
IMPLEMENTING BIXBY AND WAGNER’S ALMOST-LINEAR-TIME ALGORITHM

FOR GRAPH REALIZATION

A Thesis

Presented to the Honors Program of

Angelo State University

In Partial Fulfillment of the

Requirements for Highest University Honors

BACHELOR OF SCIENCE

by

NEIL WIEBE THIESSEN

MAY 2020

Major: Computer Science and Mathematics



IMPLEMENTING BIXBY AND WAGNER’S ALMOST-LINEAR-TIME ALGORITHM

FOR GRAPH REALIZATION

by

NEIL WIEBE THIESSEN

APPROVED:

Dr. Simon Pfeil

Dr. Rob LeGrand

May 8, 2020

APPROVED:

Dr. Shirley M. Eoff
Director of the Honors Program



Dedication

Dedicated to my sister Margaret, without whose support

I could not have completed this thesis.

iii



ACKNOWLEDGMENTS

First and foremost, I would like to thank Dr. Simon Pfeil for advising me on this

project. His suggestion of the topic ultimately led me on the most difficult but ful-

filling journey of my life. His continued support as I hit roadblock after roadblock in

the implementation of the algorithm was invaluable, and his aid in understanding

the source material was essential.

I would also like to thank Dr. Rob LeGrand for his patience and advice during

the revising process. Additionally, the skills I gained by completing the honors com-

ponents in his and Dr. Mark Motl’s computer science courses were instrumental in

successfully completing this project.

My sincerest gratitude goes to Dr. Shirley Eoff for her support not only during

this project, but also during my four years as a member in the Honors Program. Her

thoughtful guidance as the COVID-19 pandemic forced the suspension of in-person

meetings made the situation much less stressful. To that end, her support and leader-

ship of the Honors Program during this difficult time also deserves to be recognized.

Although not involved with this project directly, the influence of Dr. Trey Smith

on my mathematical development cannot be overstated. His direction and teach-

ing style have been greatly inspiring, and any mathematical clarity gained from this

thesis should be attributed to his effective style of mathematical exposition, which I

have tried to emulate.

On a more personal note, I would like to thank my family for their emotional

and psychological support as this project tested my limits.

iv



Finally, I would be remiss not to mention the friends that have supported me:

Matt and Zach, with whom I have studied often; Cassandra, who has always been

there for me; and my housemates Neal, Skyler, and Madde, whose support on a daily

basis kept me going.

v



Abstract

The study of matroid theory unites topics from graph theory, linear algebra, com-

binatorial optimization, and many other fields. An important problem in matroid

theory, called the graph realization problem, is recognizing when a given binary ma-

troid is graphic. We present a thorough treatment of an almost-linear-time algorithm

due to Bixby and Wagner that solves this problem. Along the way, we consider the

important graph-theoretic concept of 2-isomorphism and the related hypopath prob-

lem. Finally, we present specific details on implementation of the algorithm, as well

as explore several practical applications of the algorithm.
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Chapter I

Introduction

History

The theory of matroids was independently discovered by Takeo Nakasawa and

Hassler Whitney in 1935. The work of Nakasawa has largely languished in obscurity,

whereas that of Whitney sparked an entirely new field of mathematics. The name

matroid is due to Whitney, who noticed the concept of independence as a common

thread in his studies of linear algebra and graph theory. He then extracted those min-

imal conditions which gave rise to some structure of independent and dependent

sets, and called the objects which arose from those conditions matroids. A crucial

discovery is that not all of these objects necessarily arise from some matrix in linear

algebra or graph in graph theory, implying that his idea of a matroid was not simply

a consequence of previous theories, but an entirely new independent theory.

A matroid that arises from some graph is called graphic, and the graph that gives

rise to the matroid is called a realization or realizing graph. The problem we consider is

the identification and subsequent realization of graphic matroids. The algorithm we

present is due to Robert Bixby and Donald Wagner, who published it as a technical

report from Rice University in 1985 [3]. It first appeared as part of Wagner’s Ph.D.

dissertation [12], and it has also been published in the peer-reviewed journal Mathe-

matics of Operations Research [2].

A key feature of this algorithm is its runtime, which is almost linear in the num-

ber of non-zero entries in the input matrix. The first polynomial-time algorithm was

presented by Tutte in 1960 [11]. Various other polynomial-time algorithms have since

Journal of the American Mathematical Society
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been published, but of note is the almost-linear-time algorithm of Satoru Fujishige

published in 1980 [7]. Fujishige’s and Bixby and Wagner’s algorithms were indepen-

dently discovered around the same time, with preliminary results of the latter hav-

ing been presented at a conference in 1979 despite its later publication date in 1985.

Wagner’s 1983 dissertation [12] was the first complete presentation of the algorithm,

while the subsequent versions [3, 2] served to condense the work for journal publica-

tion and more widespread dissemination.

We note that work likely similar to ours has been done by Takahiro Ohto in [9],

but we were unable to access this work, which we suspect has no English translation

(the work is originally in Japanese). The Java implementation from Ohto’s work is

freely available on the internet at http://www.math.keio.ac.jp/~kakimura/GRP/,

but this implementation was not useful or consulted for our implementation as it

lacks comments and requires an outdated version of Java to run.

Preliminary Definitions and Notation

We will use the standard language and notation of set theory. We review some core

definitions for completeness. A set S is an unordered collection of distinct elements.

A family F is a set whose members are also sets. We make this distinction only for

convenience, as all families are just as well described a sets. Given sets A and B, we

use the following notation and terms: The empty set {} is denoted ∅. The statement

a ∈ A asserts that a is an element of the set A. The notation {x | P(x)} specifies a

set such that each element x that satisfies the condition P(x) is in the set. Set union

is defined by A ∪ B = {x | x ∈ A or x ∈ B}, while set intersection is defined by

A∩ B = {x | x ∈ A and x ∈ B}. The set A− B is defined to be {x | x ∈ A and x 6∈ B}.

We say A is a subset of B, or A ⊆ B, if every element of A is also in B. In the case that

2
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we know A 6= B, we say A is a proper subset of B, or A ⊂ B. We define the power set

P(A) of A as the family {X | X ⊆ A}. We denote as |A| the cardinality of A.

Graphs

For our purposes, a graph G is an ordered pair (V, E), where V is a set of vertices and

E is a multiset (set with repetition) of edges, where each edge e ∈ E is defined by a

multiset {u, v} with u, v ∈ V and |e| = 2. We call u and v the end vertices of e, and

say that e adjoins u to v (or vice versa). We do not make the restriction that u 6= v.

We say an edge and its two end vertices are incident to each other. We denote the

vertex set of G as V(G) and the edge set by E(G). This definition allows for parallel

edges, where two edges may adjoin the same two vertices, and loops, where an edge

connects one vertex to itself. A graph with no parallel edges and no loops is a simple

graph. The degree of a vertex is the number of edges incident to it.

A graph H is called a subgraph of another graph G if V(H) ⊆ V(G) and E(H) ⊆

E(G). The edge-induced subgraph G[A] of a graph G with respect to an edge set A ⊂ E

is the graph with edge set A and vertex set V = {v ∈ V(G) | v is an endpoint of some e ∈

A}. A path is a nonempty sequence v0e1v1 . . . vk−1ekvk of distinct edges and vertices

where each vertex or edge except v0 is incident to its predecessor in the sequence.

A cycle is a nonempty sequence satisfying the definition of a path, except with the

restriction that v0 = vk. A loop is thus a minimal example of a cycle. A graph is con-

nected if there is a path joining any two distinct vertices. A connected component of a

graph G is a maximal connected subgraph of G. Evidently a connected graph has ex-

actly one connected component. A graph whose edge and vertex sets are given by

elements of a cycle is called a polygon, while a connected loopless graph on two ver-

tices is a bond. A forest is a graph without cycles. A connected forest is a tree. Given

3



loop

parallel edge

cycle
path

Figure 1 Example of a graph

a graph G, an important class of subgraphs of a connected graph G are the span-

ning trees of G, consisting of those subgraphs T of G that are trees and for which

V(T) = V(G).

A directed graph, or digraph, is a graph whose edges, now called arcs, are directed

from one vertex, called the tail of the arc, to the other, called the head. The indegree

and outdegree of a vertex are the number of arcs entering and number of arcs leav-

ing a vertex, respectively. A rooted directed tree is a digraph where exactly one vertex,

called the root, has indegree 0, and all other vertices have indegree 1. If p and c are

the tail and head, respectively, of some arc of a rooted direct tree, then p is a parent

of c and c is a child of p. Every vertex v in a rooted directed tree except the root has a

unique parent, or predecessor, denoted pred(v). Vertices of a rooted direct tree with

Figure 2 Example of a forest

4



root

leaves

Figure 3 Example of a rooted direct tree

an outdegree of 0 are called leaves.

Matroids

There are many equivalent characterizations of matroids. We give three definitions

relevant to our work. Proofs of their equivalence are routine and can be found in

[10].

The first definition is purely matroid-theoretic, having no reference to graphs or

matrices. It is the most general of the three we will present.

Definition 1 (Matroid). A matroid M is an ordered pair (E, I) with E a finite set, I ⊆

P(E) and that satisfies the following conditions:

1. ∅ ∈ I ;

2. if A ⊆ B and B ∈ I , then A ∈ I ;

3. and if A and B are in I and |A| < |B|, then we can find some element e in B−

A such that A ∪ {e} ∈ I .

Elements of I are called the independent sets of M, and E is the ground set of M.

Elements of P(E)− I are called dependent sets.

5



Our next proposition derives a matroid from an arbitrary matrix. It could just

as well be taken as the definition of a matroid, although this may restrict how many

matroids we can construct.

First, we require several concepts from linear algebra. An r × c matrix M is a

rectangular array of elements from a field F (typically R or Z) with r rows and c

columns. We label the matrix element in row i and column j of M as mi,j. An r-vector

v is an r × 1 matrix. The r is often omitted when it is arbitrary or clear from context.

A scalar is some element of the underlying field. Addition of two equal dimension

matrices and multiplication of a scalar and a matrix are both performed element-

wise. Two matrices are equal if all corresponding entries are equal. A collection of

n vectors v1, . . . , vn is linearly dependent if there exist scalars c1, . . . , cn, at least one of

which is non-zero, such that

c1v1 + . . . + cnvn = 0

where 0 denotes the appropriately sized vector with 0 in all entries. A collection of

vectors that is not linearly dependent is linearly independent.

This suffices to present our first characterization of matroids based on matrices.

Proposition 1 (Matrices give rise to matroids). Given an m × n matrix A, the ordered

pair M[A] = (E, I) where

1. E is the set of column labels of A,

2. and I is the set of all subsets of E whose corresponding group of column vectors is lin-

early independent

satisfies the conditions of definition 1.

6



There is some ambiguity in the previous proposition, as the notion of a matrix

and linear independence requires an underlying field. Any field can be chosen, but,

unless otherwise noted, we assume the field in question is F2, the finite field on two

elements, with the usual elements 0 and 1. The field F2 is characterized by the fol-

lowing tables:

+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 1

Example 1. Given the matrix

A =



a b c d e

1 1 1 0 0

0 1 0 1 0

0 0 1 0 0


we can compute the corresponding matroid, M[A]. We see immediately that E = {a, b, c, d, e}.

To find I , we must consider all combinations of columns, and choose only those that are lin-

early independent. Upon inspection, we find that

I =
{

∅, {a}, {b}, {c}, {d},

{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d},

{a, b, c}, {a, c, d}, {b, c, d}
}

.

The 2|E| − |I| = 18 dependent sets are any containing e, any with cardinality of 4 or higher,

and the set {a, b, d}.

A minimal dependent set, or circuit, is a dependent set whose proper subsets are

7



all independent. For our matroid, the set of circuits is

C =
{
{e}, {a, b, d}

}
.

The set of circuits, along with a ground set E, provides enough information to

uniquely identify our matroid; they are the smallest sets that will ruin the indepen-

dence of a set containing them. Thus, we can find I from C by choosing all subsets of

E not a superset of some element of C. We make this remark to avoid listing another

equivalent definition of a matroid, one in terms of circuits.

Another distinguished collection of sets that characterizes a matroid is its set

of maximal independent sets, each of which is called a basis or base for the matroid.

By maximal we mean that any proper superset of a basis B is dependent. For our

matroid, we find that the set of bases is

B =
{
{a, b, c}, {a, c, d}, {b, c, d}

}
.

The set of bases along with a ground set E also uniquely define a matroid. We can

obtain I from a set of bases B by choosing all subsets of E that are also a subset of

some element of B.

Our final characterization of matroids is one in terms of graphs.

Proposition 2 (Graphs give rise to matroids). Let G be a graph with edge set E. Then the

set of edge sets of cycles of G are the circuits of a matroid on E denoted M(G). This matroid

is called the cycle matroid of G.

The name circuit is motivated by this connection to cycles in graphs. We also

note that if our graph is connected, the set of spanning trees of G corresponds di-

rectly with the set of bases of M(G).

8



Example 2. Consider the graph G displayed in figure 4. The only cycles are {e} and {a, b, d}.

Since circuits (along with the same ground set) uniquely determine matroids, the matroid

M(G) is exactly M[A] found in example 1.

a b

d c e

Figure 4 A graph with two cycles

A matroid M for which a graph G exists such that M ∼= M(G) is call graphic. A

matroid M for which a matrix A over F2 exists such that M ∼= M[A] is called binary.

The set of graphic matroids is a proper subset of the set of binary matroids [10].

9



Chapter II

The Graph Realization Problem

The Problem

The overarching problem we consider is this: given a binary matroid M, is there a

graph G such that M ∼= M(G)? If so, can we construct such a graph algorithmically?

We call this the graph realization problem (GRP).

Recall that a key connection between a graph and its cycle matroid is the corre-

spondence between the cycles and spanning trees of the graph and circuits and bases

of the matroid. Seeing that we can construct a matroid given the cycles (or spanning

trees) of a graph, a natural attempt at solving GRP would then be to attempt the re-

verse: given the circuits (or bases) of a matroid, create a graph with those circuits as

cycles.

In order to facilitate the discussion going back and forth from graphs to ma-

troids, we define several terms and an important matrix representation.

We require the following lemma:

Lemma 3. Let B be a basis of a matroid M. If e ∈ E(M) − B, then B ∪ {e} contains a

unique circuit C(e, B).

We will call this the fundamental circuit of e with respect to B. In general, a basis

and all of its associated fundamental circuits does not give enough information to

specify a matroid. However, it is enough if the matroid is binary [10]. Recalling that

our statement of GRP above assumes a binary matroid as input, we will henceforth

assume that all matroids under consideration are binary. Thus, we can represent

them by giving a basis along with its fundamental circuits. In graph-theoretic terms,

10



this is akin to specifying a family of graphs by giving a spanning tree and all of its

cycles. As opposed to the case in a binary matroid, this information does not specify

a single graph. It might specify multiple graphs, exactly one graph, or none at all.

Given a matroid M and some basis B, let r = |B| and c = |E(M)− B|. Thus we

can represent M (and a family of graphs G such that M(G) = M) by an r × c matrix

N over F2. Label rows with elements of B and columns with elements of E(M)− B,

and let each entry nj,k be defined by

nj,k =


1 if j ∈ C(k, B)

0 otherwise

We call this a fundamental matrix for M. Our matroid from Example 1 can thus be rep-

resented by

N =



b e

a 1 0

d 1 0

c 0 0


Notice the e column consists of all 0s. This is because e was a one element circuit.

Notice also that the c row is also all 0. This corresponds with the fact that it is not a

part of any circuit.

The graph realization problem can thus be restated in terms of this matrix. Given

a fundamental matrix of a matroid, find a graph G (if it exists) such that the row la-

bels form a spanning tree, and the column labels along with the row labels of any

ones in that column form cycles of the graph. It is not required that these be the only

cycles of G. If this graph exists, we call the matrix M graphic.

Several simple cases can be dealt with immediately. We consider specific exam-

11



ples, but each example could be easily extended to an arbitrary matrix of a similar

form.

Fundamental Matrix Realizing Graph

M1 =



4 5 6 7

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

 1
2

3

4

5 6

7

M2 =



5 6 7 8

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

 1

2 3

4

5

6 7

8

M3 =



5 6 7 8

1 1 0 0 1

2 1 1 0 0

3 0 1 1 0

4 0 0 1 1


1

23

4
5

67

8

Several things are clear from these examples. A zero rows corresponds with a

tree edge not a part of any cycle, and a zero column corresponds with a loop. Zero

rows and columns are thus trivial, and we can safely excise them from our matrix,

attempt to realize the smaller matrix, and then add the appropriate elements to our

graph. Henceforth, we will not consider fundamental matrices with any zero rows or

columns.

The next table gives several more matrices and their realization, with the goal of

developing an intuition regarding what scenarios might occur to make this problem

12



difficult. Notice that the matrices M4 and M5 have the same realizing graph, which

illustrates the nonuniqueness of this representation.

Fundamental Matrix Realizing Graph

M4 =



5 6 7 8 9 10

1 0 1 1 1 0 0

2 1 1 1 1 1 0

3 1 1 1 0 1 1

4 0 0 1 0 1 1


1 2

3
4

5
6

7
8

9

10

M5 =



1 3 4 6 8 9

2 1 1 1 1 0 1

5 0 1 1 1 0 0

7 1 0 0 1 1 0

10 1 0 1 1 1 1


1 2

3
4

5
6

7
8

9

10

M6 =



5 6 7 8 9 10

1 0 0 1 1 0 1

2 1 1 1 1 0 1

3 1 1 0 1 1 1

4 0 1 0 0 1 1


1

2

3

4

5

6
7

8 9

10

M7 =



5 6 7 8

1 1 0 0 0

2 1 1 0 0

3 0 0 1 0

4 0 0 1 1

 1 2
3

4

5

6

7

8

Evidently, the graph becomes more difficult to realize as the number of "interac-
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tions" between the columns, or cycles, increases. By an interaction we mean a col-

umn sharing a one in the same row as another column. To capture the degree to

which the columns of a matrix interact, we will construct a secondary graph that

shows this information.

Let M be an r × c matrix over F2 with no all-zero rows or columns. Let R and C

be the row and column indices, respectively. Define a graph G with vertex set R ∪ C.

For each mj,k that is nonzero, add an edge connecting j to k. The connected compo-

nents of this graph now capture exactly which columns interact with one another.

We call the columns and rows corresponding to each connected component of G a

block of M. Further, we call M nonseparable if it has only one block.

Figures 1-3 contain the corresponding auxiliary graphs for the example matrices

M2, M3, and M7.

1 5

2 6

3 7

4 8

Figure 1 Auxiliary Graph for M2

1 5

2 6

3 7

4 8

Figure 2 Auxiliary Graph for M3

Because there is no interaction between blocks of a matrix, we can effectively re-
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1 5

2 6

3 7

4 8

Figure 3 Auxiliary Graph for M7

duce the problem into realizing each of the blocks of our matrix. Once we have real-

ized each block, we can simply identify their realizing graphs together at one vertex

to gain a connected realization for M.

We have reduced the problem somewhat, but have made little progress on how

to realize a block other than to do so manually through trial and error. In the next

section, we will introduce several graph-theoretic concepts that will shed light on

that problem.

2-isomorphism

The key to effectively constructing graphs with a given set of cycles lies in the theory

of 2-isomorphisms described first by Whitney. Our treatment of the subject is derived

from [10] and [3]. We require a preliminary definition. A k-separation of a connected

graph is a partition {E1, E2} of E(G) such that

|E1|, |E2| ≥ k

|V(G[E1]) ∩V(G[E2])| = k

That is, a partition of the edge set of a graph into two sets is a k-separation if

each of the two sets has at least k edges, and the intersection of the node sets of the
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two subgraphs induced by the partition has exactly k vertices in it. Intuitively, a k-

separation is thought of as a set of k vertices which would leave G disconnected if

deleted. Further, we say a graph is n-connected if it has no k-separation for posi-

tive k < n. The notion of graph connectedness defined earlier corresponds with 1-

connectedness as defined here. Graphs that have a 1-separation are separable, while

graphs that do not are nonseparable. By definition, all 2-connected graphs are thus

nonseparable, and all nonseparable graphs are connected.

1

4

5

2

3 6

7

a

f
h

d

e

g

c
b

Figure 4 A graph with several 2-separations

The graph in Figure 4 has several 2-separations; for instance, the edge sets (along

with their complements) {c, d}, {a, c, d}, and {a, c, d, f } all define valid 2-separations.

The graph is not nonseparable, as the edge set {h}, along with its complement, de-

fine a 1-separation.

It is important to keep the notions of nonseparable matrix and nonseparable

graph distinct. They are related, but not equivalent, terms.

Suppose a graph G has a 2-separation {E1, E2}, with u and v the two vertices in

V(G[E1]) ∩ V(G[E2]). Then the process of switching u and v in every edge incident

to them in G[E1] is called a twisting.

Figure 5 shows an example of a twisting, while Figure 6 shows a different repre-
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1 2

3

4

4

2

3

1

Figure 5 Illustration of a twisting

sentation of the same twisting.

4
2

3

1

Figure 6 Alternative realization of the twisting in Figure 5

Intuitively, this involves cutting the graph at u and v, flipping the graph on one

side of our cut about the axis perpendicular to the cut, and then rejoining both sides

again. Two graphs G and H are 2-isomorphic if H can be obtained from G by a se-

quence of twistings. The process of twisting a nonseparable graph has the impor-

tant property that it will not modify the cycles of the underlying graph. A twisting

might reorder the way certain cycles are put together, but it will not change the ac-

tual edge makeup of the cycle. Thus, it follows that graphs that are 2-isomorphic

have the same cycles. The converse is also true, and this result is due to Whitney.

Theorem 4 (Whitney’s 2-Isomorphism Theorem). Let G and H be two nonseparable

graphs with the same edge set. Then G and H are 2-isomorphic if and only if they have the

same cycles.

This leads directly to a useful corollary connecting this theorem to matroids:

Corollary 5. Let G and H be 2-isomorphic graphs. Then M(G) ∼= M(H).
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The converse is also true, but requires a slight extension of the definition of 2-

isomorphism from nonseparable graphs to arbitrary, potentially disconnected, graphs.

With this new tool, we are now poised to develop a theoretical solution to the

problem.

The Hypopath Problem

Recalling that we previously reduced the problem to considering each block of a ma-

trix separately, let M be a nonseparable r × c matrix over F2. Let Mk be the matrix

consisting of the first k columns of M with any zero rows deleted. We say M is totally

nonseparable if each Mk is nonseparable for 1 ≤ k ≤ c. Note that it is always possible

to permute the columns of a nonseparable matrix into a totally nonseparable matrix

since we know that every column interacts with at least one other column. To find

such a totally nonseparable matrix M′ for a given nonseparable matrix M, we can

start with any column of M as M′1. For each subsequent column, choose some col-

umn of M that has not yet been added and that interacts with some column already

added. The result will be totally nonseparable. We will thus assume from now on

that M is totally nonseparable.

We define two useful sets related to each column of a given fundamental matrix

M. We denote the fundamental cycle encoded by the kth column by Ck. Each Ck will

thus consist of the column label k along with the row labels of nonzero elements in

the column. We define Pk = Ck ∩ (
⋃

j<k Cj). Intuitively, each Pk defines which previ-

ous edges the kth column interacts with. Because M is totally nonseparable, we are

guaranteed that Pk 6= ∅.

We also introduce the term hypopath to denote any set of edges of a graph G that

is a path in some 2-isomorphic copy of G. A hypopath is thus a potential path of G, a
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set of edges that can be made a path without altering the cycles of G.

A theorem due to Löfgren provides us with an outline for a potential solution to

our problem [8].

Theorem 6. Let M be a totally nonseparable r × c matrix over F2. If Mk is realized by the

graph Gk for some 1 ≤ k < c, then Mk+1 is graphic if and only if Pk+1 is a hypopath of Gk.

Clearly M1 is graphic, as we can always realize it as either a bond (if there is ex-

actly one one in the first column) or a polygon (all other cases). As a general step,

assume Mk is graphic with realization Gk. If Pk+1 is not a hypopath, M is not graphic

by Theorem 1.3.1. Supposing Pk+1 is a hypopath of Gk, perform a series of twistings

on Gk to turn Pk+1 into a path of G′k. Finally, add the edges in Ck+1 − Pk+1 to G′k as

a path incident only to the end vertices of the path Pk+1 to obtain a realization for

Mk+1.

The only nontrivial step of this procedure is determining whether a set of edges

P is a hypopath in a graph G and producing the 2-isomorphic graph G′ with P as a

path.

Given an arbitrary graph, this might seem quite daunting. There are several ob-

servations that make this problem seem more tractable.

1. Our graph is finite, so the number of 2-separations must also be finite.

2. The operation of twisting is its own inverse. That is, twisting across the same

2-separation twice has no effect.

3. We do not need to consider twistings about any vertices not incident to an edge

of our desired path.

4. If we can recognize some subgraphs as being 3-connected, then we might be

able to say immediately that our path is not a hypopath.
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A naive solution to the hypopath problem could thus be achieved in time O(|P| ·

2n) where n is the number of 2-separations in our graph and P is the set of edges of

our desired path. To do this, we simply inspect the graphs resulting from every com-

bination of twistings that can be performed on the graph to see if our desired path

is a hypopath. The base of two in the exponential derives from the fact that each 2-

separation need only be considered in either its natural or twisted state. The factor

of |P| is the time taken to check whether P is a path for each combination of twist-

ings. Adding a check for 3-connected subgraphs might make the algorithm faster in

certain cases, but would not affect the worst case when the graph has no such sub-

graphs.

2

1

7

6
5

4

3

Figure 7 A polygon

The simplest example of a worst case graph for our algorithm is a polygon (a

graph consisting of a single cycle), because every pair of two vertices with at least

2 edges between them define a potential twisting point. Suppose we wish to make

{1, 4, 6} in Figure 7 into a path. We could perform the sequence of twistings given

in Figure 8 to achieve this. It is clear from this example that any proper subset of the

edges of a polygon are a hypopath of the polygon.
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Figure 8 Reordering the edges of a polygon via a sequence of twistings
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Corollary 7. Let G be a polygon and P ⊂ E(G) be a set of edges. Then P is a hypopath of G.

Proof. This is a direct consequence of Whitney’s 2-Isomorphism Theorem. In par-

ticular, the graph G′ with the same edge set as G but with edge incidences updated

to make P a path still has as its only cycle the entire edge set. So by Whitney’s 2-

Isomorphism Theorem, the graphs are 2-isomorphic and P is a hypopath of G

This allows us to bypass even considering the twistings of a polygon; we can

simply relink the edges into whatever configuration we please.

Recognizing that we now have two classes of graph whose hypopaths are easy

to recognize (polygons and 3-connected graphs), our next goal will be to describe a

decomposition of graphs into smaller, easier-to-manage graphs.

Decomposition of Graphs

The theory described in this section was first developed by Tutte in [5], and refined

for use in the context of this problem by Bixby and Wagner. We present here a com-

plete overview of only the structure of a graph decomposition, and not the process

for decomposing a graph to fit into such a structure. As the algorithm we are work-

ing towards is constructive, with each step building on the previous step, we will

never have to actually decompose a graph.

An oriented decomposition is a triple (T , D, F) consisting of a rooted directed

tree T , a finite set of nonseparable graphs D, and a set of orientation functions F.

In particular, let D be a finite set of nonseparable graphs and let T be a digraph

with vertex set D. Any two members of D can have at most one edge and no ver-

tices in common. We note that this not possible under our definition of a graph, as an

edge is determined by its end vertices. Thus, one edge could not have different end

vertices in each of the graphs it appears in. We resolve this by saying that common
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edges are designated as such without actually being strictly equal. We also adopt

the convention of calling any common edges by one name, and will also identify the

common edge of G and H as the one element in the set E(G) ∩ E(H). These remarks

are purely a technicality and do not have any real impact on our exposition. The root

of T is chosen so that it has at least one edge not in any other member of D. Two ver-

tices of T are connected by an arc if they share a common edge. The direction of each

arc is uniquely determined by the characteristics of a rooted directed tree: the root

has indegree zero, and every other vertex has indegree one. If there are multiple ver-

tices that could be validly designated as the root, any one can be chosen. This choice

will never have to be made in the algorithm by design.

Given two members G and H in D with E(G) ∩ E(H) = {e}, we call the com-

mon edge e a marker or virtual edge. If H = pred(G) (that is, H is the parent of G),

then e is called a child marker of H and called the parent marker of G. In the latter

context it is denoted pm(G). We denote as root(T ) and root(D) the root of T . To

make our pm function well-defined over D, we assign pm(root(T )) to be any edge

of the root that is not a marker edge (earlier we ensured the root must have such an

edge).

For every member G of D except the root, we require an orientation function

fG ∈ F. Each of these functions is defined as follows: Let H be a non-root member of

T , and let K be its parent. Then H and K share the edge e = pm(H). Let u1 and u2 be

the end vertices of e in H and let v1 and v2 be the end vertices of e in K. Each orienta-

tion function is then defined as a bijection fH : {u1, u2} → {v1, v2}. Notice that we

can have either fH = {u1 → v1, u2 → v2} or fH = {u1 → v2, u2 → v1}. The op-

eration of twisting over a 2-separation now corresponds to switching this orientation

function between the two of its possible states.
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The shared marker edges and orientation functions provide the information

for how T can be merged into a single undirected graph made up of members of D

modulo their marker edges. This merging will be described in detail later.

Finally, we specify several conditions to make this general oriented decomposi-

tion more manageable for our purposes:

1. Every member of D has at least three edges.

2. Every member of D is either a bond, polygon, or is 3-connected.

3. Only bond members of D have edges parallel to their parent marker.

4. Polygons cannot be adjacent to polygons in T .

5. Bonds cannot be adjacent to bonds in T .

An oriented decomposition satisfying these five conditions is called a t-decomposition.

Instead of referring to a t-decomposition as a triple (T , D, F), we will refer to it as

simply D. The existence of T and F, in their proper forms, are assumed. Figure 9

gives an example of a t-decomposition. We make one allowance in the case of 3-

connected members: a member having only trivial 2-isomorphisms, as is the case

when two vertices are connected by more than one edge, is still designated as 3-

connected.

Given two members of D that are adjacent in T , we can define a merge oper-

ation. To do so, let K be the parent, H be the child, and e be the marker edge they

share in common. To merge them, identify the ends u1, u2 of e in H with the ends

v1, v2 of e in K according to the orientation function fH ∈ F. Finally, delete e from the

resulting graph, which we denote merge(H, K). We can then replace H and K in D

with merge(H, K), and update the arcs of T to gain a new decomposition. Note that
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root

QH1 H2

Figure 9 A t-decomposition

the class of t-decompositions is not closed under merging, and care must be taken to

ensure the result remains one.

If we go through all pairs of elements and merge them (in any order), we obtain

a merged graph denoted merge(D) or merge(T ). Figure 10 gives an example of the

result of this operation on the graph from Figure 9.

Given a member Q of D, we denote by mstF(Q) the result of recursively merg-

ing the children of Q according to the orientation functions in F. When the identity

of F is clear, we will abbreviate mstF(Q) as mst(Q). By this notation, merge(D) =

mst(root(D)). We choose mst to stand for merged subtree. Given a member Q with

children H1, . . . , Hn, we denote the set {mstF(H1), . . . , mstF(Hn)} as the complete chil-

dren of Q with respect to F.

Figures 11 and 12 show the complete children of Q in the t-decomposition given
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Figure 10 The merged graph of Figure 9

Figure 11 mst(H1)

Figure 12 mst(H2)
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in Figure 9.

We are now prepared to recast our problem once more, this time in terms of t-

decompositions.

Given a t-decomposition D and a set of edges P ∈ E(m(D)), find a t-decomposition

D′, if one exists, such that merge(D′) has the same cycles as (is 2-isomorphic to) merge(D)

and P is a path of merge(D′).

Within a t-decomposition D, we define a restricted t-decomposition (T̂ , D̂, F̂) with

respect to a set of edges P to be the minimal decomposition that contains all mem-

bers of D containing some edge in P. This restricted t-decomposition might contain

members of D that do not meet P. This is because we require that the restriction re-

main a decomposition. The original orientation functions in F related to each mem-

ber of D̂ will make up F̂, the orientation functions of our restricted decomposition.

The arcs of T between members of D̂ are used to form T̂ .

Classifying Members of a Decomposition with Respect to a Path

Given a graph G, an edge m ∈ E(G), and a nonempty set of edges X ⊆ E(G)− {m},

we define the arrangement A(G, X, m) as follows:

A(G, X, m) =



1, if X ∪ {m} is a cycle;

2, if X is a path with m incident to one end-node and one internal node;

3, if X ∪ {m} is a path with m an end-edge;

4, if X ∪ {m} is a path with m not an end-edge;

5, otherwise.

The distinguished edge m will usually be the parent marker of the graph G within a

t-decomposition. The set X will usually be all the edges of a desired hypopath P that

27



are also in E(G). We define an auxiliary type function by

T(G, X, m) = min{A(G′, X, m) | G′ is 2-isomorphic to G}

The function T thus gives us the best (where a lower number arrangement is consid-

ered better than a higher one) possible arrangement a given triple can satisfy under a

sequence of twistings.

We say (H, X, m) is good if T(H, X, m) < 5 and A(H, X, m) = T(H, X, m).

The latter condition means that not only is it possible to twist the graph to get an ar-

rangement less than five, but the graph, without any twistings, is actually in a best

possible state. Where clear from context, we will often denote T(H, X, m) simply as

T(H).

We provide some examples for clarity in Figures 13-17. These examples will be

helpful as a canonical way to imagine a graph of each type. The set X consists in

each case of the bold red edges, while m is the dashed edge.

m

Type 1

Figure 13 A representative graph of type 1

m

Type 2

Figure 14 A representative graph of type 2
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m

Type 3

Figure 15 A representative graph of type 3

m

Type 4

Figure 16 A representative graph of type 4

m

Type 5

Figure 17 A representative graph of type 5

Because all members of a t-decomposition are either polygons, bonds, or 3-connected

graphs, there are some observations about the possible types of our members:

• A bond B will always be type 1 as long as X is nonempty, X is a subset of E(B)−

{m}, |E(B) ∩ X| = 1, and m ∈ E(B).

• A polygon can be in any arrangement except 2. The type of a polygon, how-

ever, can only be 1, 3, or 5 because any arrangement that would be type 4 can

always be reordered to be type 3.
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• A 3-connected graph G can be of any type. Moreover, T(G) = A(G) because

3-connected graphs have no 2-isomorphisms.

The type function will later be evaluated on merged subtrees of a t-decomposition,

so these remarks are only valuable when evaluating a leaf member of a t-decomposition.

The point on polygons, for example, does not hold if we are considering a merged

subtree whose root is a polygon. In a polygon with exactly one type-4 child (with

all other children of type 1) whose non-marker edges are path edges, the type of the

merged subtree would be 4. The implementation of A(G, X, m) is fairly routine, and

will not be covered.

Having introduced a theoretical framework to work in, we are ready to present

Bixby and Wagner’s algorithm.
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Chapter III

Bixby and Wagner’s almost-linear-time solution

An outline of the algorithm

The main algorithm is essentially a direct translation of the Löfgren procedure de-

scribed earlier. It references two procedures, which perform the majority of the calcu-

lations. These will be treated in separate sections later.

1. HYPOPATH takes a t-decomposition D and a set of edges P and determines

whether P is a hypopath of merge(D). If it is, the procedure also updates poly-

gon members and orientation functions of D such that P is a path of merge(D).

Note that merge(D) is never actually calculated in this step.

2. UPDATE takes a t-decomposition, a set of edges C, and a set of edges P, and

returns a new t-decomposition with C as a cycle. Note that only the edges C −

P are added in this step, as P is already guaranteed to be a path at this point.
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Algorithm 1 Is-Graphic

Input: An r× c totally nonseparable matrix over F2.
Output: A graph that realizes M, or the conclusion that M is not graphic.

1: procedure IS-GRAPHIC(M)
2: if M1 has more than one 1 in it then
3: Prepend a new column with a single 1 to M, while ensuring that the result

is still totally nonseparable
4: end if
5: Let G1 be a bond with two edges that realizes M1
6: if c = 1 then
7: return G1
8: end if
9: Let D1 be a new decomposition with one member G1, and define pm(G1) to

be the non-tree edge of G1
10: j← 2
11: repeat
12: P← Pj
13: D ← HYPOPATH(Dj−1, P)
14: if P is not a hypopath then
15: return False
16: end if
17: C ← Cj
18: Dj ← UPDATE(D, C, P)
19: j← j + 1
20: until j = c
21: return merge(Dj−1)
22: end procedure

The HYPOPATH Procedure

HYPOPATH takes a t-decomposition D and a set of edges P and determines whether

P is a hypopath of merge(D). If it is, the procedure also updates polygon members

and orientation functions of D such that P is a path of merge(D). Note that merge(D)

is never actually calculated in this step.

The theory of typing with respect to certain edges is fundamental to this proce-

dure. To start, given a t-decomposition D and a set of edges P ∈ E(merge(D)), we
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calculate the restricted t-decomposition D̂ with respect to P by adding to D̂ all mem-

bers of D containing some edge of P and then adding all members from D needed to

make D̂ a valid t-decomposition. This construction is detailed in Algorithm 11.

Our aim is then, by starting at the leaves of D̂, to find the type of every complete

child of root(D̂). This is achieved by the procedure TYPING. Once the types (and up-

dated orientations) of all complete children of the root are known, it is straightfor-

ward to check whether the path is a hypopath.

We make several remarks about the characteristics of certain types when viewed

in the context of a t-decomposition. Correctness of these remarks can be verified by

the reader, or found in [3].

Given a member Q of a restricted t-decomposition D̂ with respect to P, suppose

we are determining the type of K = mst(Q), the merged subtree rooted at Q. We as-

sume that the types of the complete children H1, . . . , Hn are known. A node incident

to an edge in X is called an end-node of X if it is adjacent to exactly one edge of X

and not incident to any parent markers.

If T(Hi) = 1, then Hi contains no end-nodes of X. If T(Hi) = 2 or T(Hi) = 3,

then Hi contains exactly one end-node of X. If T(Hi) = 4, then Hi contains exactly

two end-nodes of X. The importance of these end-nodes is that, after any polygons

involved have been relinked, we can be sure that an end-node of X is essentially

fixed (i.e., it must be an end-node of our hypopath).

Because a path must have exactly two end-nodes, there are some cases here that

can be easily discarded (i.e., X cannot be a hypopath).

If more than two of the Hi are type 2 or 3, or more than one is type 4, X cannot

be a hypopath. Moreover, if one complete child is type 4, all other complete children

of Q must be of type 1 for X to be a possible hypopath. The type of K can be at least 4
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in this case. The orientation of the type-4 complete child does not matter.

If exactly two complete children are type 2 or 3, then all other complete children

must be of type 1. The type of K can be at least 4 in this case. There are four possi-

ble combinations of orientations to consider (each type-2 or -3 complete child has 2

orientations) in determining the type of K.

If exactly one complete child is type 2 or 3 and all others are type 1, the type of

K can be 2, 3, 4, or 5. To determine the minimum type of K, two orientations for the

type-2 or -3 child must be examined.

If all complete children are type 1, K can be of any type. The orientations of any

type-1 children does not matter.

We have been referencing the type function T, as opposed to the arrangement

function A. This means we must consider all 2-isomorphic copies of the graph we

are trying to type. However, because we are inside a t-decomposition, only polygon

members have nontrivial 2-isomorphisms. Polygons will be dealt with by relinking,

or reordering, their edges.

In order to define a procedure to relink polygons, we introduce several new

sets. Let Q be a polygon and H1, . . . Hn be the complete children of Q. Define mi =

pm(Hi), X = P ∩ E(K) (the path edges within the subtree we are considering), and

WQ = (P ∩ E(Q)) ∪ {m1, . . . , mn}. We let Z ⊆ WQ be the set of child markers of

Q corresponding to any non-type-1 children. By our previous remarks, we may as-

sume |Z| ≤ 2. Depending on the value of |Z|, we assume Z = ∅, Z = {m1}, or

Z = {m1, m2}. This serves only to name possible members of Z for reference in the

algorithm.

The considerations are slightly different depending on whether the polygon

we are relinking is the root of a restricted t-decomposition or not, so we give two
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slightly different procedures.

Algorithm 2 Relink-Non-Root

Input: Q is a polygon, WQ ⊆ E(Q), and Z ⊆WQ with |Z| ≤ 2.
Output: A properly updated Q.

1: procedure RELINK-NON-ROOT(Q, WQ, Z)
2: m← pm(Q)
3: Reorder the edges of Q so that WQ − Z is a path with one end of WQ − Z inci-

dent to m
4: if m1 is defined then
5: Ensure that m1 is incident to the other end of WQ − Z
6: end if
7: if m2 is defined then
8: Ensure that m2 is incident to the node of m not incident to WQ − Z
9: end if

10: return Q
11: end procedure

In order to traverse the tree of a t-decomposition D, we define a depth partition

π = (π0, . . . , πs) of D where Q ∈ πi if the unique path from Q to root(D) has i arcs.

This means π0 = {root(D)} and πs consists of all leaves of our decomposition that

are of equal and maximum distance away from the root. It is not necessarily the case

that all leaves will be in πs, only that all members of πs are leaves. We are now pre-

pared to state TYPING. The procedures RULE1-RULE3 will be defined later.
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Algorithm 3 Typing

Input: A restricted t-decomposition D̂ with respect to a path P ⊆ merge(D̂), and a
depth partition π of D̂

Output: An updated D̂ such that each complete child of root(D̂) is good and has a
known type, or the conclusion that P is not a hypopath of merge(D̂).

1: procedure TYPING(D̂, P, π)
2: Let s be the index of the deepest level in π
3: for all Q ∈ πs do
4: X ← P ∩ E(Q)
5: if Q is a polygon then
6: Q← RELINK-NON-ROOT(Q, X, ∅)
7: end if
8: Q.type← A(Q, X, pm(Q))
9: RULE1(Q)

10: RULE2(Q)
11: end for
12: i← s− 1
13: while i > 0 do
14: for all Q ∈ πi do
15: Let H1, . . . , Hn be the representative graphs of the appropriate types

for each of the children of Q
16: if Q is a polygon then
17: Q← RELINK-NON-ROOT(Q, WQ, Z)
18: end if
19: if more than two of the Hi are not type 1 then
20: return False
21: end if
22: Find, if possible, orientations F′ such that mstF′(Q) is good.
23: Let T be the minimum type achievable for mst(Q).
24: Update D̂ with the orientations that achieved the minimum type.
25: if T = 5 then
26: return False
27: end if
28: Q.type← T
29: RULE1(Q)
30: RULE2(Q)
31: RULE3(Q)
32: end for
33: i← i− 1
34: end while
35: return D̂
36: end procedure
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After TYPING has been applied, we can effectively know what merge(D̂) will

look like on a macro level, without having had to compute any actual merged graphs.

At this point, we do not care about T(root(D̂)), but rather wish to make the final de-

termination of whether or not P can be made into a path. For example, a type of 5

is preferable to a type of 4, because a type of 4 would mean our path is split by a

marker edge which is no longer acceptable. Many acceptable arrangements for our

path would be classified as a type of 5 because we do not require that our path have

any vertices incident to the parent marker of root(D̂). With this in mind, we will not

calculate the type of root(D̂), and so we require a slightly modified relinking proce-

dure for the case that root(D̂) is a polygon.

Algorithm 4 Relink-Root

Input: Q is a polygon, WQ ⊆ E(Q), and Z ⊆WQ with |Z| ≤ 2.
Output: A properly updated Q.

1: procedure RELINK-ROOT(Q, WQ, Z)
2: Reorder the edges of Q so that WQ − Z is a path.
3: if m1 is defined then
4: Ensure that m1 is incident to the one end of WQ − Z
5: end if
6: if m2 is defined then
7: Ensure that m2 is incident to the other end of WQ − Z
8: end if
9: return Q

10: end procedure

We are now prepared to state HYPOPATH.
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Algorithm 5 HYPOPATH

Input: A t-decomposition D and a set of edges P ∈ E(merge(D))
Output: An updated t-decomposition D such that P is a path of merge(D), or the

conclusion that P is not a hypopath of merge(D)
1: procedure HYPOPATH(D, P)
2: Compute the restricted t-decomposition D̂ of D with respect to P.
3: if |D̂| > 1 then
4: Compute the depth partition π of D̂
5: D̂ ← TYPING(D̂, P, π)
6: if D̂ = False then
7: return False
8: end if
9: Q← root(D̂)

10: else
11: Q← root(D̂)
12: end if
13: Let H1, . . . , Hn be the representative graphs of the appropriate types for each

of the children of Q
14: if more than two of the Hi are not type 1 then
15: return False
16: end if
17: if Q is a polygon then
18: Q← RELINK-ROOT(Q, WQ, Z)
19: end if
20: Find, if possible, orientations F′ such that P is a path of mstF′(Q).
21: if P cannot be made a path then
22: return False
23: end if
24: RULE4(Q)
25: RULE5(Q)
26: Update D with the orientations that make P a path.
27: return D
28: end procedure

We note that if |D̂| = 1, line 20 reduces to checking if P is a path of Q because

there are no complete children to consider.
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The UPDATE Procedure

In implementing the IS-GRAPHIC procedure, there are two basic directions we could

go after determining that a given path is a hypopath. The first option is to compute

the merged graph merge(D) and add the remaining edges of our cycle so that they

form a cycle together with P (which is by now a path of merge(D)). In order to run

HYPOPATH again, however, we require a t-decomposition of merge(D) with these

new edges added. This would require an algorithm to compute a t-decomposition

given an arbitrary graph. The other, more efficient, option is to update D with the

extra edges of our cycle and proceed with another call to HYPOPATH from there.

We will take the latter approach, but note that updating a t-decomposition, and

having it remain a t-decomposition, must be done carefully.

Assume once more that D is a t-decomposition, and that P is a path of merge(D).

The general update procedure can be described succinctly. Let K1 and K2 be the

members of D containing the end-nodes of P, and let u1 ∈ V(K1) and u2 ∈ V(K2)

be the end-nodes of P. If K1 = K2 (that is, all of our path resides in one member),

the update changes D minimally. However, in the case that K1 6= K2, more sub-

stantial changes must occur. Let R be the unique path in T between K1 and K2. Our

goal is to merge R into one 3-connected member of D, essentially putting us back in

the case that K1 = K2. To do this succesfully, we must first break apart any poly-

gons in R such that their inclusion in merge(R) will not cause merge(R) to have a 2-

separation (and thus not be 3-connected). This procedure of breaking up a polygon

will be called splitting and is described later.

Before we can consider typing, we must first address how K1, K2, u1, and u2 are

found. The following five procedures, previously referenced in TYPING and HY-

POPATH, achieve this. Note that the value of K1, K2, u1, and u2 are not returned by
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any of the rules. Rather, we assume for simplicity that these variables are available

globally and reset after each call to UPDATE.

Algorithm 6 Rules for selecting K1, K2, u1, and u2

1: procedure RULE1(H)
2: if H has no children or all children of H are type 1 then
3: if H.type = 2 or 3 then
4: if K1 has not been defined then
5: K1 ← H
6: Let u1 be the end-node of P not incident to pm(H)
7: else
8: K2 ← H
9: Let u2 be the end-node of P not incident to pm(H)

10: end if
11: end if
12: end if
13: end procedure
14: procedure RULE2(H)
15: if H has no children or all children of H are type 1 then
16: if H.type = 4 then
17: K1, K2 ← H
18: Let u1 and u2 be the end-nodes of P not incident to pm(H)
19: end if
20: end if
21: end procedure
22: procedure RULE3(H)
23: if H has one type 2 or 3 child, and all others are type 1 then
24: if H.type = 4 then
25: Let D be the unique path between K1 and H
26: Let K2 be the vertex of D closest to K1 that contains the same end-node

of P as H
27: Let u2 be the end-node of P in K2
28: end if
29: end if
30: end procedure
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Algorithm 7 Rules for selecting K1, K2, u1, and u2, continued

31: procedure RULE4(H)
32: if K1 has not been defined then
33: K1, K2 ← H
34: Let u1, u2 be the end-nodes of P not incident to any marker edges in H
35: else
36: Let D be the unique path between K1 and H
37: Let K2 be the vertex of D closest to K1 that contains the same end-node of

P as H
38: Let u2 be the end-node of P in K2
39: end if
40: end procedure
41: procedure RULE5(H)
42: if K1 and K2 have been defined and K1 = K2 then
43: if the ends of P are the ends of pm(K1) and K1 is not a bond then
44: K1, K2 ← p(K1)
45: else if the ends of P are the ends of another marker mi of K1 and K1 is a

polygon then
46: if the marker edge mi is also in a bond B then
47: K1, K2 ← B
48: end if
49: end if
50: end if
51: end procedure

We note that although we have defined five types and five rules for determin-

ing K1, K2, there is no connection between the types and the rules. RULE1 and RULE2

handle the simple case where the end-node(s) are within (not adjacent to a parent

marker of) a single member. In the case that we discover end-node(s) of our path

to be incident to a parent marker, RULE3, RULE4, and RULE5 aim to minimize the

length of R by picking the end-node in the member closest to K1. Essentially, we

wish to minimize the amount of our t-decomposition that we will have to modify

during UPDATE. Picking these members in this way is also key to ensuring that merge(R)

will be 3-connected after taking the appropriate steps in UPDATE.

Now that we have identified which members contain the end-nodes of P, we
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must describe a method for splitting up a polygon that would be "caught up" by our

cycle.

Algorithm 8 Splitting a polygon

1: procedure SPLIT(D∗, Q, L, R)
Input: Q is a polygon and L ⊂ E(Q)

2: if |E(L)| > 2 then
3: Let f ′ be a new edge
4: Let P1, P2 be two polygons formed by adding f ′ to the paths L and S− L,

respectively
5: Replace S in D∗ with P1 and P2
6: Replace S in R by the polygon formed from S− L
7: end if
8: end procedure

Finally, we conclude with the actual UPDATE procedure. Details on implementa-

tion will be given in the next chapter.
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Algorithm 9 Updating a t-decomposition

Input: A t-decomposition D, a path P of merge(D), and desired cycle C such that
C ∩ E(merge(D)) = P and C− P 6= ∅

Output: A t-decomposition of the graph obtained from merge(D) by adding the
edges of C − P so that C is a cycle and C − P is incident to merge(D) at exactly
two nodes.

1: procedure UPDATE(D, P, C)
2: D∗ ← D
3: if |C− P| = 1 then
4: { f } ← C− P
5: else
6: Let f be a new edge
7: Form a polygon with edge-set { f } ∪ (C− P) and add this polygon to D∗

8: end if
9: if K1 = K2 then

10: if K1 is not a polygon then
11: Join u1 and u2 by f in K1
12: else if K1 is a polygon and u1, u2 are adjacent then
13: Let f ′ be the edge joining u1 and u2 in K1
14: Let f ′′ be a new edge
15: Replace f ′ with f ′′ in K1
16: Add a bond with edge set { f , f ′, f ′′} to D∗

17: else . K1 is a polygon with u1, u2 not adjacent
18: Let L1 and L2 be the two paths joining u1 and u2 in K1
19: Let f1, f2 be new edges.
20: Let P1 be a new polygon created by joining the ends of L1 with f1
21: Let P2 be a new polygon created by joining the ends of L2 with f3
22: Replace K1 in D∗ with P1 and P2
23: Add a bond with edge-set { f , f1, f2} to D∗

24: end if
25: else . K1 6= K2
26: Let R be the unique path K1 = J1, . . . , Js+1 = K2 joining K1 and K2 in T .
27: Let {mj} = E(Jj) ∩ E(Jj+1) for 1 ≤ j ≤ s
28: for j← 1, s do
29: if (Jj is 3-connected and {mj−1, mj} is a cycle of Jj) or (Jj is a bond on at

least 4 edges and p(Jj) 6∈ R) then
30: Let f ′ be a new edge
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Algorithm 10 Updating a t-decomposition, continued

31: Let Jj be Jj with {mj−1, mj} deleted and f ′ added in its place
32: Let B be a bond with edge-set {mj−1, mj}
33: Replace Jj in R with B
34: Replace Jj in D∗ with J′j and B
35: end if
36: end for
37: if K1 is a polygon then
38: Let L1, L2 be the two paths joining m1 and u1
39: SPLIT(D∗, K1, L1, R)
40: SPLIT(D∗, K1, L2, R)
41: end if
42: if K2 is a polygon then
43: Let L1, L2 be the two paths joining ms and u2
44: SPLIT(D∗, K2, L1, R)
45: SPLIT(D∗, K2, L2, R)
46: end if
47: for all Jj ∈ {J2, . . . , Js} do
48: if Jj is a polygon then
49: Let L1, L2 be the two components of Jj − {mj−1, mj}
50: SPLIT(D∗, Jj, L1, R)
51: SPLIT(D∗, Jj, L2, R)
52: end if
53: end for
54: G ← merge(R)
55: Join u1 and u2 in G with f
56: Delete all nodes of R from D∗ and add G
57: end if
58: return D∗

59: end procedure
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Chapter IV

Discussion

Data Structures

As with the previously presented algorithms, we will also reiterate the data struc-

tures required for their implementation. We hope in doing so to further illuminate

the original paper [3].

Each of the columns and rows of the input matrix M is assumed to have a unique

name. A natural choice of names is the integers from 1 to r + c. These names will

be used as the edge names of the final graph. Marker edges are also named, and

each marker edge (except pm(root(D))) as presented in the algorithm will have two

names, one for each of the two members it appears in. Edge names must be unique

across the whole t-decomposition, so an integer counter starting at r + c + 1 pro-

vides an easy source of names. Every member of D is given a unique name. Vertices

of members of D are also given unique names, and a similar strategy to edge naming

may be used.

For each edge, we store a pointer to the member wherein it appears. We also

store the name of each of its two end vertices. For marker edges, we designate one

vertex as + and one as −. This encodes the orientation functions of our t-decompositions.

For each member, we store a pointer to its predecessor, an integer representing its

designation, the name of its parent marker, and the name of the child marker in its

predecessor that this member corresponds to. For polygon members, the edge set is

stored as a doubly linked list, allowing edges to be reordered efficiently. In the spe-

cial case that a member is a bond and its parent is a polygon, we also store with the

parent polygon which child marker(s) correspond to bonds. This allows RULE5 to
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be executed efficiently. The size of polygon members H of D may be stored and up-

dated to allow for quick calculation of A(H), but this is not required.

The ability to merge graphs efficiently is essential in achieving the almost-linear-

time bound of the algorithm. This can be done by using the standard UNION-FIND

data structure, which operates as follow:

A UNION-FIND data structure U consists of a set of names, each having an asso-

ciated parent name and rank, upon which three operations are defined:

1. MAKE-SET(x), which adds x to U with x as its own parent;

2. FIND(x), which recursively calls FIND(parent(x)) until reaching a value y where

y = parent(y). It then sets parent(x) = y and returns y. This has the effect of

compressing the path, making subsequent calls faster; and

3. UNION(x, y), which first calls FIND(y) and FIND(y). Without loss of general-

ity, assume the rank of x is less than that of y. We then assign parent(y) ←

parent(x). If the ranks are equal, we do the same but increase the rank of x by

1.

By performing path compression and performing unions according to rank, a se-

quence of m UNION-FIND operations on an underlying set of n elements can be per-

formed in time O(mα(n)). The function α(n) refers to the inverse Ackermann func-

tion, an extremely slowly growing function. In particular, it has a value less than 5

for any remotely feasible value of n. A sequence of n UNION-FIND operations is thus

considered to run in almost linear time.

There are two types of data that will be stored in this data structure: the vertices

(which are themselves graphs) of T , and the vertices of the members of D. In ad-

dition to the procedure outlined above, our purposes require several constant-time
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additions to UNION.

When storing the vertices of T , the UNION operation corresponds to the merg-

ing of two adjacent graphs. When storing the vertices of members of D, the UNION

operation corresponds to identifying two vertices as one.

When identifying vertices inside a member of a t-decomposition, the UNION

operation needs no modification. When two graphs x and y are being merged by

calling UNION(x, y), the UNION procedure is modified to also add all nodes of one

graph into the other (along with their associated rank and parent arrays), perform

UNION on similarly signed vertices of the parent marker and child marker to be

merged, and delete the appropriate parent and child marker edges from the graph.

Implementation Details

The procedures for calculating both the restricted t-decomposition and the depth

partition in the first part of HYPOPATH require a careful implementation to maintain

the overall running time of the algorithm. We found that a naive implementation of

these can easily make the runtime quadratic. A general strategy to implement line 2

of HYPOPATH is as follows:

Algorithm 11 Calculate Restricted t-decomposition

1: L, T ← {}
2: for all e ∈ P do
3: Add the name of the member of D containing e to L
4: end for
5: Let u ∈ L
6: Add u to T
7: while L− T 6= ∅ do
8: Let v ∈ L− T
9: Add all members on the path from v to the nearest member of T to T

10: end while
11: Add all members of T to a new t-decomposition D̂
12: root(D̂)← the member of T whose predecessor is not in T
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Finding the path on line 9 can be achieved by building up two paths, one from u

and one from v, by following predecessors. Alternating back and forth between the

u-path and the v-path, continue adding predecessors until the two paths intersect or

we hit some other member of T. The latter case is crucial to ensure the optimal run-

time of the algorithm. Always continuing until the paths from u and from v intersect

works, but leads to a worst-case runtime of O(|P|2) in the case where u is the root

and the members of L are all on the same path.

Algorithm 12 Calculate Depth Partition

1: droot(D̂) ← 0
2: π0 = {root(D̂)}
3: Let N be the set of all non-root members of D̂
4: while N 6= ∅ do
5: Let u ∈ N
6: Let W be an ordered list of the members on the path between u and the near-

est member v of D̂ whose depth dv is known
7: i← 1
8: for wi ∈ reversed(W) do
9: k← dv + i

10: dwi ← k
11: Add wi to πk
12: Remove wi from N
13: i← i + 1
14: end for
15: end while

The procedure to implement line 6 is only a slight modification of that for line 9

of Algorithm 11. In particular, we build up a list of predecessors of w, and stop when

we hit a member whose depth is known. We will always encounter such a member

because the depth of the root is known to be 0. The path W is assumed to include w

as its first member, but not to include the member whose depth is known as its last

member. We remark that the only reason we compute the depth partition separately

from the restricted t-decomposition is that calculating the depth partition in this way
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requires knowing root(D̂), which we only know after finishing Algorithm 11.

These implementations are based on the algorithms in Wagner’s dissertation

[12].

The lines of TYPING and HYPOPATH that require one to find the best possible

orientation for the non-type-1 children requires some explanation, as it is not en-

tirely obvious. Recall what information is known when we are typing the merged

subtree rooted at Q: we know the types of all children of Q and we know that Q

has been relinked appropriately. We also know that there can be at most two non-

type-1 children and hence there are only a maximum of four orientation combina-

tions to consider. So for each of the orientation combinations, we can construct a

graph Q′ by adding to Q the non-marker edges of the canonical representations of

the child types according to the orientations F′ we are considering. If we let Pt be

the temporary path edges added in this step, then the type of mstF′(Q) is given by

A(Q′, Pt ∪ (P ∩ E(Q′)), pm(Q)). We inspect (by deleting and readding temporary

edges) each combination of orientations and choose the one with the lowest A-value.

The temporary edges are then deleted. Each line where orientations are calculated

thus expands to a maximum of 4 calls to A and O(1) temporary edge insertions and

deletions.

Time Complexity

We will not formally derive the time bound of the algorithm, but we will give an out-

line of the highlights. The complete derivation, along with a bound on space used,

can be found in [3].

Most of the steps involved will require the use of FIND operations. We will as-

sume for this analysis that such operations can be done in constant time, keeping in
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mind that our final bound must then include an additional factor of α(n).

We recall an important definition. For a member Q ∈ D̂ with complete chil-

dren H1, . . . , Hn, we define WQ = (P ∩ E(Q)) ∪ {m1, . . . , mn}, where mi is the par-

ent marker of Hi. Although we might sometimes be able to specify slightly tighter

bounds, we will aim to, where possible, bound runtimes of certain procedure by

|WQ|.

We first address TYPING. Line 2 can clearly be accomplished in time O(|π|), and

|π| is itself bounded by O(|D̂|). The calculation of X on line 4 can be done in time

O(|P|). We will henceforth not mention simple lines similar to this. The application

of RELINK-NON-ROOT can be done in time O(|WQ|) since X = WQ because Q has

no children if Q is in πs. Similarly, the calculation of A on line 8 takes O(|WQ|) time.

The first loop thus completes in time

O
(

∑
Q∈πs

|WQ|
)

.

Turning to the for loop beginning on line 14, the number of representative graphs

considered is bounded by the number of children of Q, which is bounded by |WQ|.

Each representative graph is composed of a constant number of edges and vertices,

so the line takes time O(|WQ|). As before, relinking also takes time O(|WQ|). Find-

ing the minimum orientation requires, by our previous discussion, at most four calls

to A, with each call taking time O(|WQ|). Updating the orientations involves chang-

ing the signs of at most two parent markers and can be done in constant time. One

iteration of the for loop thus completes in time

O
(

∑
Q∈πi

|WQ|
)

.
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The while loop beginning on line 13 has the effect of performing the inner loop once

for every level of the depth partition except π0 and πs. Together with the first part

of TYPING, we will thus do O(|WQ|) work for each member of D̂ except the root. We

now reference a calculation in [3]:

∑
Q∈D̂

|WQ| = |P|+ |D̂| − 1

This ensures that one call to TYPING can be done in time O(|P|+ |D̂|).

The only aspect of HYPOPATH that differs from TYPING is the calculation of the

restricted t-decomposition and the depth partition. In particular, the lines from line

13 onward are identical in time complexity to one iteration of the inner for loop of

TYPING.

So, we need only address the time complexity of Algorithms 11 and 12. The first

for loop in Algorithm 11 clearly takes time O(|P|). A careful look at the while loop

starting on line 7 shows that each member of the not-yet-constructed D̂ will be con-

sidered at most once, as each will either appear as u, v, or one of the members found

on the path calculated on line 9. The while loop thus takes time O(|D̂|). Altogether,

finding the restricted t-decomposition takes time O(|P|+ |D̂|).

Algorithm 12 is essentially the same, but with some constant-time calculations

added within the while loop and with the absence of the initial step that took O(|P|)

time in Algorithm 11. Calculating the depth partition can thus be done in time O(D̂).

Combining all of this, we conclude that one application of HYPOPATH can be

completed in time O(|P|+ |D̂|).

We now consider the applications of RULE1-RULE5 in TYPING and HYPOPATH.

RULE1 and RULE2 are constant time assuming we have earlier stored the end-nodes

u1 and/or u2 during a previous call to A. RULE3 has the potential to take O(D̂) time
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due to the calculation of a path in D̂. However, we are guaranteed that the condi-

tions of RULE3 will be satisfied at most once during one call to TYPING, because oth-

erwise we would conclude that P is not a hypopath. So, even though RULE3 is ap-

plied within a loop, we are guaranteed that its total contribution will be at most an

added O(D̂) time, which does not change the time complexity previously found for

TYPING. RULE4 might also take O(D̂) time, but it doesn’t appear inside a loop (and

even if it did, its conditions will only ever be satisfied once per call to HYPOPATH).

RULE5 easily runs in constant time. Altogether, the application of these rules does

not change the overall time complexity.

We now consider UPDATE. Lines 3-8 can be done in time O(|C|). We now con-

sider the first case (K1 = K2). The only potentially non-constant operation occurs

in the calculation of the two paths on line 18. Because K1 is a polygon whose edges

are stored in a doubly linked list, we need only check the relative directions (within

the doubly linked list) of the four edges incident to u1 and u2 to determine the infor-

mation needed for the subsequent steps. Because we are splitting a polygon in two,

only one will keep its old name. We will thus have to update the edge locations of

all edges in one of the polygons P1 or P2. Notice however that one of these polygons

is guaranteed to be made up only of edges of P along with child markers that corre-

spond to complete children containing edges of P. Thus, by choosing this polygon to

update, we can bound the time required by O(|P|).

The case that K1 6= K2 is more complex. Finding the path R on line 26 takes

time O(|R|). This is not a particularly illuminating bound, and we could just as well

bound it by O(|D∗|). The loop on line 28 is complicated but performs only a con-

stant number of operations per iteration, and thus completes in time O(|R|) overall.

Each application of SPLIT is essentially the same as the procedure encountered ear-
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lier on lines 18-23, so O(|P|) work is needed for all of the calls to SPLIT combined, be-

cause the exact edges of P involved in one application of SPLIT will not be involved

in another call to SPLIT. Finally, the calculation of G on line 54 requires O(|R|) calls

to UNION and FIND.

Altogether, one call to UPDATE thus takes time O(|R|+ |C|).

It is clear that |P| and |C| are bounded by the number of ones in a given column,

and so if we perform O(|P| + |C|) operations for each column, the total time taken

throughout IS-GRAPHIC will be O(n), where n is the number of ones in the entire

matrix.

It is less clear that the |D̂| and |R| terms are similarly bounded. To see this, we

introduce without proof two theorems from [3].

In these theorems, r and c are the number of rows and columns, respectively, of

the input matrix and n is the number of nonzero entries in the input matrix. Further,

we denote as D̂i the restricted t-decomposition calculated for the ith column of the

input matrix and denote as Ri the path calculated in line 26 of UPDATE as called for

the ith column of the input matrix. There is not necessarily an Ri for each column.

Theorem 8. For r ≥ 3,

∑
all Ri

|Ri| ≤ 6r− 12

Theorem 9.
c

∑
i=1
|D̂i| ≤ 2n + c + 6r− 12

From this we can deduce that the final time complexity for IS-GRAPHIC is O(n +

c + r). Because we have specified that our input matrix have no zero columns or

rows, the c and r terms are themselves bounded by n and are redundant. Reintroduc-

ing the α term, we have that one application of IS-GRAPHIC runs in time O(nα(n)).
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We note that the inverse Ackerman function is technically a function of two variables

α(m, n) with m ≥ n, and the full statement of the runtime is O(nα(n, r)). However,

because the inverse Ackerman function grows so extraordinarily slowly, the choice

of inputs is often abbreviated.

Motivation and Conclusion

The motivation behind Bixby and Wagner’s algorithm is its potential in solving cer-

tain problems in linear programming. In general, a linear programming problem

(called a linear program) involves minimizing or maximizing a linear objective function

according to a set of linear equations or inequalities called constraints. A wide variety

of problems in economics and business can be stated as linear programs. Being able

to solve a linear program with a large number of variables in a tractable amount of

time has thus been the subject of much research.

The most general algorithm widely used to solve linear programs is the simplex

method of Dantzig. Although often much better in practice, the simplex method has

been shown to be exponential in the worst case [4]. There are a large number of other

algorithms aimed at solving linear programs of specific forms.

One particular structure that can arise is called a network flow problem. In partic-

ular, network flow problems can be solved much more efficiently than linear pro-

grams in general. Work by Bixby and Cunningham in [1] described an algorithm for

converting a linear program, if possible, into a network flow problem. The crucial

discovery was that this conversion problem is equivalent to the problem of realiz-

ing a binary matroid as graphic. With the almost-linear-time algorithms of Fujishige

and of Bixby and Wagner, this conversion problem can now be solved extremely effi-

ciently.

54



More recently, this algorithm has found use in the perfect phylogeny haplotype

problem (PPH): given a set of genotypes, M, find a set of explaining haplotypes, M′,

which defines a perfect phylogeny. This problem, it turns out, can be reduced in

polynomial time to an instance of the graph realization problem [6]. We will not at-

tempt to expand on the details of the PPH problem as that is far beyond the scope of

this paper. We mention it in brief, however, to illustrate the far-reaching impact that

the solution to a seemingly esoteric problem in mathematics can have.

An attractive attribute of this algorithm is that the final t-decomposition also

gives an easy way to enumerate all possible (nonseparable) solutions to the problem.

To do this, we enumerate all possible combinations of orientations and polygon re-

linkings. In doing so, we obtain all nonseparable graphs which provide a solution to

our problem. This turns out to be useful in the case of the PPH problem.

Finally, we found that accessible implementation details beyond those provided

in [3] were virtually nonexistent. Our motivation was thus to (1) describe the graph

realization problem in a way that didn’t require extensive mathematical training, (2)

present Bixby and Wagner’s algorithm as clearly as possible, (3) thoroughly docu-

ment the practical considerations involved in writing an implementation of the al-

gorithm, (4) write an implementation of the algorithm, and (5) contribute our im-

plementation to the SageMath project. This written thesis serves to fulfill points (1)-

(3), while point (4) was mostly done before writing to ensure any interpretations

presented were correct. Fulfillment of (5) will follow the submission of this thesis,

and further information along this line can be found at https://trac.sagemath.org/

ticket/20834.
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Appendix A

Experimental Validation of Runtime

We did not have time to perform a thorough runtime evaluation of our imple-

mentation. We did however run our algorithm on upper triangular matrices of the

form

M =



1 1 1 1 1

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1


as a preliminary confirmation of runtime. We ran the algorithm for matrices of size

100 × 100 up to 1, 500 × 1, 500. From 100 to 1, 000 we proceeded in increments of

50, and from 1, 000 to 1, 500 in increments of 100. The following chart and table de-

tail our results. The number of nonzero entries in an N × N matrix of this form was

found to be N(N+1)
2 .

Data was gathered using the %timeit magic command available in the Sage-

Math interactive console. The exact code used to test an N × N matrix is as follows:

sage: n = N

....: M = []

....: for i in range(0, n):

....: M.append([])

....: for j in range(0, n):

....: if i <= j:
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....: M[i].append(1)

....: else:

....: M[i].append(0)

....: M_matrix = matrix(M)

....: %timeit graph = realize_and_merge(M_matrix)

The function realize_and_merge is a direct implementation of IS-GRAPHIC as

presented in this paper.
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Table A.1 Experimental Runtime

Matrix size Nonzero entries Time (s) Unit Time (ms)

100 5,050 0.8 0.150
150 11,325 1.7 0.152
200 20,100 3.1 0.153
250 31,375 4.8 0.153
300 45,150 7.0 0.154
350 61,425 9.7 0.158
400 80,200 12.6 0.157
450 101,475 16.3 0.161
500 125,250 19.9 0.159
550 151,525 24.4 0.161
600 180,300 28.4 0.158
650 211,575 33.7 0.159
700 245,350 39.1 0.159
750 281,625 44.9 0.159
800 320,400 51.4 0.160
850 361,675 58.9 0.163
900 405,450 65 0.160
950 451,725 73 0.162
1000 500,500 81 0.162
1100 605,550 99 0.163
1200 720,600 118 0.164
1300 845,650 138 0.163
1400 980,700 162 0.165
1500 1,125,750 184 0.163
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Appendix B

Terminology Changed from that of Bixby and Wagner

In some situations we saw fit to slightly alter the notation from that of [3]. In

order to make it easier to cross reference, we provide a short table of alternate terms.

Term used in [3] Term we use

arborescence rooted directed tree
prime 3-connected
node vertex
subgraph reversal twisting
RELINK1 RELINK-NON-ROOT
RELINK2 RELINK-ROOT
SQUEEZE SPLIT
R1-R5 RULE1-RULE5
reduced t-decomposition restricted t-decomposition
m(D) merge(D)
p(Q) pred(Q)
{0, 1}-matrix matrix over F2
Q f [H1, . . . , Hn] mst f (Q)
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