Knight CA, Baskaran M, Bunting MJ, et al. Linking modern pollen accumulation rates to biomass: Quantitative vegetation reconstruction in the western Klamath Mountains, NW California, USA. Accepted fro publication in The Holocene. Copyright © 2021 SAGE Publications. https://doi.org/10.1177/0959683620988038

The Holocene

Linking modern pollen accumulation rates to biomass: Quantitative vegetation reconstruction in the western Klamath Mountains

Journal:	The Holocene
Manuscript ID	HOL-20-0153.R1
Manuscript Type:	Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Knight, Clarke; UC Berkeley, ESPM Baskaran, Mark; Wayne State University Bunting, M.; University of Hull, Geography Champagne, Marie; USGS Potts, Matthew; UC Berkeley, ESPM Wahl, David; USGS, Wanket, James; California State University Sacramento, Geography Battles, John; UC Berkeley, ESPM
Keywords:	Pollen accumulation rate (PAR), quantitative reconstruction, biomass, source area of pollen, Klamath Mountains, California, pollen
Abstract:	Quantitative reconstructions of vegetation abundance from sediment- derived pollen systems provide insights into past ecological conditions. Recently, the use of pollen accumulation rates (PAR, grains cm-2 yr-1) has shown promise as a bioproxy for plant abundance. However, successfully reconstructing region-specific vegetation dynamics using PAR requires that accurate assessments of pollen deposition processes be quantitatively linked to spatially-explicit measures of plant abundance. Our study addressed these methodological challenges. Modern PAR and vegetation data were obtained from seven lakes in the western Klamath Mountains, California. To determine how to best calibrate our PAR-biomass model, we first calculated the spatial area of vegetation where vegetation composition and patterning is recorded by changes in the pollen signal using two metrics. These metrics were an assemblage-level relevant source area of pollen (aRSAP) derived from extended R-value analysis and a taxon-specific relevant source area of pollen (tRSAP) derived from PAR regression. To the best of our knowledge, aRSAP and tRSAP have not been directly compared. We found that the tRSAP estimated a smaller area for some taxa (e.g., a circular area with a 225 m radius for Pinus) than the aRSAP (a circular area with a 625 m radius). We fit linear models to relate PAR values from modern lake sediments with empirical, distance-weighted estimates of aboveground live biomass (AGLdw) for both the aRSAP and tRSAP distances. In both cases, we found that the PARs of major tree taxa – Pseudotsuga, Pinus, Notholithocarpus, and TCT – were statistically significant and reasonably precise estimators of contemporary AGLdw. However, predictions weighted by the distance defined by aRSAP tended

1 2	
3 4 5 6	to be more precise. The relative root-mean squared error for the aRSAP biomass estimates was 9% compared to 12% for tRSAP. Our results demonstrate that calibrated PAR-biomass relationships provide a robust method to infer changes in past plant biomass.
7 8	
9 10	
11	SCHOLAR ONE [™]
12 13	Manuscripts
14	
15	
17 18	
19	
20 21	
22	
23 24	
25	
26 27	
28	
30	
31 32	
33	
34 35	
36	
37 38	
39 40	
40	
42 43	
44	
45 46	
47	
48 49	
50 51	
52	
53 54	
55	
56 57	
58	
59 60	http://mc.manuscriptcentral.com/holocene

3 4		
5		
6 7		
8		
9 10	1	Title: Linking modern pollen accumulation rates to biomass: Quantitative vegetation
11 12	2	reconstruction in the western Klamath Mountains
13 14	3	
15	4	Authors: Clarke A. Knight ¹ , Mark Baskaran ² , M. Jane Bunting ³ , Marie Champagne ⁴ , Matthew D.
16 17	5	Potts ¹ , David Wahl ^{4,5} , James Wanket ⁶ , John J. Battles ¹
18 19	6	¹ Department of Environmental Science, Policy, and Management, University of California,
20	7	Berkeley, Berkeley, California 94720 USA
21	8	² Department of Geology, Wayne State University, Detroit, Michigan 48202 USA
23 24	9	³ Department of Geography, Geology and Environment, University of Hull, Cottingham Road,
25 26	10	Hull, HU6 7RX UK
27	11	⁴ US Geological Survey, Menlo Park, California 94025 USA
28 29	12	⁵ Department of Geography, University of California, Berkeley, Berkeley, California 94720 USA
30 31	13	⁶ Department of Geography, California State University, Sacramento, Sacramento, California
32 33	14	95819 USA
34	15	
35 36	16	Corresponding author: CAK, clarke.knight@berkeley.edu
37 38		
39		
40 41		
42		
43		
44 45		
45 46		
47		
48		
49		
50		
51		
52		1
53		
54		
55 56		
50		
58		
59		
		http://mc.manuscriptcentral.com/holocene

3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
19
20
20 21
ו∡ 21
22
23
24
25
26
27
28
29
30
31
32
32
24
54 25
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59

17	Abstract
18	Quantitative reconstructions of vegetation abundance from sediment-derived pollen systems
19	provide unique insights into past ecological conditions. Recently, the use of pollen accumulation
20	rates (PAR, grains cm ⁻² yr ⁻¹) has shown promise as a bioproxy for plant abundance. However,
21	successfully reconstructing region-specific vegetation dynamics using PAR requires that
22	accurate assessments of pollen deposition processes be deterministically quantitatively linked to
23	spatially-explicit measures of plant abundance. Our study addressed these methodological
24	challenges. Modern PAR and vegetation data were obtained from seven lakes in the western
25	Klamath Mountains, California. To determine how to best calibrate our PAR-biomass model, we
26	first calculated the spatial area of vegetation where vegetation composition and patterning is
27	recorded by changes in the pollen signal using two metrics. These metrics were an assemblage-
28	level relevant source area of pollen (aRSAP) derived from extended R-value analysis (sensu
29	Sugita 1993) and a taxon-specific relevant source area of pollen (tRSAP) derived from PAR
30	regression (sensu Jackson 1990). To the best of our knowledge, aRSAP and tRSAP have not
31	been directly compared. We found that the tRSAP estimated a smaller area for some taxa (e.g., a
32	circular area with a 225 m radius for <i>Pinus</i>) than the aRSAP (a circular area with a 625 m
33	radius). We fit linear models to relate PAR values from modern lake sediments with empirical,
34	distance-weighted estimates of above ground live biomass (AGL _{dw}) for both the aRSAP and
35	tRSAP distances. In both cases, we found that the PARs of major tree taxa - Pseudotsuga, Pinus,
36	Notholithocarpus, and TCT (Taxodiaceae, Cupressaceae, and Taxaceae families) – were
37	statistically significant and reliable-reasonably precise estimators of contemporary AGL_{dw} .
38	However, predictions weighted by the distance defined by aRSAP tended to be more precise.
39	The relative root-mean squared error for the aRSAP biomass estimates was 9% compared to 12%
	2

3 ⊿		
5		
6 7		
8 0		
9 10	40	for tRSAP. Our results demonstrate that calibrated PAR-biomass relationships provide a robust
11 12	41	method to infer changes in past plant biomass.
13	42	
14 15	43	Key words:
16 17	44	Pollen accumulation rate (PAR), quantitative reconstruction, biomass, source area of pollen,
18	45	Klamath Mountains, California
19 20		
21		
22 23		
24 25		
26		
27 28		
29		
30 31		
32		
34		
35 36		
37		
38 39		
40		
41 42		
43 44		
45		
46 47		
48		
49 50		
51 52		2
53		
54 55		
56		
57 58		
59 60		http://mc.manuscriptcentral.com/holocene
00		

1 ר

∠ २
۵ ۵
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
5/
58
59

60

46 **1. Introduction**

47 Quantitative reconstruction of past plant abundance has been an important goal in paleoecology 48 since the field's inception (Von Post 1918) and a major research frontier spanning decades 49 (Davis and Deevey 1964, Likens and Davis 1975, Davis et al. 1984, Hicks 2001, Seppä et al. 50 2009, Matthias and Giesecke 2014, Marguer et al. 2014). Currently, tThe research community 51 lacks a complete understanding of how the pollen signal reflects plant population parameters 52 (e.g., biomass), and therefore past population change (Fagerlind 1952, Davis et al. 1984, Prentice 1988, Seppä et al. 2009). Developing methods to quantitatively reconstruct past plant 53 54 populations would aid climate science and restoration ecology. In climate science, for example, 55 quantitative reconstructions of past plant populations would allow better understanding of long-56 term ecosystem dynamics (Galliard et al. 2000) and provide past analogues to test complex 57 climate models that account for the effects of landcover on the climate system (Galliard et al. 58 2010). Restoration ecology would benefit from an improved understanding of the impact of 59 disturbances (natural and anthropogenic) on landscapes and ecosystems (Broström et al. 1998, 60 Crawford et al. 2015) and from the increased participation by paleo-ecologists in the debates of 61 modern restoration ecology (Swetnam et al. 1999, Hellman et al. 2009). 62 Palynologists often use pollen percentage data in pollen-vegetation models to reconstruct 63 landcover and understand past plant populations, but this approach does not provide separate 64 reconstructions for each taxon's plant population change (Davis 1963, Prentice 1988). Relative

changes in abundance of species have been inferred form Bayesian hierarchical spatio-temporal
 pollen-vegetation models (Dawson et al. 2019). In contrast, pollen accumulation rates (PAR) – a
 measure of the rate of pollen deposition at the sediment surface per unit area during a given time
 period (e.g., grains cm⁻² yr⁻¹, Davis and Deevey 1964) – depend solely on the abundance of the

Commented [MOU1]: Added sentence for USGS reviewer.

plant taxa producing that pollen type around the collection site. That is, the PAR for each taxon is independent of all other taxa. PAR allows results from different regions to be directly compared, irrespective of other taxa in the investigations (Hicks and Hyvärinen 1999, Giesecke and Fontana 2008). PAR has been used to reconstruct not only landcover, but also population dynamics and plant biomass (Seppä et al. 2009, Theuerkauf et al. 2012, Matthias and Giesecke 2014). For example, PAR has been used to reconstruct past population growth rates (Bennett 1983, 1986, MacDonald 1993, Giesecke 2005) and to reconstruct Holocene biomass records in at least two areas: the Finnish boreal zone (Seppä et al. 2009) and a sub-alpine forest in Utah (Morris et al. 2015). PAR is not a simple reflection of vegetation abundance because the pollen signal is a distance-weighted measure of taxa abundance in the surrounding vegetation, responding to the structure of the plant community as well as species abundance (Jackson 1990). Modern PAR values must be quantitatively correlated with modern plant population data from the lake surroundings in order to parameterize the PAR-population relationship before fossil PAR records can be interpreted in terms of past plant population change. This correlation step requires accurate vegetation data from forest inventories (Seppä et al. 2009, Matthias and Giesecke 2014), careful field surveys (Bunting et al. 2013), or well-resolved spatial imagery coupled with ground-truthing (Han et al. 2017) that encompasses the relevant source area of pollen ('RSAP', discussed below and in section 2.3, sensu Sugita 1993). Previous work has shown a linear relationship between PAR and distance-weighted biomass across a range of lake sites in northeastern Germany (Matthias and Giesecke 2014). In addition to quantitative vegetation data, reliable PAR data require a robust chronology of the pollen system being studied. Ideally, a sedimentary core for PAR data collection has two

features: it is obtained from an undisturbed lake environment where sediment accumulates evenly over time, and the resulting sediment is dated at high resolution. Where lakes are found to have stable sedimentary conditions, reliable PAR datasets can be obtained (e.g., Ritchie 1969, Hyvärinen 1975, Seppä and Hicks 2006) though there may still be channel funneling. The recent development of Bayesian tools has improved the construction of chronologies from isotopic data such as ²¹⁰Pb activity measurements, giving more reliable measures of uncertainty (Aquino-López et al. 2018). Lastly, all sedimentary basins have a relevant source area of pollen (RSAP), which is sometimes referred to as the "pollenshed" of the basin (sensu Sugita 1993). The basic premise is that vegetation within a certain area-distance of the basin corresponds to the quantity and type of pollen deposited at the site. With distance from the lake shore, C correlations between plant abundance and pollen loading are expected to improve-close to the lake shore, then approach an asymptote at some distance because source vegetation of pollen far from the basin should have much less influence on the pollen representation than vegetation closer to the basin. Estimating the RSAP is a key step for quantitative calibration because it provides information about the spatial extent of any subsequent vegetation reconstruction (Sugita et al. 1999, Bunting et al. 2004, Hellman et al. 2009). To our knowledge, the distinction between an assemblage-level pollenshed RSAP (aRRSAP, Sugita 1993) and taxa-specific RSAPpollensheds (tRRSAP, sensu Jackson 1990, Matthias and Giesecke 2014) has not yet been drawn within the same basin (Table $\frac{X}{X}$). Comparing these estimates provides insight about how pollen assemblages "sense" vegetation, which is critical to the extraction of vegetation information from pollen data. Given the methodological challenges, the application of calibrated PAR-biomass transfer functions to any ecosystem is not routine. This paper develops PAR-biomass models using short

2 3 4		
5		
6 7		
8		
9 10	115	cores from seven small lakes in the western Klamath Mountains, California, and follows the
11 12	116	general approach used in previous studies (e.g., Seppä et al. 2009, Matthias and Giesecke 2014)
13 14	117	whilst critically evaluating each step in the process. The Klamath bioregion contains numerous
15	118	small lakes and is an area where Holocene-length paleoecological records have already provided
16 17	119	a portrait of ecological change (Fig. 1). We measured modern PAR from lake sediments and
18 19	120	acquired vegetation abundance data to achieve three goals: 1) to understand the spatial
20 21	121	relationship between pollen assemblages flux in small lakes and surrounding vegetation cover,
22	122	through modeling of the aRSAP and tRSAP, 2) to calibrate a PAR-biomass model using
23 24	123	distance-weighted biomass for major tree taxa, and 3) to assess the potential of this model to
25 26	124	reconstruct past changes in assemblage-wide biomass from the region.
27	125	
28 29 20	126	2. Background
30 31	127	Below, we describe the study area's physical features (2.1), our pollen-vegetation modelling
32 33	128	approach (2.2), and the methodology used to estimate aRSAP and tRSAP (2.3).
34	129	
35 36	130	2.1 Study Area
37 38	131	The Klamath bioregion, a physically and floristically diverse area in northwestern California
39 40	132	(Whittaker 1960, Cheng 2004), contains hundreds of small lakes. Many lakes are found at high
41	133	elevations and are glacial in origin, but there are also landslide-created lakes at low- and mid-
43	134	elevations in the western portion of the region (Wahrhaftig and Birman 1965). The landscape has
44 45	135	deep catchments and steep mountains (Irwin 1981)), and the climate is Mediterranean, consisting
46 47	136	of cool, wet winters and warm, dry summers (Skinner et al. 2006). Prior to 20th century fire
48		
49 50		
51		
52 53		7
55		

3 ⊿		
5		
6		
7 8		
9 10	137	suppression, the landscape had a mixed-severity fire regime characterized by mostly small, low-
11 12	138	intensity, frequent fires, and infrequent large burns of mixed-severity (Taylor and Skinner 2003).
13	139	Our study focused on the western Klamath Mountains where low-elevation forests
14 15	140	(<600-800 m) are dominated by Pseudotsuga menziesii (Douglas-fir). Multiple Pinus (pine)
16 17	141	species including Pinus lambertiana (sugar pine), Pinus jeffreyi (Jeffrey pine), and Pinus
18 19	142	ponderosa (ponderosa pine) are also common but less frequent than Douglas-fir. The most
20	143	common broadleaf tree species in the low-elevation forests are Notholithocarpus densiflorus
21 22	144	(tanoak), followed by Arbutus menziesii (Pacific madrone), Chrysolepis chrysophylla (golden
23 24	145	chinquapin), and Quercus kelloggii (California black oak). Chamaecyparis lawsoniana (Port-
25 26	146	Orford-cedar) is mainly found in riparian areas but can be found on slopes. Higher-elevation
27	147	montane forests are dominated by Abies concolor (white fir) and Abies magnifica (red fir;
28 29	148	Sawyer and Thornburg, 1977), whereas sub-alpine (above ~1700 m) zones include Tsuga
30 31	149	mertensiana (mountain hemlock) and Picea breweriana (Brewer spruce) (Sawyer and Thornburg
32 33	150	1977). On areas of ultramafic soils derived from serpentinite and peridotite bedrock, Jeffrey pine,
34	151	Pinus monticola (western white pine) and Calocedrus decurrens (incense-cedar) are the
35 36	152	dominant forest taxa (Whittaker 1960; nomenclature follows Hickman 1993).
37 38	153	We selected seven small lakes in the Six Rivers National Forest with small basins, and
39 40	154	minimal stream inputs, and shallow slopes (Table 1, Fig. 1). Vegetation around the lakes is
41 42	155	representative of the diverse mixed conifer forest of the Klamath bioregion (Hudiburg et al.
43	156	2009) although the dominant overstory varies at each lake site. Holocene-length pollen records
44 45	157	(percentage and PAR) already exist for three of the seven lakes and suggest that the modern
46 47	158	forest structure and composition have been relatively stable for the last 2,000 years (Wanket
48		
49 50		
50		
52		8
53		
54		
55 56		
57		

2002) but also imply a 3,000-year historic high of Douglas-fir in the contemporary forest (Crawford et al. 2015). 2.2 Pollen-vegetation models Linear pollen-vegetation models (PVMs) have a long history of use in palynology (Davis 1963, 2000; Andersen 1970; Prentice 1985, 1988; Sugita 1993, 1994; Bunting and Middleton 2005, Bunting et al. 2013). PVMs use the relationship between pollen assemblages and vegetation to infer past vegetation composition or structure from fossil pollen data. The main strengths of linear PVMs are: 1) they provide the means to reconstruct vegetation from landscapes with no modern analogue; 2) they have been widely tested against empirical data in quantitative reconstruction research (e.g., Davis 1963, Andersen 1970, Prentice 1985, Sugita 1993, Bunting and Hielle 2010); and 3) they have been successfully validated in at least one region (southern Sweden, Sugita 2007a, b; Hellman et al. 2008a, b). In this work, we used a version of Sutton's original PVM model (Sutton 1947, 1953) inverted by Prentice (1985) and modified by Sugita (1994) for lake environments. This model's form – called Prentice-Sugita-Sutton – assumes that pollen could land anywhere on the lake surface and would be perfectly mixed in the water column before being deposited on the lakebed. The Prentice-Sugita-Sutton model also assumes that pollen transport is largely via wind above the canopy and gravity beneath the canopy, and that the sampling basin is circular with uniform wind in every direction (Sugita 1994, full list of assumptions in the supplement). Under this Commented [MOU2]: Addressed Reviewer 3 concern approach, we a) divide the vegetation into rings, b) distance-weight each ring, and c) compare the PAR from the basin with the summed distance weighting from one or more rings, working out from the edge of the basin. This model calculates the total pollen influx from each source across the whole lake. Its simplest linear form is:

about "hidden assumptions."

1 2			
3 4			
5			
7			
8 9	100	$V = \sigma$	(1)
10 11	102	$I_{ik} = u_i \cdot \psi_{ik}$	(1)
12 13	183	where,	
14	184	Y_{ik} = pollen influx for a taxon <i>i</i> at site <i>k</i>	
15 16	185	α_i = pollen productivity of taxon <i>i</i>	
17 18	186	ψ_{ik} = the distance-weighted plant abundance (DWPA) of taxon <i>i</i> around site <i>k</i> with the	
19	187	weighting term reflecting the pollen dispersal of taxon <i>i</i> (weighting term calculation shown in	n
20 21	188	Eqequation. 3).	
22 23	189		
24 25	190	DWPA (ψ_{ik}) is defined as:	
26	191	$\Psi_{ik} = \int_{R}^{\infty} X_{ik}(z) g_i(z) dz$	(2)
27 28	192	where,	
29 30	193	R = the radius of the canopy opening in which the sample site is located	
31	194	$X_{ik}(z)$ = the plant abundance measure consisting of the contribution of taxon <i>i</i> to the polle	en
33	195	assemblage formed at site k from plants located distance z from sampling location k, and $g_i(z)$	z) is
34 35	196	the distance weighting term for taxon i at distance z from any sampling location.	
36 37	197		
38	198	The Prentice-Sugita-Sutton weighting term g_i for taxon <i>i</i> at distance <i>z</i> is calculated using:	2
40	199	$a_i(z) = b_i \gamma z^{\gamma - 1} e^{b_i z^{\gamma}}$	(3)
41 42	200	where $h = \frac{4v_g}{2}$	(20)
43 44	200	where $b_i = \frac{1}{nu\sqrt{\pi}C_z}$	(54)
45	201	and,	
46 47	202	z = distance	
48 49	203	γ = a coefficient of 0.125 (Prentice 1985)	
50 51	204	v_g = approximated by v_s (fall speed, m sec ⁻¹)	
52		10	
53 54			
55 56			
57			
58 59			
60		http://mc.manuscriptcentral.com/holocene	5

1 2 3 4			
5 6			
7 0			
9 10	205	C_z = the vertical diffusion coefficient (m ^{1/8})	
11 12	206	n = a dimensionless turbulence parameter equal to 2	
13 14	207	$u = \text{windspeed (m sec}^{-1})$, set equal to 3.	
15	208	Note that C_z and <i>n</i> depend on atmospheric stability.	
16 17	209	Equation 2 can be re-written as a sum with two addends: 1) the unique contribution of the	
18 19	210	vegetation close to site k where ζ is the pollen source area for site k, and 2) the long-distance	
20 21	211	pollen transport ('background pollen,' which is uniform beyond ζ), giving:	
22 23	212	$\Psi_{ik} = \int_{R}^{\zeta} X_{ik}(z) g_i(z) dz + \int_{\zeta}^{\infty} X_{ik}(z) g_i(z) dz $ (4)	
23 24 25	213	Which can be written as	
25 26	214	$Y_{ik} = \alpha_i \psi_{ik} + \omega_i \tag{5}$	
27 28 29	215	Where $\psi_{ik} = \int_{R}^{\zeta} X_{ik}(z) g_i(z) dz$	
29 30	216		
31 32	217	2.3 Spatial area represented by the pollen record	
33 34	218	We estimated the spatial extent of our sites' pollenshedssource area of pollen in two ways	
35 36	219	(definitions in Table 2). We calculated the standard assemblage-specific metric – the relevant	
36 37	220	source area of pollen (aRSAP) – which is defined as the area beyond which the correlation	
38 39	221	between pollen and vegetation does not improve (Sugita 1993). Estimates of aRSAP can be	
40 41	222	extracted from extended R-value (ERV) analysis using pollen percentage data (Parsons and	
42 43	223	Prentice 1981). ERV analysis is the process of solving n equations for $2n$ unknowns in order to	
44	224	extract the parameter estimates, where ERV sub-models 1, 2 and 3 are the underlying vegetation-	
45 46	225	pollen relationship models. The three sub-models define background pollen differently (Sugita	
47 48	226	1994). Whereas models 1 and 2 use pollen data and vegetation percentages (Parsons and Prentice	
49 50	227	1981), model 3 uses pollen percentages and plant abundance data in absolute units (e.g., biomass	
51 52		11	
53			
54 55			
56 57			
58 59			

1 2 3		
4		
5 6		
7 8		
9 10	228	per area) (Sugita 1994). Using the maximum likelihood method, ERV models iteratively fit the
11 12	229	relationship between pollen and vegetation percentages (Bunting and Hjelle 2010). Maximum
13 14	230	likelihood function scores measure the goodness of fit between pollen percentages and distance-
14	231	weighted plant abundance. The aRSAP can be estimated from visual inspection of the likelihood
16 17	232	function score plotted against distance; it is the point at which scores approach an asymptote
18 19	233	(Sugita et al. 1999, Bunting et al. 2005).
20	234	We then calculated a taxon-specific metric of the relevant source area (tRSAP) to
21 22	235	compare to the aRSAP. We call the tRSAP the distance beyond which the correlation between
23 24	236	PAR and DWPA summed to that distance does not improve (Jackson 1990). We fit a linear
25 26	237	equation (equation 5) for each individual taxon because both y and ψ are measured in
27	238	independent terms. We again used the ring source model, which converts the integral into a
28 29	239	summation. That is, we summed the value for each of the rings and $g_i(z)$ includes ring area in
30 31	240	this formulation. As with aRSAP, tRSAP can be estimated from visual inspection of the R ² value
32 33	241	against the distance from the lake shore (m) (Matthias and Giesecke 2014).
34	242	
35 36	243	3. Methods
37 38	244	Fitting PAR-biomass relationships requires a number of steps shown in a flowchart (Fig. 2) with
39 40	245	numbers matching the following sections.
41	246	
42 43	247	3.1 Lake selection and core sampling
44 45	248	We used the following criteria to determine suitable lake sites: small size (radius approximately
46 47	249	100 m), no permanent outflow, simple basin, and core length greater than 25cm. Ten such lakes
48	250	were identified from topographical maps and satellite imagery as promising, but each were
49 50		
51 52		12
53 54		
54 55		
56 57		
58 59		
60		http://mc.manuscriptcentral.com/holocene

assessed in the field. Out of this collection, seven lakes were viable and selected for ²¹⁰Pb dating. During the summer of 2018, short cores (~50 cm) of 7 cm diameter were taken from each lake's center using either a gravity corer (Ogaromtoc, Fish Lakes) or a piston corer (all other lakes). The sediment-water interface was immobilized by sodium polyacrylate for transport. Cores were later split and sectioned in the laboratory. 3.2 Sediment dating, age-depth model, and sediment lithology We used lead-210 (²¹⁰Pb; 22.3 yr half-life) to assign ages to sediment deposited in the last 150 years. Surface bulk sediments from 0 cm to a maximum of 45 cm were taken from each core and dried to 105°C (see Tables S1-S7). ²¹⁰Pb activity was determined by alpha spectrometry (see SI for complete dating methodology).-, via ²¹⁰Po. An aliquot of 0.2 to 1.0 g of dried and pulverized sample was digested using concentrated HF, HNO₄, and HCl and a known amount of ²⁰⁹Po spike in an oven at 90°C for ~ 24 hours. The digested solution was dried, and the residue was mixed with 1 M HCl until the pH was ~2. Auto-plating of Po was cold-plated onto an Ag disk for 24 hours at room temperature (Jweda and Baskaran 2011). The plated disk was assayed for Po using Octete PC ORTEC alpha spectrometer. The reagent blanks were run simultaneously with each batch of eight samples and were subtracted. Certified reference materials were periodically run. For the determination of parent-supported (i.e., background) ²¹⁰Pb, several samples were run for the activity of ²²⁶Ra (using 352 and 609 keV) along with ¹³⁷Cs (661.6 keV) by Ge-well detector (Baskaran et al. 2015). Small sample sizes prevented reliable ¹³⁷Cs from being obtained. We used the Bayesian-based Plum software to develop age models from excess (unsupported) ²¹⁰Pb data (Aquino-López et al. 2018). The Plum model is related to the constant rate of supply (CRS) method (Appleby and Oldfield 1978) and retains two of the basic assumptions of CRS: the rate of supply of ²¹⁰Pb is constant and there is no vertical mixing of radionuclides. Testing

http://mc.manuscriptcentral.com/holocene

274	these assumptions requires independent validation using another marker, which is outside of this
275	paper's scope. The Plum model is formulated within a robust statistical framework to quantify
276	uncertainty (Aquino-López et al. 2018). Plum uses a self-adjusting Markov Chain Monte Carlo
277	(MCMC) algorithm called the t-walk (Christen and Fox 2010). Plum uses millions of MCMC
278	iterations to model the accumulation of sediment, using a gamma autoregressive semiparametric
279	age-depth function (Blaauw and Christen 2011). This algorithm results in a probability envelope
280	around the mean age model. The envelope allows the precision at any depth to be estimated
281	explicitly. Plum makes use of prior information to determine the datable horizon, which is
282	affected by two factors: the precision of methodology (alpha versus gamma counting) and the
283	initial amount of excess lead. In Plum, the chronology limit is determined by the rate of supply
284	of 210 Pb to the site and the equipment error, usually ~3 Bq/kg for a sample size of 1 g by alpha
285	spectrometry for research laboratories. Supported ²¹⁰ Pb activities were determined from the
286	direct measurements of ²²⁶ Ra by gamma-ray spectrometry.
287	
288	3.3 Pollen analysis
289	Pollen samples <u>– one from each lake site – were extracted from 0.63 cm³ of wet sediment from</u>
290	the top 0.5 cm of each core and were processed according to standard pollen preparation
291	procedures (Faegri and Iversen 1989) but modified to include two steps: 1) sieving with 5- and
292	153-micron mesh under vacuum and 2) swirling, with the less dense fractions retained. These
293	steps draw oneurrent US Geological Survey protocol (Tom Sheehan, personal communication),
294	which is based on DDoher's palynomorph methodology and current United States Geological
295	Survey procedures (Doher 1980). One Lycopodium spore tracer tablets containing 20,848 spores
296	wereas added to each sample to calculate pollen concentration (Stockmarr 1971, Faegri and
1	
	 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

http://mc.manuscriptcentral.com/holocene

Commented [MOU3]: Clause added for USGS reviewer

Iversen 1989). Acetolysis and sieving steps were repeated for samples containing high amounts of organic material. Pollen samples were mounted in silicone oil and examined at 500× magnification. At least 400 terrestrial grains per sample were counted and identified using the UC Berkeley Museum of Paleontology modern pollen reference collection, as well as pollen atlases (Knapp 1969, Halbritter et al. 2018). Seven wind-pollinated taxa were identified at all sites: Pinus, Pseudotsuga, Quercus, Notholithocarpus, Alnus, TCT (Taxodiaceae, Cupressaceae, and Taxaceae families), and Abies. The corresponding plant taxa from the study area were sugar pine, Jeffrey pine, ponderosa pine (Pinus); Douglas-fir (Pseudotsuga); California black oak, canyon live oak (Quercus); tanoak, golden chinquapin (Notholithocarpus); white alder (Alnus); Port-Orford-cedar, incense-cedar (TCT); white fir, red fir (Abies). we only encountered Port-Orford-cedar and incense-cedar in the vegetation survey at the study sites and assume all TCT originating within the surveyed vegetation area came from these species. Counts of Pinus, Quercus, Notholithocarpus and Abies reflect all the pollen grains from their respective genera (i.e., we report total Pinus which likely contained sugar pine, Jeffrey pine, and ponderosa pine grains). Pseudotsuga and Alnus counts represent the species *Pseudotsuga menziesii* (Douglas-fir) and *Alnus rhombifolia* (white alder). Other wind-pollinated tree pollen present in trace amounts includes willow (Salix), buckthorn (Rhamnaceae), hazel (Corvlus) and silk tassel (Garrya). This group of "other hardwoods" accounted for only 0.35% of the woody species. Given their rarity, we omitted them from the determination of pollen source area and subsequent PAR-biomass modeling. 3.4 PAR determination Pollen concentrations (grains cm⁻³) and PAR (grains cm⁻² yr-¹)were determined using the http://mc.manuscriptcentral.com/holocene

5		
6		
7 8		
9 10	320	<i>Lycopodium</i> marker grains, pollen concentrations (C_{r} -grains cm ⁻³) were calculated for each
11	321	pollen type <i>i</i> using the following equation:
12		4×L
14	322	$C_i = \frac{\frac{1}{L_e \times \mathcal{U}_i}}{\frac{1}{L_e \times \mathcal{U}_i}} \tag{6}$
15 16	323	Where A_i is the number of pollen grains counted for each taxon- <i>i</i> , L_a is the number of added
17	324	marker grains, L_e is the number of counted marker grains in each slide, and V_t is the volume of
18	325	the pollen sample (e.g., 0.63 cm ³) (Stockmarr 1971), and - Concentrations were used for PAR
20 21	326	calculations by multiplying the concentration values by the sediment accumulation rate (Davis
22 23	327	and Deevey 1964), which differed by lake site and was determined by the Plum age model in
24 25	328	increments of 0.5cm (see SI for equations used) The equation used was:
26 27	329	$PAR_i = -C_i - \times -S $ (7)
28	330	Where PAR _i is the pollen accumulation rate for taxon <i>i</i> , C_i is the pollen concentration (grains cm ⁻
29 30	331	³) for taxon <i>i</i> , and <i>S</i> is the sedimentation rate (cm yr ⁻¹) (Davis and Deevey 1964).
31 32	332	
33 34	333	3.5 Forest inventories
35	334	We used cruising prisms (wedges of glass with a known size/angle) to determine the basal area
37	335	of the dominant pollen-producing taxa within 750 m from each lake's shoreline (USDA Forest
38 39	336	Service 2000). The prism method employs variable plot radius sampling at the stand level.
40 41	337	Transects in eight directions (N, S, E, W, NE, NW, SE, SW) from the lake shore were sampled.
42 43	338	The basal area of live trees was measured using the prisms were taken every 50m along the
44	339	transects, following Han et al. 2017 (Fig. 3).
45 46	340	We used aboveground live tree biomass (AGL) as the specific measure of abundance that
47 48	341	is distance weighted. To estimate AGL from basal area measurements, we developed species-
49 50	342	specific allometric equations using contemporary data from the US Forest Service Forest
51		
52		16
53		
54 55		
56		
57		
58		
59		http://mcmanuscriptcentral.com/holocene
υu		http://inciniunuscripteentuil.com/holocene

1	
2	
3	
4	
5	
7	
8	
9	3/13
10	545
11	344
13	345
14 15	346
16 17	347
18 10	348
20	349
21 22	350
23 24	351
25 26	352
27	353
28 29	354
30 31	355
32 33	356
34	357
35 36	358
37 38	359
39 40	360
40 41	361
42 43	362
44 45	363
46 47	364
48	365
49 50	
50 51	
52	
53	
54	
55	
56	
5/ 50	
50 59	
60	

Inventory and Analysis program (FIA). From the FIA plots inventoried in Six Rivers National	
Forest between 2001 and 2017 (FIADB 2020), we calculated plot-level basal area (m ² ha ⁻¹) for	
every species in the plot and linked it to the estimate of plot-level aboveground live biomass (M	g
ha ⁻¹) for each species ($n = 3,428$ plot-by-species observations). AGL was estimated using the	
regional model of tree biomass (Zhou and Hemstrom 2009). For every species, we predicted	
AGL as a function of basal area using a linear log-log (natural) equation (sensu Knight et al.	
2020).	
Specifically,	
$\ln (AGL_{ij}) = \beta_{0_i} + \beta_{1_i} * \ln (Basal Area_{ij}) $	3)
where $ln(AGL_{ij})$ is the natural log of aboveground live biomass for species <i>i</i> in plot <i>j</i> , ln(Basal	
Area _{ij}) is the natural log of tree basal area for species <i>i</i> in plot <i>j</i> , β_{0i} is the intercept for species <i>i</i> ,	
and β_{1i} is the slope coefficient for species <i>i</i> . For the six most abundant species that accounted for	r
90% of the basal area, fits ranged from a low of 0.85 for sugar pine to a high of 0.97 for Port-	
Orford-cedar (Table S8). With these equations and field measurements of species basal area, we	;
calculated the AGL of each species in the prism sample.	
3.6 ERV analysis and estimation of aRSAP	
The aRSAP values were extracted from conventional ERV analysis <u>using model 3</u> . We used	
PolERV from the software suite HUMPOL (Bunting and Middleton 2005) which has the same	
core code (erv-v6.exe and polsim-v3.exe) as other ERV software, e.g. POLLSCAPE (Sugita	
1994). In order to meet the requirement that the number of sites is at least twice the number of	
taxa used in ERV analysis (Soepboer et al. 2007), we analyzed sub-sets of three taxa across the	

2	
4	
5 6	
7	
9 10 366 seven sites using the same reference taxon (TCT) every time. For example, one such sub-	set
11 367 combination was TCT, <i>Pseudotsuga</i> , and <i>Pinus</i> . We selected TCT as the reference taxon	(i.e.,
13 368 specified that TCT has a relative pollen productivity of 1.0) for several reasons. First, a so	catter
1415 369 plot of TCT pollen values and unscaled distance weighted plant abundance is positive and	1 linear
16 17 370 (Fig. S1). Second, TCT has an estimated relative pollen productivity in the middle of the	dataset
18 371 upon ERV analysis with all seven taxa. Lastly, TCT is represented in pollen data at all sit	es
1920 b72 (unlike <i>Abies, Alnus</i>, or <i>Quercus</i>), and is present in vegetation close to the sampling point	coring
21 22 373 site aRSAP was estimated by plotting the likelihood scores for each distance across all ta	
22 combinations and pooling the results	
24 374 combinations and pooling the results. 25 375	
26 27 376 3.7 Distance weighting and estimation of tRSAP	
28 29 377 AGL results were first averaged by the number of plots in each concentric ring and then ϵ	each
30 878 ring was weighted using the Prentice-Sugita weighting under stable conditions, which aff	ect
31 576 ming was weighted using the Frence-Sugra weighting under stable conditions, which are	lation
$\frac{33}{280}$ are similar to a sum or in a stable and stable are data demonstrate little difference in actions	tod
35 and stable models demonstrate little difference in estimate 35	ted
36 381 aRSAP and pollen productivity (Broström et al. 2004). The pollen-specific fall speeds (m 37	sec ⁻¹)
38 of <i>Abies, Alnus, Pinus, Pseudotsuga,</i> and <i>Quercus</i> have been determined in previous worl	د (Table
 383 S9). For TCT, Stoke's Law (Gregory 1973) was used to calculate fall speed using the ave 40 	rage
41 384 grain size of each taxon and weighted by relative abundance of the contributing species P	ort-
43 385 Orford-cedar and incense-cedar (both Cupressaceae family). For subprolate grain	
44 45 386 <i>Notholithocarpus</i> , major and minor axes were measured from reference slides in UC Berl	celey's
46 387 collections, and then Stoke's Law with Falck's (1927) correction was used. Lastly, we	
$\frac{48}{48}$ 388 determined the coefficient of determination (R ²) of the linear model predicted from AGL	_{lw} at
50	
51 52 18	
53	
54 55	
56 57	

5			
6			
/ ጸ			
9			
10	389	distance z (AGL_{dw_z}) as a function of PAR. The R ² between PAR and summed AGL _{dw} for each	
11 12	390	ring distance was plotted against the distance. The tRSAP occurs where the line reaches an	
13 14	391	asymptote.	
15 16	392		
17	393	3.8 PAR-biomass transfer equations	
18 19	394	We developed transfer equations to predict taxon-specific contributions to the distance-weighted	
20 21	395	AGL (AGL _{dw}) as a function of taxon-specific PAR. Although biomass "predicts" pollen	
22 23	396	accumulation rates in a functional sense, our aim was to apply calibrated transfer functions to	
24	397	predict biomass in the past. Consequently, we fitted regression lines with PAR values as the	
25 26	398	independent variable. This reasoning has been used for needle accumulation rate as a predictor of	
27 28	399	Holocene-era basal area (Blarquez et al. 2011).	
29	400	In this analysis, each lake represented a sample with the depositional source area defined	
31	401	by either aRSAP or tRSAP. We included seven pollen-producing taxa, namely Pseudotsuga,	
32 33	402	Pinus, Notholithocarpus, TCT, Alnus, Quercus, and Abies, that collectively account for greater	
34 35	403	than 99% of the pollen-producing trees present in the surrounding landscape. Using the assigned	Commented [MOU4]: Added for USGS reviewer.
36 37	404	source area distances, we calculated AGL_{dw} for the taxa present at each lake and regressed it	
38	405	against PAR using linear models (see Fig. 8a,b). Specifically, we evaluated three model forms: a	
39 40	406	linear model with an intercept term and slope term, a linear model with only a slope term, and	
41 42	407	segmented linear model with one breakpoint. In the linear models with intercepts, the intercept	
43 44	408	represents the "background" pollen component; because we treated PAR values as the	
45	409	independent variable, these intercepts are negative. So, we included an origin-forced model as an	
46 47	410	option because negative-intercept models are not biologically meaningful for biomass	
48 49	411	reconstruction given that very low PAR values would yield negative biomass. We included the	
50			
51			
52 53		19	
54			
55			
56			
57			
58			
59			

http://mc.manuscriptcentral.com/holocene

1 2 3 4 5 6 7 8		
9 10	412	segmented model to potentially capture threshold responses in the relationship between AGL and
11	413	PAR (Muggeo 2008). We ranked the models by the Akaike Information Criterion for small
12 13 14	414	samples (AICc) in order to compare performance. AICc imposes a stronger penalty on model
15	415	complexity than AIC and was chosen in order to avoid fitting models which were overly
16 17	416	complex given the size of the dataset (Burnham and Anderson 2002).
18 19	417	To evaluate the uncertainty introduced by the PAR transfer functions, the $\mathrm{AGL}_{\mathrm{dw}}$
20	418	predicted from PAR at each lake (predicted AGL_{dw}) was compared to the AGL_{dw} calculated from
21 22	419	the observed AGL _{dw} . Error was propagated using a resampling method (Crowley et al. 1992).
23 24	420	Specifically, we estimated the error in predicted AGL_{dw} for each iteration as a random sample
25 26	421	from a normal distribution with the mean equal to zero and the standard deviation equal to the
27 28	422	standard error of the regression estimate (SEE) for each taxon. Results were based on 10,000
29	423	iterations and reported as means and standard errors of the predicted $\mathrm{AGL}_{\mathrm{dw}}$ for each lake. Bias
30 31	424	between the predicted and observed AGL _{dw} was calculated as:
32 33	425	$Bias = \frac{Predicted AGL_{dw} - ObservedAGL_{dw}}{ObservedAGL_{dw}} $ (9)
34 35	426	
36 37	427	4. Results
38	428	4.1 Chronology
40	429	The seven lakes' chronologies were established using at least 20 ²¹⁰ Pb dates measurements at
41 42	430	each site (see Table S3-S9 for exact number of samples for each core). Blue Lake is shown as an
43 44	431	example (Fig. 4). The chronologies for Fish, North Twin, Ogaromtoc, Onion, Red Mountain, and
45 46	432	South Twin lakes followed the same procedure (Fig. S2). The lakes are characterized by rapid
47	433	sedimentation rates, with rates in the upper sediments in the range of 0.14-0.33 cm yr $^{-1}$ (3-7 yr
48 49 50 51	434	cm ⁻¹). Therefore, surface samples (upper 0.5cm) contain pollen from 2018 (collection date) to

2 3		
4 5		
6		
7		
8 9		
10	435	2011 at the oldest. Core lithology results are provided in the supplement (Figs. S3-4).
11 12	436	
13	437	4.2 PAR
14 15	438	A group of highly abundant tree taxa contained Pseudotsuga, Pinus, Notholithocarpus, and TCT,
16 17	439	which were reflected in high (> 2,000 grains $cm^{-2} yr^{-1}$) PAR values in most samples (Fig. 5,
18 19	440	Table S10). For example, <i>Pseudotsuga</i> values were above 5,000 grains cm ⁻² yr ⁻¹ at all sites
20	441	except Onion Lake. The highest overall PAR value was Pinus at Onion Lake which exceeded
21 22	442	10,000 grains cm ⁻² yr ⁻¹ . High PAR values reflect the Douglas-fir and pine-dominant composition
23 24	443	of Six Rivers National Forest. Onion Lake is the only lake situated in the True Fir alliance zone
25 26	444	and, unsurprisingly, the Abies PAR value was the highest compared to all other sites (5,000
27	445	grains cm ⁻² yr ⁻¹). PAR values for Notholithocarpus and TCT varied across sites and were
28 29	446	between 1,000-4,000 grains cm ⁻² yr ⁻¹ .
30 31	447	The group of less abundant arboreal taxa included Alnus, Abies, and Quercus which were
32 33	448	present in most samples with PARs of less than 2,000 grains cm ⁻² yr ⁻¹ (Fig. 5). Alnus values were
34 35	449	generally around 1,000 grains cm ⁻² yr ⁻¹ , although values above 2,000 grains cm ⁻² yr ⁻¹ were
36	450	observed at Ogaromtoc and Fish Lakes. Abies values were low (< 1,000 grains cm ⁻² yr ⁻¹) at all
37 38	451	sites except North Twin and Onion Lakes. Although pollen from Alnus, Abies, and Quercus were
39 40	452	found at all sites, the taxa themselves were not recorded from the transect sampling at several
41 42	453	lakes. This could be due to low abundance such that they were not captured in the survey or due
43	454	to their absence in the pollenshed sedimentary basin in which case their PAR contributions are
44 45	455	background deposition. Pollen from the "other hardwood" category (defined as willows,
46 47	456	buckthorn, hazel, and silk tassel) was detected in trace amounts (< 100 grains $cm^{-2} yr^{-1}$).
48 40	457	
49 50		
51		
52 53		21
54		
55		
56		
57 58		
59		
60		http://mc.manuscriptcentral.com/holocene

1

1		
2		
4		
5		
6		
7 0		
0 9		
10	458	4.3 aRSAP and tRSAP
11 12	459	Using the sub-setting approach for the aRSAP calculation, a coherent pattern was exhibited in
13 14	460	the likelihood function scores from model 3. The values were high at short distances and then
15	461	decreased rapidly until 175 m where they begin to flatten out. For all taxa combinations, we
16 17	462	inferred via visual inspection that the curves reached their asymptotes at a distance of 625 m and
18 19	463	thus the aRSAP of these lakes is 625 m from the lake shore. The likelihood function scores in
20 21	464	relation to the distance from the lake shore are shown for one of the three sub-set examples:
22	465	TCT, Pseudotsuga, and Pinus (Fig. 6).
23 24	466	Based on tRSAP calculations for the four dominant tree taxa, maximum R ² values were
25 26	467	reached before the maximum distance surveyed (750 m) from the shoreline (Fig. 7). The R^2
27 28	468	values for <i>Pinus</i> and TCT were high (> 0.75) at only 25 m from the shore and stabilized around
29	469	225 m, the tRSAP. The R ² values for <i>Pseudotsuga</i> and <i>Notholithocarpus</i> continued to improve
31	470	for some distance from the lake shore. For <i>Pseudotsuga</i> , the tRSAP was 625 m; for
32 33	471	Notholithocarpus, it was 525 m. Sample sizes were insufficient to estimate tRSAP values for the
34 35	472	minor taxa. For these taxa, we used the aRSAP value in AGL_{dw} calculations (i.e., 625 m).
36	473	
37 38	474	4.4 Transfer functions: PAR to AGL _{dw}
39 40	475	PAR was a statistically meaningful and reasonably precise -reliable estimator of contemporary
41 42	476	AGL_{dw} for most of the pollen taxa present (Fig. 8). Based on the aRSAP distances, the linear
43	477	model without intercept was the best performing model ($\Delta AIC_c > 4.0$) for the four most
44 45	478	abundant taxa (Fig. 8a). For these taxa, the no-intercept regressions were not only significantly
46 47	479	better than the null model (p < 0.001) but also explained most of the variation. R^2 ranged from
48 49	480	0.87 for TCT to 0.96 for <i>Pseudotsuga</i> (Table S11). The model results for the three less abundant
50		
51		
52 53		22
55 54		
55		
56		

6		
/ 8		
9		
10	481	species (i.e., <i>Alnus</i> , <i>Abies</i> and <i>Quercus</i>) were more complex (Fig. 8b). Based on ΔAIC_c , the
11 12	482	segmented regression model best fit the Alnus and Abies data. However, both species were rare
13 14	483	and found in abundance at only one lake (Fig. 5). The existence of this one abundant point exerts
15	484	extraordinary leverage in the segmented regression. To avoid relying on a single point in these
16 17	485	two transfer functions, we used the second-best regression model. For Alnus, it was a linear
18 19	486	model; for Abies, it was a linear model without intercept (Table S11). For Quercus, none of the
20 21	487	regression models were superior to the null (Fig. 8b, Table S11), so we used the mean and
22	488	standard error to predict $Quercus$ contribution to AGL_{dw} estimates for each lake. We recalculated
23 24	489	the biomass transfer functions using the tRSAP weighted AGL_{dw} estimates for all taxa. Both the
25 26	490	functional forms and fits were similar to aRSAP-based results (Table S12). However, the
27 28	491	coefficients varied with changes in the source area distance.
29	492	The transfer functions based on aRSAP distances provide robust means to estimate
30 31	493	contemporary AGL from PAR (Table $\underline{32}$). The coefficient of variation (COV) in predicted
32 33	494	AGL_{dw} ranged from 13-17% for six lakes with Ogaromtoc being the exception with a COV =
34 35	495	24%. The standard error of the estimate varied little among lakes and averaged 32 Mg ha ⁻¹ . In
36	496	terms of accuracy the relative root mean squared error (rRMSE) between predicted and observed
37 38	497	AGL _{dw} was 9.2%. There was a small tendency for predicted AGL _{dw} to overestimate the
39 40	498	observed. The mean bias was 4.8% with two lakes, Red Mountain and South Twin, contributing
41 42	499	the most to the positive bias (Table 23). The predictions of AGL weighted using tRSAP
43	500	distances (Table 34) tended to less accurate (rRMSE = 12.7%) and more biased (10.1%).
44 45	501	
46 47	502	Discussion
48 49	503	5.1 Source areas of pollen: aRSAP and tRSAP

http://mc.manuscriptcentral.com/holocene

60

http://mc.manuscriptcentral.com/holocene

2		
3 4		
5		
6 7		
8		
9 10	504	Calibration of pollen-vegetation relationships is only effective when the scale of the vegetation
11 12	505	sampling is close to or exceeds the scale of the relevant source area of pollen (Bunting et al.
13 14	506	2004). Therefore, being able to specify the source area of pollen in a given basin is an important
15	507	step towards quantitative reconstruction of past vegetation (Sugita et al. 1999, Hellman et al.
16 17	508	2009). A primary aim of this work was to understand the spatial extent represented by the pollen
18 19	509	assemblage. We addressed this aim by determining the assemblage-level relevant source area of
20	510	pollen (aRSAP) obtained from pollen percentage data and ERV analysis and comparing those
21	511	estimates with the taxon-specific source area of pollen (tRSAP) for four main taxa. Both metrics
23 24	512	estimate the extent of vegetation that requires surveying for a subsequent reconstruction step but
25 26	513	are seldom compared.
27	514	aRSAP values have been estimated for lakes similar in size to those presented here (i.e.,
28 29	515	100 m radius), in different settings including simulated landscapes. Reported aRSAP values have
30 31	516	ranged from: 300 m in a simulation of a hemlock-hardwood forest in the US (Sugita 1994), to
32 33	517	800-1,000 m in a simulation of spruce forest in Sweden (Sugita et al. 1999), to 1,700 m in
34	518	varying landcover types in Denmark (Nielsen and Sugita 2005), to 1,500-2,000 m in semi-boreal
35 36	519	forests of Estonia (Poska et al. 2011), and to 2,200 m in the upper Tibetan Plateau (Wang and
37 38	520	Herzschuh 2011). Within this list, all aRSAP estimates were derived from Prentice-Sugita-Sutton
39 40	521	distance-weighted models and are thus comparable to our estimate. Our aRSAP value of 625 m
41	522	falls in the range (300-2,200 m), though on the small end.
42	523	The aRSAP is unique to a given set of lakes and is sensitive to numerous factors such as
44 45	524	lake size and basin shape (Sugita 1993), vegetation patch size (Sugita 1994, Broström et al.
46 47	525	2005), vegetation patterns (Bunting et al. 2004), and taxa spatial distribution (Hellman et al.
48	526	2009). For example, aRSAP values tend to increase with landscape openness defined as the
49 50		
51 52		24
53 54		
55		
56		
57 59		
59		

extent of the vegetation cover in the pollenshedsedimentary basin. For example, the aRSAP for small ponds in a closed forest was simulated to be 300 m (Sugita 1994) and empirically verified by Calcote (1995), whereas the aRSAP for small ponds in an open Swedish landscape was 1,000 m (Sugita et al. 1999). However, expectations based on landscape openness can be complicated by vegetation heterogeneity. Higher vegetation diversity and complex spatial distribution of taxa are associated with larger aRSAPs (Hellman et al. 2009). The presence of rare taxa in a landscape can also increase the aRSAP, other factors being held constant (Bunting et al. 2004). For example, Commerford et al. (2013) observed the effect of rare taxa empirically: small lakes in a 'very open' grassland in Kansas had a large aRSAP of 1,060 m, which they attributed to scattered tree taxa in the tallgrass prairie.

The contemporary forests around our lake sites are dense, closed, and heavily dominated by Douglas-fir (Skinner et al. 2018). Taxa like black oak (*Quercus*), white alder (*Alnus*), and white fir (*Abies*) are present but not common. These rare taxa in the pollenshed area contributed little to the overall biomass (2.3%) but make the landscape more heterogeneous. This heterogeneity can result in a larger aRSAP than if there were no rare taxa present. All else being equal, longer distances from each sampling site are required to get a sufficient cover of all taxa within the landscape to reach the regional average. These greater distances produce larger aRSAP estimates (Hellman et al. 2009).

tRSAPs have been estimated at small lakes and ponds. For example, the tRSAP for *Pinus*was 200 m from the lakeshore in southern-northeastern Germany (Matthias and Giesecke 2014),
and other tRSAP values in that study ranged from 50 m (*Quercus*) to 300 m (*Fagus*) to 1,000 m
(*Betula*). Jackson (1990) found small tRSAP estimates from ponds in New York: *Acer* (< 20 m), *Betula* (> 1,000 m), *Fagus* (> 1,000 m), *Picea* (< 100 m), *Quercus* (> 1,000 m) and *Pinus/Tsuga*

550	(< 500 m). In this study, the tRSAP value for <i>Pinus</i> was 225 m, a near match to Matthias and
551	Giesecke (2014) and comparable to Jackson (1990). The other tRSAP values in this study ranged
552	from 225 m (TCT) to 525 m (Notholithocarpus) to 625 m (Pseudotsuga). Like Matthias and
553	Giesecke's results, the tRSAPs are inconsistent with expectations based solely on the respective
554	fall speeds of the taxa. For example, <i>Pinus</i> has one of the assemblage's lowest fall speeds and
555	was expected to travel longer distances and have a large tRSAP; in fact, it had one of the shortest
556	tRSAPs.
557	Unexpectedly small source areas of highly dispersible taxa have been observed in
558	simulated landscapes (e.g., Betula, Sugita 1994) and have been attributed to vegetation
559	patterning. The estimated RSAP reflects the minimum distance at which the regional vegetation
560	composition is attained. For example, if Betula is uniformly spread in a forest, the regional
561	distribution signal of Betula will be captured closer to the sampling point than in a forest where
562	Betula is heterogeneously spread across the forestWhen a taxon has a relatively homogeneous
563	distribution across the landscape (e.g., found in all communities with small patch size, occurs
564	frequently as individuals in all communities), the regional distribution of the taxon is attained
565	relatively close to the sampling point (e.g., the lake); thus, the vegetation composition does not
566	change with increasing distance beyond that point and the source area is small. In this case,
567	tRSAP reflects the distance at which regional vegetation composition is reached, instead of being
568	predominantly controlled by the taxon's pollen dispersal ability and depositional properties
569	(Sugita 1994). The vegetation patterns in the Klamath area are complex and heterogeneous
570	(Skinner et al. 2018). Within the sampling area, Douglas-fir (Pseudotsuga) is the dominant
571	species with large amounts of tanoak (Notholithocarpus) at most lake sites, with pines (Pinus)
572	intermixed and some cedars (TCT). The small "patches" of pines and cedars within a Douglas-fir
	550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 565 566 567 568 569 570 571 572

2 3 4 5 6 7		
8 9	573	dominant overstory could effectively shrink the tRSAPs of <i>Pinus</i> and TCT. following the logic
10 11	574	presented in Sugita (1994) Thus the finding of relatively small the set of <i>Pinus</i> and TCT
12 13	575	despite their fall speeds and relatively large tRSAPs for <i>Pseudotsuga</i> and <i>Notholithocarnus</i>
14 15	576	aligns with the study area's vegetation patterning.
13 16 17 18 19 20	577	Our estimated aRSAP (625 m) and tRSAP values (all 625 m or less) suggest consistent
	579	though not identical interpretations of the pollophodescures area of pollon. Both estimates
	570	indigen not identical, interpretations of the ponensious of chart the same area of the surrounding
21	519	indicate that the policin record senses a local view of about the same area of the surrounding
 22 23 24 25 26 27 28 29 30 31 32 33 	580	vegetation. Given that vegetation surveying must meet or exceed the scale of the relevant source
	581	area of pollen for quantitative reconstruction (Bunting et al. 2004), vastly different aRSAP and
	582	tRSAP estimates would potentially be consequential. If, for example, we had estimated an
	583	aRSAP << tRSAP, it would imply that our assemblage-level view was in some way blind to taxa
	584	in the assemblage, and thus missing important landscape patterning or other features of the
	585	pollenshedarea from which pollen originated. On the other hand, if we had estimated an aRSAP
	586	>> tRSAP, it would imply the subsequent reconstruction represents a larger area than is
34	587	potentially being recorded by the pollen system.
36	588	This consistency between the aRSAP and tRSAP results was reflected in the similarity of
37 38	589	the AGL _{dw} reconstructions (Table 32 , Table 34). On average, observed AGL _{dw} for each lake was
39 40	590	10.1 Mg ha ⁻¹ (5.2%) larger using aRSAP with the differences ranging from 2.6 Mg ha ⁻¹ (1.1%)
41	591	larger at North Twin Lake to 22.2 Mg ha ⁻¹ (10.3%) larger at Onion Lake. The differences in
42	592	terms of predictive ability were equally modest with aRSAP estimates producing somewhat more
44 45	593	accurate and less biased results.
46 47	594	
47 48 49 50 51	595	5.2 The potential of calibrated PAR as a bioproxy
52 53 54		27
55		
56 57		
58		
59 60		http://mc.manuscriptcentral.com/holocene

4			
5			
0 7			
8 9			
10	596	Establishing the relationship between contemporary biomass and modern PAR values is	
12	597	contingent upon obtaining accurate sedimentation rates in cores. We are confident in our	
13 14	598	estimated sedimentation rates for two key reasons. First, we used a state of the art, robust	
15	599	Bayesian model to develop age models from ²¹⁰ Pb dates (Aquino-López et al. 2018). Our results	
16 17	600	showed low uncertainty in the modeled ages in all cores, particularly in the top 20cm. Second,	
18 19	601	we were able to compare our upper sedimentation rates representing the last decade to estimates	
20	602	from two of the same lakes (Ogaromtoc and Fish lakes) that were collected in 2008 and 2009	
21 22	603	(Crawford et al. 2015). We found similar sedimentation rates in the upper sediments: 2.0-4.0 mm	
23 24	604	yr ⁻¹ compared to 2.0-3.3 mm yr ⁻¹ . Our modern PAR values are also in agreement with PAR	
25 26	605	values from the youngest sediments in Crawford et al. (2015).	
27	606	The ultimate goal of this research was to assess whether PAR be used to predict distance-	
28 29	607	weighted biomass for major tree taxa in the Klamath area, and therefore generate models suitable	
30 31	608	for reconstruction of past biomass dynamics. The fact that contemporary pollen influx is a	
32 33	609	reasonably reliable precise predictor of contemporary distance-weighted AGL at these sites	
34	610	suggests that PAR can be used to infer changes in plant biomass at for these sites. But even with	
36	611	apparently statistically sound modern models, it may not be reasonable to apply the models for	
37 38	612	reconstruction in all contexts.	
39 40	613	In an ideal situation, the calibration dataset would include sites with a wide range of	
41 42	614	population sizes of the main taxa to allow any time in the fossil record to be reconstructed. Our	
42 43	615	model had less skill in estimating low levels of forest biomass because we were unable to find	
44 45	616	lake sites that met our selection criteria and supported sparse forest cover. Other modern	
46 47	617	quantitative vegetation reconstruction models have been restricted at the upper end of the	
48	618	calibration. Trees growing in dense forest stands produce less pollen than an exposed tree in a	
49 50			
51 52		28	
53			
55			
56 57			
58 50			
 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 	614615616617618	population sizes of the main taxa to allow any time in the fossil record to be reconstructed. Our model had less skill in estimating low levels of forest biomass because we were unable to find lake sites that met our selection criteria and supported sparse forest cover. Other modern quantitative vegetation reconstruction models have been restricted at the upper end of the calibration. Trees growing in dense forest stands produce less pollen than an exposed tree in a 28	

6
6
6
6
6
6
C
0.
6
6
6
0
0.
6
6
6
0.
6
6
6
0.
6
6
6
6
0.
6
6

619	field, which suggests that increased forest density could result in reduced net pollen productivity
620	(Andersen 1970, Fægri and Iverson 1989, Feldman et al. 1999). For example, Blarquez et al.
621	(2011) found that the relationship between needle accumulation rate and forest basal area tended
622	to saturate above 40 m ² ha ⁻¹ for conifer-dominated sites. However, despite the high biomass-
623	density of the contemporary forest at our sites (Knight et al. 2020), there was no evidence of
624	saturation in the PAR-biomass functions for the major taxa. Even at the maximum PAR values,
625	the biomass values increase at pace following the log-linear fits (Fig. 8a).
626	Long-term PAR records from lakes in the area provide insight into time periods where
627	our calibrated models will be able to capture past conditions. Comparable taxa-specific PAR
628	values from lake sites in the region were only available for <i>Pinus</i> , and they suggest time periods
629	of agreement with our Pinus PAR measurements and our total Pinus PAR-AGL model, which
630	covers a range between 1,500 and 11,000 grains cm ⁻² yr ⁻¹ . For example, Briles et al. (2008)
631	reported Pinus PAR between 2,000 and 8,000 grains cm ⁻² yr ⁻¹ at Sanger Lake in the western
632	Klamath Mountains over 15,000 years BP. Likewise, a 3,000-year PAR record from Fish Lake (a
633	lake also examined in this study) shows agreement with our total Pinus PAR range during some
634	time periods. Fish Lake's record shows temporal variability intotal Pinus PAR values between
635	2,000 to 9,000 grains cm ⁻² yr ⁻¹ during the last two hundred years (Crawford et al. 2015), which
636	falls within our calibration. Lastly, total PAR values measured at eight lakes in the Klamath area
637	since 15,000 BP range from 2,000 to 15,000 grains cm ⁻² yr ⁻¹ (Briles et al. 2011) and are similar
638	in size to lakes in this study and have a dense surrounding forest, although they are located in the
639	white-fir vegetation zone.
640	In addition to selecting a range of forest conditions, researchers undertaking similar
641	efforts will need to consider the number of lakes needed for statistical soundness for the
	29

1		
5		
7		
3		
) 10	642	calibration. The seven lakes presented here appear to have been sufficient to build robust models
1 2	643	in terms of low coefficient of variation (Table 23), but it may be difficult in other locations to
13	644	find enough suitable lakes using consistent selection criteria. If reconstructions of continuous
5	645	Holocene-length biomass records are sought, using a high number of lakes has the downside of
6 7	646	great expense (from isotopic dating) and labor (from pollen counting), unless accurate automatic
8 9	647	classification systems become widespread (Sevillano et al. 2020).
20	648	The calibration step we undertook required modern biomass data, which may be difficult
21 22	649	to obtain empirically for a large number of lakes or in settings with challenging topography. For
23 24	650	example, transects in this study ran 750 m from the shoreline, but steep topography and scree
25	651	slopes occasionally prevented a complete survey. Because we studied small lakes and needed
27	652	finely resolved biomass data, sparse inventory data with large geographic extent (e.g., FIA data)
28 29	653	were not an appropriate substitute for field surveys. However, FIA data provided essential
80 81	654	information regarding the basal area to biomass relationships for the common tree species in the
32	655	region (Table S8).
34	656	5.3 Limitations of PAR and PVMs
85 86	657	Our results show the utility of calibrated PAR-AGL models for this study, and we have provided
37 38	658	a robust process for including uncertainty in PAR-AGL models. However, PAR itself may vary
89 10	659	in ways that reduce its value for pollen-based reconstructions in all landscapes. For instance, net
40 41	660	pollen deposition can vary spatially and temporally if sediment focusing or pollen redeposition
12 13	661	occurs. While studies investigating PAR from modern sedimentary records did not find that
14 15	662	redeposition and sediment focusing affected PAR (Seppä and Hicks, 2006; Giesecke and
6	663	Fontana, 2008), other studies have documented the influence of these factors on PAR (Davis et
+7 18	664	al. 1984, Odgaard 1993, Matthias and Giesecke 2014). Additionally, between-lake differences in
19 50		
1		
2		30

3	
4	
5	
6	
7	
8	
9	k
10	0
11	6
12	Ŭ
13	6
14	
15	6
16	6
17	Ĩ
10	6
20	0
20	b
21	6
23	
24	6
25	c
26	0
27	6
28	
29	6
30	6
31	Ű
32	6
33	
34 25	6
22	6
30	
38	6
39	0
40	6
41	6
42	
43	6
44	6
45	0
46	6
4/ 10	
40 //Q	6
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

65	PAR values can arise from differences in pollen taphonomy due to basin size or stream inflow
66	(Davis 1967b). Pollen monitoring studies have illustrated another known issue with PAR: the
67	amount of pollen produced can change year to year and is related to the weather conditions of the
68	preceding year (Hicks 2006). Lastly, one study has implied that PAR may depend on the net
69	primary production of the pollen-producing taxa as well as overall plant biomass (Matthias and
70	Giesecke 2014). Without long-term pollen monitoring studies across different biomes and
71	accompanying detailed biomass data, true data validation will not be possible.
72	Pollen transport in mountain environments has been studied in Europe through the European
73	Pollen Monitoring Programme, but, to our knowledge, has not been studied in the mountains of
74	western North America outside of the present work. Several pollen monitoring studies with
75	transects running through multiple vegetation zones in mountainous areas tend to show that
76	pollen from lower forest zones is quite abundant in upper zones, and this effect appears more
77	pronounced when high altitude zones have lower productivity (e.g., the Rila Mountains in
78	Bulgaria, Tonkov et al. 2001). Unlike mountain transect studies, our sites are all within one
79	vegetation zone, therefore reducing the significance of these effects, and we are not studying tree
80	line position. The Douglas-fir dominated conifer forest in the Klamath Mountain is a relatively
81	high productivity zone, and such zones typically show less of an "uphill" effect that impacts tree-
82	line pollen assemblages (e.g., Swiss Alps tree line study, Sjögren et al. 2008)."
83	All PVMs, including PAR-biomass transfer functions, are based on assumptions that may not
84	hold in a changing landscape. It must be assumed, for example, that taphonomic processes
85	filtering pollen in lake sediments are constant over time and among lakes, unless taphonomic
86	biases are precisely quantified (Allison and Bottjer 2011). Using our method, quantitative
87	biomass reconstruction would also assume that the relevant source area of pollen is constant over
	31

Commented [MOU5]: Added discussion of mountain pollen transport for Reviewer 2.

2 3		
4		
5 6		
7		
8 9		
10	688	time. We estimated the aRSAP of our seven sites as well as the tRSAP of abundant taxa, but
11 12	689	these may apply to a landscape arrangement which is unique in the last 3,000 years. The present-
13 14	690	day high PAR values of <i>Pseudotsuga</i> are not replicated in the fossil pollen record at any other
15	691	time in three millennia (Crawford et al. 2015), suggesting that the dominance of shade tolerant
16 17	692	Pseudotsuga is also not found elsewhere in this time period. Deep-time reconstructions from
18 19	693	lakes in this study have shown large changes in vegetation composition due to climate, Native
20 21	694	land-use, fire disturbances, and, in the last century, fire suppression. In response, we anticipate
22	695	that the relevant source areas of pollen will expand and contract over time. Because the spatial
23 24	696	patterns of past vegetation are usually unknown, it is difficult to estimate past relevant pollen
25 26	697	sources areas. However, the Multiple Scenario Approach (MSA, Bunting and Middleton 2009)
27 28	698	offers insight on this issue. Under MSA, hypothetical landscapes are created via rules for plant
29	699	placement and environmental parameters, and then pollen assemblages are simulated and
30 31	700	compared to known pollen signals to identify probable past vegetation mosaics. Another
32 33	701	experimental method to estimate past relevant pollen source area has been explored through
34 35	702	modeling (Hellman et al. 2009) where regional vegetation composition and available pollen
36	703	productivity estimates are available for multiple sites (Sugita 2007b). Hellman et al.'s (2009)
37 38	704	simulations suggest relatively robust aRSAP estimates of 1,000 to 2,500 m for small lakes under
39 40	705	hypothetical landscapes from southern Sweden where natural and anthropogenic disturbances
41 42	706	have occurred during the Holocene. Such simulations provide a means to test the potential
43	707	robustness of aRSAP in the Klamath area.
44 45	708	
46 47 48	709	5. Conclusion
49 50		
51		

8		
9 10	710	Although methodologically challenging, calibrating PAR-biomass models is an important step
11 12	711	towards quantitative reconstruction of past vegetation. Our calibration steps included estimating
13	712	the spatial extent represented by the pollen system, comparing two estimates of the
14 15	713	pollenshed <u>RSAP</u> , and evaluating PAR-AGL models. We found comparable aRSAP and tRSAP
16 17	714	estimates that aligned with expectations given the modern forest's dense, closed conditions. We
18 19	715	also demonstrated that PARs of major tree taxa derived from lake sediments are linearly related
20	716	to distance-weighted AGL, and our PAR-AGL $_{dw}$ models accurately reconstruct modern lake-
21 22	717	surrounding biomass. According to PAR values from local and regional lakes sites, our modern
23 24	718	models are broad enough to capture a range of forest structures over the last 15,000 years BP.
25 26	719	We therefore conclude that our results prove the utility of calibrated PAR-AGL models for
27 28 29 30 31 32 33 34 35 36 37 38 39 40	720	quantitative reconstruction of past vegetation.
41		

1 2 3 4		
5 6		
7 8		
9 10	722	References
11	723	Allison P and Bottjer DJ (2011) Taphonomy: Bias and process through time. In: Allison PA and
12 13	724	Bottjer DJ (eds) Taphonomy. Netherlands: Springer, pp.1-17.
14 15 16 17	725	Andersen ST (1970) The relative pollen productivity and pollen representation of north European
	726	trees, and correction factors for tree pollen spectra. Danmarks geologiske
18 10	727	Undersogelse 96:1–99.
20 21	728	Appleby P and Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of
21 22	729	supply of unsupported 210Pb to the sediment. Catena 5:1-8.
23 24	730	Aquino-López MA, Blaauw J, Christen A, and Sanderson NK (2018) Bayesian Analysis of 210-
25 26	731	Pb Dating. Journal of Agricultural, Biological, and Environmental Studies
20 27 28 29 30 31 32 33 34 35 36 37 38 39 40	732	23:317-333.
	733	Blaauw M and Christen JA (2011) Flexible paleoclimate age-depth models using an
	734	autoregressive gamma process. Bayesian Analysis 6:457-474.
	735	Baskaran M, Miller CJ, Kumar A et al. (2015) Sediment accumulation rates and sediment
	736	dynamics using five different methods in a well-constrained impoundment: Case
	737	study from Union Lake, Michigan. <i>Journal of Great Lakes Research</i> 41:607-617.
	738	Bennett KD (1983) Postglacial population expansion of forest trees in Norfolk, UK. Nature 303:
	739	164–67.
41 42	740	Bennett KD (1986) The rate of spread and population increase of forest trees during the
43 44	741	postglacial. Philosophical Transactions of the Royal Society of London, Series B
44 45	742	314:523–531.
46 47		
48 49		
50 51		
52 53		34
55		
55 56		
57 58		
59 60		http://mc.manuscriptcentral.com/holocene
1 2		
----------	-----	--
3 4		
5		
6 7		
8		
9 10	743	Blarquez O, Carcaillet C, Elzein TM et al. (2011) Needle accumulation rate model-based
11 12	744	reconstruction of paleo-tree biomass in the western subalpine Alps. The Holocene
13	745	22:579–587.
14 15	746	Briles CE, Whitlock C, and Bartlein PJ (2005) Postglacial vegetation, fire, and climate history of
16 17	747	the Siskiyou Mountains, Oregon, USA. Quaternary Research 64:44–56.
18 19	748	Briles CE, Whitlock C, Bartlein PJ et al. (2008) Regional and local controls on postglacial
20	749	vegetation and fire in the Siskiyou Mountains, northern California, USA.
21 22	750	Palaeogeography, Palaeoclimatology, Palaeoecology 265:159–169.
23 24	751	Briles CE, Whitlock C, Skinner CN et al. (2011) Holocene forest development and maintenance
25 26	752	on different substrates in the Klamath Mountains northern California, USA.
27	753	Ecology 92:590–601.
28 29	754	Broström A, Gaillard M-J, Ihse M et al. (1998) Pollen–landscape relationships in modern
30 31	755	analogues of ancient cultural landscapes in southern Sweden — a first step
32 33	756	towards quantification of vegetation openness in the past. Vegetation History and
34 35	757	Archaeobotany 7:189–201.
36	758	Broström A, Sugita S and Gaillard M-J (2004) Pollen productivity estimates for the
37 38	759	reconstruction of past vegetation cover in the cultural landscape of southern
39 40	760	Sweden. The Holocene 14:368–381.
41 42	761	Broström A, Sugita S, Gaillard M-J et al. (2005) Estimating the spatial scale of pollen dispersal
43	762	in the cultural landscape of southern Sweden. <i>The Holocene</i> 15:252–262.
44 45	763	Bunting MJ, Gaillard M-J, Sugita S et al. (2004) Vegetation structure and pollen source area. The
46 47	764	Holocene 14:651–660.
48 49		
50		
52		35
53 54		
55 56		
57		
58 59		
60		http://mc.manuscriptcentral.com/holocene

1 2		
3 4		
5		
6 7		
8		
9 10	765	Bunting MJ, Armitage R, Binney HA et al. (2005) Estimates of 'relative pollen productivity' and
11 12	766	'relevant source area of pollen' for major tree taxa in two Norfolk (UK)
13	767	woodlands. The Holocene 15:459-465.
14 15	768	Bunting MJ and Middleton R (2005) Modelling pollen dispersal and deposition using HUMPOL
16 17	769	software: simulating wind roses and irregular lakes. Review of Palaeobotany and
18	770	Palynology 134:185–196.
19 20	771	Bunting MJ and Middleton R (2009) The Multiple Scenario Approach: a pragmatic method for
21 22	772	past vegetation mosaic reconstruction. The Holocene 19:799-803.
23 24	773	Bunting MJ and Hjelle KL (2010) Effect of vegetation data collection strategies on estimates of
25 26	774	relevant source area of pollen (RSAP) and relative pollen productivity estimates
27	775	(relative PPE) for non-arboreal taxa. Vegetation History and Archaeobotany
28 29	776	19:365–374.
30 31	777	Bunting MJ, Farrell M, Broström A et al. (2013) Palynological perspectives on vegetation
32 33	778	survey: a critical step for model-based reconstruction of Quaternary land cover.
34	779	Quaternary Science Reviews 82:41–55.
35 36	780	Burnham KP and Anderson DR (2002) Model selection and multimodel inference: a practical
37 38	781	information-theoretic approach. New York: Springer-Verlag.
39 40	782	Calcote R (1995) Pollen source area and pollen productivity: evidence from forest hollows.
41 42	783	Journal of Ecology 83:591–602.
42	784	Cheng STE (2004) Forest Service Research Natural Areas in California. General Technical
44 45	785	Report PSW-GTR-188. Pacific Southwest Research Station, Forest Service, U.S.
46 47	786	Department of Agriculture, Albany, CA.
48		
49 50		
51 52		26
53		50
54 55		
56		
57 58		
59 60		http://mc.manuscriptcentral.com/holocene

6 7				
8				
9 10	787	Christen JA and Fox C (2010) A general purpose sampling algorithm for continuous		
11 12	788	distributions (the t-walk). Bayesian Analysis 5:263-281.		
13	789	Colombaroli D and Gavin DG (2010) Highly episodic fire and erosion regime over the past		
14 15	790	2,000 years in the Siskiyou Mountains, Oregon. Proceedings of the National		
16 17	791	Academy of Sciences 107:18909–18914.		
18 19	792	Commerford JL, McLauchlan KK and Sugita S (2013) Calibrating vegetation cover and		
20	793	grassland pollen assemblages in the Flint Hills of Kansas, USA. American		
21 22	794	Journal of Plant Sciences 4:1–10.		
23 24	795	Crawford JN, Mensing SA, Lake FK et al. (2015) Late Holocene fire and vegetation		
25 26	796	reconstruction from the western Klamath Mountains, California, USA: A		
27	797	multidisciplinary approach for examining potential human land-use impacts. The		
28 29	798	Holocene 25:1341–1357.		
30 31	799	Crowley PH (1992) Resampling methods for computation-intensive data analysis in ecology and		
32 33 34 35 36	800	evolution. Annual Review of Ecological Systems 23:405–447.		
	801	Daniels ML, Anderson RS and Whitlock C (2005) Vegetation and fire history since the Late		
	802	Pleistocene from the Trinity Mountains, northwestern California, USA. The		
37 38	803	Holocene 15:1062–1071.		
39 40	804	Davis MB (1963) On the theory of pollen analysis. American Journal of Science 261:897–912.		
41	805	Davis MB (1967b) Pollen deposition in lakes as measured by sediment traps. Geological Society		
42	806	of America Bulletin 78: 849–58.		
44 45	807	Davis MB and Deevey ES (1964) Pollen accumulation rates: estimates from Late-Glacial		
46 47	808	sediment Rogers Lake. Science 145:1293-1295.		
48 49				
50				
51 52		37		
53 54				
55				
56				
57 58				

1 2				
3 4				
5 6				
7 8				
9 10	809	Davis MB, Brubaker LB and Webb T (1973) Calibration of absolute pollen influx. In: Birks HJB		
11	810	and West RG (eds) Quaternary Plant Ecology. Oxford: Blackwell Scientific		
12	811	Publications, pp.9–25.		
14 15	812	Davis MB, Moeller RE and Ford J (1984) Sediment focusing and pollen influx. In: Haworth EY		
16 17	813	and Lund JWG (eds) Lake sediments and environmental history. Minneapolis:		
18	814	University of Minnesota Press, pp.261–93.		
20	815	Davis MB (2000) Palynology after Y2K: Understanding the source area of pollen in sediments.		
21 22	816	Annual Review of Earth Planetary Sciences 28:1–18.		
23 24	817	Dawson A, Paciorek CJ, Goring SJ, Jackson ST, McLachlan JS, Williams JW (2019)		
25 26	818	Quantifying trends and uncertainty in prehistoric forest composition in the upper		
26 27 28 29 30 31	819	Midwestern United States Ecology 100(12):1–18.		
	820	Doher LI (1980) Palynomorph preparation procedures currently used in the paleontology and		
	821	stratigraphy laboratories. U.S. Geological Survey Circular 830:1–28.		
32 33	822	Fægri K and Iversen J (1989) Textbook of Pollen Analysis. New York: Haffner Press.		
33 34	823	Fagerlind F (1952) The real significance of pollen diagrams. Botaniska Notiser 105:185–224.		
35 36	824	Feldman R, Tomback DF and Koehler J (1999) Cost of mutualism: competition, tree		
37 38	825	morphology, and pollen production in limber pine clusters. <i>Ecology</i> 80:324–329.		
39 40	826	FIADB (2020) Forest Inventory and Analysis Database version 1.8.0.0.1.		
41	827	https://apps.fs.usda.gov/fia/datamart/datamart.html		
42 43	828	Gaillard M-J, Sugita S, Broström A et al. (2000) Long term land-cover changes on regional to		
44 45	829	global scales inferred from fossil pollen — how to meet the challenges of climate		
46 47	830	research? Pages Newsletter 8:30–32.		
48				
49 50				
51 52		38		
53 54				
55 56				
57				
58 59				

5 6 7			
8 9			
10 11	831	Gaillard M-J, Sugita S, Mazier F et al. (2010) Holocene land-cover reconstructions for studies on	
12	832	land cover-climate feedbacks. Climate of the Past 6:483–499.	
13 14	833	Giesecke T (2005) Moving front or population expansion: how did Picea abies (L.) Karst.	
15	834	become frequent in central Sweden? Quaternary Science Reviews 24:2495-509.	
16 17	835	Giesecke T, Fontana SL (2008) Revisiting pollen accumulation rates from Swedish lake	
18 10	836	sediments. The Holocene 18:293-305.	
20	837	Gregory PH (1973) The Microbiology of the Atmosphere. London: L. Hill Publishers.	
21 22	838	Halbritter H, Ulrich S, Grímsson F et al. (2018) Illustrated Pollen Terminology. Vienna:	
23 24	839	Springer International Publishing.	
25 26	840	Han Y, Liu H, Hao Q et al. (2017) More reliable pollen productivity estimates and relative	
27	841	source area of pollen in a forest-steppe ecotone with improved vegetation survey.	
28 29	842	The Holocene 27:1567–1577.	
30 31	843	Hellman S, Gaillard MJ, Broström A et al. (2008a) The REVEALS model, a new tool to estimate	
32 33	844	past regional plant abundance from data in large lakes: validation in southern	
34	845	Sweden. Journal of Quaternary Science 23:21–42.	
36	846	Hellman S, Broström A, Gaillard MJ et al. (2008b) Effects of the sampling design and selection	
37 38	847	of parameter values on pollen based quantitative reconstructions of regional	
39 40	848	vegetation: a case study in southern Sweden using the REVEALS model.	
41	849	Vegetation Historical Archaeobotany 17:445–460.	
42 43	850	Hellman S, Bunting MJ and Gaillard M-J (2009) Relevant Source Area of Pollen in patchy	
44 45	851	cultural landscapes and signals of anthropogenic landscape disturbance in the	
46 47	852	pollen record: A simulation approach. Review of Palaeobotany and Palynology	
48 ⊿0	853	153:245–258.	
50	I		
51 52		39	
53 54			
55			
56 57			
58			

6 7						
8 9 10	854	Hicks, S. and Hyvarinen, H. 1999: Pollen influx values measured in different sedimentary				
11	855	environments and their palaeoecological implications. Grana 38:228-42.				
12 13	856	Hicks S (2001) The use of annual arboreal pollen deposition values for delimiting tree-lines in				
14 15	857	the landscape and exploring models of pollen dispersal. Review of Palaeobotany				
16 17	858	and Palynology 117:1–29.				
18	859	Hicks S (2006) When no pollen does not mean no trees. Vegetation History and Archeobotany				
19 20	860	<u>15:253–261.</u>				
21 22	861	Hickman JC (1993) The Jepson manual: higher plants of California. Berkeley: University of				
23 24	862	California Press.				
25	863	Hudiburg T, Law B, Turner DP et al. (2009) Carbon dynamics of Oregon and Northern				
26 27	864	California forests and potential land-based carbon storage. Ecological				
28 29	865	Applications 19:163–180.				
30 31 32 33 34 35 36	866	Hyvärinen H (1975) Absolute and relative pollen diagrams from northernmost Fennoscandia.				
	867	Fennia 142:1–23.				
	868	Irwin WP (1981) Tectonic accretion of the Klamath Mountains. In: Ernst WG (ed) The				
	869	Geotectonic Development of California. Englewood Cliffs: Prentice Hall, pp.29-				
37 38	870	49.				
39 40	871	Jackson ST (1990) Pollen Source Area and Representation in Small Lakes of the Northeastern				
40	872	United States. Review of Palaeobotany and Palynology 63:53-76.				
42 43	873	Jweda J and Baskaran M (2011) Interconnected riverine-lacustrine systems as sedimentary				
44 45	874	repositories: Case study in southeast Michigan using 210-Pb and 137-Cs sediment				
46 47	875	accumulation and mixing models. Journal of Great Lakes Research 37:432-446.				
48	876	Knapp RO (1969) How to know pollen and spores. Minneapolis: W.C. Brown Company.				
49 50						
51 52		40				
53 54						
55						
56 57	56 57					
58 59						
60 http://mc.manuscriptcentral.com/holocen/						

1 2				
3 ⊿				
5				
6 7				
8				
9 10	877	Knight CA, Cogbill CV, Potts MD et al. (2020) Settlement-era forest structure and composition		
11 12	878	in the Klamath Mountains: Reconstructing a historical baseline. Ecosphere		
13	879	11:e03250.		
14 15	880	Likens GE and Davis MB (1975) Post-glacial History of Mirror Lake and its Watershed in New		
16 17	881	Hampshire: an Initial Report. Internationale Vereinigung für Theoretische und		
18 19	882	Angewandte Limnologie 19:982–993.		
20	883	MacDonald GM (1993) Fossil pollen analysis and the reconstruction of plant invasions.		
21 22	884	Advances in Ecological Research 24:67–109.		
23 24	885	Marquer L, Gaillard M-J, Sugita S et al. (2014) Holocene changes in vegetation composition in		
25 26	886	northern Europe: why quantitative pollen-based vegetation reconstructions		
20	887	matter. Quaternary Science Reviews 90:199–216.		
28 29	888	Matthias I and Giesecke T (2014) Insights into pollen source area, transport and deposition from		
30 31	889	modern pollen accumulation rates in lake sediments. Quaternary Science Reviews		
32	890	87:12–23.		
33 34	891	Mohr JA, Whitlock C and Skinner CN (2000) Postglacial vegetation and fire history, eastern		
35 36	892	Klamath Mountains, California. The Holocene 10:587–601.		
37 38	893	Morris JL, DeRose JR and Brunelle AR (2015) Long-term landscape changes in a subalpine		
39	894	spruce-fir forest in central Utah, USA. Forest Ecosystems 2:1–12.		
40 41	895	Muggeo VM (2008) Segmented: an R package to fit regression models with broken-line		
42 43	896	relationships. R News 8:20–25.		
44 45	897	Nielsen AB and Sugita S (2005) Estimating Relevant Source Area of Pollen for Small Danish		
46	898	Lakes around AD 1800. The Holocene 15:1006–1020.		
47 48				
49 50				
51 52				
52		41		
54 55				
56 57				
58				
59 60		http://mc.manuscriptcentral.com/holocene		

2 3		
4 5		
6 7		
8 9 10	899	Odgaard BV (1993) Wind-determined sediment distribution and Holocene sediment yield in a
11	900	small, Danish kettle lake. Journal of Paleolimnology 8:3–13.
12 13	901	Parsons R and Prentice IC (1981) Statistical approaches to R-values and the pollen vegetation
14 15	902	relationship. Review of Palaeobotany and Palynology 32:127–152.
16 17	903	Poska A, Meltsov V, Sugita S et al. (2011) Relative pollen productivity estimates of major
18	904	anemophilous taxa and relevant source area of pollen in a cultural landscape of
20	905	the semi-boreal forest zone (Estonia). Review of Palaeobotany and Palynology
21 22	906	167:30–39.
23 24	907	Prentice IC (1985) Pollen representation, source area, and basin size: towards a unified theory of
25 26	908	pollen analysis. Quaternary Research 23:76–86.
27	909	Prentice IC (1988) Records of vegetation in time and space: the principles of pollen analysis. In:
28 29	910	Huntley B and Webb T III (eds) Vegetation history. Dordrecht: Kluwer Academic
30 31	911	Publishers, pp.17–42.
32 33	912	Ritchie JC (1969) Absolute pollen frequencies and carbon-14 age of Holocene lake sediment
34 35	913	from the Riding Mountain area of Manitoba. Canadian Journal of Botany 47:
36	914	1345–1349.
37 38	915	Sawyer JO and Thornburg DA (1977) Montane and subalpine vegetation of the Klamath
39 40	916	Mountains. In: Barbour MG and Major J (eds) Terrestrial Vegetation of
41 42	917	California. Berkeley: California Native Plant Society, pp.699–732.
43	918	Sevillano V, Holt K and Aznarte JL (2020) Precise automatic classification of 46 different pollen
44	919	types with convolutional neural networks. PLoS ONE 15:e0229751.
46 47		
48 49		
50 51		
52		42
54		
55 56		
57 58		
59 60		http://mc.manuscriptcentral.com/holocene

5		
6 7		
8		
9 10	920	Seppä H and Hicks S (2006) Integration of modern and past pollen accumulation rate (PAR)
11 12	921	records across the arctic tree-line: a method for more precise vegetation
13	922	reconstructions. Quaternary Science Review 25:1501–1516.
14 15	923	Seppä H, Alenius T, Muukkonen P et al. (2009) Calibrated pollen accumulation rates as a basis
16 17	924	for quantitative tree biomass reconstructions. The Holocene 19:209-220.
18 19	925	Sjögren P, van der Knaap WO, Huuskoc A, van Leeuwen JFN (2008) Pollen productivity,
20	926	dispersal, and correction factors for major tree taxa in the Swiss Alps based on
21 22	927	pollen-trap results. Review of Palaeobotany and Palynology 152:200–210.
23 24	928	Skinner CN, Taylor AH and Agee JK (2006) Klamath Mountains Bioregion. In: Sugihara NG,
25 26	929	van Wagtendonk JW, Fites-Kaufmann J, Shaffer KE and Thode AE (eds) Fire in
27	930	California's ecosystems. Berkeley: University of California Press, pp.170–194.
28 29	931	Skinner CN, Taylor AH, Agee JK et al. (2018) Klamath Mountains bioregion. In: van
30 31	932	Wagtendonk JW, Sugihara NS, Stephens SL, Thode A, Shaffer K, and Fites-
32 33	933	Kaufmann J (eds) Fire in California's ecosystems. Berkeley: University of
34	934	California Press, pp.171–193.
35 36	935	Soepboer W, Sugita S, Lotter AF et al. (2007) Pollen productivity estimates for quantitative
37 38	936	reconstruction of vegetation cover on the Swiss Plateau. The Holocene 17:65–77.
39 40	937	Stockmarr J (1971) Tablets with spores used in pollen analysis. Pollen and Spores 13:615–621.
41	938	Sugita S (1993) A model of pollen source area for an entire lake surface. Quaternary Research
42 43	939	39:239–244.
44 45	940	Sugita S (1994) Pollen representation of vegetation in Quaternary sediments: Theory and method
46 47	941	in patchy vegetation. Journal of Ecology 82:881-897.
48	942	Sugita S (1998) Modelling pollen representation of vegetation. In: Gaillard M-J and Berglund
49 50		
51 52		43
53		
54 55		
56		
57 58		
50 59		
60		http://mc.manuscriptcentral.com/holocene

1 2 3 4			
5 6			
7			
8 9	042	DE (ada) Ou write stien af land surfaces als and afferents during the Wale sure	
10 11	945	BE (cas) Quantification of tana surfaces cleared of forests during the Holocene –	
12	944	modern pollen/vegetation/lanascape relationships as an ala to the interpretation	
13 14	945	of fossil pollen data. Gustav Fischer Verlag, pp. 1–18.	
15 16	946	Sugita S, Gaillard M-J and Broström A (1999) Landscape openness and pollen records: a	
17	947	simulation approach. <i>The Holocene</i> 9:409–421.	
18 19	948	Sugita S (2007a) Theory of quantitative reconstruction of vegetation I: Pollen from large sites	
20 21	949	REVEALS regional vegetation composition. <i>The Holocene</i> 17:229–241.	
22	950	Sugita S (2007b) Theory of quantitative reconstruction of vegetation II: All you need is LOVE.	
23 24	951	The Holocene 17:243–257.	
25 26	952	Sutton OG (1947) The problem of diffusion in the lower atmosphere. Quarterly Journal of the	
27	953	Royal Meteorological Society 73: 257–276.	
28 29	954	Sutton OG (1953) Micrometeorology. New York: McGraw-Hill.	
30 31	955	Swetnam TW, Allen CD and Betancourt JL (1999) Applied historical ecology: Using the past to	
32	956	manage for the future. <i>Ecological Applications</i> 9:1189–1206.	
33 34	957	Taylor AH and Skinner CN (2003) Spatial patterns and controls on historical fire regimes and	
35 36	958	forest structure in the Klamath Mountains. <i>Ecological Applications</i> 13:704–719.	
37 38	959	Theuerkauf M, Kuparinen A and Joosten H (2012) Pollen productivity estimates strongly depend	
39	960	on assumed pollen dispersal. <i>The Holocene</i> 23: 14–24.	
40 41	961	Tonkova S, Hicks S, Bozilovaa E, Atanassova J (2001) Pollen monitoring in the central Rila	
42 43	962	Mountains, Southwestern Bulgaria: comparisons between pollen traps and surface	
44 45	963	samples for the period 1993±1999. <i>Review of Palaeobotany and Palynology</i>	
45 46	964	117:167-182.	
47 48			
49 50			
51			
52 53		44	
54 55			
56			
57 58			
59 60		http://mc.manuscriptcentral.com/holocene	
00		Let be the second	

HOLOCENE

1					
2					
3					
4 5					
6					
7					
8					
9 10	965	United States Department of Agriculture, Forest Service (2000) Timber Cruising Handbook and			
11 12	966	Amendments. Technical Report FSH 2409.12. Washington, DC, USA.			
13 14	967	Von Post L (1918) Skogsträdpollen i sydsvenska torvmosselagerföljder. In: Forhandlinger ved de			
15	968	skandinaviske naturforskeres 16. Møte i Kristiania den 10–15. Juli 1916.			
16 17	969	Skandinaviska Naturforskaremöten, Kristiania, pp.432–465			
18 19	970	Wahrhaftig C and Birman JH (1965) The Quaternary of the Pacific mountain system in			
20 21	971	California. In: HE Wright and Frey DG (eds) Quaternary of the United States.			
22	972	Princeton: Princeton University Press, pp.299–341.			
23 24	973	Wang Y and Herzschuh U (2011) Reassessment of Holocene vegetation change on the upper			
25 26	974	Tibetan Plateau using the pollen-based REVEALS model. Review of			
27 28	975	Palaeobotany and Palynology 168:31–40.			
29 30	976	76 Wanket J (2002) Late Quaternary vegetation and climate of the Klamath Mountains. PhD			
31	977	Dissertation, University of California, Berkeley, USA.			
32 33	978	Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological			
34 35	979	Monographs 30:279–338.			
36 37	980	Zhou X and Hemstrom MA (2009) Estimating aboveground tree biomass on forest land in the			
38	981	Pacific Northwest: a comparison of approaches. PNW-RP-584. US Department			
39 40	982	of Agriculture, Forest Service, Pacific Northwest Research Station.			
41 42					
42 43					
44					
45					
46					
47					
40 49					
50					
51					
52		45			
53					
54 55					
56					
57					
58					
59		http://mcmanuscriptcontral.com/balacana			
60		http://me.manuscriptcentral.com/noiocene			

Figure 1. Map shows study sites (blue squares) in northwestern California: Blue Lake (BLU), Fish Lake (FSH), North Twin Lake (NTW), Lake Ogaromtoc (OGA), Onion Lake (ONO), Red Mountain Lake (RED), and South Twin Lake (STW). Note that Lake Ogaromtoc and Fish Lake were described in Crawford et al. (2015) and North and South Twin Lake were described in Wanket (2002) but were also studied in this project. Map also shows Holocene-era pollen records from other parts of the region (yellow circles): Bluff (BLF) and Crater (CRA) Lakes (Mohr et al. 2000); Sanger (SAN) and Bolan (BOL) Lakes (Briles et al. 2008); Upper Squaw Lake (USL; Colombaroli and Gavin 2010); Mumbo (MUM) Lake (Daniels et al. 2005); and Campbell (CAM), Taylor (TAY), and Cedar (CED) Lakes (Briles et al. 2011).

Figure 2. Flowchart of methodological steps leading to a calibrated PAR-biomass model.

60

Figure 3. A schematic of the vegetation survey design (not to scale), following Han et al. (2017), that included eight transect lines along the cardinal and sub-cardinal directions where sampling occurred at the mid-point of each concentric ring (the schematic shows an example with only four rings). Sample locations (squares) are shown on the north transect for illustration.

Figure 4. Example of Pb-210 age model construction. The age-to-depth results of the Plum modeling for Blue Lake. The grey lines are simulation from Plum and the dashed red lines represent the mean age and the 95% interval. The small panels at the top show the prior (green) and posterior (grey) distributions for (a) the memory (ω), which describes the coherence in sedimentation rates along the core (**b**) the sedimentation rate (α), (**c**) the supported ²¹⁰Pb (P^S), which is the background level of ²¹⁰Pb already present in the sediment, and (**d**) and the supply of ²¹⁰Pb (Φ). For other sites, see Supplementary Information.

Page 51 of 85

 HOLOCENE

Figure 6. PolERV model 3 results of maximum likelihood scores compared to distance (m). Arrow indicates the aRSAP value (625m).

 HOLOCENE

Figure 7. R² for regressions between AGL_{dw} and PAR at increasing distance from the lake shore to the furthest vegetation survey site. tRSAP is shown by the arrow: a) *Pseudotsuga* (625m), b) *Pinus* (225m), c) *Notholithocarpus* (525m), and d) TCT (225m).

Figure 8a. The relationship between distance-weighted aboveground live biomass (AGL_{DW}) and pollen accumulation rate (PAR) for five of the pollen taxa present at the seven lake sites in the Klamath Mountains. Lines represent linear regressions forced through the origin. The relevant source area of pollen (aRSAP) was defined as a circle with a radius of 625 m from the centroid of the lake. Note that the scales change for each pollen taxa. For summaries of the linear models, see Table S11. (Note: Although biomass "predicts" pollen accumulation rates in a functional sense, our aim is to eventually apply calibrated transfer functions to predict biomass in the past; thus, we fitted regression lines with PAR values as the independent variable.)

Figure 8b. The relationship between distance-weighted aboveground live biomass (AGL_{dw}) and pollen accumulation rate (PAR) for *Quercus* and *Alnus* at the seven lake sites in the Klamath Mountains. The line represents the intercept of the null model. The relevant source area of pollen was defined as a circle with a radius of 625 m from the centroid of the lake. For details on the linear model, see Table S11.

1	
2	
2	
1	
4	
2	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
70	
40	
41	
42	
43	
44	
45	
46	
47	

Lake site and code	Lat and long (dec. degrees)	Elevation (m)	Depth at deepest point/sample location (m)	Surface area (ha)	Mature overstory vegetation
Blue (BLU)	-123.69, 41.24	822	4.6	1.4	C. lawsoniana, P. menziesii, C. chrysaphylla, N. densiflora, A. menziesii, A. rhombifolia, P. lambertiana, T. brevifolia
Fish (FSH)	-123.68, 41.26	541	13	9.6	C. lawsoniana, P. menziesii, P. lambertiana, N. densiflora, A. menziesii, A. rhombifolia, C. chrysaphylla
North Twin (NTW)	-123.67, 41.32	1142	0.5	3.4	P. menziesii, P. lambertiana, C. lawsoniana, C.
South Twin (STW)	-123.67, 41.31	1137	1.2	3.5	decurrens, N. densiflora, A. menziesii
Onion (ONO)	-123.75, 41.38	1356	1.5	0.66	P. ponderosa, P. menziesii, A. magnifica, C. decurrens, A. concour, P. lambertiana, T. brevifolia
Ogaromtoc (OGA)	-123.54, 41.49	600	6.3	1.74	P. menziesii, N. densiflora, P. lambertiana, A. macrophylla, A. rhombifolia, A. menziesii, U. californica, C. decurrens, Q. kelloggii, Q. garryana
Red Mountain (RED)	-123.69, 41.25	768	1.6	1.2	C. lawsoniana, P. menziesii, P. lambertiana, N.densiflora, A. menziesii, A. rhombifolia, C. chrysaphylla

Table 2. Definitions of RSAP, aRSAP, and tRSAP.

Term	Definitional basis and relevant literature
RSAP	 Originally described by Sugita (1994) as the "smallest area within which reliable estimates of parameter values and asymptotic r² or likelihood function scores can be obtained." The definition was refined as the "distance from a pollen deposition point beyond which the relationship between vegetation composition and pollen assemblage does not improve" (Bunting et al. 2004, with Sugita). Estimates are derived for the overall assemblage from extended R-value analysis (Parsons and Prentice 1981) through inspection of the likelihood function score plot. RSAP varies depending on which taxa and which sites are included in the analysis, thus is dependent on the assemblage chosen for analysis.
aRSAP	Identical to the standard RSAP, but with the addition of an "a" to denote that it is an assemblage-specific metric, in contrast to the tRSAP.
RSAP	The RSAP concept can be extended to single taxa where pollen taxa are measured independently (e.g., PAR values rather than percentage values). In this situation, we define a taxon-specific Relevant Source Area of Pollen, the tRSAP, as the distance beyond which the correlation between PAR (Y) and distance-weighted plant abundance (ψ) summed to that distance for a single taxon does not improve (Jackson 1990).
	P

http://mc.manuscriptcentral.com/holocene

Table 3. A comparison of observed to predicted distance-weighted aboveground live biomass (AGL_{dw}) for each lake site using the assemblage-level relevant source area pollen (aRSAP) estimates. Predicted AGL_{dw} is the mean from 10,000 resampling iterations; Standard Error is the standard deviation of the 10,000 samples; COV is the coefficient of variation (Standard Error/Predicted AGL_{dw}); Bias is the percent difference between predicted and observed AGL_{DW} .

Lake	Observed AGL _{dw} (Mg ha ⁻¹)	Predicted AGL _{dw} (Mg ha ⁻¹)	Standard Error (Mg ha ⁻¹)	COV (%)	Bias (%)
Blue	205	189	31.5	17	-7.8
Fish	197	195	31.8	16	-1.1
North Twin	242	251	32.0	13	3.7
Ogaromtoc	127	134	31.6	24	5.7
Onion	215	212	32.1	15	-1.1
Red Mountain	197	218	31.4	14	10.5
South Twin	180	217	31.6	15	20.5

Table 4. A comparison of observed to predicted distance-weighted aboveground live biomass (AGL_{dw}) for each lake site using taxon-specific source area pollen estimates (tRSAP). Predicted AGL_{dw} is the mean from 10,000 resampling iterations; Standard Error is the standard deviation of the 10,000 samples; COV is the coefficient of variation (Standard Error/Predicted AGL_{DW}); Bias is the percent difference between predicted and observed AGL_{dw} .

Lake	Observed AGL _{dw} (Mg ha ⁻¹)	Predicted AGL _{dw} (Mg ha ⁻¹)	Standard Error (Mg ha ⁻¹)	COV (%)	Bias (%)
Blue	196	189	31.5	17	-3.7
Fish	185	195	31.8	16	5.2
North Twin	239	251	32.0	13	4.9
Ogaromtoc	121	134	31.6	24	10.6
Onion	193	212	32.1	15	10.3
Red	184	218	31.4	14	18.4
South Twin	173	217	31.6	15	24.9

Supplemental Information

Title: Linking modern pollen accumulation rates to biomass: Quantitative vegetation reconstruction in the western Klamath Mountains

Authors: Clarke A. Knight, Mark Baskaran, M. Jane Bunting, Marie Champagne, Matthew D. Potts, David Wahl, James Wanket, John J. Battles

tot peet peutien

Figure S1. *TCT* pollen counts corrected to the same base sum plotted against unscaled distance weighted plant abundance at 750m to determine the reference taxon for the PolERV model.

2
3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
10
20
∠U 21
21
22
23
24
25
26
27
20
20
29
30
31
32
33
34
35
36
20
27
38
39
40
41
42
43
44
45
-т-) ЛС
40
47
48
49
50
51
52
53
51
54 57
22
56
57
58
59

60

Sediment dating and age-depth model

We used lead-210 (²¹⁰Pb; 22.3 yr half-life) to assign ages to sediment deposited in the last 150 years. Surface bulk sediments from 0 cm to a maximum of 45 cm were taken from each core and dried to 105°C (see Tables S1-S7). ²¹⁰Pb activity was determined by alpha spectrometry, via ²¹⁰Po. An aliquot of 0.2 to 1.0 g of dried and pulverized sample was digested using concentrated HF, HNO₃, and HCl and a known amount of ²⁰⁹Po spike in an oven at 90°C for ~ 24 hours. The digested solution was dried, and the residue was mixed with 1 M HCl until the pH was ~2. Autoplating of Po was cold-plated onto an Ag disk for 24 hours at room temperature (Jweda and Baskaran 2011). The plated disk was assayed for Po using Octete PC ORTEC alpha spectrometer. The reagent blanks were run simultaneously with each batch of eight samples and were subtracted. Certified reference materials were periodically run. For the determination of parent-supported (i.e., background) ²¹⁰Pb, several samples were run for the activity of ²²⁶Ra (using 352 and 609 keV) along with ¹³⁷Cs (661.6 keV) by Ge-well detector (Baskaran et al. 2015). Small sample sizes prevented reliable ¹³⁷Cs from being obtained.

We used the Bayesian-based Plum software to develop age models from excess (unsupported) ²¹⁰Pb data (Aquino-López et al. 2018). The Plum model is related to the constant rate of supply (CRS) method (Appleby and Oldfield 1978) and retains two of the basic assumptions of CRS: the rate of supply of ²¹⁰Pb is constant and there is no vertical mixing of radionuclides. Testing these assumptions requires independent validation using another marker, which is outside of this paper's scope. The Plum model is formulated within a robust statistical framework to quantify uncertainty (Aquino-López et al. 2018). Plum uses a self-adjusting Markov Chain Monte Carlo (MCMC) algorithm called the t-walk (Christen and Fox 2010). Plum uses millions of MCMC iterations to model the accumulation of sediment, using a gamma

3

Commented [MOU1]: Moved from MS, as requested by Reviewer 2.

autoregressive semiparametric age-depth function (Blaauw and Christen 2011). This algorithm results in a probability envelope around the mean age model. The envelope allows the precision at any depth to be estimated explicitly. Plum makes use of prior information to determine the datable horizon, which is affected by two factors: the precision of methodology (alpha versus gamma counting) and the initial amount of excess lead. In Plum, the chronology limit is determined by the rate of supply of ²¹⁰Pb to the site and the equipment error, usually ~3 Bq/kg for a sample size of 1 g by alpha spectrometry for research laboratories. Supported ²¹⁰Pb activities were determined from the direct measurements of ²²⁶Ra by gamma-ray spectrometry.

0.0 0.4 0.8

5.5 6.5

7.5

20 40 60 80

75 80 85 90

http://mc.manuscriptcentral.com/holocene

HOLOCENE

Lithology

Cores were split lengthwise and measured for magnetic susceptibility at every half centimeter using a calibrated MS2E surface scanning point sensor (MS Bartsoft). Changes in lithology were described and documented. The water content and dry bulk density were determined for each core in 1 or 2 cm intervals (Tables S14-S20), matching the sampling pattern for radioisotopic analysis (Table S1-S7).

Cores were composed of unlaminated gyttja. Occasional diatomaceous lenses (<1 cm thick) were present in Blue and Ogaromtoc lakes. For the Onion lake core, pine needles were visible in the top 3 cm, but needles were not seen in the other cores. Magnetic susceptibility was near zero for Blue, North Twin, Red Mountain, and South Twin lakes, and although magnetic susceptibility in Ogaromtoc lake was also generally low, Ogaromtoc had two distinct peaks (Fig. S3). Fish and Onion lakes showed higher overall magnetic susceptibility than the other lakes, as well as more variation across depths (Fig. S4). Peaks in magnetic susceptibility generally corresponded to increases in dry bulk density (g cm⁻³) for Ogaromtoc, Fish, and Onion lakes (Tables S19, S17, S16, respectively). For example, two peaks at 14-15cm and 22-23cm in Ogaromtoc matched the depths where dry bulk density tripled and doubled, respectively. Ogaromtoc also had two light blue clay bands at 14-15cm and 22-23cm. Other cores did not contain clear stratigraphic markers.

Figure S3. Magnetic susceptibility for the five study sites. The magnetic susceptibility was near zero with some variability for five lakes (note different x-axis for Ogaromtoc) – Blue, North Twin, Red Mountain, South Twin and Ogaromtoc Lakes.

2	
3	
Δ	
-	
2	
6	
7	
8	
9	
10)
11	
12)
12	<u> </u>
13	5
14	ł
15	5
16	5
17	7
18	ł
10	Ś
12	,
20)
21	
22	2
23	3
24	ł
25	
20	
20) ,
27	
28	3
29)
30)
31	
32	,
22	,
55	
34	ł
35	5
36	5
37	7
38	3
30	2
10	Ś
40	,
41	
42	2
43	3
44	ł
45	5
46	5
47	,
10	,
40	ر ۱
49	,
50)
51	
52	2
53	3
54	ı
5-	1
55	•
56)
57	1
58	3
59)
60)

Sample	Depth (cm)	Age (yr)	Uncertainty (yr)	Sample	Depth (cm)	Age (yr)	Uncertainty (yr)
210Pb_1	0.5	3	0.3	210Pb_12	13.0	38	2
210Pb_2	1.5	6	0.5	210Pb_13	15.0	45	3
210Pb_3	2.5	9	0.6	210Pb_14	17.0	50	3
210Pb_4	3.5	12	0.7	210Pb_15	19.0	57	4
210Pb_5	4.5	15	0.9	210Pb_16	20.5	69	5
210Pb_6	5.5	19	1	210Pb_17	22.5	87	9
210Pb_7	6.5	23	1	210Pb_18	24.5	103	13
210Pb_8	7.5	27	2	210Pb_19	26.5	125	21
210Pb_9	8.5	31	2	210Pb_20	28.5	146	27
210Pb_10	9.5	34	2	210Pb_21	30.5	175	57
210Pb_11	11.0	37	2				

 Table S1. ²¹⁰Pb dates used to create the Blue Lake age model.

 Table S2. ²¹⁰Pb dates used to create the Fish Lake age model.

Sample	Depth (cm)	Age (yr)	Uncertainty (yr)	Sample	Depth (cm)	Age (yr)	Uncertainty (yr)
210Pb_1	0.5	2	0.2	210Pb_12	12.5	58	2
210Pb_2	1.5	5	0.4	210Pb_13	14.5	70	3
210Pb_3	2.5	8	0.5	210Pb_14	16.5	82	4
210Pb_4	3.5	12	0.6	210Pb_15	18.5	90	6
210Pb_5	4.5	15	0.7	210Pb_16	20.5	110	7
210Pb_6	5.5	20	0.8	210Pb_17	22.5	175	25
210Pb_7	6.5	25	1	210Pb_18	24.5	197	32
210Pb_8	7.5	30	1	210Pb_19	26.5	224	40
210Pb_9	8.5	36	1	210Pb_20	28.5	244	51
210Pb_10	9.5	44	2	210Pb_21	30.5	277	60
210Pb 11	10.5	49	2				

1:

Table S3. ²¹⁰ Pb dates used to create the Ogaromtoc Lake age model. An outlier point at 6.5cm
was excluded from the model.

Sample	Depth (cm)	Age (yr)	Uncertainty (yr)	Sample	Depth (cm)	Age (yr)	Uncertainty (yr)
210Pb_1	0.5	3	0.2	210Pb_9	9.5	47	3
210Pb_2	1.5	7	0.4	210Pb_10	10.5	55	4
210Pb_3	2.5	11	0.6	210Pb_11	12.5	71	5
210Pb_4	3.5	15	0.8	210Pb_12	14.5	86	5
210Pb_5	4.5	19	1	210Pb_13	16.5	103	6
210Pb_6	5.5	24	1	210Pb_14	18.5	124	7
210Pb_7	7.5	34	2	210Pb_15	20.5	153	12
210Pb_8	8.5	40	2	210Pb_16	22.5	197	34

Table S4. ²¹⁰Pb dates used to create the Onion Lake age model.

Sample	Depth (cm)	Age (yr)	Uncertainty (yr)	Sample	Depth (cm)	Age (yr)	Uncertainty (yr)
210Pb_1	0.5	8	0.6	210Pb_10	9.5	83	3
210Pb_2	1.5	15	0.7	210Pb_11	11.0	88	4
210Pb_3	2.5	24	0.9	210Pb_12	13.0	94	4
210Pb_4	3.5	32	1	210Pb_13	15.0	104	5
210Pb_5	4.5	44	1	210Pb_14	17.0	113	5
210Pb_6	5.5	54	2	210Pb_15	19.0	123	7
210Pb_7	6.5	63	2	210Pb_16	20.5	201	32
210Pb_8	7.5	68	2	210Pb_17	22.5	244	29
210Pb_9	8.5	77	2	210Pb_18	24.5	263	29
—				_			

Table S5. ²¹⁰Pb dates used to create the North Twin Lake age model.

Sample	Depth (cm)	Age (yr)	Uncertainty (yr)	Sample	Depth (cm)	Age (yr)	Uncertainty (yr)
210Pb_1	0.5	2	0.4	210Pb_7	6.5	112	4
210Pb_2	1.5	24	0.8	210Pb_8	7.5	128	5
210Pb_3	2.5	39	1	210Pb_9	8.5	147	6
210Pb_4	3.5	55	1	210Pb_10	9.5	173	10
210Pb_5	4.5	71	2	210Pb_11	11.0	197	18
210Pb_6	5.5	94	3	210Pb_12	13.0	229	30

1:
2	
2	
د ،	
4	
5	
6	
7	
8	
a	
1	^
1	1
1	1
1	2
1	3
1	4
1	5
1	6
1	7
1	/
	8
1	9
2	0
2	1
2	2
2	_ ז
2	ر ۸
2	4
2	5
2	6
2	7
2	8
2	9
2	ر م
נ ר	1
3	1
3	2
3	3
3	4
3	5
3	6
2	7
נ ר	/ 0
3	ð
3	9
4	0
4	1
4	2
4	3
1	1
4	4
4	5
4	6
4	7
4	8
4	9
5	0
5	1
כ ר	י ר
С -	2
5	3
5	4
5	5
5	6

Table S6. ²¹⁰ Pb dates used to create	the Red Mountain	Lake age model.
--	------------------	-----------------

Sample	Depth (cm)	Age (yr)	Uncertainty (yr)	Sample	Depth (cm)	Age (yr)	Uncertainty (yr)
210Pb_1	0.5	5	0.3	210Pb_10	9.5	71	5
210Pb_2	1.5	10	0.2	210Pb_11	11.0	75	6
210Pb_3	2.5	16	0.8	210Pb_12	13.0	79	7
210Pb_4	3.5	23	1	210Pb_13	15.0	87	8
210Pb_5	4.5	30	2	210Pb_14	17.0	91	9
210Pb_6	5.5	37	2	210Pb_15	19.0	96	12
210Pb_7	6.5	45	2	210Pb_16	20.5	104	12
210Pb_8	7.5	53	3	210Pb_17	22.5	146	37
210Pb_9	8.5	62	4				

 Table S7. ²¹⁰Pb dates used to create the South Twin Lake age model.

Sample	Depth (cm)	Age (yr)	Uncertainty (yr)	Sample	Depth (cm)	Age (yr)	Uncertainty (yr)
210Pb_1	0.5	3	0.3	210Pb_11	10.5	44	3
210Pb_2	1.5	7	0.4	210Pb_12	12.5	55	3
210Pb_3	2.5	12	0.6	210Pb_13	14.5	68	4
210Pb_4	3.5	17	0.8	210Pb_14	16.5	80	4
210Pb_5	4.5	22	1	210Pb_15	18.5	90	• 4
210Pb_6	5.5	26	1	210Pb_16	20.5	95	5
210Pb_7	6.5	29	1	210Pb_17	22.5	114	7
210Pb_8	7.5	33	2	210Pb_18	24.5	135	9
210Pb_9	8.5	36	2	210Pb_19	26.5	166	16
210Pb_10	9.5	40	2	210Pb_20	28.5	186	38

- 5
- 57 58

59

Assumptio	ons of the Prentice-Sugita-Sutton PVM
As noted	in section 2.2 the Prentice-Sugita-Sutton model has certain assumptions (Sugita 1994
Gaillard	at al 2008) which we describe in full here:
Gamaru e	<i>i</i> a. 2006), which we describe in full nete.
1)	that there is a comprehendible and spatially and temporally consistent relationship
	between pollen loading and distance-weighted plant abundance
2)	the vegetation surface where the pollen is derived from is flat
3)	the sampling basin is a circular opening in the canopy
4)	pollen productivity (the amount of pollen produced per vegetation cover unit) is a
	constant for a given pollen taxon
5)	pollen is dispersed as single grains
6)	pollen dispersal is largely via wind above the canopy and gravity beneath the canopy,
	and pollen transport into a basin (canopy opening) can be modelled by considering
	the canopy component only
7)	wind is uniform in every direction therefore pollen dispersal is evenly distributed
	around the source
8)	most pollen deposition takes place via sedimentation due to gravity and deposition by
	interception is negligible
9)	the deposition of pollen at a specified distance from a plant can be approximated
	using a diffusion model of the dispersal of small particles from a ground level source
	(Sutton 1953)
10)) inter-taxon pollen grain differences (e.g., grain size, weight, and density) affect pollen
	dispersal and can be quantitatively estimated, and use of a single value to represent
	each taxon is sufficient to capture
	1.

11) atmospheric conditions during pollen deposition can be modelled as "stable" which

affects parameters C_z and n (Eq.3,3a)

12) all lake sites experience the same conditions

PAR calculation

After grains were counted, pollen concentrations and PAR were determined. Using the *Lycopodium* marker grains, pollen concentrations (C_i , grains cm⁻³) were calculated for each pollen type *i* using the following equation:

$$C_i = \frac{A_i \times L_a}{L_c \times V_i} \tag{6}$$

Where A_i is the number of pollen grains counted for the taxon *i*, L_a is the number of added marker grains, L_c is the number of counted marker grains in each slide, and V_i is the volume of the pollen sample (e.g., 0.63 cm³) (Stockmarr 1971). Concentrations were used for PAR calculations by multiplying the concentration values by the sediment accumulate rate, which differed by lake site and was determined by the Plum age model in increments of 0.5cm. The equation used was:

$$PAR_i = C_i \times S \tag{7}$$

Where PAR_i is the pollen accumulation rate for taxon *i*, C_i is the pollen concentration (grains cm⁻³) for taxon *i*, and *S* is the sedimentation rate (cm yr⁻¹) (Davis and Deevey 1964).

Commented [MOU3]: Moved these equations, as requested by Reviewer 2.

Table S8. Coefficients for the predicted aboveground live biomass (Mg ha⁻¹) of trees as a function of basal area (m² ha⁻¹) using a linear log-log (natural) equation. Results for all species encountered in the forest inventory conducted for the seven lakes in the Klamath Mountains. The p-value of the regression was < 0.0001 in all cases except for white alder where p = 0.034. B₀ is the intercept; B₁ is the slope coefficient; SEE = standard error of the estimate

Genus	Species	Common name	B _o	B_1	$R^2_{\ adj}$	SEE (Mg ha ⁻¹)
Abies	concolor	white fir	1.65	1.07	0.95	0.40
Abies	magnifica	California red fir	1.47	1.19	0.92	0.46
Acer	macrophyllum	bigleaf maple	1.30	1.11	0.94	0.24
Alnus	rhombifolia	white alder	1.26	1.30	1.00	0.07
Arbutus	menziesii	Pacific madrone	1.55	1.12	0.94	0.29
Calocedrus	decurrens	incense-cedar	1.08	1.18	0.90	0.52
Chamaecyparis	lawsoniana	Port-Orford-cedar	1.16	1.19	0.97	0.37
Chrysolepis	chrysophylla	golden chinquapin	1.19	1.18	0.96	0.34
Cornus	nuttallii	Pacific dogwood	1.07	0.92	0.85	0.37
Notholithocarpus	densiflorus	tanoak	1.08	1.17	0.96	0.35
Pinus	attenuata	knobcone pine	1.18	1.06	0.96	0.21
Pinus	jeffreyi	Jeffrey pine	1.09	1.11	0.88	0.58
Pinus	lambertiana	sugar pine	1.67	1.22	0.85	0.59
Pinus	ponderosa	ponderosa pine	1.36	1.23	0.89	0.50
Pseudotsuga	menziesii	Douglas-fir	1.15	1.23	0.96	0.30
Quercus	chrysolepis	canyon live oak	1.47	1.12	0.92	0.43
Quercus	kelloggii	California black oak	1.62	1.11	0.96	0.27
Taxus	brevifolia	Pacific yew	0.83	0.82	0.94	0.21
Umbellularia	californica	California-laurel	0.95	1.30	0.95	0.38

http://mc.manuscriptcentral.com/holocene

1	
2	
3	
4	
5	
6	
7	
8	
9	
1	0
1	1
1	י ר
1	2
1	3
1	4
1	5
1	6
1	7
1	8
1	9
2	0
2	1
2	2
2	2
2	ر ۸
2	4
2	5
2	6
2	7
2	8
2	9
3	0
3	1
3	ว
2	2
נ ר	ر ۸
3	4
3	5
3	6
3	7
3	8
3	9
4	0
4	1
4	2
Δ	3
т Л	⊿
1	-+ 5
4	5 7
4	6
4	/
4	8
4	9
5	0
5	1
5	2
5	3
5	4
5	5
5	ر م
С 7	0 7
5	1
5	8
5	9
6	0

 Table S9. Fall speed (m/sec) for major taxa

 used in the simulation runs of this study.

Taxa	Fall-speed (v _s)
	estimates (m s ⁻¹)
Abies	0.120 a
Alnus	0.021 ^b
Pinus	0.031ª
Pseudotsuga	0.126ª
Quercus	0.035ª
TCT	0.016 ^c

^a Eisenhut (1961); ^b Schober (1975);

° Calculated from empirical measurements using Stoke's Law

with Falck's (1927) correction

Table S10. PAR values of main taxa from 2018 (a modeled age) at each lake site.

Lake Site	Pinus	Pseudotsuga	Quercus	TCT	Notholithocarpus	Alnus	Abies	
Blue	1760	5461	758	4490	1031	1183	789	
Red Mt.	3672	5068	672	3051	2844	1034	569	
Onion	10797	2014	1063	1622	559	951	4811	
North Twin	1749	6808	1686	2311	2935	812	1999	
South Twin	2384	7152	1463	2005	2059	1300	325	
Fish	1479	4606	840	1782	3741	2858	34	
Ogaromtoc	3376	4609	1558	844	454	1753	260	

Table S11. Results from the linear regressions predicting distance-weighted aboveground live biomass (AGL_{dw}) as a function of pollen accumulation rate (PAR) for the pollen taxa present at the seven lake sites in the Klamath Mountains. The assemblage-level relevant source area of pollen (aRSAP) was defined as a circle with a radius of 625 m from centroid of the lake. Parameters provided the linear regression: AGL_{DW} = B₀ + B₁ * PAR where AGL_{dw} is measured in Mg ha⁻¹; PAR in grains cm⁻² yr⁻¹; SEE = standard error of the estimate; Δ AICc = the difference in the Akaike Information Criterion for small samples between the top ranked model and the second ranked model.

Pollen Taxa	ΔAICc	\mathbf{B}_0	\mathbf{B}_1	SEE (Mg ha ⁻¹)	R^2_{adj}	Р
Pseudotsuga	6.6	0	0.0180	19.1	0.96	< 0.001
Pinus	5.4	0	0.00740	8.42	0.94	< 0.001
Notholithocarpus	4.2	0	0.0211	16.5	0.89	< 0.001
TCT	4.0	0	0.00954	9.43	0.87	< 0.001
$Quercus^1$						
Alnus	3.0	3.8	0.00341	1.05	0.84	0.002
Abies	4.2	0	0.0138	13.8	0.80	0.0018

¹There was no evidence of a significant linear relationship for Quercus. For predicting AGL_{dw} , a null model was used with the intercept = 1.54 and the standard error = 1.46.

Table S12. Results from the linear regressions predicting distance-weighted aboveground live biomass (AGL_{dw}) as a function of pollen accumulation rate (PAR) for the pollen taxa present at the seven lake sites in the Klamath Mountains. The taxon-specific source area of pollen (tRSAP) was defined as a circle with a radius determined by the strength of correlation (R²) between plant abundance and PAR. Parameters provided the linear regression: AGL_{dw} = B₀ + B₁ * PAR where AGL_{DW} is measured in Mg ha⁻¹; PAR in grains cm⁻² yr⁻¹; SEE = standard error of the estimate.

Pollen Taxa	\mathbf{B}_{0}	B_1	SEE (Mg ha ⁻¹)	$R^2_{adj} \\$	Р
Pseudotsuga	0	0.0180	19.1	0.96	< 0.001
Pinus	0	0.00558	6.78	0.95	< 0.001
Notholithocarpus	0	0.0205	16.2	0.91	< 0.001
ТСТ	0	0.00849	8.97	0.87	< 0.001
Quercus ¹					
Alnus	-3.8	0.00341	1.05	0.84	0.002
Abies	0	0.0138	13.8	0.83	0.0018

¹There was no evidence of a significant linear relationship for *Quercus*. For predicting AGL_{dw} , a null model was used with the intercept = 1.54 and the standard error = 1.46.

Table S13. Results from the linear regressions predicting distance-weighted aboveground live biomass (AGL_{dw}) as a function of pollen accumulation rate (PAR) for the pollen taxa present at the seven lake sites in the Klamath Mountains. These equations all include an intercept and slope term even if they were not the best fit. The relevant source area of pollen (aRSAP) was defined as a circle with a radius of 625 m from centroid of the lake. Parameters provided the linear regression: AGL_{DW} = B₀ + B₁ * PAR where AGL_{dw} is measured in Mg ha⁻¹; PAR in grains cm⁻² yr⁻¹; SEE = standard error of the estimate.

Pollen Taxa	B_{0}	\mathbf{B}_1	SEE (Mg ha ⁻¹)	R^2_{adj}	Р
Pseudotsuga	-14.7	0.0206	20.3	0.74	0.008
Pinus	-5.5	0.00829	8.23	0.92	< 0.001
Notholithocarpus	16.8	0.0149	14.7	0.61	0.02
ТСТ	-12.1	0.0138	8.33	0.78	0.005
Quercus	-2.9	0.00386	3.84	0.0083	0.4
Alnus	-3.8	0.00341	1.05	0.84	0.002
Abies	-9.4	0.0168	12.35	0.84	0.002

2
2
5
4
5
6
7
ò
0
9
10
11
12
13
11
14
15
16
17
18
19
20
20 21
21
22
23
24
25
25
20
27
28
29
30
31
27
22
33
34
35
36
37
20
20
39
40
41
42
43
11
+ / E
45
46
47
48
49
50
50
52
53
54
55
56
57
5/
58

59

60

 Table S14. Dry bulk density (g cm⁻³) for Blue Lake.

Lake	Depth (cm)	Dry Bulk Density (g cm ⁻³)
Blue	0-1	0.102
Blue	1-2	0.093
Blue	2-3	0.085
Blue	3-4	0.095
Blue	4-5	0.088
Blue	5-6	0.087
Blue	6-7	0.089
Blue	7-8	0.085
Blue	8-9	0.084
Blue	9-10	0.078
Blue	10-12	0.087
Blue	12-14	0.096
Blue	14-16	0.102
Blue	16-18	0.093
Blue	18-20	0.095
Blue	20-21	0.095
Blue	22-23	0.104
Blue	24-25	0.089
Blue	26-27	0.090
Blue	28-29	0.090
Blue	30-31	0.093
Dhuo	40-42	0.124

2
~
3
4
5
6
-
/
8
9
10
10
11
12
13
11
14
15
16
17
18
10
19
20
21
22
22
23
24
25
26
20
27
28
29
30
21
31
32
33
34
25
35
36
37
38
20
39
40
41
42
42
43
44
45
46
47
4/
48
49
50
50
21
52
53
54
5,
22

 Table S15. Dry bulk density (g cm⁻³) for Red Mountain Lake.

Lake	Depth (cm)	Dry Bulk Density (g cm ⁻³)		
Red Mt.	0-1	0.080		
Red Mt.	1-2	0.090		
Red Mt.	2-3	0.074		
Red Mt.	3-4	0.078		
Red Mt.	4-5	0.068		
Red Mt.	5-6	0.068		
Red Mt.	6-7	0.071		
Red Mt.	7-8	0.074		
Red Mt.	8-9	0.079	4	
Red Mt.	9-10	0.074		
Red Mt.	10-12	0.081		
Red Mt.	12-14	0.090		
Red Mt.	14-16	0.112		
Red Mt.	16-18	0.098		
Red Mt.	18-20	0.110		
Red Mt.	20-21	0.100		
Red Mt.	22-23	0.121		
Red Mt.	24-25	0.141		
Red Mt.	26-27	0.146	``	
Red Mt.	28-29	0.144		
Red Mt.	30-31	0.150		
Red Mt.	35-37	0.158		

2
2
3
4
5
6
-
/
8
9
10
10
11
12
13
1.5
14
15
16
17
17
18
19
20
21
21
22
23
24
24
25
26
27
20
28
29
30
31
22
32
33
34
25
30
36
37
38
20
39
40
41
12
42
43
44
45
10
40
47
48
40
77
50
51
52
52
22
54
55
56
50
5/
58

59

60

Lake	Depth (cm)	Dry Bulk Density (g cm ⁻³)
Onion	0-1	0.084
Onion	1-2	0.093
Onion	2-3	0.082
Onion	3-4	0.074
Onion	4-5	0.073
Onion	5-6	0.065
Onion	6-7	0.049
Onion	7-8	0.047
Onion	8-9	0.061
Onion	9-10	0.082
Onion	10-12	0.128
Onion	12-14	0.140
Onion	14-16	0.157
Onion	16-18	0.195
Onion	18-20	0.224
Onion	20-21	0.235
Onion	22-23	0.227
Onion	24-25	0.228
Onion	26-27	0.246
Onion	28-29	0.189
Onion	30-31	0.223

Table S16. Dry bulk density (g cm⁻³) for Onion Lake.

2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
14	
14	
15	
16	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
20	
31	
32	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
17	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
20	
57	
58	

60

1

 Table S17. Dry bulk density (g cm⁻³) for Fish Lake.

Laka	Depth (cm)	Dry Bulk Density (g. cm ⁻³)
Lake Fish	<u>(cm)</u>	0 101
Fish	1-2	0.099
Fish	2-3	0.101
Fish	3-4	0.100
Fish	4-5	0.101
Fish	5-6	0.100
Fish	6-7	0.107
Fish	7-8	0.101
Fish	8-9	0.115
Fish	9-10	0.120
Fish	10-11	0.117
Fish	12-13	0.142
Fish	14-15	0.149
Fish	16-17	0.541
Fish	18-19	0.198
Fish	20-21	0.222
Fish	22-23	0.286
Fish	24-25	0.494
Fish	26-27	0.198
Fish	28-29	0.187
Eich	30-31	0.203

2
2
3
4
5
5
6
7
0
0
9
10
11
11
12
13
1.4
14
15
16
10
17
18
10
20
20
21
าา
22
23
24
25
25
26
27
20
28
20
29
30
30
30 31
30 31 32
30 31 32 33
30 31 32 33
30 31 32 33 34
 30 31 32 33 34 35
 30 31 32 33 34 35 36
 30 31 32 33 34 35 36
 30 31 32 33 34 35 36 37
 30 31 32 33 34 35 36 37 38
 30 31 32 33 34 35 36 37 38 30
 30 31 32 33 34 35 36 37 38 39
 30 31 32 33 34 35 36 37 38 39 40
30 31 32 33 34 35 36 37 38 39 40 41
30 31 32 33 34 35 36 37 38 39 40 41 42
 30 31 32 33 34 35 36 37 38 39 40 41 42
 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51
30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 90 50
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 950 51 52
30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 9 51 52 53
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 950 51 52 53
29 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46 47 48 50 51 52 53 54
29 30 31 32 33 34 35 367 389 40 42 43 44 45 46 47 48 90 51 52 53 54 55
29 30 31 32 33 34 35 367 389 40 42 43 44 45 46 47 48 90 51 52 54 55 56

58 59

60

 Table S18. Dry bulk density (g cm⁻³) for South Twin Lake.

	Depth	Dry Bulk Density	
	(cm)	(g cm ⁻³)	
South Twin	0-1	0.076	
South Twin	1-2	0.073	
South Twin	2-3	0.067	
South Twin	3-4	0.059	
South Twin	4-5	0.054	
South Twin	5-6	0.050	
South Twin	6-7	0.045	
South Twin	7-8	0.047	
South Twin	8-9	0.047	
South Twin	9-10	0.050	
South Twin	10-11	0.051	
South Twin	12-13	0.060	
South Twin	14-15	0.064	
South Twin	16-17	0.073	
South Twin	18-19	0.067	
South Twin	20-21	0.075	
South Twin	22-23	0.083	
South Twin	24-25	0.110	
South Twin	26-27	0.130	
South Twin	28-29	0.130	
0 (I T)	30-31	0.154	

2
2
3
4
5
6
7
/
8
9
10
10
11
12
13
14
14
15
16
17
10
18
19
20
21
21
22
23
24
25
25
26
27
28
20
29
30
31
27
52
33
34
35
22
30
37
38
20
29
40
41
42
12
45
44
45
46
47
47
48
49
50
50
51
52
53
51
4د
55
56
57
57
58

60

1

Lake	Depth (cm)	Dry Bulk	
		Density (g cm ⁻³)	
Ogaromtoc	0-1	0.086	
Ogaromtoc	1-2	0.083	
Ogaromtoc	2-3	0.064	
Ogaromtoc	3-4	0.064	
Ogaromtoc	4-5	0.065	
Ogaromtoc	5-6	0.068	
Ogaromtoc	6-7	0.072	
Ogaromtoc	7-8	0.074	
Ogaromtoc	8-9	0.071	
Ogaromtoc	9-10	0.066	
Ogaromtoc	10-11	0.068	
Ogaromtoc	12-13	0.081	
Ogaromtoc	14-15	0.366	
Ogaromtoc	16-17	0.116	
Ogaromtoc	18-19	0.072	
Ogaromtoc	20-21	0.096	
Ogaromtoc	22-23	0.268	
Ogaromtoc	24-25	0.147	
Ogaromtoc	26-27	0.066	
Ogaromtoc	28-29	0.061	
Ogaromtoc	30-31	0.064	

Table S19. Dry bulk density (g cm⁻³) for Ogaromtoc Lake.

3
4
5
6
7
8
a
10
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20 21
21
3Z
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
52
54
55
50
5/
58
59

60

Lake	Depth (cm)	Dry Bulk Density (g/cm^3)
North Twin	0-1	0.099
North Twin	1-2	0.097
North Twin	2-3	0.101
North Twin	3-4	0.107
North Twin	4-5	0.108
North Twin	5-6	0.106
North Twin	6-7	0.092
North Twin	7-8	0.076
North Twin	8-9	0.076
North Twin	9-10	0.088

10-12

12-14

14-16

16-18

18-20

20-21

22-23

24-25

26-27

28-29

30-31

0.132

0.143

0.145

0.145

0.141

0.122

0.133

0.127

0.137

0.135

North Twin

Table S20. Dry bulk density (g cm⁻³) for North Twin Lake.

e perez

References

Appleby P and Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1-8. Baskaran M, Miller CJ, Kumar A et al. (2015) Sediment accumulation rates and sediment dynamics using five different methods in a well-constrained impoundment: Case study from Union Lake, Michigan. Journal of Great Lakes Research 41:607-617. Davis MB and Deevey ES (1964) Pollen accumulation rates: estimates from Late-Glacial sediment Rogers Lake. Science 145:1293-1295. Eisenhut G (1961) Untersuchungen über die Morphologie und Ökologie der Pol- lenkörner heimischer und fremdländischer Waldbäume. Paul Parey, Hamburg. Falck R (1927) Über die Größen, Fallgeschwindigkeit und Schwebewarte der Pilzsporen und ihre Gruppierung mit Bezug auf die zu ihre Verbreitung nötigen temperatuströmungs-Geschindigkeit. Berichte der Deutschen Botanischen Gesesellschaft 45:262-281. Gaillard MJ, Sugita S, Bunting MJ et al. (2008) The use of modelling and simulation approach in reconstructing past landscapes from fossil pollen data: a review and results from the POLLANDCAL network. Vegetation History and Archaeobotany 17:419-443. Jweda J and Baskaran M (2011) Interconnected riverine-lacustrine systems as sedimentary repositories: Case study in southeast Michigan using 210-Pb and 137-Cs sediment accumulation and mixing models. Journal of Great Lakes Research 37:432-446. Schober, R., 1975. Ertragstafeln wichtiger Baumarten bei verschiedener Durchfor- stung. Sauerländer, Frankfurt a. M. Stockmarr J (1971) Tablets with spores used in pollen analysis. Pollen and Spores 13:615-621. Sugita S (1994) Pollen representation of vegetation in Quaternary sediments: Theory and method in patchy vegetation. Journal of Ecology 82:881-897.