aa 2315.7 ± 16.8 NSa

7 Fresh pods 203.5 ± 22.5 Bb 363.7 ± 6.0 Bc

MW pods 361.00 ± 13.9 Ab 502.9 ± 18.1 Ab

14 Fresh pods 727.4 ± 96.3 Ba 1313.6 ± 118.0 Bb

MW pods 1112.1 ± 66.8 Aa 2142.6 ± 140.1 Aa

21 Fresh pods 118.4 ± 2.2 Bb 149.0 ± 16.4 Bc

MW pods 453.3 ± 12.0 Ab 502.8 ± 6.3 Ab

Treatments *** ***

Days *** ***

Days × treatments NS **

FRAP, ferric reducing antioxidant power; DPPH, 2,2 diphenyl 1
picrylhydrazil; NS, non significant. Data are mean ± standard deviation
(n = 3). Different capital letters within the same column show significant
differences between fresh and microwaved samples. Different lowercase
letters within the same column show significant differences between stor
age times. ***P < 0.001; **P < 0.01; *P < 0.05
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overall quality even of fresh seeds, at the end of storage, al-
though there was a slight decrease in visual quality due to
browning, dehydration, and loss of lightness.

According to the results obtained in the sensory evaluation,
the shelf life of fresh-cut cowpea seeds, both fresh and
microwaved, was of at least 7 days at 4 °C, although on the
last day of storage the acceptance was higher for fresh seeds
compared to MW seeds. For all cases, microwaving after stor-
age led to good sensory properties, making cowpea an inter-
esting product for both the food industry and the consumers.

Conclusions

Immature cowpea seeds and pods, from a local, well-adapted,
and highly productive cowpea landrace, could be stored for at
least 7 and 14 days, respectively, at 4 and 8 °C under MAP.
However, shelf life of pods was shorter than initially expected
(21 days vs 14 days) mostly due to sensory quality loss.
Despite this fact, even when there were noticeable losses on
total antioxidant capacity, and sugar and phenolic content, the
nutritional value was quite acceptable after storage. Both
seeds and pods can be seen as promising for promoting cow-
pea consumption, thereby helping to reduce the loss of agro-
diversity in legume species. Heating slightly negatively affect-
ed the total phenolic content and antioxidant capacity. Despite
that, microwaving can be still considered a good alternative
for cowpeas. In addition, the degradation of raffinose due to
microwave heating is a positive consequence since it reduces
the possible adverse effects of this non-nutritional factor.
Although the results are promising and could be helping in
preserving cowpea biodiversity, more research is needed to
analyze the effect of heating on other important aspects of
cowpea quality.
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ABSTRACT 

Faba beans (Vicia faba L.) are an important source of protein, carbohydrates, vitamins 

and minerals. However, there are not many studies about the physiological behavior of 

immature fabas subjected to minimal processing, preservation and cooking. Currently 

they are developing new ways of presenting the faba been seeds as minimally processed 

fresh food as well as its cooked in microwave, trying to encourage consumption, given 

its advantages as part of a nutritious and healthy diet. Sanitation is one of the most 

critical steps in the fresh-cut production, due to the effects of microbial load on quality, 

safety and shelf-life of the final product. The present studied evaluated the effect of 

different sanitizers (NaOCl, and UV-C (3 kJ m
-2

, UV) and passive modified atmosphere 

packaging on the sensory and microbial quality, and bioactive and anti-nutritional 

content of fresh-cut faba beans during storage at 5ºC. After 10 days, the atmospheres 

within the packages were 12.5 kPa CO2 / 5.3 kPa O2 in the case of seeds treated with 

NaOCl and 22.5 KPa CO2 / 4.2 KPa O2, in the case of seeds treated with UV-C. 

Sensorial attributes were above the limit of acceptability for fresh and microwaved faba 

bean, subjected to treatment with UV-C light until the last day of storage. Beans treated 

with NaOCl maintained their sensory acceptance until day 7, both in fresh and 

microwaved product. The microbial load was low at the end of storage, although NaOCl 

showed the highest microbial counts for mesophiles, psycrophiles and enterobacteria. 

UV-C did not negatively affect the total antioxidant capacity of samples during storage. 

The phytic acid and raffinose contents decreased after 10 days, without influence of the 

UV-C treatment. Microwaving reduced the phytic acid and condensed tannins contents 

in those samples stored for up to six days, with low microwaving effect in the last 

storage days. Nevertheless, UV-C improved the condensed tannins reductions through 

storage compared with non-irradiated samples. In conclusion, the UV-C treatment of 

fresh-cut faba beans extended shelf life to 10 days without affecting the antioxidant 

capacity and with a reduction in anti- nutritional compounds achieved after domestic 

microwaving. 

 

 

 

 

 





antimicrobial activities) (Chung et al., 1998; Revilla,
2015; Soetan, 2002; Zartl et al., 2018).

Fresh-cut products are highly appreciated by con-
sumers due to their convenience and ready-to-use prop-
erties (Artés et al., 2009). The faba bean cv. Muchamiel
might be a valued fresh-cut product due to its sweety
flavour (Parra-Galant, 2009), contrary to most faba
beans cvs., which highly mask the typical bitter fla-
vour (mainly due to tannins) of this pulse. The main
quality loss of fresh faba beans is due to browning,
flavour deterioration and dehydration, which lead to
a short postharvest life. Due to fresh-cut processing,
such quality losses are increased while microbial
growth is also enhanced. Accordingly, several posthar-
vest techniques, such as modified atmosphere packa-
ging (MAP) and alternative sanitizing treatments to
conventional NaOCl washing (which might produce
carcinogenic by-products), like UV-C radiation,
may extend the shelf life of fresh-cut products (Artés
et al., 2009).

The microbicidal effect of UV-C (�¼ 190–280 nm)
radiation is due to the formation of pyrimidine
dimers, which alters the microbial DNA helix and
blocks the microbial cell replication (Nakajima et al.,
2004). UV-C radiation reduces the enzymatic (mainly
polyphenoloxidase (PPO)) browning of fresh-cut prod-
ucts through protein aggregation (Manzocco et al.,
2009). The low atmospheric oxygen concentrations
(5–10%) achieved during MAP also minimize the
enzymatic browning of fresh-cut products. UV-C radi-
ation has been also reported to reduce the contents

of several anti-nutritional compounds in soybeans
(Maetens et al., 2018).

Some consumers still prefer cooking of fresh faba
beans prior to consumption to reduce the concentration
of oligosaccharides derived from raffinose (Revilla,
2015), which have been widely known to cause
flatulence in humans (Rao and Belavady, 1978).
Microwaving is more efficient than conventional cook-
ing methods (boiling, high pressure boiling, steaming,
etc.) since it takes shorter cooking times with conse-
quent lower nutritional and sensory losses (Castillejo
et al., 2018; Martı́nez-Hernández et al., 2013a, 2013b).
It has been reported that microwaved faba beans
(6min) achieved the same anti-nutritional reductions
as conventional boiling (30min) (Luo and Xie, 2013).

The aim of this study was to evaluate the use of
UV-C light, as an alternative sanitizing treatment to
NaOCl, to extend the shelf life of fresh-cut faba beans
(cv. Muchamiel) during storage for up to 10 days
at 5 �C. The content of the main nutritional and anti-
nutritional compounds was also studied. Furthermore,
the effects of a domestic microwaving prior to con-
sumption (at each sampling time: 0, 3, 7 and 10 days)
were also studied. The experiment layout is described in
Figure 1.

MATERIALS AND METHODS

Plant material

Faba beans (V. faba L., var. Muchamiel) were grown in
the Agri-food Experimental Station Tomás Ferro

Sensory
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Figure 1. Flow diagram of the experiment indicating the different treatments for fresh cut and then microwaved immature
faba seeds.
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(La Palma, Cartagena, Spain) following integrated pest
management cultural practices. The beans were manu-
ally harvested in April 2016 when the pods were almost
round and at an immature physiological stage with at
least 70% of their seeds in full size. Then, plant material
was transported &30 km to the pilot plant of the
Institute of Plant Biotechnology in polystyrene boxes
with top icing to maintain a low transport temperature.
Upon arrival, faba beans were stored at 1 �C, and
&90–95% relative humidity (RH), until the next day,
when they were processed.

Processing, packaging and storage

Faba pods were hand-shelled in a cold room (5 �C) and
the obtained seeds were immediately immersed in cold
water (4� 1 �C) to slow down the seed metabolism. The
obtained faba seeds were then subjected to the follow-
ing treatments:

. Control (CTRL): Sanitation with chlorinated water
(150mg l�1 NaOCl; pH 6.5; 4 �C; 2min; plant mater-
ial:washing solution, 1 kg:2 l), as commonly used in
the fresh-cut industry. After the sanitation treat-
ment, samples were rinsed for 1min with cold
water (4 �C) and finally drained with a manual
spinner.

. UV-C: The UV-C treatment was carried out using a
UV-C chamber from the Research group as previ-
ously described (Formica-Oliveira et al., 2016).
Briefly, it consisted of 30 (15 top and 15 bottom)
unfiltered germicidal emitting lamps (&80% of
emitted spectrum at �¼ 254.7 nm; TUV 36W/G36
T8, Philips, Eindhoven, The Netherlands) with a
measured UV-C intensity of 33.3Wm�2 (VLX 254
UV-C radiometer, Vilber Lourmat, Marne la Vallee,
France). A 3 kJm�2 dose (which meant 90 s of
exposure) was selected as the optimum dose to
extend the product’s shelf life according to previous
experiments (data not published).

Treated samples (&150 g) were then packaged in ori-
ented polypropylene (OPP; 35 mm; 150mm� 150mm)
bags, which were heat-sealed to generate a MAP. The
O2 and CO2 permeabilities of the used OPP film were
900 and 1100 cm3m�2 day�1 (23 �C, 0% RH), respect-
ively, as described by the supplier (Plásticos del Segura
S.L., Murcia, Spain). Atmosphere composition within
packages was analysed with a portable gas analyser
(CheckPoint, PBI Dansensor, Ringsted, Denmark).
Packaged samples were stored in darkness at
4� 0.5 �C and 90% RH up to 10 days.

Sampling was done after 0 (processing day), 3, 7 and
10 days. Eight bags (four CTRL bags and four UV-C
bags) were taken at each sampling time. Four of them

were analysed as fresh samples (fresh) while the other
four bags were heated on a domestic microwave,
as described below (see also Figure 1). Four replicates
per treatment (CTRL, UV-C, fresh and microwaving
(MW) treatments) and sampling time (four sampling
times) were prepared (total samples number¼ 64).

MW treatment was carried out at 700W for 1min
using a domestic microwave (Model BH7, Moulinex,
Écully, France). All bags were perforated (30 holes
(0.2mm Ø) per bag) prior to the MW treatment to
allow vapour gas flushing during heating.

Sensory evaluation

Sensory quality was assessed by a trained panel com-
posed of seven people (aged 24–50 years). The evalu-
ations were completed in a sensory room according to
international standards (ASTM, 1986). Still mineral
water was used as a palate cleanser. A 9-point hedonic
scale was scored for visual symptoms of browning and
dehydration (9¼none; 5¼ limit of usability;
1¼ extreme). The remaining parameters, such as
visual appearance, flavour, aroma, texture, colour and
overall quality were scored as follows: 1¼ extremely
bad; 5¼ limit of usability; 9¼ excellent.

Microbial growth

Standard enumeration methods were used to determine
mesophilic, psychrophilic, enterobacteria and yeast and
mould growth as previously described (Castillejo et al.,
2016). All microbial media were acquired from
Scharlau Chemie (Barcelona, Spain). The following
media and incubation conditions were used: plate
count modified agar for mesophilic (incubation:
30 �C/48 h) and psychotropic (5 �C/7 days) aerobic bac-
teria, violet red bile dextrose agar for enterobacteria
(37 �C/48 h), and rose bengal agar for yeasts and
moulds (YþM) (3–5 days/22 �C). All microbial counts
were reported as log of colony forming units per gram
of product (logCFUg�1). Each of the four replicates
was analysed in duplicate.

Phytic acid

Phytic acid was determined using a commercial kit
(K-Phyt kit, Megazyme, Bray, Ireland), based on the
measurement of the inorganic phosphate formed after
the enzymatic hydrolysis of phytic acid (McKie and
McCleary, 2016). Briefly, 1 g of frozen ground samples
was extracted with 20ml of 0.66M HCl and then stir-
red overnight at room temperature. The latter extract
was then centrifuged (13,000� g, 10min, 4 �C) and
0.5ml of the obtained supernatant was neutralized
with 0.75M NaOH (0.5ml). The neutralized extract
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was then enzymatically dephosphorylated (phytase fol-
lowed by alkaline phosphatase; supplied by the kit).
Subsequently, 1ml of the hydrolysed extract was
mixed with 0.5ml of the colouring reagent (0.47M
ascorbic acid, 8.43mM ammonium molybdate, 0.8M
sulphuric acid) and incubated at 40 �C for 1 h. The
absorbance of incubated samples was then measured
at 655 nm using a Multiscan plate reader (Tecan
Infinite M200, Männedorf, Switzerland). Phytic acid
was quantified using an authentic standard, supplied
by the kit, being expressed as g kg�1 on a fresh weight
(fw) basis. Each of the four replicates was analysed in
duplicate.

Total condensed tannins (TCT) content

The TCT content was determined based on the mod-
ified vanillin method (Price et al., 1978). Briefly, 2 g of
frozen ground samples was extracted with 5ml of
methanol for 20min in a water bath at 30 �C followed
by centrifugation (15,000� g, 10min, 4 �C). Then, 1ml
of the supernatant was mixed with 2.5ml of a vanillin
solution (1%, Sigma-Aldrich, St Louis MO, USA) and
2.5ml HCl 8%, before incubation in the water bath
(30 �C) for 20min. Finally, the absorbance of the incu-
bated samples was measured at 500 nm using the
already cited microplate reader. Results are expressed
as g catechin (Sigma-Aldrich, St Louis MO, USA)
equivalents kg�1 fw. Each of the four replicates was
analysed in triplicate.

Total phenolic content (TPC)

TPC was determined as previously described
(Martı́nez-Hernández et al., 2011; Singleton and
Rossi, 1965). Briefly, 0.1 g of frozen ground samples
was extracted with 2ml of methanol for 1 h in an orbi-
tal shaker (200� g) in darkness on an ice bed. The
latter extracts were then centrifuged (15,000� g,
10min, 4 �C) and the supernatants were used as TPC
and total antioxidant capacity (TAC) extracts.
Subsequently, 19 ml of the TPC extract was placed
in a flat-bottom polystyrene 96-wells plate (Greiner
Bio-One, Frickenhausen, Germany) and 29 ml of 1N
Folin–Ciocalteu reagent was added. The mix was incu-
bated for 3min in darkness at room temperature. Then,
192 ml of a solution containing Na2CO3 (4 g l�1) and
NaOH (20 g l�1) was added and incubated for 1 h at
room temperature in darkness. The absorbance of the
incubated samples was measured at 750 nm using the
microplate reader. The TPC was expressed as g gallic
acid (Sigma-Aldrich, St Louis MO, USA) equivalents
kg�1 fw. Each of the four replicates was analysed in
triplicate.

Raffinose

For the raffinose analysis, 3 g of frozen ground
samples was homogenized (UltraTurrax T-25,
Ika-Labortechnik, Staufen, Germany) with 10ml
of nanopure water for 40 s. The latter extracts were fil-
tered through a four-layer cheesecloth and subse-
quently centrifuged (12,000� g, 20min, 4 �C). The
supernatants were purified by solid phase extraction
(SPE) mini-columns (C18-E SPE 55 mm, 500mg;
Phenomenex, Macclesfield, UK) and filtered through
a 0.45mm polytetrafluoroethylene syringe filter. An
ultra-high-performance liquid chromatography
(Shimadzu, Kyoto, Japan), equipped with a
DGU-20A degasser, LC-170 30AD quaternary
pump, SIL-30AC autosampler, CTO-10AS column
heater, refractive index detector and SPDM-20A
diode array detector, was used. Chromatographic sep-
aration was carried out using a Rezex Carbohydrate
Agþ column (100mm� 4.6mm, 2.6 mm; Phenomenex,
Macclesfield, UK). Nanopure water was used as the
mobile phase at a flow rate of 0.6mlmin�1. The injec-
tion volume was set at 20 ml. Raffinose was identified
and quantified with an authentic commercial standard
(Sigma, St Louis MO, USA) and expressed as
g kg�1 fw. Each of the four replicates was analysed in
triplicate.

TAC

The TAC of samples was analysed following the
ferric reducing antioxidant power (FRAP) method as
previously described (Benzie and Strain, 1999;
Rodrı́guez-Verástegui et al., 2016). Briefly, a daily reac-
tion solution containing sodium acetate buffer (pH 3.6),
10mM TPTZ solution (in 40mM HCl) and 20mM
FeCl3 was prepared in a v:v:v proportion of 10:1:1,
and incubated at 37 �C for 2 h in darkness. Then, 6 ml
of the TAC extract was allowed to react with 198 ml of
the FRAP solution for 40min at room temperature in
darkness. The TAC of samples was measured by the
absorbance decrease (Multiscan plate reader) at
593 nm and expressed as g of Trolox equivalents
kg�1 fw. Each of the four replicates was analysed in
triplicate.

Statistical analysis

An analysis of variance was performed to compare the
sanitizing (CTRL and UV-C) and cooking treatments
(MW and fresh) during storage time (four sampling
times) at a significant level of p< 0.05 using the SPSS
software (IBM, Chicago, IL, USA). The Tukey’s
Honestly Significant Difference test was applied when
significant differences were observed.
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RESULTS AND DISCUSSION

Sensory and microbial quality

Sensory analysis of CTRL samples showed overall
quality scores of 7.0 after 7 days, while such samples
were scored below the limit of usability after 10 days
with a value of 4.4 (Figure 2). However, the overall
quality scores of UV-C samples were scored with 7.6
after still 10 days. The most affected sensory parameter
was browning followed by brightness loss and, conse-
quently, scores with low visual appearance. Browning is
due to enzymatic (mainly PPO) reactions, which may be
controlled by the reduction of oxygen concentrations
within the MAP of fresh-cut products. Here, the
MAP steady state was reached on day 1 with CO2/O2

partial pressures of 14–16/3–6 kPa, respectively (data
not shown). In that sense, the CTRL samples still
showed browning scores (6.5) above the limit of

usability after 7 days, although such samples received
a browning score of 3.3 after 10 days. On the other side,
browning of UV-C samples was scored above the limit
of usability (8) after 10 days of cold storage. The
browning inhibition by UV-C has been reported to
occur due to a PPO inactivation through protein aggre-
gations (Manzocco et al., 2009). Additionally, the
UV-C samples showed lower dehydration, and conse-
quently a better texture than CTRL with scores of 7.8
and 6.8, respectively, at day 10. The lower dehydration
of UV-C samples may be explained by their lower
microbial loads at the end of storage, as shown
below. Furthermore, the UV-C samples were scored
with better flavour values than CTRL since bitter com-
pounds, other than tannins, were probably degraded
to a higher degree in these samples due to the
UV-C-activation of specific degradative reactions.
Microwaving did not highly affect the sensory quality
of the samples. Nevertheless, the browning scores of
UV-C samples, and consequently visual appearance,
were reduced by &1.5 units although such scores were
still above 6.5 at day 10.

The initial mesophilic and enterobacteria loads of
CTRL samples were 2.0� 0.2 and 2.6� 0.1 log
CFUg�1, respectively, on processing day (Figure 3).
However, the psychrophilic and YþM loads were
below the detection limits on processing day (1 and
2 logCFUg�1, respectively). The UV-C treatment did
not produce (p> 0.05) an immediate microbial reduc-
tion on processing day although the UV-C samples
showed lower microbial growth during storage
(Figure 3). Accordingly, the UV-C samples displayed
enterobacteria, mesophilic and psychrophilic loads 1.5,
1.0 and 0.5 log units lower than CTRL at day 10,
respectively. The YþM loads of samples remained
below detection throughout the storage period due to
the low growing rate of these microbial groups at refri-
gerated temperatures (data not shown). The low micro-
bial growth in UV-C samples may be explained by the
UV-C-induced damage of the microbial DNA, the
microbial cell replication mechanism being blocked
(Nakajima et al., 2004). As expected, MW reduced
the microbial loads to below the detection limits (data
not shown).

In conclusion, the UV-C samples showed an excel-
lent sensory quality after 10 days at 5 �C, together with
lower microbial loads than CTRL, while the CTRL
samples were not accepted after 7 days.

Phytic acid

Fresh-cut faba beans showed an initial phytic acid con-
tent of 0.94� 0.08 g kg�1 prior to UV-C (Figure 4).
Phytic acid has been reported to decrease as a result
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Figure 2. Sensory scores of UV-C treated or non-treated
(CTRL) fresh-cut faba beans, after (a) 7 and (b) 10 days at
5�C and then microwaved (MW treatment).

Collado et al.

5



of radiolysis since the radicals produced during irradi-
ation may remove phosphorus from the structure, thus
lowering the concentration (Ahn et al., 2003; Demir
and Elgün, 2013). Indeed, UV-C (non-ionizing radi-
ation) and g-irradiation (ionizing radiation) applied in
wheat flour and faba beans, respectively, as stabiliza-
tion treatments, were found to successfully reduce the
phytic acid content (Al-Kaisey et al., 2003; Demir and
Elgün, 2014). Nevertheless, data presented here indi-
cated that UV-C did not significantly (p> 0.05) affect
the phytic acid content (Figure 4). Most of the phytic
acid is located in the ‘protein bodies’ of the seed

cotyledon (Alonso et al., 2000; Campos-Vega and
Loarca-Piña, 2010). However, UV-C irradiation of
fresh-cut products has been reported to affect only at
the produce surface (Formica-Oliveira et al., 2016). The
unaffected phytic acid content after UV-C treatment
may be due to the low UV-C transmittance to the
inner faba bean tissues where most of the phytic acid
is located. However, phytic acid of a wheat flour was
degraded by UV-C due to the high UV-C incidence on
such powder (Demir and Elgün, 2014). Furthermore,
phytic acid of faba beans was only degraded by g
radiation when a more penetrating radiation was used
(Al-Kaisey et al., 2003).

The phytic acid of CTRL samples was reduced by
&30% after 10 days (Figure 4). Phytic acid is the major
storage form of phosphorous in leguminous, cereals,
oilseeds and nuts (Vats and Banerjee, 2004).
Accordingly, the phytic acid content of fresh-cut faba
beans falls during storage since it is probably used as
the main phosphorous source for the different metabolic
reactions occurring during faba bean postharvest life. The
UV-C samples presented a degradation trend as the
CTRL, with no (p> 0.05) UV-C� storage interaction,
probably because the inner part remained unaffected by
the UV-C treatment, which mainly acts on surface.

Microwaved samples had a reduced phytic acid con-
tent of around 25–30, 15–6 and 7–9% at days 0–3,
6 and 10, respectively (Figure 4). Phytic acid reduction
by exposure to thermal treatments has been conven-
tionally used for dried faba beans and other pulses
(Revilla, 2015) and is hypothesized to occur due to ther-
mal degradation, as well as changes in the chemical
reactivity or the formation of insoluble complexes
(Alonso et al., 2000). The CTRL and UV-C samples
showed similar (p> 0.05) phytic acid reductions
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Figure 3. Microbial loads ((a) mesophiles, (b) psychro-
philes, (c) enterobacteria) (log CFU g�1) of UV-C treated
or non-treated (CTRL) fresh-cut faba beans during storage
at 5 �C and then microwaved (MW treatment) at days 0, 3, 7
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Figure 4. Phytic acid content (g kg�1 fw) of UV-C treated
or non-treated (CTRL) fresh-cut faba beans during storage
at 5 �C and then microwaved (MW treatment) at days 0, 3, 7
and 10 (n 4�SD).
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after MW, but tended to diminish as the storage time
increased. This might be explained by the fact that
phytic acid molecules contained in the ‘proteins
bodies’ of the outer parts of cotyledons are degraded
early during storage while the phytic acid from the
inner ‘protein bodies’ is more resistant to the subse-
quent thermal degradation. Similarly, microwaving
(6min) of dried faba beans only reduced the phytic
acid content by &8% probably due to the already
decreased phytic acid concentrations in the dried
plant material (Luo and Xie, 2013). As conclusion,
microwaving of <6-day-old fresh-cut faba beans may
obtain the same phytic acid reduction as in fresh-cut
faba beans during storage for 10 days.

TCT content

The initial TCT content of fresh-cut faba beans was
2.20� 0.01 gCaEkg�1 (Figure 5). Condensed tannins
are mainly concentrated in the seed coat (Revilla,
2015) and a 92% reduction of TCT was reported
when the seed coats of faba beans are removed
(Alonso et al., 2000). Nevertheless, the TCT contents
of the samples remained unaffected (p> 0.05) after the
UV-C treatment. Similarly, the tannin contents of per-
simmon and grapes were unaffected after similar UV-C
treatments (Khademi et al., 2012; Pinto et al., 2016).
Many phenolic compounds are commonly present as
covalently bound forms (Peleg et al., 1991) and the
applied UV-C dose is usually insufficient to produce
the breakdown of such bond phenolic compounds.
The TCT content of the samples decrease by &40%
after three days and remained unchanged (p> 0.05)
until the end of storage. This effect of storage time on
the TCT content – and the absence of any effect of

UV-C – has been previously reported in persimmon
fruit (Khademi et al., 2012). The observed TCT reduc-
tion during storage may be attributed to the complex
formation between the pectin released from the cell
walls and tannins (Taira et al., 1997).

Microwaving reduced the TCT content of all the
samples by &30% on the processing day (Figure 5).
That reduction of tannins has been reported to occur
due to thermal degradation or interaction with other
seed components, such as proteins, to form insoluble
complexes (Nithya et al., 2007). Nevertheless, the TCT
contents after MW were reduced in a lower degree
when compared to the decrease of tannin contents of
CTRL samples through storage. The latter finding may
be explained due to the higher thermal resistance of the
remaining tannins as the storage continued. However,
the UV-C-treated faba beans presented a &30% TCT
reduction for the whole storage period when they were
microwaved. This may be explained if the UV-C treat-
ment triggered an initial plant cell disruption, thus
making tannins more available for the subsequent ther-
mal degradation. In summary, the TCT content of
fresh-cut faba beans was significantly reduced after
three days, being further lowered after microwaving
the UV-C treated samples.

TPC

The TPC of CTRL samples on processing day was
2.04� 0.11 g kg�1 (Table 1). It slightly increased
(15%) after the UV-C treatment due to an already
reported increase in extractability of these compounds
when UV-C-plant cell disruption is induced (Formica-
Oliveira et al., 2017). The TPC of samples also
decreased during storage, regardless of UV-C or
CTRL. TPC levels dropped &20% by seven days and
remained at this reduced concentration until the end of
storage. Microwaving led to a thermal degradation of
the phenolic of &30%. The TPC of dried faba beans
was similarly reduced by &30% after a thermal extru-
sion treatment (&150 �C, feeder speed of 384 gmin�1)
(Alonso et al., 2000). As previously observed for tan-
nins, the TPC reduction after microwaving was mini-
mized as the storage time increased.

Raffinose content

The initial raffinose content of fresh-cut faba beans was
6.64� 0.87 gkg�1 prior to UV-C (see Supplementary
data). Raffinose has been reported to be absent in dried
faba beans since it is probably degraded during long
drying treatments (Khalil and Mansour, 1995). Higher
raffinose concentrations have been reported in other
pulses such as velvet bean, which fell by &40% after
microwaving (4min, 900W) (Kala and Mohan, 2012).
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Figure 5. Tannin content (g kg�1) of UV-C treated and
non-treated (CTRL) fresh-cut faba beans during storage
at 5 �C and then microwaved (MW treatment) at days 0, 3, 7
and 10 (n 4�SD).
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The raffinose content of samples analysed here was
not affected after UV-C or MW treatments. It is also
convenient to avoid excessive raffinose degradation
since this oligosaccharide is considered a necessary
prebiotic for the gut microbiota (Zartl et al., 2018).
Furthermore, the negative health effects of raffinose
have been historically related to its capacity to pro-
duce flatulence, which may not be strictly considered
as an anti-nutritional effect.

The raffinose content fell during storage since sugars
are used as an energy source for keeping postharvest
life of plant products. In general, the raffinose content
decreased by 15–30 and 30–40% after three and six
days, respectively, compared to the initial concentra-
tions, with only slight changes in the last four days of
storage. Neither UV-C nor MW affected the raffinose
changes during storage.

TAC

Fresh-cut faba beans showed an initial TAC that
ranged from 1.98 to 2.36 g kg�1, with no differences

(p> 0.05) among UV-C or MW treatments (Table 1).
The TAC of samples decreased during storage, the
values being 20–30, 75–80 and 80–85% lower compared
to their initial values after 3, 7 and 10 days, respectively.
No differences (p> 0.05) in the decrease in TAC were
observed between CTRL and UV-C samples at any
time during storage. The observed decrease may be
explained by the degradation of antioxidant com-
pounds (i.e. phenolic compounds, vitamin C, etc.)
during the storage of samples, as commonly occurs in
other fresh-cut products (Ansah et al., 2018). As
regards microwaving, the TAC concentrations were
0.9 and 1.2–1.7 g kg�1 higher on days 3 and 7/10,
respectively, due to the increase in antioxidant com-
pounds extractability, as previously mentioned. Such
higher TAC after MW was not observed on day 0 sam-
ples that can be explained since processing of fresh-cut
products implies several abiotic stresses (shelling,
UV-C, sanitizing washing treatments, etc.) (Cisneros-
Zevallos, 2003), which lead to a high consumption of
antioxidant compounds, resulting in the observed
reduced TAC concentrations after MW.

Table 1. Total phenolic content (TPC) (g kg�1) and total antioxidant capacity (TAC) (g TrE kg�1 fw) of UV-C treated and
non-treated (CTRL) fresh-cut faba beans during storage at 5�C and then microwaved (MW treatment) at days 0, 3, 7 and
10 (n 4�SD).

Storage time (days) Treatment TPC TAC

0 CTRL Fresh 203.68� 11.29 189.93� 24.74

MW 151.70� 24.72 258.92� 19.95

UV-C Fresh 234.31� 3.09 258.68� 18.60

MW 164.80� 16.45 21.36� 3.05

3 CTRL Fresh 195.63� 13.84 157.23� 18.00

MW 166.83� 10.48 251.96� 0.56

UV-C Fresh 213.75� 11.52 168.70� 8.77

MW 182.55� 14.53 263.03� 25.66

7 CTRL Fresh 161.42� 19.71 44.93� 7.63

MW 155.92� 24.16 217.09� 5.18

UV-C Fresh 149.23� 29.75 49.41� 7.81

MW 158.68� 14.83 154.32� 15.15

10 CTRL Fresh 156.10� 20.20 27.35� 8.80

MW 131.88� 3.82 147.54� 11.38

UV-C Fresh 177.89� 18.24 39.68� 12.00

MW 143.54� 11.71 125.98� 43.56

Treatment ns ns

Cooking * **

Storage time ns **

Treatment� cooking ns ns

Treatment� storage time ns ns

Cooking� storage time ** **

Treatment� cooking� storage time ns *

ns: not significant; **p< 0.001; *p< 0.01.
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Phenolic compounds are widely recognized to have
important in vitro and in vivo antioxidant properties
(Sahidi and Ambigaipalan, 2015). Several compounds
in faba beans (tannins (Riedl et al., 2002), phytic acid
(Graf and Eaton, 1990), raffinose (ElSayed et al., 2014;
Ende, 2013), etc.), historically recognized as anti-
nutritionals, have been reported with antioxidant prop-
erties. In that sense, TAC was highly correlated to TPC
(fresh/MW R2

¼ 0.88/0.74) followed by phytic acid
(R2
¼ 0.19/0.45), while raffinose and TCT were poorly

correlated (R2< 0.1) (data not shown). In summary, the
TAC of samples was not affected by the UV-C treat-
ment and TAC degradation during storage was com-
pensated after MW.

CONCLUSIONS

The studied UV-C dose (3 kJm�2) to disinfect fresh-
cut faba beans was appropriated since the shelf life of
the immature faba seeds increased from 7 (when con-
ventionally treated with 150mg l�1 NaOCl for 2min)
to 10 days. Furthermore, a reduction of 30% of con-
densed tannins was observed after microwaving
UV-C-treated samples previously stored for 10 days.
Nevertheless, the UV-C treatment did not negatively
affect the TAC of samples during storage compared
to the non-UV-C exposed samples. Moreover, the
phytic acid, raffinose and condensed tannins contents
decreased by 30, 40 and 50% after 10 days. In conclu-
sion, the UV-C treatment of fresh-cut faba beans
extended shelf life to 10 days without affecting the
antioxidant capacity and with a reduction in anti-
nutritional compounds achieved after domestic
microwaving.
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Rodrı́guez Verástegui LL, Martı́nez Hernández GB,
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CONCLUSIONS 

 

In order to develop new legume products for both fresh and microwave cooking, several 

minimal processing methods and techniques have been studied, evaluating the use of 

NaOCl alone or in combination with edible coatings, or alternatively with chemical 

(ASC) or physical (UV-C) disinfectants. 

 

The main general conclusions of the current PhD Dissertation are as follows: 

 

 Faba beans: 

- A pretreatment with UV–C (3 kJ m
-2

, 90 s) or a conventional NaOCl (150 ppm) 

sanitizing step plus an EC based of sucrose fatty acid esters during fresh-cut 

processing of faba seeds could be important technological tools to improve their 

sensory, microbial and nutritional quality. 

- Fresh seeds can be microwaved within the package used for fresh storage under 

MAP. Microwaving (700 W, 3 min) decreased the concentration of bioactive 

compounds, but retained the quality of seeds allowing to obtain a ready to eat 

tasteful food. 

- Fresh-cut faba seeds treated with EC or UV (3 kJ m
-2

, 90 s) treatments extended 

the shelf life of from 7 to 10 days at 4ºC regarding NaOCl (150 ppm) treatment. 

- UV-C (3 kJ m
-2

, 90 s) treatment in fresh-cut faba bean samples showed lower 

microbial loads compared to disinfection with NaOCl, after 10 days at 5ºC.  

- A conventional NaOCl (150 ppm) sanitizing step plus an EC reduced the 

microbial load in fresh faba beans seeds after 10 days at 4ºC, although NaOCl 

samples showed the highest natural microflora counts. 

- The UV-C treatment did not negatively affect the TAC of faba bean seeds 

during storage compared to the non-UV-C exposed samples, and showed the 

highest sugars content values compared to samples treated with NaOCl or EC. 

- The EC treatment showed a positive effect on vitamin C, TPC and tannins 

content retention in both fresh and microwaved faba bean seeds.  

- The phytic acid, raffinose and condensed tannins contents decreased in faba 

beans samples after 10 days of storage.  

- UV-C improved the condensed tannins reductions through storage compared 

with non-irradiated faba bean seeds samples. 
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- A reduction of condensed tannins and raffinose was observed after microwaving 

UV-C-treated faba bean seeds previously stored for 10 days.  

- Microwaving reduced the phytic acid and condensed tannins contents in faba 

bean seeds. 

 

 Peas: 

- The use of ASC (300 ppm) as a sanitizer during fresh-cut processing of fresh 

pea seeds is a good alternative to NaOCl (100 ppm, pH 6.5, 2 min, 4ºC) since it 

led to better sensory quality and a higher nutritional quality. 

- Immature green pea seeds disinfected with NaOCl (100 ppm) or ASC (300 ppm) 

can be stored for 14 days under MAP (8 kPa CO2 / 12 kPa O2 and 11 kPa CO2 / 

10 kPa O2 at 1 and 4ºC) at temperatures between 1 and 4°C without any 

noticeable quality loss.  

- Disinfection of fresh pea seeds with ASC (300 ppm) showed a lower 

psychrophile counts than disinfection with NaOCl (100 ppm). 

- ASC disinfection in pea seeds not affected the TAC and TPC, while the vitamin 

C content was higher. 

 

 Cowpea: 

- Cowpea seeds and pods (fresh-cut and then microwaved) are feasible and 

practical products to stimulate legume consumption. 

- Immature cowpea seeds and pods, disinfected with NaOCl, could be stored for 

at least 7 and 14 days, respectively, at 4 and 8°C under MAP (23 kPa CO2 / 1.5 

kPa O2 and 19 kPa CO2 / 1.2 kPa O2 for fresh seeds and pods, respectively).  

- Fresh seeds and pods can be microwaved within the package used for fresh 

storage under MAP. Microwaving (700 W, 1 min) decreased the concentration 

of bioactive compounds, but retained the quality of seeds and pods allowing to 

obtain a ready to eat tasteful food. 

- TPC and TAC increased after microwaving in both cowpea seeds and pods. 

Sucrose and glucose concentrations increased after microwaving, while raffinose 

was not detected after cooking.  

- Heating negatively affected the total phenolic content and antioxidant capacity 

in cowpea seeds and pods.  
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Since the general objective of this research is to optimize several processes to develop 

new fresh and processed foods from native varieties of three legume species (faba, pea 

and cowpea), to stimulate the consumption of these in the daily human diet, both for 

fresh and microwave consumption, It can be said that with the use of various minimal 

processing techniques using NaOCl alone or in combination with edible coatings, or 

alternatively with chemical (ASC) or physical (UV-C) disinfectants, vegetable products 

with high nutritional quality and high content of bioactive compounds, fresh and ready 

to eat, can be obtained. 
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