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Abstract: A theoretical study of the electromagnetic propagation in a complex medium suspended
multilayer coplanar waveguide (CPW) is presented. The study is based on the generalized exponential
matrix technique (GEMT) combined with Galerkin’s spectral method of moments applied to a CPW
printed on a bianisotropic medium. The analytical formulation is based on a Full-GEMT, a method
that avoids usual procedures of heavy and tedious mathematical expressions in the development
of calculations and uses matrix-based mathematical expressions instead. These particularities
are exploited to develop a mathematical model for the characterization of wave propagation in
a three-layer shielded suspended CPW structure. This study is based on the development of
mathematical formulations in full compact matrix-based expressions resulting in Green’s functions in
a matrix form. The implemented method incorporates a new accelerating procedure developed in
the GEMT which provides an initial value used to speed up searching for the exact solution in the
principal computation code. This helped us to obtain accurate solutions with tolerable computing
time. Good agreements have been achieved with the literature in terms of accuracy and rapid
convergence. The results for different cases of bianisotropy have been investigated, and particularly,
the effect on the dispersion characteristics is presented and compared with the isotropic case.

Keywords: chiral; Tellegen; multilayer CPW structure; dispersion characteristics; full-GEMT; Muller’s
method; complex propagation constant; acceleration procedure

1. Introduction

To establish strong foundations for the development of modern and mass-market applications
in the field of telecommunications, microwave designers have to develop further efficient devices,
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which aim to meet the specific needs of modern telecommunication systems, particularly the 5G
technology. In addition to providing far better levels of reliability and performances by offering new
services, the new technology should be fully consistent with traditional services including 2G, 3G, 4G,
Wi-Fi, and other relevant wireless systems, which requires suitable and high performance microwave
devices in terms of miniaturization and ultra-wideband characteristics that are proven to be the most
challenging issues of all time.

An important class of existing microwave devices is that exploiting the particular properties
of bianisotropic media [1] for the development of special and innovative devices that may respond
to the needs of modern technologies [2]. In this class of promising materials, we may mention, for
example, non-reciprocal, gyrotropic, ferrites, chirals, metamaterials, metasurfaces, etc. [1,3]. Over the
last three decades, the electromagnetism of bianisotropic media have gained a great deal of interest
from scientists and researchers within the frame of artificial media with new and exciting properties [4].
However, practical exploitation of these phenomena did not develop on a large scale; many physics
and engineering problems needed to be solved. Recently, as the science of materials has tremendously
advanced, the concept of bianisotropic media has substantially reemerged as a field of importance in
microwaves and optics technology [5–7].

The particular properties of bianisotropic media arise from a coupling between the electric
and magnetic fields that can be explicitly described by general constitutive relations. Due to their
diversity, they have found many potential applications from microwaves to optical frequencies such
as polarization transformers, directional couplers, antenna and transmission line substrates, antenna
radomes, radar systems, chiral waveguides and others [8–13].

The electromagnetic properties of bianisotropic media should be analyzed to perceive their exotic
characteristics. Several studies have been conducted to characterize the electromagnetic behavior
of bianisotropic media [14–18], ferrites [19], metamaterials [20], chiral [21,22], nonreciprocal [23] for
simple and complex dielectric based microwave planar structures using numerical and analytical
methods [8,14,17,20,24–35]. In [8] and [35], the method of lines is used to analyze planar transmission
lines with conductor losses and to analyze integrated optical waveguide structures, respectively. In [17]
and [20], the transmission line matrix (TLM) method is used for modeling dispersive chiral media
and the analysis of dispersion in metamaterials. In [25], a fast computation of planar microstrip
lines using the generalized equivalent circuit method of moments is presented. The finite difference
technique and the iterated moment method are utilized for the analysis of dielectric [33] and optical
waveguides [34]. In [27], a complex image method based on genetic algorithm (GA) is proposed to
calculate the Green’s functions of a coplanar waveguide structure. Anisotropic based multilayers,
microstrip and waveguide structures are treated in [28,29,31,32]. Recently, in [14] and [24], Karma et al.
studied microstrip transmission lines with anisotropic and uniaxial anisotropic substrates using the
discrete mode matching method.

To extract the effective constitutive parameters of bianisotropic materials, various techniques
such as stepwise method, S-parameters method, resonator method, coaxial probe method, free-space
characterization method, rectangular waveguide measurements and recursive algorithms have been
employed [36–39].

By knowing the intrinsic physical properties of complex media, designers can predict the response
of microwave components for the development of inventive devices. However, the complexity of
mathematical modeling of bianisotropic media is a real challenge in the characterization of microwave
components. This has recently become a central area of research in microwaves and optics.

This paper introduces a mathematical modeling of complex media characterized by full 3 × 3
bianisotropic tensors of permittivity, permeability and magneto-electric parameters. The objective
of this work is to sufficiently develop predictive mathematical models to judiciously characterize
the propagation of electromagnetic waves in a suspended shielded bianisotropic three-layer CPW
structure using a Full-GEM technique [28,40,41]. Three primary considerations have been exploited to
accomplish new and promising results. These include: the consideration of the most general reciprocal
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and non-reciprocal chiral and achiral (Tellegen) complex media using the Full-GEMT, estimation of the
effective permittivity constant to be used as an initial value to search for the exact solution, and the use
of Muller’s method for the extraction of the complex solution of the associated propagation constant in
both chiral and achiral media.

The efficient spectral Galerkin-based method of moments (SGMoM) is extensively used to analyze
microwave planar structures [18,22,25,27,29,30,41–48]. In our recent work [42], we presented an
analytical modeling of a shielded microstrip line based on an anisotropic medium with full 3 × 3
permittivity and permeability tensors. To reduce calculations, some conditions on the permittivity
and permeability constants were considered ensuring the decoupling of the TE and TM modes.
On the other hand, the computational time drastically increases with the required accuracy because of
the slow convergence of integrals and series summations making this approach time intensive [43].
For accelerated convergence and efficient computation, several techniques have been used [44–47].
The time intensive part in the SGMoM is the evaluation of the matrix elements and the determinant
calculation, as the matrix size is large in most cases. In [48], the SGMoM calculation of the propagation
constant (β) for a shielded microstrip line is accelerated using asymptotic expansions for the Bessel’s
and the Green’s functions with the aid of super convergent series in the approximation of the summation
of the leading terms. In [49], for the multilayered shielded microstrip analysis, series summation
calculation are accelerated using the Levin’s transformation in the spectral method. In [28], the Green’s
function-based volume integral equation computation is accelerated using the fast Fourier transform
technique. In [44,45], the impedance matrix elements based on Sommerfeld-type infinite double
integral Green functions evaluation is accelerated by converting the infinite double integral of the
impedance-matrix elements into a finite one-dimensional integral by using the asymptotic Green’s
functions and triangular basis functions with edge condition. In [47], integral-equation formulation
in the SGMoM is accelerated by extracting suitable half-space parts of the kernels which leads to
an exponentially decaying integrand functions. The integrals of the extracted parts are expressed
as combinations of proper integrals and fast converging improper integrals. In [50], an efficient
quasi-static analysis is presented, which can be used for speeding up full-wave SGMoM computations
as well. Accelerated versions of full-wave spectral domain approach are also reported in [51–54].

In this paper, we propose a novel approach for the numerical acceleration of the SGMoM for the
analysis of bianisotropic medium-based microstrip structures by accelerating and fixing problems of the
convergence of the series summation in the elements of the Galerkin’s matrix based on Green’s functions.

The herein considered complex medium is bianisotropic with non-zero magneto-electric tensors
(ξ , 0 and η , 0 at the same time). Our previous study, presented in [41], did not treat the case of
bianisotropic media with both magneto-electric tensors; only one tensor was considered non zero.
The relative simplicity of this case of medium does not require a more complex resolution technique
or longer calculation time. Note that this technique failed to provide accurate solutions for general
complex bianisotropic media due to the round-off errors and the highly oscillatory fields behavior.
A new procedure is implemented to improve the technique and expand it to support the general case
of bianisotropy for a CPW structure. Due to the complexity of the considered bianisotropic medium,
the resolution method has required a more efficient technique to overcome the drawbacks in terms
of non-convergence or considerable calculation time for a tolerable accuracy. An improvement is
achieved by introducing an intermediate calculation procedure based on the GEMT to retrieve an
approximated initial value of the relative effective permittivity of the three layer-structure as a function
of εr, µr, ξ and η: the bianisotropic layer constitutive parameters. This value is used for searching for
the exact solutions of the normalized complex constant of propagation ((β/κ0)2 and (α/κ0)2).

2. Exponential Matrix Technique Formulation

The general CPW geometry and the appropriate coordinate system with the z-axis as the direction
of propagation are shown in Figure 1. The considered structure is based on a complex bianisotropic
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medium (region 1) characterized by full 3 × 3-magneto-electric tensors expressing the cross coupling
between electric and magnetic fields.
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Figure 1. Geometry of the shielded suspended 3-layer CPW structure.

Bianisotropic materials, in their general form, are characterized by the following constitutive
relations [30,41,45].
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The tensors of the relative permittivity [ε], relative permeability [µ] and magneto-electric elements
[ξ] and [η] are represented in the Cartesian coordinate system as follows:

ψ =


ψxx ψxy ψxz

ψyx ψyy ψyz

ψzx ψzy ψzz

, (2)

where ψ stands for [ε], [µ], [ξ], or [η].
Starting from Maxwell’s equations and using the GEMT in the spectral domain, we come to

four coupled first-order differential equations for the transverse electromagnetic field components as
functions of their derivatives [40,41] given in the Fourier domain:

∂
[

f̃ (i)(α, β, z)
]

∂z
=

[
P(i)

]
4×4

[
f̃ (i)(α, β, z)

]
, (3)

α and β are the Fourier variables corresponding to the space domain wavenumbers κx and κy,
with

[
f̃ (i)(α, β, z)

]
=


Ẽ(i)

x (α, β, z)

Ẽ(i)
y (α, β, z)

H̃(i)
x (α, β, z)

H̃(i)
y (α, β, z)

, (4)

and
[P]4×4 = jκ0

{
[M] + [N][Q][R]

}
, (5)

where

[M] =


−ηyx −ηyy −0µyx −0µyy

ηxx ηxy 0µxx 0µxy

Y0εyx Y0εyy ξyx ξyy

−Y0εxx −Y0εxy −ξxx −ξxy

 =

[
[ηT] 0[µT]

−Y0[εT] −[ξT]

]
, (6a)

[N] =


−

(
ηyz + κn

x

)
−0µyz(

ηxz − κn
y

)
0µxz

Y0εyz
(
ξyz − κn

x

)
−Y0εxz −

(
ξxz + κn

y

)
, (6b)
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[Q] =
−1

(εzzµzz − ξzzηzz)

[
0µzz ξzz

−ηzz −Y0εzz

]
, (6c)

[R] =

 Y0εxz Y0εyz
(
ξxz − κn

y

) (
ξyz + κn

x

)
−

(
ηxz + κn

y

)
−

(
ηyz − κn

x

)
−0µxz −0µyz

, (6d)

κn
x =

κx
κ0

, (6e)

κn
y =

κy

κ0
, (6f)

0 =
1

Y0
=

√
µ0

ε0
, (6g)

with

[ηT] =

[
−ηyx −ηyy

ηxx ηxy

]
, [εT] =

[
−εyx −εyy

εxx εxy

]
, [ξT] =

[
−ξyx −ξyy

ξxx ξxy

]
, [µT] =

[
−µyx −µyy

µxx µxy

]
. (6h)

where κ0 is the free space wavenumber and ω is the angular frequency.
This study is essentially based on the development of mathematical formulations in compact

matrix-based forms; this is deemed as a promising approach, since it avoids excessive and complex
calculation developments. This can dramatically reduce the complexity of wave propagation modeling
in complex media.

The matrix [P] (Equation (5)) is the first foundation for this technique associated with the studied
bianisotropic-medium based CPW structure. Its elements are given as functions of the constitutive
tensors elements. In previous works [30,45], for particular cases of media calculations were explicitly
developed, which is not obvious with heavy mathematical calculations case that characterize the herein
studied complex bianisotropic structure.

Equation (3) admits a general solution of the form:
Ex(z)
Ey(z)
Hx(z)
Hy(z)

 = T
(
κx,κy, z

) 
Ex(0)
Ey(0)
Hx(0)
Hy(0)

, (7)

with
T
(
κx,κy, z

)
= exp([P] · z), (8)

and
f̃ (i)(α, β, z(i)) = T

(
κx,κy, z

)
f̃ (i)(α, β, z(i− 1)). (9)

The 4 × 4 transfer matrix T
(
κx,κy; z

)
is calculated in the formulation of the GEMT by means of the

Cayley Hamilton theorem for the determination of the complex function roots [40]. It is expressed in
the following polynomial form:

T(z) = a0[I] + a1[P] + a2[P]
2 + a3[P]

3, (10)

where aj are scalar expansion coefficients, determined by solving the Vandermode linear algebraic
system [40], and [I] is a 4 × 4 identity matrix. The transfer matrix is easily obtained by multiplying
the different transfer matrices related to the different layers of the structure, this constitutes the main
advantage of this new technique. By imposing the appropriate boundary conditions between the
heterogeneous medium layers, the appropriate Green’s tensor which models the CPW structure is
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derived. Details can be found in [41]. This technique exhibits a compact matrix form with the advantage
of being easily inserted in the calculation code.

2.1. Implementation of the Acceleration Procedure

To overcome the drawbacks of the resolution method used in [41], when applied for a general
complex bianisotropic medium, the resolution method has to be improved in terms of convergence
and accuracy for a tolerable computing time. A new procedure is introduced in the calculation
technique. This latter is based on the GEMT technique (detailed calculations can be found in [40]) used
to retrieve an approximated value for the effective relative permittivity of the whole inhomogeneous
structure to be used as an initial value to search for the exact solution of the propagation constant.
This value is evaluated for each frequency point by extracting the eigenvalues of matrix [P] by resolving
Equation (12) for κx = 0 and κy = 0. By applying this procedure, analytical expressions of the effective
relative permittivity maybe obtained as functions of the constitutive parameters of the bianisotropic
layer εr, µr, ξ and η. The application of this procedure allows the acceleration of the Matlab® [55]
calculation code and provides a better solution accuracy.

The expansion coefficients ai (i = 0, 1, 2, 3) in Equation (10) are determined by solving the
Vandermode linear algebraic system:

1 λ0 λ2
0 λ3

0
1 λ1 λ2

1 λ3
1

1 λ2 λ2
2 λ3

2
1 λ3 λ2

3 λ3
3




a0(z)
a1(z)
a2(z)
a3(z)

 =


exp(λ0z)
exp(λ1z)
exp(λ2z)
exp(λ3z)

, (11)

λi (i = 0, 1, 2, 3): are eigenvalues of [P] which correspond to propagating waves [56] defined by:

det(λ[I] − [P]) = λ4 + α1λ
3 + α2λ

2 + α3λ+ α4 = 0. (12)

The coefficients αi (i = 0, 1, 2, 3) are given in terms of the matrix [P], explicit expressions may
be found in [40].

2.2. Derivation of the Initial Value Expression of the Effective Relative Permittivity

a. Isotropic case

The initial effective permittivity value expression is calculated in terms of the medium constitutive
parameters εr, µr, ξ and η using the total transfer matrix (Equation (10)) for κx = 0 and κy = 0,
which permits the extraction of an approximated value. As an example of calculations, we present the
derived analytical expressions of the initial effective permittivity of the isotropic and some bianisotropic
cases. For the isotropic case, the derived matrix [P] is given by:

[P] =


0 0 0 −µrZ0κ0

0 0 µrZ0κ0 0
0 εrκ0/Z0 0 0

−εrκ0/Z0 0 0 0

. (13a)

In this case, the normalized eigenvalues of matrix [P], with respect to κ0, are:

λn0 =
√
εrµr, λn1 = −

√
εrµr, λn2 =

√
εrµr and λn3 = −

√
εrµr; (13b)

functions of the relative permittivity and permeability of the isotropic medium. For the fundamental
propagating mode, the numerical maximal value is taken as the initial value.

εre f f 0 = λ2
n0 = εrµr (13c)
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b. Uniaxial anisotropic case

In this example, we consider the following special case of biaxial anisotropy

[ε] =


εx 0 0
0 εy 0
0 0 εz

, [µ] =


µx 0 0
0 µy 0
0 0 µz

, [ξ] = 0, [η] = 0, (14a)

the derived matrix [P] is:

[P] =


0 0 0 −µyZ0κ0

0 0 µxZ0κ0 0
0 εyκ0/Z0 0 0

−εxκ0/Z0 0 0 0

, (14b)

where the four normalized eigenvalues are found to be

λn0 =
√
µx
µz

(
εyµz − 1

)
, λn1 = −

√
µx
µz

(
εyµz − 1

)
,

λn2 =
√
εx
εz

(
εzµy − 1

)
, λn3 = −

√
εx
εz

(
εzµy − 1

) (14c)

and

εre f f 0 = max
(
λ2

ni

)
= max

(√
µx

µz

(
εyµz − 1

)
,

√
εx

εz

(
εzµy − 1

))
(14d)

c. Diagonal bianisotropy case

As an example, we take the following case:

[ε] = εr[I], [µ] = µr[I], [ξ] =


ξxx 0 0
0 0 0
0 0 0

, [η] =


ηxx 0 0
0 0 0
0 0 0

, (15a)

where [I] is a 3 × 3 identity matrix. The derived [P] is:

[P] =


0 0 0 −µrZ0κ0

ηxxκ0 0 µrZ0κ0 0
0 εrκ0/Z0 0 0

−εrκ0/Z0 0 −ξxxκ0 0

, (15b)

and the four normalized eigenvalues of [P] are:

λn0 =
√
εrµr +

√
εrµrξxxηxx, λn1 = −

√
εrµr +

√
εrµrξxxηxx

λn2 =
√
εrµr −

√
εrµrξxxηxx, λn3 = −

√
εrµr −

√
εrµrξxxηxx

. (15c)

The initial value depends on the constitutive parameters εr, µr, ξxx and ηxx.

εre f f 0 = max
(
λ2

ni

)
= εrµr +

√
εrµrξxxηxx (15d)

d. Gyrotropic bianisotropy case

Considering the following medium case:

[ε] = εr[I], [µ] = µr[I], [ξ] =


0 0 ξxz

0 0 0
ξzx 0 0

, [η] =


0 0 ηxz

0 0 0
ηzx 0 0

. (16a)
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The derived corresponding [P] is:

[P] =


0 0 0 −µrZ0κ0

0 0 −
κ0Z0
εr

(εrµr − ξzxηxz) 0
0 εrκ0/Z0 0 0

−
κ0
µrZ0

(εrµr − ξxzηzx) 0 0 0

, (16b)

which gives as solutions:

λn0 =
√
εrµr − ξzxηxz, λn1 = −

√
εrµr − ξzxηxz

λn2 =
√
εrµr − ξxzηzx, λn3 = −

√
εrµr − ξxzηzx

, (16c)

and
εre f f 0 = max

(
λ2

ni

)
= max(εrµr − ξxzηzx, εrµr − ξzxηxz). (16d)

It is medium-case dependent.
Notice that if ξxz, ξzx, ηxz and ηzx are taken so that ξxzηzx , ξzxηxz, two different solutions are

obtained corresponding to bifurcating modes [21]. This may constitute an independent issue, which is
outside the scope of this work. This shows the efficiency of the procedure, without which, the calculation
code would diverge to adjacent solutions or give spurious ones [57], since the electromagnetic fields of
bianisotropic media are highly oscillatory [56]. The result presented by Equation (15d) shows that the
use of this approach has not only made it feasible to get the optimal initial value, in some cases, but
also to more accurately infer the appropriate approximation, mainly in the presence of the bifurcating
modes phenomenon, in which two neighboring modes are excited.

In order to show the benefits of using the new procedure, two examples of the studied cases of
bianisotropy are considered. Case1: ξzx,1 = ξxz,1 = −0.75

√
εr, ηzx,1 = −ξxz,1 and ηzx,1 = ηxz,1,

and Case2: ηxz,8 = −ξxz,8 = − j
√
εr, ξzx,8 = −ξxz,8 and ηzx,8 = ηxz,8. By the introduction of the

new procedure, the computing time for Case1, for a frequency point, is reduced by about 33% from
1.937 s to 1.302 s. In Case2, with the aid of the procedure, we get a solution in 1.442 s while without
the procedure, the technique failed to find a solution and gave a spurious value instead, after a long
execution time. This is due to the oscillating behavior of the series summations of the manipulated
complex Galerkin’s matrix.

3. Method of Solution

By applying the boundary conditions, the expressions of the electric and magnetic tangential
components are evaluated at the interface air-dielectric in terms of the tangential current densities
on the strips j̃x and j̃y. A matrix of the Green’s tensor elements Gi j(αn, β) for the CPW structure is
achieved. It is arranged in the following system of equations j̃x

j̃y

 =
1

∆G

[
G22(αn, β) −G12(αn, β)
−G21(αn, β) G11(αn, β)

] Ẽx

Ẽy

, (17a)

with
∆G = G11G22 −G12G21. (17b)

and αn: the discrete Fourier transform variable with n the Fourier number of terms n = 1, 2, 3, . . . , N.
For the resolution of the problem, the SGMoM is applied, the spectral electric field components

are expanded in terms of trigonometric basis function sets [58,59]. A homogeneous system of linear
equations arranged in a compact matrix form is derived [58]:

[M(β)] [a1 a2 . . . aM b1 b2 . . . bN]
T = [0], (18)
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where

[M(β)] =

 M1,1
q′,p M1,2

q′,q

M2,1
p′,p M1,1

p′,q

, (19)

and
M1,1

q′,p(β) =
∑

n

1
∆G

G22(αn, β) J̃x,p J̃∗y,q′ ; (20a)

M1,2
q′,q(β) = −

∑
n

1
∆G

G12(αn, β) J̃y,q J̃∗y,q′ ; (20b)

M2,1
p′,p(β) = −

∑
n

1
∆G

G12(αn, β) J̃x,p J̃∗x,p′ ; (20c)

M2,2
p′,q(β) =

∑
n

1
∆G

G11(αn, β) J̃y,q J̃∗x,p′ . (20d)

The system admits nontrivial solutions when det [M(β)] = 0 [41,45,58,60], from which the frequency
dependent propagation constant can be determined. For lossy media, a complex constant solution
is expected.

Using the new technique, original results for the dispersion characteristics of complex bianisotropic
chiral and achiral media are obtained through the ratio (β/κ0)2, discussed and compared with the
isotropic case (ξ = η = 0) using the technique in [41].

Due to the great number of possible medium cases, we have restricted our analysis to highlighting
the main results of achiral media that have been less addressed in the literature. Accurate solutions of
the determinant roots in Equation (18) are obtained within a tolerance of 10−12.

4. Results and Discussions

In order to validate our calculations and test the efficiency of the proposed method, three magnetic
anisotropic cases have initially been considered. Numerical results have been computed and compared
with available literature [61,62] (Figure 2) and good agreements are observed. On the other hand,
a rapid convergence has been achieved with a reduced Fourier number (N = 500) and basis functions
(K = 8) against (N = 3000) used by Khodja et al. [61] for the same number of basis functions.
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Figure 2. (β/κ0)2 for the dominant mode of a shielded CPW with magnetic anisotropy, (2a = 3.556 mm,
2w = 2s = 0.7112 mm, d1 = 2.8448 mm, d2 = 0.7112 mm, d3 = 3.556 mm and εr = 3).

In this study, we consider a suspended three-layer CPW structure implanted on a complex
bianisotropic dielectric material (Figure 1) with the following geometrical dimensions a = 10 mm,
d1 = 4.5 mm, d2 = 1 mm, d3 = 4.5 mm, w = 1 mm, s = 1 mm, εr = 2.53, µr = 1. Different sub-figures



Electronics 2020, 9, 243 10 of 18

are differentiated by the included legends where only the sign of the constitutive element changes
respectively to the previous case in the same figure.

In order to examine the effect of the magneto-electric parameters on the dispersion characteristics,
we first start with the examination of the axial bianisotropy effect. The magneto-electric elements,
whether they are real, imaginary, positive or negative directly affect the phase constant as well as the
attenuation factor.

The obtained results, treat two principal cases of diagonal bianisotropic medium: achiral and
chiral. In each case, the magneto-electric pair (ξi j, ηi j) is considered non-zero, so that the new original
results of the achiral medium case can be validated and compared with the chiral case. In addition, in
this parametric study, we examined the effects of the gyrotropic elements of the magneto-electric tensors
on the complex propagation coefficient. Results are grouped in figures according to the constitutive
parameters effects.

4.1. Effect of Diagonal Bianisotropy

For diagonal bianisotropy three cases of magneto-electric elements are considered:

1. ξii,1 = a
√
εr, ηii = ξii;

2. ξii,2 = a
√
εr, ηii = −ξii;

3. ξii,3 = ja
√
εr, ηii = −ξii.

where (i = x, y, z) and a = (−1, −0.75, −0.5, −0.25, 0.25, 0.5, 0.75, 1). Two main cases are distinguished:
achiral (ξii = a

√
εr) and chiral (ξii = ja

√
εr).

In Figure 3, the effect of element ξyy, for achiral and chiral media cases is presented. An identical
effect is observed on the ratio (β/κ0)2 (Figure 3a), with reciprocal effect (curves superposition for
ξ = ±a

√
εr), for both chiral and achiral cases. These media cases show low losses for achirality

(case (i)) with ηyy = ξyy and almost zero losses for chirality with ηyy = −ξyy (case (ii)) (Figure 3b).
It can be concluded that the effect of a reciprocal chirality is almost the same as for an achiral medium
with equal magneto-electric elements. In these cases (ii = yy) propagating modes are excited in the
guiding structure, however, for achiral with ηii = ξii and chiral with ηii = −ξii, no solutions are
obtained for ii = xx and ii = zz, hence, the medium does not support any propagating modes.
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Figure 3. Effect of diagonal bianisotropy ((i) ξyy real with ηyy = ξyy and (ii) ξyy imaginary with
ηyy = −ξyy) on (a): (β/κ0)2 and (b): (α/κ0)2.

Figure 4 illustrates the effect of diagonal bianisotropic media for the case achiral with ηii = −ξii.
Unlike the previous case, the fundamental propagating mode is excited for all diagonal magneto-electric
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elements (ii = xx, yy, zz). However, each of the elements has its own effect. According to Figure 4, for
(ii = xx), a non-reciprocity for the achiral case (Figure 4a) is observed on (β/κ0)2. Higher losses are
observed for a ≥ 0.5 (Figure 4b). The effect of element ξyy,2 is presented in Figure 4c and d. These cases
are non-reciprocal and exhibit relatively lower losses. The effect on (β/κ0)2 is almost identical for both
cases ξyy,2 and ξzz,2 (Figure 4c,e).
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4.2. Effect of Gyrotropic Bianisotropy

For the gyrotropic elements, five achiral cases are considered:
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1. ξi j,1 = a
√
εr, ηi j = ξi j, ξ ji = ξi j, η ji = ηi j;

2. ξi j,2 = a
√
εr, ηi j = ξi j, ξ ji = ξi j, η ji = −ηi j;

3. ξi j,3 = a
√
εr, ηi j = ξi j, ξ ji = −ξi j, η ji = ηi j;

4. ξi j,4 = a
√
εr, ηi j = −ξi j, ξ ji = −ξi j, η ji = ηi j;

5. ξi j,5 = a
√
εr, ηi j = −ξi j, ξ ji = ξi j, η ji = −ηi j;

In Figure 5a–d, five cases were grouped, each differs from the other by a single change in sign of
the magneto-electric element. It can be seen that the combination of the constitutive parameters shows
non-reciprocity and a distinct effect on (β/κ0)2 and (α/κ0)2 parameters. In Figure 5a,b, for

∣∣∣ξxy,1
∣∣∣ and∣∣∣ξxy,2

∣∣∣ ≤ 0.25
√
εr, we observe a weak effect on the ratio (β/κ0)2 compared to the isotropic case with lower

losses for ξxy,2 (case (ii)). The sign change between ηxy,1 = ηyx,1 (case (i)) and ηxy,2 = −ηyx,2 (case (ii))
keeps the same effect on (β/κ0)2 (Figure 5a). Only the ratio (α/κ0)2 is affected with the appearance of
non-reciprocity (Figure 5b). As shown in Figure 5c,d, for the combinations ξxy,3, ξxy,4 and ξxy,5, a sign
change has only a weak effect on (β/κ0)2 and (α/κ0)2.Electronics 2020, 9, x FOR PEER REVIEW 13 of 19 
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Figure 5. Effect of gyrotropic achiral bianisotropy for different ξxy, ξyx, ηxy and ηyx combinations on:
(a) (β/κ0)2, (b) (α/κ0)2, (c) (β/κ0)2 and (d) (α/κ0)2.

In Figure 6 are presented results of the element ξxz combinations. The remarkable effect is that the
ratio (β/κ0)2 is almost constant with respect to frequency and decreases with ξxz,1 to reach the unity
for

∣∣∣ξxz,1
∣∣∣ = 0.75

√
εr and zero for

∣∣∣ξxz,1
∣∣∣ =

√
εr (Figure 6a), all with negligible losses (Figure 6b,d).
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The elements, ξxz,2 and ξxz,3 have the same effect on both (β/κ0)2 and (α/κ0)2 (Figure 6c,d). In this case,
only 3 combinations: ξxz,1, ξxz,2 and ξxz,3 support propagating modes, with the appearance of the
non-reciprocal effect. For the two other cases ξxz,4 and ξxz,5, no solutions are obtained. The (β/κ0)2

and (α/κ0)2 variations of both cases (ii) and (iii) are completely different from case (i). The exchange
of sign between ξxz,3 = −ξzx,3 and ηxz,2 = −ηzx,2 preserved the same effect ((ii) and (iii) curves are
superposed), as shown in Figure 6c,d.
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while it shows a significant effect on (/0)2 and reduced losses compared to isotropic case. 

  

Figure 6. Effect of gyrotropic achiral bianisotropy for different ξxz, ξzx, ηxz and ηzx combinations on:
(a) (β/κ0)2, (b) (α/κ0)2, (c) (β/κ0)2 and (d) (α/κ0)2.

Figure 7a,b presents the effect of sign exchange between the magneto-electric element of achiral
medium cases. The positive sign ξyz,2 = ηyz,2 and ξyz,3 = ηyz,3 reveals a non-reciprocity on (β/κ0)2,
while it shows a significant effect on (α/κ0)2 and reduced losses compared to isotropic case.
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5. Conclusions

In this work, an analytical modeling of a three-layer CPW structure implanted on a complex
medium is presented. This study is based on the Full-GEMT developed in a matrix form for the
characterization of the bianisotropic-substrate CPW structure. This resulted in compact matrix form
expressions of the Green’s tensor. The implemented resolution method includes a new accelerating
procedure developed in the GEMT that contributed to accomplishing accurate solutions with improved
computing time. The computing time, for one frequency point, has been reduced by 33% for some
calculation cases and more for others. A satisfactory calculation convergence is achieved with a
significantly reduced Fourier number compared to literature. The presented technique can dramatically
reduce the complexity of wave propagation characterization, in highly complex media, in terms of
mathematical modelling and computational solution method.

According to our calculations, cases of complex media have been achieved, where the ratio (β/κ0)2

is close to unity such as for cases ξxz,1, ξxz,2. and ξxz,3. This characteristic is vital for the realization of
media with permittivity close to unity for better use in the design of radiating antenna structures.

For cases ξxy,1 and ξxy,2, where there is only one element that changes sign between one case and
another, the results of (β/κ0)2 are similar (reversed cases with similar effects), however, (α/κ0)2 presents
a different variation either in form or in magnitude.

It is noted that for the case of achiral medium when ξ = η, ξi j = ξ ji and ηi j = −η ji (ξxy,2),
the medium is reciprocal and the effect is well reversed (non-reciprocal) when ξi j = −ξ ji (ξxy,3).
For the cases ξxy,3 and ξxy,5, one had to have inverted cases, whereas, it is not the case. This can be
explained by the properties imposed by the geometry of the studied structure.

An original result that should be taken into consideration is the losses, which show changes with
each sign change between the magneto-electric elements. On the other hand, it is found that losses in
achiral media are of the same magnitude as those in non-reciprocal chiral media, which must be taken
into account. Furthermore, it is worth noting that the transverse elements ξxz are the most influential
on the phase constant in bianisotropic a CPW structure, and this may be attributed to the geometry of
the studied structure.

Investigation of some achiral media cases has shown new results such as the notion of achiral
media with a relative permittivity approaching unity with reduced losses. This new finding could serve
as a valuable concept from which designers of unusual synthetic materials may benefit to enhance the
media intrinsic properties for future innovative applications use.
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Finally, the technique discussed in this paper may be extended to deal with propagation of
bifurcated modes and enclosed multilayer microstrip structures.
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