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Abstract The stability of some simple density profiles in a vertically orien-
tated two-dimensional porous medium are considered. The quasi-steady state
approximation is made so that the stability of the system can be approximated.
As the profiles diffuse in time, the instantaneous growth rates evolve in time.
For an initial step function density profile, the instantaneous growth rate was
numerically found to decay like T−1/2 for large times T , so the corresponding
eigenfunctions and length of the fingers are expected to scale with eω

√
T where

ω is a constant. For density profiles initially corresponding to a finite layer,
the instantaneous growth rate eventually decayed like T−1. This corresponds
to an instability with algebraic growth, so the eigenfunctions and length of the
fingers are expected to scale with T p (where p is a constant) for large time. For
a species initially linearly distributed in a finite layer, when the concentration
has an increasing gradient in the downwards direction, the stability of the sys-
tem was similar to that found for a uniformly distributed finite layer. However,
when the concentration had a decreasing gradient in the downwards direction,
the growth rates remained constant for a long period time, but eventually de-
cayed in the same way as found in a uniformly distributed finite layer, for very
large times. Numerical simulations were performed to validate the predictions
made by the linear stability analysis.

Keywords Buoyancy · linear stability · porous media · Darcy’s law ·
nonlinear simulations · piecewise linear profiles

PACS 47.20.Bp · 47.56.+r · 47.11.j

Division of Mathematics & Statistics, University of South Wales, Pontypridd, CF37 1DL,
Wales, UK. E-mail: Philip.Trevelyan@southwales.ac.uk



2 S. Cowell, J. Kent, and P. M. J. Trevelyan

1 Introduction

When a more dense fluid overlies a less dense miscible fluid the resulting in-
stability is named a Rayleigh-Taylor instability [1,2]. This situation can arise
in a large number of physical problems, for example within stars [3], the at-
mosphere [4], the oceans [5] and even beneath the Earth’s crust [6]. A useful
overview of the Rayleigh-Taylor instability was made by Sharp [7].

Examining the one-dimensional vertical density profile is very useful in de-
termining whether a Rayleigh-Taylor instability will occur, for example, see
Citri et al. [8] who analysed density profiles to try to predict whether an in-
stability would occur in reaction-diffusion systems. In finite domains in the
presence of linear density profiles the onset condition for a Rayleigh-Taylor in-
stability was first obtained by [9,10]. However, non-monotonic density profiles
do not guarantee an instability as, for example, layer thicknesses, viscosity,
permeability and diffusion can all affect whether an instability occurs or not.
Additionally, having a monotonic density profile does not guarantee the sys-
tem is stable as other types of instabilities exist, for example salt fingering in
oceanography is a double diffusive instability [11–13], that can occur when a
less dense faster diffusing species overlies a more dense slower diffusing species.
In an infinite vertical domain with an evolving step function density profile,
the onset conditions for a buoyancy instability in a porous medium were ob-
tained by [14] by making use of the quasi steady state approximation, so that
the base state profiles were assumed frozen in time.

An instability with similar properties to the Rayleigh-Taylor instability is
viscous fingering, which occurs in a porous medium when a less viscous fluid
is injected into a more viscous miscible fluid [15,16]. Pritchard [17] classified
the stability of viscous fingering, including the equivalent form of a double-
diffusive instability in which an instability occurs when a more viscous fluid
is injected into a less viscous fluid. Nonlinear simulations by Mishra et al. [18]
theoretically verified the existence of these instabilities. Both these instabilities
can be induced by chemical reactions [19].

The stability of non-monotonic viscosity profiles was examined by [20,21],
and nonlinear simulations by [22] verify the predictions. Previously Tan and
Homsy [23] performed a linear stability analysis using the quasi-steady state
approximation to derive an analytical dispersion equation for the case when
the viscosity profile is given by a step function, which confirmed the result
that an instability occurs whenever a less viscous fluid is injected into a more
viscous fluid. Nonlinear simulations by [23] found that although using the
quasi-steady state approximation within the linear stability analysis did not
agree for small times, for intermediate times the linear stability analysis pro-
duced growth rates comparable with the nonlinear simulations. To overcome
this small time failure, Ben et al. [24] used a spectral analysis method without
using the quasi-steady state approximation within the linear stability analysis
on viscous fingering. Using this spectral analysis method Kim [25] analysed
viscous fingering of a miscible slice and compared the growth rates with those
predicted using the quasi-steady approximation. At small times the two meth-
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ods disagreed, but later in time they predicted similar growth rates. Hota et
al. [26] employed the quasi-steady state approximation for the case of viscous
fingering of a miscible slice in the presence of adsorption.

There are several studies which couple the bimolecular reaction A+B → C
with Rayleigh-Taylor instabilities when the two reactants are initially parti-
tioned. By analysing the large time asymptotic density profiles a total of 62
different types have been found [27], and clearly the same number of viscos-
ity profiles are present in viscous fingering. Kim [28] performed the spectral
analysis method and full numerical simulations to this problem in the case of
equal diffusion coefficients, and later Kim [29] returned to this problem in the
more general case of unequal diffusion coefficients. The corresponding viscous
fingering instability was performed by Hejazi et al. [30] using the quasi-steady
state approximation in the case of equal diffusion coefficients.

Studies on carbon dioxide sequestration typically introduce a species at
the top of the domain and usually lead to a non-monotonic density profile.
A linear stability analysis of the density-driven convection was performed by
Riaz et al. [31] using the spectral analysis method and their predictions were
confirmed by nonlinear simulations. The spectral analysis method along with
full numerical simulations were recently applied by Kim et al. [32–34] to model
carbon dioxide sequestration.

The study by Gandhi and Trevelyan [35] examined the initial onset condi-
tions for a Rayleigh-Taylor instability for several different piecewise constant
density profiles using the same approach as [23]. The study obtained implicit
solutions for the dispersion equation and as all of the density profiles exam-
ined led to equivalent onset conditions involving the Rayleigh-Darcy number,
a conjecture was made about the onset condition for more general density pro-
files. Kim [36] found that the growth rates obtained by the spectral analysis
method did not agree with the results obtained by [35] for small times, but
did agree with the quasi-steady state approximation at later times.

One notes that [14] performed a spectral analysis on the nonlinear simula-
tions which involved taking the Fourier transform of the concentration in the
vertical direction and then averaging them in the horizontal direction. This
allowed the instantaneous growth rate to be obtained from the nonlinear simu-
lations and compared with a linear stability analysis. They found, as expected,
that the nonlinear simulations don’t agree with the linear stability analysis for
small times as the quasi steady state is not valid at small times since the base
state solution initially changes very quickly in time. For moderate times the
linear stability analysis was in reasonable agreement with the predictions from
the nonlinear simulations. For large times the instability generated a fluid mo-
tion, thus the nonlinear simulations and linear stability analysis predictions
for the growth rate diverged.

In this study we examine buoyancy instabilities in a two dimensional ver-
tically oriented porous medium. The main focus is on using the quasi-steady
state approximation to examine the onset condition for piecewise linear density
profiles at times greater than zero, and full nonlinear simulations are performed
to visualise the resulting instabilities. The presence of the species is assumed to
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linearly affect the density of the fluid and various initial concentration profiles
for a species dissolved in the fluid are considered.

In section 2 a mathematical model is non-dimensionalised, and using the
stream function formulation, a linear stability analysis yields a system of two
coupled differential equations. The problem is discretised and reduced to an
eigenvalue problem. In section 3 we consider a step function concentration
profile to validate the numerical approach. In section 4 we examine the sta-
bility of a species initially uniformly distributed in a finite layer. Finally, in
section 5 we examine the stability of a species initially linearly distributed in
a finite layer. We consider both a linear increasing density profile and a linear
decreasing density profile. Within each section full numerical simulations are
presented to demonstrate how the instability evolves. Finally, we draw our
conclusions in section 6.

2 Model

Suppose that a species A is dissolved in a fluid contained inside a vertically
orientated two dimensional homogeneous porous medium. We assume that the
permeability K and porosity φ of the porous medium are constants. The fluid
flow is assumed to satisfy Darcy’s law and the concentration, a, of species A
satisfies the mass transport equation, see Nield and Began [37]. For Darcy’s
law to be valid for flow in a porous medium it is required that the flow length
scales are larger than the typical pore size, i.e.

√
K, so we require that the wave

length of any instabilities are much larger than the pore size. We note that the
validity of using Darcy’s law in a Hele-Shaw cell was studied by Martin et al.
[38]. The Darcy velocity u is the average fluid velocity per unit volume of the
porous medium (including both solid and fluid material), which is different
to the intrinsic velocity which is the average fluid velocity per unit volume
occupied by the fluid. For simplicity we assume that the dispersion coefficient
D of species A is a constant.

The density of the fluid ρ is taken to be a linear function of the concentra-
tion of species A, given by ρ = ρ0(1 + αa) where ρ0 is the density of the fluid
in the absence of species A and α is the solutal expansion coefficient defined
by α = (1/ρ0)(dρ/da). It is assumed that the concentration of the species is
sufficiently small that the Boussinesq approximation is valid and so the flow
can be considered incompressible, additionally variations in the viscosity of
the fluid are assumed negligible, so µ, the dynamic viscosity, is a constant.
The vertical coordinate x is chosen to increase in the downwards direction and
i denotes the unit downwards pointing vector along the x axis.
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This problem is modelled by the following two dimensional system of partial
differential equations:

∇ · u = 0, (1)

∇p = − µ
K
u+ ρ0g(1 + αa)i, (2)

φ
∂a

∂t
+ u · ∇a = D∇2a (3)

where p is the fluid’s pressure, t is time and g is the magnitude of the acceler-
ation due to gravity. We assume that initially the fluid is at rest and that the
concentration of the species is given by

a(x, y, 0) = b0 + a0a(x) (4)

where y is the horizontal coordinate, b0 is a reference concentration and a0 is
the difference between the initial maximum concentration and the reference
concentration. We assume that vertically the physical domain is sufficiently
large that it can be assumed infinite, so the far field conditions are

ax → 0 and u→ 0 as x→ ±∞. (5)

2.1 Non-dimensionalisation

We non-dimensionalise the system by rescaling the variables as follows:

u =
D

l0
U, p = pa + ρ0gl0X +

µD

K
P, a = b0 + a0A, (6)

(x, y) = l0(X,Y ), t =
φl20
D
T where l0 =

µD

ρ0gαa0K
(7)

and the atmospheric pressure is denoted by pa. Here we are assuming that
the presence of species A increases the density of the fluid, so α > 0. Notice,
increasing the reference concentration a0 leads to a reduction in the length
and time scales, and an increase in the velocity scale. Using these scalings we
obtain the following dimensionless system of equations:

∇ · U = 0, (8)
∇P = −U +Ai, (9)

AT + U · ∇A = ∇2A. (10)

The initial conditions are

U(X,Y, 0) = 0 and A(X,Y, 0) = A(X) (11)

where A(X) = a(l0X). We note that if a profile has a dimensional thickness
of h then the dimensionless thickness is

L =
h

l0
=
ρ0gαa0hK

µD
(12)



6 S. Cowell, J. Kent, and P. M. J. Trevelyan

which is the Rayleigh-Darcy number. The dimensionless far field conditions
are now

AX → 0 and U → 0 as X → ±∞. (13)

2.2 Stream Function Formulation

By introducing a stream function ψ, we can satisfy the conservation of mass
equation (8), where the velocity is given by U = ∇× ψk, where k is the unit
normal perpendicular to the vertical plane containing the porous medium. The
velocity components are given by U = ψY and V = −ψX where U = (U, V ).
By taking the curl of the dimensionless version of Darcy’s law, equation (9),
the pressure is eliminated and we obtain

∇2ψ = AY . (14)

The mass transport equation (10) can now be expressed as

AT + ψYAX − ψXAY = ∇2A. (15)

Notice that by moving to a stream function formulation the problem is reduced
to two dependent variables ψ and A. The initial conditions are now

ψX(X,Y, 0) = ψY (X,Y, 0) = 0, and A(X,Y, 0) = A(X). (16)

The far field conditions finally become

AX → 0 and ψX , ψY → 0 as X → ±∞. (17)

We will carry out a linear stability analysis on equations (14) and (15) along
with the initial and far field conditions.

2.3 Full Numerical Simulation

Full numerical simulations were performed using the stream function formula-
tion given by equations (14) and (15). Small scale random noise was added to
the initial concentration, A. A multi-grid method [39] was used to solve equa-
tion (14) for the stream function ψ. The concentration A was obtained from
the two-dimensional transport equation (15) by solving it in conservative form
using the Lin-Rood method [40] with a third-order finite-difference operator
[41].
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2.4 Linear Stability Analysis

In the absence of an instability no fluid motion will take place and the species
will diffuse. The base state solutions to this problem are denoted with tildes,
i.e.

ψ̃(X,T ) = 0 and Ã(X,T ) (18)
To perform a stability analysis we consider a small perturbation to the base
states of the form

ψ = εψ̂(X,Y, T ) and A = Ã(X,T ) + εÂ(X,Y, T ) (19)

where ε is a small constant. Substituting these expressions into equation (14)
yields a perturbed version of Darcy’s law:

ψ̂XX + ψ̂Y Y = ÂY . (20)

Similarly substituting the expressions into equation (15) yields, at leading
order, an equation for the evolution of the base state concentration

ÃT = ÃXX (21)

along with the far field boundary conditions

ÃX → 0 as X → ±∞. (22)

Next, at order O(ε) we have the perturbed mass transport equation, namely

ÂT + ψ̂Y ÃX = ÂXX + ÂY Y . (23)

We now make the quasi steady state approximation that the base state solution
is varying slower than the perturbations so that we can consider the base state
solutions frozen in time. This means that the equations are now invariant under
translation with regard to Y and T , so that the perturbations can be expressed
in normal form as

[ψ̂, Â] =
[

i
k
F(X),A(X)

]
eσT+ikY (24)

where k is the wavenumber and σ is the instantaneous growth rate. Substitut-
ing these forms into equations (20) and (23) yields the following differential
eigenvalue problem:

FXX = k2(A+ F), (25)
σA = AXX − k2A+ FÃX (26)

where σ is the eigenvalue and A and F are the eigenfunctions. The far field
conditions for the eigenfunctions are

AX → 0 and FX → 0 as X → ±∞. (27)

Notice that equations (25), (26) and (27) are invariant under the transfor-
mation X → −X, Ã → C − Ã, A → −A and F → −F , where C is an
arbitrary constant. This means that the instantaneous growth rate σ for a
concentration profile Ã = G(X) is identical to that for the concentration pro-
file Ã = C −G(−X).
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2.5 Numerical Linear Stability Analysis

In order to solve this differential eigenvalue problem we adapt the method in-
troduced by Kalliadasis et al. [42] to this problem. We truncate the problem to
a finite domain and discretise X to a set of n non-uniformly distributed spatial
points, X1, X2, ..., Xn. The distribution of the Xi’s are given in appendix A.
The eigenfunctions A and F are then expressed using eigenvectors vA and vF ,
written as

vA =


A1

A2

...
An

 and vF =


F1

F2

...
Fn

 . (28)

We also introduce the diagonal matrix

J =


ÃX |X1 0 · · · 0

0 ÃX |X2 · · · 0
...

...
. . .

...
0 0 · · · ÃX |Xn

 . (29)

In appendix B we present a matrix S, which was obtained using finite differ-
ence approximations to be a third order accurate approximation of the second
derivative, such that

d2Φ

dX2
≈ S Φ . (30)

Hence, we were able to approximate equations (25) and (26) by

S vF = k2(vA + vF ), (31)

σvA = S vA − k2vA + J vF . (32)

Then equation (31) can then be written as

Q vF = k2vA where Q = S − k2I (33)

where I is the n× n identity matrix. Multiplying this equation by Q−1 yields

vF = k2Q−1vA. (34)

Substituting this expression for vF into equation (32) yields

σvA = Q vA + k2J Q−1vA. (35)

Then we can write the system as

σvA = M vA where M = Q+ k2J Q−1. (36)

By solving this eigenvalue problem for σ and vA over a range of wavenumbers
k we can obtain dispersion curves. When using n spatial points, the cpu time
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of the code approximately scaled with n2.5. Typically 401 spatial points were
used over domains of various sizes to ensure that grid independent results
were obtained, however, more grid points were required when a very large
domain was required in the presence of sharp profiles, for example at small
times when large gradients are present, or when obtaining neutral stability
curves. Additionally, the domain size was chosen to be greater than 8π/k to
avoid the boundary conditions dampening any instabilities.

In the following sections we will use this numerical linear stability analysis
approach to obtain the instantaneous growth rates for a range of different base
state concentration profiles.

3 A step function

First we consider the case when the initial distribution of species A is a step
function profile with a maximum concentration of 1, centred at X = 0, i.e.

Ã(X, 0) =
{

1, for X < 0
0, for X > 0 . (37)

Physically this corresponds to species A being uniformly dissolved in the up-
per half of the domain, with species A being absent from bottom half of the
domain. At time T = 0 the instantaneous growth rate is given by

σ =
k

2

(
1− k −

√
k(k + 2)

)
(38)

which was obtained by Tan and Homsy [23] for a miscible viscous displace-
ment. The largest positive value of k that satisfies σ = 0 defines the cut off
wavenumber, so that all wavenumbers greater than this value result in σ < 0
and the system being stable. The fastest growing wavenumber is the value of k
when σ reaches its maximum value. [23] found that the cut off wavenumber is
given by kcut = 1/4 and the fastest growing wavenumber is kmax = (

√
5−2)/2

with the maximum instantaneous growth rate given by σmax = (5
√

5− 11)/8.
This unstable system corresponds to a more dense fluid overlying a less dense
fluid.

In order to obtain the instantaneous growth rate at later times we perform
a numerical linear stability analysis. Now the base state concentration needs
to satisfy equations (21) and (22) along with the initial condition

Ã(X, 0) = H(−X) (39)

where H is the Heaviside step function. This system can be solved to yield

Ã(X,T ) =
1
2
− 1

2
erf
(

X

2
√
T

)
(40)

which is a self-similar solution in which the profile for Ã spreads out in the
X direction with the square root of time. We notice that the most negative
gradient is −(4πT )−1/2 which occurs at X = 0.
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Fig. 1 In (a) dispersion curves of the instantaneous growth rate σ are plotted against the
wavenumber k for an initial step function profile, obtained using equations (36) and (40).
Curves are illustrated at times T = 0.01 (5), 3 (3), 10 (?), 26 (2), 68 (∗), 200 (©), 800
(+) and 8000 (4). The dashed line is at time T = 0 given by the analytical solution in
equation (38). In (b) log-log plots in time are illustrated where β = σmax (©), β = kmax
(∗), β = kcut (2), β = (4πT )−1/2 (4), β = 0.4T−1/3 (?), and β = (4πT )−1/4 (3).

A numerical linear stability analysis was carried out by obtaining the max-
imum eigenvalue σ of the matrix M given by equation (36) over a range of
wavenumbers k, where the matrix J uses the spatial derivative of the base
state concentration which can be analytically obtained from equation (40).

At time T = 0 the dispersion curve, corresponding to an initial step func-
tion profile, given by equation (38) is illustrated in figure 1(a). Typical disper-
sion curves obtained from the numerical linear stability analysis are present at
later times in figure 1(a). We notice that the dispersion curve at time T = 0.01
is close to the analytical solution (38) at time T = 0, which suggests that the
numerical approach employed is sufficiently accurate. Figure 1(a) shows that
as T increases, the maximum instantaneous growth rate σmax, the fastest
growing wavenumber kmax, and the cut off wavenumber kcut, all decay, which
means that although the system remains unstable in time, the range of unsta-
ble wavenumbers is decreasing and the wavelength will increase in time.

In appendix C we use equations (25) and (26) to show that for large times
T the maximum instantaneous growth rate and cut off wavenumber approach

σmax ≈ (4πT )−1/2 and kcut ≈ (4πT )−1/4. (41)

These large time asymptotic predictions are illustrated in figure 1(b). Using
a log-log plot we illustrate the time evolution of the maximum growth rate
σmax, the fastest growing wavenumber kmax and the cut off wavenumber kcut

obtained from the numerical linear stability analysis, in figure 1(b). We observe
that for small T , typically less than 1, the maximum instantaneous growth rate
σmax, the fastest growing wavenumber kmax, and the cut off wavenumber kcut

are approximately constant. All of these quantities decay in time T .
In figure 1(b) we see that the numerical solution for σmax and kcut denoted

using the © and 2 symbols, respectively, each approach their respective large
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i Ti kmax 2π/kmax
1 101.35 0.0551 114.0
2 277.18 0.0431 145.8
3 513.28 0.0367 171.2

Table 1 Numerically obtained values of Ti defined by equation (42) for an initial step
function profile.

time asymptotic solutions (41) denoted using the 4 and � symbols. Addi-
tionally, we see that kmax denoted by the ∗ symbol approximately tends to
0.4T−1/3 denoted by the ? symbol.

We numerically find that product σmaxT is a monotonic increasing function
of T which scales with

√
T for large time. Thus, for large times σT → ω

√
T

where ω is a constant. Hence, for an initial step function concentration profile,
the eigenfunctions and length of the fingers scale with eω

√
T for large times.

It is important to note that as we are using the quasi-steady state ap-
proximation, the instantaneous growth rates obtained at small times are not
valid, however, for times of O(1) and later the instantaneous growth rates are
more relevant. However, once an instability occurs, fluid motion will set in
and dramatically change the base state concentration profile meaning that the
results later in time will no longer be valid. Hence, the linear stability analysis
is typically most useful around the time when the product of the maximum
instantaneous growth rate with time is around O(1). Hence, we introduce the
time Ti, defined as the time T that satisfies

Tσmax = i (42)

which is a generalised version of the notation introduced by [14] who used i = 1.
In table 1 we present numerically obtained values for Ti for i = 1, 2 and 3.
Using the value for T1 in table 1, we see that the the linear stability is predicting
that an instability will emerge around T ≈ 100 with a wavelength around 114.
To verify this prediction we carried out full numerical simulations by solving
equations (14) and (15) with an initial step function concentration profile. The
instability was still very weak at time T1 and so we present the solution later
in time in order to be able to visualise the instability. In figure 2 we illustrate
contours of the concentration A at times T = 400 and T = 1200. In figure 2 the
darker shaded regions have higher concentrations of species A and the lighter
shaded regions have lower concentrations of species A, and we recall that the
X axis increases in the downwards direction. As expected, long narrow fingers
are seen to develop in time and sink downwards. We notice at time T = 1200
we see 12 fingers falling downwards in a domain of thickness 1500, so the
thickness of each finger is around 125. Hence, the observed wavelengths are
consistent with those predicted in table 1.
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(a) T = 400 (b) T = 1200
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Fig. 2 Contours of A obtained from equations (14) and (15) with an initial condition
corresponding to a step function profile at times (a) T = 400 and (b) T = 1200.

4 A finite layer

Next we consider the case when the initial distribution of species A is a layer
of thickness L with a maximum concentration of 1, centred at X = 0, i.e.

Ã(X, 0) =

0, for 2X < −L
1, for − L < 2X < L
0, for L < 2X

. (43)

Physically this corresponds to species A being uniformly dissolved in a layer
of thickness L, with species A being absent from both the regions above and
below this layer. At time T = 0 the instantaneous growth rate satisfies

4σ2

k2
= 1− e−2kL − 2k

s

(
1− e−(k+s)L

)
+
k2

s2
(
1− e−2sL

)
(44)

where s2 = σ + k2 which was obtained by [35]. Typical dispersion curves at
time T = 0 are illustrated in figure 3(a) for various values of L using equation
(44). We notice that increasing L leads to an increase in the growth rate σ,
but the step function profile given by equation (38) is an upper bound to the
growth rate. We note that the cut off wavenumber satisfies

(1 + kL)e−kL =
√

1− 16k2. (45)

It was shown in [35] that this system is unstable when

L > 4 (46)

at time T = 0.
In order to obtain the instantaneous growth rate at later times we perform

a numerical linear stability analysis. Now the base state concentration needs
to satisfy equations (21) and (22) along with the initial condition

Ã(X, 0) = H(L2 − 4X2). (47)

Solving this system yields the base state concentration

Ã(X,T ) =
1
2

[
erf
(

2X + L

4
√
T

)
− erf

(
2X − L

4
√
T

)]
. (48)
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(a) T = 0 (b) L = 16
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Fig. 3 Dispersion curves of the instantaneous growth rate σ against the wavenumber k for
an initial profile of a layer of thickness L. In (a) curves are illustrated at T = 0, obtained
from the analytical solution to equation (44), for layers of thicknesses L = 5.8 (4), 6.7 (+),
7.7 (©), 8.9 (∗), 10.5 (2), 12.7 (?), 17.8 (3) and 28.8 (5). The dashed line is for an initial
step function profile at T = 0 given by equation (38). In (b) curves are illustrated for a finite
layer of thickness L = 16, obtained using equations (36) and (48), at times T = 68.18 (+),
28.39 (©), 14.93 (∗), 8.06 (2), 3.88 (?), 1.22 (3), and 0.1 (5). The dashed line corresponds
to the analytical solution (44) at T = 0.

Initially Ã remains fairly flat and close to 1 around X = 0, however, eventually
the profile spreads out and the maximum value decays to zero. The maximum
concentration of Ã is erf

(
L

4
√
T

)
which occurs at X = 0. The maximum con-

centration falls by less than 1% as long as L ≥ 4
√
T erf−1(0.99) ≈ 7.286

√
T .

The total amount of Ã present is
∫ ∞
−∞

ÃdX = L. A useful measure of how the

profile changes in time is to consider
∫ L/2

−L/2
Ã dX which remains above 85%

of the initial value of L when L ≥ 7.523
√
T .

The numerical linear stability analysis was carried out by obtaining the
maximum eigenvalue σ of the matrix M given by equation (36) over a range
of wavenumbers k, where the matrix J uses the spatial derivative of the base
state concentration which can be analytically obtained from equation (48).
Typical dispersion curves for a layer of thickness L = 16 are illustrated in
figure 3(b) at various times. We notice that at time T = 0.1 the dispersion
curve is close to the analytical dispersion curve (44) at T = 0. As time increases
the growth rates monotonically decrease.

Numerically we find that close to criticality the growth rate appears to
approximately scale with (L − 4)3/T , so in figure 4(a) we plot the one third
power of the product of the maximum instantaneous growth rate with time
against L at various times. We notice that as L tends to 4 the maximum
instantaneous growth rate tends to zero, indicating that the system is stable for
L ≤ 4. Hence, numerically we have found that the condition for an instability
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Fig. 4 Properties of the maximum instantaneous growth rate for an initial profile of a layer
of thickness L obtained by numerically solving equations (36) and (48). In (a) curves of one
third power of the product of the maximum instantaneous growth rate σmax with time T
are plotted against L, at times T = 10 (©), 102 (∗), 103 (2) and 104 (?). In (b) curves of
the maximum instantaneous growth rate multiplied by the square root of time are plotted
against (L− 4) divided by the square root of time, at times T = 10 (©), 102 (∗), 103 (2),
104 (?), 105 (3) and 106 (5).

of a finite layer of thickness L and maximum concentration 1 evolving in time
is the same as condition (46) found by [35] at T = 0.

In figure 4(b) the product of the maximum instantaneous growth rate with
the square root of time is plotted against (L − 4)/

√
T at various times. We

notice that for a fixed value of T , as L increases the maximum instantaneous
growth rates increases but approaches a constant for (L−4) sufficiently greater
than

√
T . As we increase L, the finite layer is getting thicker and so we should

expect the growth rates to tend to those obtained for a step function profile,
and so they should tend to a constant.

In figure 5(a) we plot log10(L) against log10(Ti) for i = 1, 2 and 3. We
observe that the value of each Ti tends to a constant as L tends to infinity,
however, as L decreases towards a critical value, each Ti tends to infinity. For
a given value of L we see that T1 < T2 < T3.

Figure 5(b) shows log10(σmax) plotted against log10(T ) for various L. We
see that for very small times the growth rates are constant, but as time in-
creases the growth rates decrease. For moderate times, when L = 102, 103,
104 and 105, we see that the maximum instantaneous growth rates are the
same as for a single step, however, for large times, the growth rates eventually
decay away from the maximum instantaneous growth rates of a single step.
We see that the larger the value of L the longer the growth rates for a finite
layer resemble the growth rates for a finite step. Figure 5(b) shows that the
gradients of the logarithms of the growth rates against the logarithm of time
are −1 for the finite layer and −1/2 for a single step. Hence, we have numeri-
cally found that, for thick layers, the growth rates for a finite layer are initially
constant, then decay with T−1/2 (like a single step), and then even later in
time decay like T−1. When the growth rate decays like T−1, this means that
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Fig. 5 Log-log plots for an initial profile of a layer of thickness L obtained by numerically
solving equations (36) and (48). In (a) log10(L) is plotted against log10(Ti) for i = 1, 2 and
3. The solid line corresponds to T1, the dashed line to T2 and the dotted line to T3. In (b)
log10(σmax) is plotted against log10(T ) for L = 10 (©), 102 (∗), 103 (2) and 104 (?). The
dashed curve corresponds to an initial profile of a step function.
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Fig. 6 Contours of A obtained from equations (14) and (15) with an initial condition
corresponding to a finite layer of thickness (a) L = 16 and (b) L = 64 at time T = 103.

the term σT is now constant in time, which corresponds to an instability with
algebraic growth instead of exponential growth, as the problem is now in a
much weaker regime. Hence, when a species is initially uniformly dissolved in
a finite layer, the eigenfunctions and length of the fingers scale with T p for
large times, where p is a constant. This result should actually be expected for
a finite layer as once the profile has diffused enough, the profile is almost flat
and so there are no significant regions where we have a heavy region over a
light region.

By performing numerical simulations the full solutions to equations (14)
and (15) for an initial concentration profile corresponding to a finite layer of
thickness L were obtained. Figure 6 shows contours of the concentration at
time T = 103 for (a) L = 16 and (b) L = 64. Figure 6(b) for a thickness of
L = 64 shows an instability which is significantly more pronounced than in
figure 6(a) for a thickness of L = 16, as expected from the numerical linear
stability analysis. These nonlinear simulations show that the thickness of a
finite layer needs to be much larger than the critical thickness of L = 4 in
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order to be able to visualise these instabilities. Additionally, as expected, the
development of the instability for a finite layer shown in figure 6 is weaker
than found for a single step shown in figure 2.

For L = 64, numerically we find that the linear stability predicts that
T1 = 105.59 and T2 = 442.88. At these times the fastest growing wavenumbers
are kmax = 0.0565 and 0.0388 which give wavelengths of 111.2 and 161.9,
respectively. In figure 6(b) at time T = 103 we see 14 fingers falling downwards
in a domain of thickness 2000, so the thickness of each finger is around 143,
so the numerically observed wavelengths are consistent with those predicted
by the linear stability analysis.

5 A piecewise linear profile

Finally, we consider the case when the initial distribution of species A is a
piecewise linear profile with concentrations of R1 at X = −L/2 and R2 at
X = L/2, i.e.

Ã(X, 0) =


0, for 2X < −L

1
2

(R1 +R2) +
X

L
(R2 −R1), for − L < 2X < L

0, for L < 2X

(49)

which physically corresponds to species A being dissolved in a layer of thickness
L, such that the concentration is spatially linear, i.e. has a constant concen-
tration gradient, with species A being absent from both the regions above and
below this layer. At time T = 0 the analytical dispersion equation is given in
appendix D, but the implicit solution is quite complicated and so only a single
dispersion curve has been included in this study. The evolution of the base
state satisfies equations (21) and (22) along with the initial condition

Ã(X, 0) =
1

2L
[R1 (L− 2X) +R2 (L+ 2X)]H(L2 − 4X2). (50)

Solving this system yields the base state concentration

Ã(X,T ) =
1

4L
[R1 (L− 2X) +R2 (L+ 2X)]

[
erf
(

2X + L

4
√
T

)
− erf

(
2X − L

4
√
T

)]
+ (R2 −R1)

√
T

L
√
π

[
exp

(
− (2X + L)2

16T

)
− exp

(
− (2X − L)2

16T

)]
. (51)

The total amount of Ã present is
∫ ∞
−∞

ÃdX = (R1+R2)L/2. After numerically

exploring the parameter space we find that for large times the condition for
an instability for the evolution of the piecewise linear profile (50) is

|R1 +R2|L > 8 (52)
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Fig. 7 Dispersion curves of the instantaneous growth rate σ against the wavenumber k for
the initial piecewise linear profile (50) with a thickness of L = 32, obtained using equations
(36) and (51). Here R1 = 0 and R2 = 1, corresponding to a bottom heavy triangular profile.
Curves are illustrated at times T = 108.37 (+), 41.36 (©), 19.74 (∗), 9.68 (2), 4.37 (?),
1.44 (3) and 0.21 (5). The dashed curve is at time T = 0 given by the analytical solution
in appendix D.

which agrees with the conjecture made by [35] that the system is stable to
long wave instabilities when∣∣∣∣∫ ∞

−∞
ÃdX

∣∣∣∣ ≤ 4 when Ã→ 0 as X → ±∞. (53)

The numerical linear stability analysis was carried out by obtaining the max-
imum eigenvalue σ of the matrix M given by equation (36) over a range of
wavenumbers k, where the matrix J uses the spatial derivative of the base
state concentration which can be analytically obtained from equation (51).

5.1 Increasing gradients − Bottom heavy triangular profiles

In this subsection, we consider R1 = 0 and R2 = 1 so that we initially have
a bottom heavy triangular profile. The profile for Ã changes rapidly near
X = L/2 where the gradient is initially most negative. A useful measure is

to consider
∫ L/2

0

Ã dX which remains above 90% of the initial value of 3L/8

when L ≥ 15.884
√
T .

Typical dispersion curves for the evolution of the piecewise linear profile
(50) with R1 = 0, R2 = 1, and L = 32, corresponding to a bottom heavy
triangular profile, are illustrated in figure 7 at various times. We observe that
the analytical dispersion curve at T = 0, given in appendix D, is close to
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Fig. 8 Properties of the maximum instantaneous growth rate for the initial piecewise linear
profile (50) with thickness L for R1 = 0 and R2 = 1, corresponding to a bottom heavy
triangular profile, obtained by numerically solving equations (36) and (51). In (a) curves of
one third power of the product of the maximum instantaneous growth rate σmax with time
T are plotted against L, at times T = 10 (©), 102 (∗), 103 (2) and 104 (?). In (b) curves of
the maximum instantaneous growth rate multiplied by the square root of time are plotted
against (L− 8) divided by the square root of time, at times T = 10 (©), 102 (∗), 103 (2),
104 (?), 105 (3) and 106 (5).

the numerically obtained dispersion curve at T = 0.21. As time increases the
growth rates decay.

Numerically we find that close to criticality the growth rate appears to
approximately scale with (L− 8)3/T . In figure 8(a) the one third power of the
product of the maximum instantaneous growth rate with time for the evolution
of the piecewise linear profile (50) for R1 = 0 and R2 = 1, corresponding to
a bottom heavy profile, is plotted against L at various times T . We notice
that as L tends to 8 the maximum instantaneous growth rate tends to zero,
indicating that the system is stable for L ≤ 8, which agrees with the prediction
in equation (52) for large times.

In figure 8(b) the product of the maximum instantaneous growth rate with
the square root of time is plotted against (L − 8)/

√
T at various times for

R1 = 0 and R2 = 1. We notice that for a fixed value of T , as L increases the
maximum instantaneous growth rates increases.

When R1 = 0 and R2 = 1, in figure 9 we plot log10(L) against log10(Ti) for
i = 1, 2 and 3. We see in figure 9 that the value of each Ti tends to a constant
as L tends to infinity, however, as L decreases towards a critical value, each
Ti tends to infinity. For a given value of L we see that T1 < T2 < T3.

By performing numerical simulations we obtained the full solutions to equa-
tions (14) and (15) for an initial concentration corresponding to the piecewise
linear profile (50) with thickness L for R1 = 0 and R2 = 1, corresponding to
a bottom heavy triangular profile, see figure 10. Figure 10 shows contours of
the concentration at time T = 103 for (a) L = 32 and (b) L = 128. Figure
10(b), for a thickness of L = 128, shows an instability which is significantly
more pronounced than in figure 10(a) for a thickness of L = 32, as expected
from the numerical linear stability analysis.
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Fig. 9 Log-log plots relating Ti with L are presented for the initial piecewise linear profile
(50) with thickness L with R1 = 0 and R2 = 1, corresponding to a bottom heavy triangular
profile, obtained by numerically solving equations (36) and (51). The solid line corresponds
to T1, the dashed line to T2 and the dotted line to T3.
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Fig. 10 Contours of A obtained from equations (14) and (15) with an initial condition
corresponding to the piecewise linear profile (50) with R1 = 0 and R2 = 1, corresponding to
a bottom heavy triangular profile, of thickness (a) L = 32 and (b) L = 128 at time T = 103.

For L = 128, R1 = 0 and R2 = 1 numerically we find that the linear
stability predicts that T1 = 185.73 and T2 = 1007.6. At these times the fastest
growing wavenumbers are kmax = 0.0446 and 0.0259 which give wavelengths of
140.9 and 242.6, respectively. We note that in this case the wavelengths have
a large range due to the large difference between T1 and T2. In figure 10(b)
at time T = 103 we see 19 fingers falling downwards in a domain of thickness
3000, so the thickness of each finger is around 158, so the numerically observed
wavelengths are consistent with those predicted by the linear stability analysis
at time T1.

5.2 Increasing gradients − Bottom heavy profiles

In this subsection, we consider R2 = 1 with |R1| ≤ 1, so that the density is
greatest at X = L/2, i.e. at the bottom of the layer. In figure 11 we present the
neutral stability curves at various times when R2 = 1, corresponding to a bot-
tom heavy profile. For R1 ≥ 0 the marginal stability curve was not observed to
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Fig. 11 Neutral stability curves for the initial piecewise linear profile (50) with thickness
L and R2 = 1, corresponding to a bottom heavy profile, obtained by numerically solving
equations (36) and (51). Curves are illustrated at times T = 0.001 (4), 10 (©), 102 (∗), 103

(2) and 104 (?). The dotted curve is the large time theoretical onset condition (52) with
R2 = 1.

change in time, however, for R1 < 0, the marginal stability curve does change
in time. Numerically we found that the system was stable to long wave insta-
bilities when |R1 +R2|L < 8, however, short wave instabilities are found to be
present when |R1+R2|L < 8, however, the region where these short wave insta-
bilities occurs, shrinks in time. Hence, the neutral stability curve approaches
the theoretically predicted condition (52) for large times. For small and mod-
erate times when R1 < 0 we numerically find that the threshold thickness can
be significantly smaller than than thickness L predicted by equation (52) due
to the presence of short wave instabilities.

When R1 = −1 and R2 = 1, in figure 12 we plot log10(L) against log10(Ti)
for i = 1, 2 and 3. We observe that the value of each Ti tends to a constant as
L tends to infinity. However, for moderate values of L, the Ti curves turn back
of themselves, i.e. there exist values of L in which there are two values of Ti for
i = 1, 2 and 3. As Ti satisfies σmaxTi = i, this means that the value of σmaxT
is no longer monotonic increasing, but instead changes from initially being
increasing in time to decreasing in time, so the system becomes less unstable in
time. This result is expected, as the onset condition for an instability, equation
(52), predicts that for large times the system will eventually be stable as
R1 +R2 = 0.

In figure 13 we present contours of the maximum instantaneous growth rate
for the evolution of the piecewise linear profile (50) when R2 = 1, correspond-
ing to a bottom heavy profile, at T = 10 and T = 103. Similar contours plots
were found at other times but are not presented to avoid repetition. Although
figure 13(a) at T = 10 resembles figure 13(b) at T = 103, we notice that the
values of L are around 4 times larger. The contours show that increasing L
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Fig. 12 Log-log plots relating Ti with L are presented for the initial piecewise linear profile
(50) with thickness L with R1 = −1 and R2 = 1,corresponding to a bottom heavy profile,
obtained by numerically solving equations (36) and (51). The solid line corresponds to T1,
the dashed line to T2 and the dotted line to T3.
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Fig. 13 Contours of the maximum instantaneous growth rate for the initial piecewise linear
profile (50) for R2 = 1, corresponding to a bottom heavy profile, obtained by numerically
solving equations (36) and (51). In (a) T = 10 and contours are illustrated for σmax = 0.002
(©), 0.0075 (∗), 0.011 (2), 0.013 (?), 0.0145 (3), 0.016 (5). In (b) T = 103 and contours
are illustrated for σmax = 0.0005 (©), 0.002 (∗), 0.003 (2), 0.0036 (?), 0.004 (3), 0.0044
(5).

and increasing R1 both monotonically increase the maximum instantaneous
growth rate at each of the times investigated. However, increasing T decreases
the maximum instantaneous growth rate.

To summarise, numerically we have found that, for thick layers, the growth
rates for the initial piecewise linear profile (50), when we have a bottom heavy
profile, decay with T−1/2 (like a single step) for a long time, however, later
they decay like T−1.
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Fig. 14 Maximum instantaneous growth rates for the initial piecewise linear profile (50)
obtained using equations (36) and (51) for R1 = 1 and R2 = 0, corresponding to a top
heavy triangular profile. In (a) σmax is plotted against the logarithm of L at times T = 1
(+), 10 (©), 102 (∗), 103 (2), 104 (?), 105 (3) and 106 (5). The dotted line corresponds to
equation (54). In (b) log10(σmax) is plotted against log10(T ) for thicknesses L = 10 (©),
102 (∗), 103 (2) and 104 (?).

5.3 Decreasing gradients − Top heavy triangular profiles

In this subsection, we consider R1 = 1 and R2 = 0 so that we initially have
a top heavy triangular profile. The profile for Ã changes slowly near X = 0
where the gradient is initially most negative. A useful measure is to consider∫ L/2

−L/2
Ã dX which remains above 90% of the initial value of L/2 when L ≥

11.284
√
T .

In figure 14(a) the maximum instantaneous growth rate for the evolution
of the piecewise linear profile (50) with R1 = 1 and R2 = 0, corresponding to
a top heavy triangular profile, is plotted against the logarithm of L at various
times. We observe that there is a most unstable thickness L for each time, in
which reducing L or increasing L reduces the maximum instantaneous growth
rate. Further, when L is very large, we see that the maximum instantaneous
growth rate stays virtually constant for a very large time.

In appendix E we include the dispersion equation derived by Horton and
Rogers [9] and Lapwood [10] for a fluid in a vertical region of height L with a
constant density gradient of (R2 − R1)/L with no flux boundary conditions,
whose maximum growth rate is given by

σmax =
R1 −R2

L
− 2π
L3/2

√
R1 −R2. (54)

Although our problem is in an infinite region, we observe that for large L and
large T , the growth rates in figure 14(a) are very close to those predicted by
equation (54) illustrated by a dotted line.

In figure 14(b) the logarithm of the maximum instantaneous growth rate
for the evolution of the piecewise linear profile (50) with R1 = 1 and R2 = 0
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Fig. 15 Log-log plots relating Ti with L are presented for the initial piecewise linear profile
(50) with thickness L for R1 = 1 and R2 = 0, corresponding to a top heavy triangular
profile, obtained by numerically solving equations (36) and (51). The solid line corresponds
to T1, the dashed line to T2 and the dotted line to T3.
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Fig. 16 Contours of A obtained from equations (14) and (15) with an initial condition
corresponding to the piecewise linear profile (50) with R1 = 1 and R2 = 0, corresponding
to a top heavy triangular profile, of thickness (a) L = 32 and (b) L = 128 at time T = 103.

is plotted against the logarithm of T for various thicknesses. We observe that
the growth rates are virtually constant for a long period of time, and then
decay like T−1. Increasing the thickness L, increases the time delay for when
the regime changes from a constant growth rate to a decaying growth rate.

When R1 = 1 and R2 = 0, in figure 15 we plot log10(L) against log10(Ti)
for i = 1, 2 and 3. We observe that there appears to be a most unstable
thickness L, as increasing or decreasing L yields a large value of Ti, however,
this optimum value of L is different for T1, T2 and T3. As before we observe
that as L decreases towards a critical value, each Ti tends to infinity.

By performing numerical simulations we obtained the full solutions to equa-
tions (14) and (15) for an initial concentration profile corresponding to the
piecewise linear profile (50) of thickness L for R1 = 1 and R2 = 0, corre-
sponding to a top heavy triangular profile. Figure 16 shows contours of the
concentration at time T = 103 for (a) L = 32 and (b) L = 128. Figure 16(b)
for a thickness of L = 128 shows an instability which is significantly more
pronounced than in figure 16(a) for a thickness of L = 32, as expected from
the numerical linear stability analysis.
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Fig. 17 Neutral stability curves for the initial piecewise linear profile (50) with thickness L
with R1 = 1, corresponding to a top heavy profile, obtained by numerically solving equations
(36) and (51). Curves are illustrated at times T = 0.001 (4), 10 (©), 102 (∗), 103 (2) and
104 (?). The dotted curve is the large time theoretical onset condition (52).

For L = 128 with R1 = 1 and R2 = 0, the numerical linear stability predicts
that T1 = 332.49 and T2 = 1257.9. The fastest growing wavenumbers at these
times are kmax = 0.0312 and 0.0229, corresponding to wavelengths of 201.4
and 274.4 respectively. The full numerical simulation at time T = 103, shown
in figure 16(b), has produced 17 fingers in a domain of thickness 3000. The
average thickness of each finger is therefore around 176, which is consistent
with the wavelengths predicted by the numerical linear stability analysis at
time T1.

5.4 Decreasing gradients − Top heavy profiles

In this subsection, we consider R1 = 1 with |R2| ≤ 1, so that the density is
greatest at X = −L/2, i.e. at the top of the layer. In figure 17 we present the
neutral stability curves at various times when R1 = 1, corresponding to a top
heavy profile. The marginal stability curve in figure 17 resembles the marginal
stability curve in figure 11 except the horizontal axis is now R2 instead of
R1. Again, the neutral stability curve approaches the theoretically predicted
condition (52) for large times.

When R1 = 1 and R2 = −1, in figure 18 we plot log10(L) against log10(Ti)
for i = 1, 2 and 3. We observe that there appears to be a most unstable
thickness L, as increasing or decreasing L yields a large value of Ti, however,
this optimum value of L is different for each T1, T2 and T3. For moderate values
of L, the Ti curves turn back of themselves, showing that the product σT can
decrease in time, so the system becomes less unstable in time. This result is
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Fig. 18 Log-log plots relating Ti with L are presented for the initial piecewise linear profile
(50) with thickness L for R1 = 1 and R2 = −1, corresponding to a top heavy profile,
obtained by numerically solving equations (36) and (51). The solid line corresponds to T1,
the dashed line to T2 and the dotted line to T3.
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Fig. 19 Contours of the maximum instantaneous growth rate for the initial piecewise linear
profile (50) for R1 = 1, corresponding to a top heavy profile, obtained by numerically solving
equations (36) and (51). In (a) T = 10 and contours are illustrated for σmax = 0.004 (©),
0.005 (∗), 0.006 (2), 0.008 (?), 0.012 (3), 0.016 (5). In (b) T = 103 and contours are
illustrated for σmax = 0.0014 (©), 0.0018 (∗), 0.002177 (2), 0.0026 (?), 0.0032 (3), 0.004
(5).

expected, as the onset condition for an instability, equation (52), predicts that
for large times the system will eventually be stable.

In figure 19 we present contours of the maximum instantaneous growth rate
for the evolution of the piecewise linear profile (50) for R1 = 1, corresponding
to a top heavy profile, at times T = 10 and T = 103. Similar contours plots
were found at other times but are not presented to avoid repetition. Although
figure 19(a) at T = 10 resembles figure 19(b) at T = 103, we notice that the
values of L are around 4 times larger. The growth rates are observed to be
smallest for small L or for large L near R2 = 0. The growth rates are largest
near R2 = 1, but also increase near R2 = −1 for a narrow range of L, which
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corresponds to an optimum thickness L. This optimum appears true for most
values of R2.

To summarise, numerically we have found that, for thick layers, the growth
rates for the initial piecewise linear profile (50), when we have a top heavy
profile, remain constant for a long time, however, later they decay like T−1.

6 Conclusions

In this study we perform both linear stability analysis and full numerical sim-
ulations to examine buoyancy instabilities in a two dimensional vertically ori-
ented porous medium. Using the quasi-steady state approximation, the linear
stability analysis was reduced to an eigenvalue problem.

In section 3 we considered a species uniformly dissolved in the upper half
of the domain, and absent from the bottom half of the domain. The numer-
ical linear stability agreed well with the analytical solution obtained at time
T = 0 by [23] for a related problem. Large time asymptotic analysis showed
that the instantaneous growth rate decreases in time like T−1/2, which were in
agreement with the results obtained from the numerical linear stability anal-
ysis. Full numerical simulations produced density fingers with wavelengths in
agreement with the predictions by the linear stability analysis.

In section 4 we considered a species initially uniformly distributed in a
finite layer. The threshold condition for a long wave instability derived by [35]
at time T = 0 was numerically found to hold for all time. Thin layers were
found to have very weak instabilities, even when the layer was several times
thicker than the threshold thickness for an instability to occur. For very thick
layers, we found that for a long time the growth rates decayed like T−1/2, but
eventually decayed like T−1 with the time taken for them to start decaying
like T−1 depending on L.

In section 5 we considered a species initially linearly distributed in a finite
layer. When the concentration has an increasing gradient in the downwards
direction, so that the density profiles were bottom heavy, the stability of the
system was similar to that of a uniformly distributed finite layer, i.e. increasing
the thickness or concentration of the species both has monotonic increasing
affects on the stability of the system. For thick layers, the growth rates for the
initially piecewise linear bottom heavy profile considered decayed with T−1/2

(like a single step) for a long time, however, later they decay like T−1. However,
when the concentration had a decreasing gradient in the downwards direction,
so that the density profiles were top heavy, the stability of the system behaved
differently. For a thin layer the growth rates quickly decayed, however, for
thick layers the growth rates remained constant for a long period time, but
eventually decayed like T−1 for very large times. At a given time, the layer
thickness had a non-monotonic affect on the stability of the system with thin
and thick layers being less unstable than an optimum layer thickness, however,
this optimum layer thickness increases in time.



Rayleigh-Taylor Instabilities of Piecewise Linear Density Profiles 27

Acknowledgements PMJT would like to thank Anne De Wit for fruitful discussions.
Additionally the authors would like to thank the referees for their constructive comments
which helped to improve the manuscript.

References

1. Lord Rayleigh (1883) Investigation of the character of the equilibrium of an incompress-
ible heavy fluid of variable density. Proc. Lond. Math. Soc., 14: 170–177.

2. Taylor GI (1950) The instability of liquid surfaces when accelerated in a direction per-
pendicular to their planes. Proc. R. Soc. Lond. A, 201: 192–196.

3. Cabot WH & Cook AW (2006) Reynolds number effects on Rayleigh-Taylor instability
with possible implications for type-Ia supernovae. Nature Physics, 2: 562–568.

4. Huang CS, Kelley MC & Hysell DL (1993) Nonlinear Rayleigh-Taylor instabili-
ties,atmospheric gravity waves and equatorial spread F. J. Geophys.Res., 98: 15631–
15642.

5. Gerya TV & Yuen DA (2003) Rayleigh-Taylor instabilities from hydration and melting
propel ‘cold plumes’ at subduction zones. Earth Planet. Sci. Lett., 212: 47–62.

6. Conrad CP & Molnar P (1997) The growth of Rayleigh-Taylor-type instabilities in the
lithosphere for various rheological and density structures. Geophy. J. Int., 129: 95–112.

7. Sharp DH (1984) An overview of Rayleigh-Taylor instability. Physica D, 12: 3–18.
8. Citri O, Kagan ML, Kosloff R & Avnir D (1990) The evolution of chemically induced

unstable density gradients near horizontal reactive interfaces. Langmuir, 6: 559–564.
9. Horton CW & Rogers Jr. FT (1945) Convection currents in porous media. J. Appl.

Phys., 20: 367–369.
10. Lapwood ER (1948) Convection of a fluid in a porous medium. Proc. Cambridge Phil.

Soc., 44: 508–521.
11. Stommel H, Arons AB & Blanchard D (1956) An oceanographic curiosity: the perpetual

salt fountain. Deep-Sea Res., 3: 152–152.
12. Stern ME (1960) The salt-fountain and thermohaline convection. Tellus, 12: 172–177.
13. Huppert HE & Mannis PC (1973) Limiting conditions for salt-fingering at an interface.

Deep Sea Res., 20: 315–323.
14. Trevelyan PMJ, Almarcha C & De Wit A (2011) Buoyancy-driven instabilities of mis-

cible two-layer stratifications in porous media and Hele-Shaw cells. J. Fluid Mech., 670:
38–65.

15. Saffman PG & Taylor G (1958) The penetration of a fluid into a medium or Hele-Shaw
cell containing a more viscous liquid. Proc. Soc. London, Ser A., 245: 312–329.

16. Homsy GM (1987) Viscous fingering in porous media. Ann. Rev. Fluid Mech., 19:
271–311.

17. Pritchard D (2009) The linear stability of double-diffusive miscible rectilinear displace-
ments in a Hele-Shaw cell. Euro. J. Mech. B. Fluids, 28: 564–577.

18. Mishra M, Trevelyan PMJ, Almarcha C & De Wit A (2010) Influence of double diffusive
effects on miscible viscous fingering. Phys. Rev. Lett., 105: 204501.

19. De Wit A (2016) Chemo-hydrodynamic patterns in porous media. Phil. Trans. R. Soc.
A, 374: 20150419.

20. Hickernell FJ & Yortsos YC (1986) Linear stability of miscible displacement processes
in porous media in the absence of dispersion. Stud. Appl. Math., 74: 93–115.

21. Manickam O & Homsy GM (1993) Stability of miscible displacements in porous media
with non-monotonic viscosity profiles. Phys. Fluids A, 5: 1356–1367.

22. Manickam O & Homsy GM (1994) Simulation of viscous fingering in miscible displace-
ments with non-monotonic viscosity profiles. Phys. Fluids, 9: 95–107.

23. Tan CT & Homsy GM (1986) Stability of miscible displacements in porous media:
rectilinear flow. Phys. Fluids, 29: 3549–3556.

24. Ben Y, Demekhin EA & Chang HC (2002) A spectral theory for small amplitude
miscible fingering. Phys. Fluids, 14: 999–1010.

25. Kim MC (2012) Linear stability analysis on the onset of the viscous fingering of a slice
in a porous medium. Adv. Water Res., 35: 1–9.



28 S. Cowell, J. Kent, and P. M. J. Trevelyan

26. Hota TK, Pramanik S & Mishra M (2015) Onset of fingering instability in a finite slice
of adsorbed solute. Phys. Rev. E, 92: 023013.

27. Trevelyan PMJ, Almarcha C & De Wit A (2015) Buoyancy-driven instabilities around
A+B → C reaction fronts: A general classification. Phys. Rev. E, 91: 023001.

28. Kim MC (2014) Effect of the irreversible A + B → C reaction on the onset and the
growth of the buoyancy-driven instability in a porous medium. Chem. Eng. Sci., 112:
56–71.

29. Kim MC (2019) Effect of the irreversible A + B → C reaction on the onset and the
growth of the buoyancy-driven instability in a porous medium: Asymptotic, linear, and
nonlinear stability analyses. Phys. Rev. Fluids, 4: 073901.

30. Hejazi SH, Trevelyan PMJ, Azaiez J & De Wit A (2010) Viscous fingering of a miscible
reactive A+B → C interface: A linear stability analysis. J. Fluid Mech., 652: 501–528.

31. Riaz A, Hesse M, Tchelepi HA & Orr FM (2006) Onset of convection in a gravitationally
unstable diffusive boundary layer in porous media. J. Fluid Mech., 548: 87–111.

32. Kim MC (2015) Linear and nonlinear analyses on the onset of gravitational instabilities
in a fluid saturated with in a vertical Hele-Shaw cell. Chem. Eng. Sci., 126: 349–360.

33. Kim MC & Song KH (2017) Effect of impurities on the onset and growth of gravitational
instabilities in a geological CO2 storage process: Linear and nonlinear analyses. Chem.
Eng. Sci., 174: 426–444.

34. Kim MC & Wylock C (2017) Linear and nonlinear analyses of the effect of chemical
reaction on the onset of buoyancy-driven instability in a CO2 absorption process in a
porous medium or Hele-Shaw cell. Canadian J. Chem. Eng., 96: 105–118.

35. Gandhi J & Trevelyan PMJ (2014) Onset conditions for a Rayleigh-Taylor instability
with step function density profiles. J. Eng. Math., 86: 31–48.

36. Kim MC (2015) Linear stability analysis on the onset of the Rayleigh-Taylor instability
of a miscible slice in a porous medium. J. Eng. Math., 90: 105–118.

37. Nield DA & Bejan A (2006) Convection in porous media. New York, Springer.
38. Martin J, Rakotomalala N & Salin D (2002) Gravitational instability of miscible fluids

in a Hele-Shaw cell. Phys. Fluids, 14: 902–905.
39. Fulton SR, Ciesielski PE & Schubert WH (1986) Multigrid methods for elliptic prob-

lems: a review. Mon. Weather Rev., 114: 943–959.
40. Lin S-J & Rood RB (1996) Multidimensional flux-form semi-Lagrangian transport

schemes. Mon. Weather Rev., 124: 2046–2070.
41. Holdaway D & Kent J (2015) Assessing the tangent linear behaviour of common tracer

transport schemes and their use in a linearised atmospheric general circulation model.
Tellus A, 67: 27895.

42. Kalliadasis S, Yang J & De Wit A (2004) Fingering instabilities of exothermic reaction-
diffusion fronts in porous media. Phys. Fluids, 16: 1395–1409.

A Mesh

For the numerical linear stability analysis we use a non-uniform mesh. We choose the number
of spatial nodes n to be of the form n = 4m + 1. The whole domain is X ∈ [−W,W ]. We
choose to uniformly distribute around half of the nodes inside X ∈ [−L/2, L/2]. Outside
of this central region we distribute the nodes so that the distance between them are in a
geometric progression. Hence, we locate the nodes at:

Xi =

8>>>>><>>>>>:
−
L

2
−

L

2m

„
θm+1−i − 1

θ − 1

«
for 1 ≤ i ≤ m+ 1

L

2m
(i− 2m− 1) for m+ 1 ≤ i ≤ 3m+ 1

L

2
+

L

2m

„
θi−3m−1 − 1

θ − 1

«
for 3m+ 1 ≤ i ≤ 4m+ 1.

(55)

This form has been chosen so that the nodes pass through the points Xm+1 = −L/2,
X2m+1 = 0 and X3m+1 = L/2, and further, so that the distance between the nodes are
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equal where the uniform and non-uniform mesh meet, i.e. Xm+1−Xm = Xm+2−Xm+1 =
X3m+1 − X3m = X3m+2 − X3m+1 = L/(2m). Finally, in order for the nodes to satisfy
X1 = −W and Xn = W we require that θ satisfies

θm −m
„

2W

L
− 1

«
(θ − 1)− 1 = 0. (56)

Once, L, W and m have been given values, this equation was numerically solved for θ using
an initial guess of θ = 1.1 with the Newton-Raphson method.

B Finite differences

We approximate the second derivative using a five point third order accurate finite difference
scheme of the form

ΦXX |Xi
= aiΦi−2 + biΦi−1 + ciΦi + diΦi+1 + eiΦi+2 (57)

where Φi = Φ(Xi) and the constants ai, bi, ci, di and ei are given by

ai =
2(3X2

i − 2XiXi+1 − 2XiXi+2 − 2XiXi−1 +Xi+1Xi+2 +Xi+1Xi−1 +Xi+2Xi−1)

(Xi+2 −Xi−2)(Xi+1 −Xi−2)(Xi −Xi−2)(Xi−1 −Xi−2)

bi =
2(3X2

i − 2XiXi+1 − 2XiXi+2 − 2XiXi−2 +Xi+1Xi+2 +Xi+1Xi−2 +Xi+2Xi−2)

(Xi+2 −Xi−1)(Xi+1 −Xi−1)(Xi −Xi−1)(Xi−2 −Xi−1)

ci =
2(6X2

i − 3XiXi+1 − 3XiXi+2 − 3XiXi−1 − 3XiXi−2 +Xi+1Xi+2)

(Xi+2 −Xi)(Xi+1 −Xi)(Xi−1 −Xi)(Xi−2 −Xi)

+
2(Xi+1Xi−1 +Xi+1Xi−2 +Xi+2Xi−1 +Xi+2Xi−2 +Xi−1Xi−2)

(Xi+2 −Xi)(Xi+1 −Xi)(Xi−1 −Xi)(Xi−2 −Xi)

di =
2(3X2

i − 2XiXi+2 − 2XiXi−1 − 2XiXi−2 +Xi−1Xi−2 +Xi+2Xi−1 +Xi+2Xi−2)

(Xi+2 −Xi+1)(Xi −Xi+1)(Xi−1 −Xi+1)(Xi−2 −Xi+1)

ei =
2(3X2

i − 2XiXi−1 − 2XiXi−2 − 2XiXi+1 +Xi−1Xi−2 +Xi−1Xi+1 +Xi−2Xi+1)

(Xi+1 −Xi+2)(Xi −Xi+2)(Xi−1 −Xi+2)(Xi−2 −Xi+2)

for 3 ≤ i ≤ n−2. Near the left hand boundary we use the no flux boundary condition within
the approximation for the second derivative using a four point third order accurate finite
difference scheme of the form

ΦXX |X1 = c1Φ1 + d1Φ2 + e1Φ3 + f1Φ4 (58)

ΦXX |X2 = b2Φ1 + c2Φ2 + d2Φ3 + e2Φ4 (59)

where

c1 = −2
(X3 −X1)2 + (X3 −X1)(X4 −X1) + (X4 −X1)2

(X3 −X1)2(X4 −X1)2

− 2
(X2 −X1)(X3 −X1) + (X2 −X1)(X4 −X1) + (X3 −X1)(X4 −X1)

(X2 −X1)2(X3 −X1)(X4 −X1)

d1 =
2(X3 −X1)(X4 −X1)

(X1 −X2)2(X3 −X2)(X4 −X2)

e1 =
2(X2 −X1)(X4 −X1)

(X1 −X3)2(X2 −X3)(X4 −X3)

f1 =
2(X2 −X1)(X3 −X1)

(X1 −X4)2(X2 −X4)(X3 −X4)
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and

b2 =
2(X3 −X2)(X4 −X2)

(X2 −X1)2(X3 −X1)(X4 −X1)

c2 = −2
3X2

2 − 3X2X1 − 3X2X4 +X2
1 +X1X4 +X2

4

(X1 −X2)2(X4 −X2)2

− 2
3X2

2 − 2X2X1 − 2X2X3 − 2X2X4 +X1X3 +X1X4 +X3X4

(X1 −X2)(X3 −X2)2(X4 −X2)

d2 =
2(X1 −X2)(X4 −X2)

(X1 −X3)(X2 −X3)2(X4 −X3)

e2 =
2(X1 −X2)(X3 −X2)

(X1 −X4)(X2 −X4)2(X3 −X4)
.

Similarly, near the right hand boundary we use the no flux boundary condition within
the approximation for the second derivative using a four point third order accurate finite
difference scheme of the form

ΦXX |Xn−1 = an−1Φn−3 + bn−1Φn−2 + cn−1Φn−1 + dn−1Φn (60)

ΦXX |Xn = fnΦn−3 + anΦn−2 + bnΦn−1 + cnΦn (61)

where

an−1 =
2(Xn −Xn−1)(Xn−2 −Xn−1)

(Xn −Xn−3)(Xn−1 −Xn−3)2(Xn−2 −Xn−3)

bn−1 =
2(Xn −Xn−1)(Xn−3 −Xn−1)

(Xn −Xn−2)(Xn−1 −Xn−2)2(Xn−3 −Xn−2)

cn−1 = −2
3X2

n−1 − 3Xn−1Xn−3 − 3Xn−1Xn−2 +X2
n−3 +Xn−3Xn−2 +X2

n−2

(Xn−2 −Xn−1)2(Xn−3 −Xn−1)2

− 2
3X2

n−1 − 2Xn−1Xn−3 − 2Xn−1Xn−2 − 2Xn−1Xn +Xn−3Xn−2 +Xn−3Xn +Xn−2Xn

(Xn −Xn−1)2(Xn−2 −Xn−1)(Xn−3 −Xn−1)

dn−1 =
2(Xn−2 −Xn−1)(Xn−3 −Xn−1)

(Xn−1 −Xn)2(Xn−2 −Xn)(Xn−3 −Xn)

and

fn =
2(Xn−1 −Xn)(Xn−2 −Xn)

(Xn −Xn−3)2(Xn−1 −Xn−3)(Xn−2 −Xn−3)

an =
2(Xn−1 −Xn)(Xn−3 −Xn)

(Xn −Xn−2)2(Xn−1 −Xn−2)(Xn−3 −Xn−2)

bn =
2(Xn−2 −Xn)(Xn−3 −Xn)

(Xn −Xn−1)2(Xn−2 −Xn−1)(Xn−3 −Xn−1)

cn = −2
(Xn −Xn−2)2 + (Xn −Xn−2)(Xn −Xn−3) + (Xn −Xn−3)2

(Xn−2 −Xn)2(Xn−3 −Xn)2

− 2
(Xn −Xn−1)(Xn −Xn−2) + (Xn −Xn−1)(Xn −Xn−3) + (Xn −Xn−2)(Xn −Xn−3)

(Xn−1 −Xn)2(Xn−2 −Xn)(Xn−3 −Xn)
.
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Putting all this together, we can construct the matrix

S =

26666666666666666666664

c1 d1 e1 f1 0 0 · · · 0 0 0 0 0 0
b2 c2 d2 e2 0 0 · · · 0 0 0 0 0 0
a3 b3 c3 d3 e3 0 · · · 0 0 0 0 0 0
0 a4 b4 c4 d4 e4 · · · 0 0 0 0 0 0
0 0 a5 b5 c5 d5 · · · 0 0 0 0 0 0
0 0 0 a6 b6 c6 · · · 0 0 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
...

0 0 0 0 0 0 · · · cn−5 dn−5 en−5 0 0 0
0 0 0 0 0 0 · · · bn−4 cn−4 dn−4 en−4 0 0
0 0 0 0 0 0 · · · an−3 bn−3 cn−3 dn−3 en−3 0
0 0 0 0 0 0 · · · 0 an−2 bn−2 cn−2 dn−2 en−2

0 0 0 0 0 0 · · · 0 0 an−1 bn−1 cn−1 dn−1

0 0 0 0 0 0 · · · 0 0 fn an bn cn

37777777777777777777775

. (62)

C Large time asymptotic analysis for a step

By substituting equation (40), corresponding to the evolution of an initial step function
profile, into the system of equations (25) and (26) and then by making the rescalingsX = x0z
and k = κ/x0 we obtain

Fzz = κ2(A+ F) and σA =
Azz
x2
0

−
κ2

x2
0

A−
F
√

4πT
exp

„
−
z2x2

0

4T

«
. (63)

Then we assume that x0 �
√
T so that the exponential function can be approximated by

unity. (We note that numerically we find that kmax = O(T−1/3) so that x0 = T 1/3, which
satisfies x0 �

√
T ). Next, we assume that spatial gradients tend to zero everywhere as T

tends to infinity. The first equation gives A = −F which when substituted into the second
equation yields

σ =
1

√
4πT

−
κ2

x2
0

. (64)

First we consider the maximum instantaneous growth rate, in the large time limit, with the
assumption that x0 �

√
T , equation (64) yields

σmax ≈
1

√
4πT

. (65)

Second we consider the cut off wavenumber, i.e. when σ = 0, and now equation (64) yields

κ2
cut
x2
0

=
1

√
4πT

. (66)

For this to be consistent in the large time limit we require that x0 = T 1/4, then we have
shown that

κcut =
1

(4π)1/4
=⇒ kcut ≈

1

(4πT )1/4
. (67)
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D Linear stability for the piecewise linear profile (50)

Here we derive the dispersion equation at time T = 0 for a base state concentration profile
in the form of a piecewise linear profile with concentration R1 at X = −L/2 and R2 at
X = L/2, and zero everywhere else, i.e. equation (50), namely

Ã(X, 0) =
1

2L
[R1 (L− 2X) +R2 (L+ 2X)]H(L2 − 4X2).

The eigenfunctions A and F need to satisfy equation (25) and (26) namely

FXX = k2(A+ F),

σA = AXX − k2A+ FÃX

subject to the far field conditions equation (27) namely

AX → 0 and FX → 0 as X → ±∞.

As the coefficients in the ordinary differential equations are all constants, we can seek a
solution of the form

[A,F ] = [cA, cF ]eλX (68)

where cA and cF are constants. Substituting these expressions into the ODEs yields

λ2cF = k2(cA + cF ) and σcA = λ2cA − k2cA + cF ÃX . (69)

The first equation yields cF = k2cA/(λ
2−k2) and substituting this into the second equation

gives

(λ2 − σ − k2)(λ2 − k2) + k2ÃX = 0. (70)

For |2X| > L, then ÃX = 0 and we obtain λ = ±k and λ = ±
√
σ + k2, but for |2X| < L,

then ÃX 6= 0 and so we have the quartic

λ4 − (2k2 + σ)λ2 + k4 + (σ + r)k2 = 0 (71)

where r = (R2 −R1)/L, i.e. r = ÃX for |2X| < L. Solving this quartic yields

λ2 = k2 +
σ ± q

2
where q2 = σ2 − 4rk2. (72)

Using these values of λ along with the far field boundary conditions we obtain

F =

8<:
FT = F1k2ek(2X+L)/2 + F2k2eλ1(2X+L)/2, for X < −L/2,
FM = k2(F3eλ2X + F4e−λ2X + F5eλ3X + F6e−λ3X), for |X| < L/2,

FB = F7k2e−k(2X−L)/2 + F8k2e−λ1(2X−L)/2, for X > L/2

(73)

and

A =

8>><>>:
AT = σF2eλ1(2X+L)/2, for X < −L/2,

AM =
1
2

(σ + q)(F3eλ2X + F4e−λ2X)

+ 1
2

(σ − q)(F5eλ3X + F6e−λ3X)
, for |X| < L/2,

AB = σF8e−λ1(2X−L)/2, for X > L/2

(74)

where Fj for j = 1 to 8 are constants and

λ2
1 = k2 + σ, λ2

2 = k2 +
σ + q

2
, and λ2

3 = k2 +
σ − q

2
. (75)

Now we require that the eigenfunctions are continuous, hence, we need

AT = AM , and FT = FM at X = −L/2, (76)

AM = AB , and FM = FB at X = L/2. (77)
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Using these 4 conditions we can eliminate the constants F1, F2, F7 and F8 so that the
solutions AT , FT , AB and FB become

AT =
1

2
(σ + q)(F3e

−λ2L/2 + F4e
λ2L/2)eλ1(2X+L)/2

+
1

2
(σ − q)(F5e

−λ3L/2 + F6e
λ3L/2)eλ1(2X+L)/2, (78)

FT =
k2

2σ
(F3e

−λ2L/2 + F4e
λ2L/2)

“
(σ − q)ek(2X+L)/2 + (σ + q)eλ1(2X+L)/2

”
+
k2

2σ
(F5e

−λ3L/2 + F6e
λ3L/2)

“
(σ + q)ek(2X+L)/2 + (σ − q)eλ1(2X+L)/2

”
, (79)

AB =
1

2
(σ + q)(F3e

λ2L/2 + F4e
−λ2L/2)e−λ1(2X−L)/2

+
1

2
(σ − q)(F5e

λ3L/2 + F6e
−λ3L/2)e−λ1(2X−L)/2, (80)

FB =
k2

2σ
(F3e

λ2L/2 + F4e
−λ2L/2)

“
(σ − q)e−k(2X−L)/2 + (σ + q)e−λ1(2X−L)/2

”
+
k2

2σ
(F5e

λ3L/2 + F6e
−λ3L/2)

“
(σ + q)e−k(2X−L)/2 + (σ − q)e−λ1(2X−L)/2

”
.(81)

By integrating the ODEs over the intervals [−L
2
− ε,−L

2
+ ε] and [L

2
− ε, L

2
+ ε] and letting

ε→ 0 we can evaluate the integrals using the jumps in Ã, as ÃX is a multiple of the Dirac
delta function, to give

FMX = FTX and ATX −A
M
X = R1FT at X = −L/2 (82)

FBX = FMX and ABX −A
M
X = R2FB at X = L/2. (83)

These yield the 4 conditions

0 = P1F3 − P2F4 + P3F5 − P4F6, (84)

0 = P2F3 − P1F4 + P4F5 − P3F6, (85)

0 = Q1F3 +Q2F4 +Q3F5 +Q4F6, (86)

0 = S1F3 + S2F4 + S3F5 + S4F6 (87)

where

P1 = e−λ2L/2(2λ2σ − (σ − q)k − (σ + q)λ1),

P2 = eλ2L/2(2λ2σ + (σ − q)k + (σ + q)λ1),

P3 = e−λ3L/2(2λ3σ − (σ + q)k − (σ − q)λ1),

P4 = eλ3L/2(2λ3σ + (σ + q)k + (σ − q)λ1),

Q1 = e−λ2L/2((σ + q)(λ1 − λ2)− 2R1k
2),

Q2 = eλ2L/2((σ + q)(λ1 + λ2)− 2R1k
2),

Q3 = e−λ3L/2((σ − q)(λ1 − λ3)− 2R1k
2),

Q4 = eλ3L/2((σ − q)(λ1 + λ3)− 2R1k
2),

S1 = eλ2L/2((σ + q)(λ1 + λ2) + 2R2k
2),

S2 = e−λ2L/2((σ + q)(λ1 − λ2) + 2R2k
2),

S3 = eλ3L/2((σ − q)(λ1 + λ3) + 2R2k
2),

S4 = e−λ3L/2((σ − q)(λ1 − λ3) + 2R2k
2).
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For this homogeneous linear system of equations to have a non-trivial solution for F3, F4,
F5 and F6, we require that the coefficient matrix has a determinant of zero, i.e.

0 =

˛̨̨̨
˛̨̨̨ P1 −P2 P3 −P4

P2 −P1 P4 −P3

Q1 Q2 Q3 Q4

S1 S2 S3 S4

˛̨̨̨
˛̨̨̨ (88)

and thus we obtain the dispersion equation

0 = (Q3S4 −Q4S3)(P 2
2 − P 2

1 ) + (Q2S1 −Q1S2)(P 2
3 − P 2

4 )

+ (P1P3 − P2P4)(Q1S4 −Q4S1 + S2Q3 −Q2S3)

+ (P1P4 − P3P2)(Q1S3 −Q3S1 + S2Q4 −Q2S4). (89)

E Linear stability for a linear profile

Suppose we have a linear concentration profile with a gradient of (R2 −R1)/L, given by

Ã(X, 0) =
R1 +R2

2
+

(R2 −R1)X

L
. (90)

The eigenfunctions A and F need to satisfy equation (25) and (26) namely

FXX = k2(A+ F), (91)

σA = AXX − k2A+
(R2 −R1)

L
F . (92)

If we have a finite domain of thickness L with no flux boundary conditions, namely

AX = FX = 0 at X = ±
L

2
(93)

then using A = cA sin

„
πX

L

«
and F = cF sin

„
πX

L

«
we obtain the dispersion equation

σ =
(R1 −R2)Lk2

π2 + L2k2
− k2 −

π2

L2
(94)

which means that

k2
max =

π
√
R1 −R2

L3/2
−
π2

L2
and σmax =

R1 −R2

L
−

2π
√
R1 −R2

L3/2
(95)

and has an onset condition of

L(R1 −R2) > 4π2. (96)


