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Abstract
For finite-dimensional problems, stochastic approximation methods have long been 
used to solve stochastic optimization problems. Their application to infinite-dimen-
sional problems is less understood, particularly for nonconvex objectives. This paper 
presents convergence results for the stochastic proximal gradient method applied to 
Hilbert spaces, motivated by optimization problems with partial differential equation 
(PDE) constraints with random inputs and coefficients. We study stochastic algo-
rithms for nonconvex and nonsmooth problems, where the nonsmooth part is convex 
and the nonconvex part is the expectation, which is assumed to have a Lipschitz 
continuous gradient. The optimization variable is an element of a Hilbert space. We 
show almost sure convergence of strong limit points of the random sequence gener-
ated by the algorithm to stationary points. We demonstrate the stochastic proximal 
gradient algorithm on a tracking-type functional with a L1-penalty term constrained 
by a semilinear PDE and box constraints, where input terms and coefficients are 
subject to uncertainty. We verify conditions for ensuring convergence of the algo-
rithm and show a simulation.
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1 Introduction

In this paper, we focus on stochastic approximation methods for solving a sto-
chastic optimization problem on a Hilbert space H of the form

where the expectation j(u) = �[J(u, �)] is generally nonconvex with a Lipschitz con-
tinuous gradient and h is a proper, lower semicontinuous, and convex function that is 
generally nonsmooth.

Our work is motivated by applications to PDE-constrained optimization under 
uncertainty, where a nonlinear PDE constraint can lead to an objective func-
tion that is nonconvex with respect to the Hilbert-valued variable. To handle the 
(potentially infinite-dimensional) expectation, algorithmic approaches for solving 
such problems involve either some discretization of the stochastic space or an 
ensemble-based approach with sampling or carefully chosen quadrature points. 
Stochastic discretization includes polynomial chaos and the stochastic Galerkin 
method; cf. [24, 30, 34, 47]. For ensemble-based methods, the simplest method 
is sample average approximation (SAA), where the original problem is replaced 
by a proxy problem with a fixed set of samples, which can then be solved using 
a deterministic solver. A number of standard improvements to Monte Carlo sam-
pling have been applied to optimal control problems in, e.g., [1, 54]. Another 
ensemble-based approach is the stochastic collocation method, which has been 
used in optimal control problems in e.g. [47, 51]. Sparse-tensor discretization has 
been used for optimal control problems in, for instance, [28, 29].

The approach we use is an ensemble-based approach called stochastic approxi-
mation, which is fundamentally different in the sense that sampling takes place 
dynamically as part of the optimization procedure, leading to an algorithm with 
low complexity and computational effort when compared to other approaches. 
Stochastic approximation originated in a groundbreaking paper by [45], where 
an iterative method to find the root of an unknown function using noisy estimates 
was proposed. The authors of [25] used this idea to solve a regression problem 
using finite differences subject to noise. Algorithms of this kind, with bias in 
addition to stochastic noise, are sometimes called stochastic quasi-gradient meth-
ods; see, e.g., [17, 53]. Basic versions of these algorithms rely on positive step 
sizes tn of the form 

∑∞

n=1
tn = ∞ and 

∑∞

n=1
t2
n
< ∞ . The (almost sure) asymptotic 

convergence of stochastic approximation algorithms for convex problems is clas-
sical in finite dimensions; we refer to the texts by [16, 33].

There have been a number of contributions with proofs of convergence of the 
stochastic gradient method for unconstrained nonconvex problems; see [6, 7, 49, 
56]. Fewer results exist for constrained and/or nonsmooth nonconvex problems. 
A randomized stochastic algorithm was proposed by Ghadimi et  al. [21]; this 
scheme involves running a stochastic approximation process and randomly choos-
ing an iterate from the generated sequence. There have been some contributions 
involving constant step sizes with increasing sampling; see [35, 44]. Convergence 

(P)min
u∈H

{f (u) = j(u) + h(u)},
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of projection-type methods for nonconvex problems was shown in [32] and for 
prox-type methods by Davis et al. [13].

As far as stochastic approximation on function spaces is concerned, many con-
tributions were motivated by applications with nonparametric statistics. Perhaps the 
oldest example is from [55]. Goldstein [22] studied an infinite-dimensional version 
of the Kiefer–Wolfowitz procedure. A significant contribution for unconstrained 
problems was by Yin and Zhu [58]. Projection-type methods were studied by [3, 10, 
12, 40].

In this paper, we prove convergence results for nonconvex and nonsmooth prob-
lems in Hilbert spaces. We present convergence analysis that is based on the recent 
contributions in [13, 35]. Applications of the stochastic gradient method to PDE-
constrained optimization have already been explored by [19, 37]. In these works, 
however, convexity of the objective function is assumed, leaving the question of 
convergence in the more general case entirely open. We close that gap by making 
the following contributions:

– For an objective function that is the sum of a smooth, generally nonconvex 
expectation and a convex, nonsmooth term, we prove that strong accumulation 
points of iterates generated by the method are stationary points.

– We show that convergence holds even in the presence of systematic additive bias, 
which is relevant for the application in mind.

– We demonstrate the method on an application to PDE-constrained optimization 
under uncertainty and verify conditions for convergence.

The paper is organized as follows. In Sect. 2, notation and background is given. 
Convergence of two related algorithms is proven in Sect. 3. In Sect. 4, we introduce 
a problem in PDE-constrained optimization under uncertainty, where coefficients 
in the semilinear PDE constraint are subject to uncertainty. The problem is shown 
to satisfy conditions for convergence, and numerical experiments demonstrate the 
method. We finish the paper with closing remarks in Sect. 5.

2  Notation and background

We recall some notation and background from convex analysis and stochastic pro-
cesses; see [4, 11, 38, 43].

Let H be a Hilbert space with the scalar product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖ . The sym-
bols → and ⇀ denote strong and weak convergence, respectively. The set of proper, 
convex, and lower semicontinuous functions h ∶ H → (−∞,∞] is denoted by �0(H) . 
Given a function h ∈ �0(H) and t > 0 , the proximity operator proxth ∶ H → H is 
given by

proxth(u) ∶= argmin
v∈H

�
h(v) +

1

2t
‖v − u‖2

�
.
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We recall that for a proper function h ∶ H → (−∞,∞] , the subdifferential (in the 
sense of convex analysis) is the set-valued operator

For any h ∈ �0(H) , the subdifferential �h is maximally monotone. The domain of 
h is denoted by dom(h) . The indicator function of a set C is denoted by �C , where 
�C(u) = 0 if u ∈ C and �C(u) = ∞ otherwise. The sum of two sets A and B with 
� ∈ ℝ is given by A + �B ∶= {a + �b ∶ a ∈ A, b ∈ B}. The distance of a point u to 
a nonempty, closed set A is denoted by d(u,A) ∶= infa∈A ‖u − a‖ and the diameter of 
A is denoted by the symbol diam(A) ∶= supu,v∈A ‖u − v‖ . For a nonempty and con-
vex set C, the normal cone NC(u) at u ∈ C is defined by

We set NC(u) ∶= � if u ∉ C . We recall that ��C(u) = NC(u) for all u ∈ C . If 
h1, h2 ∈ �0(H) and dom(h2) = H , then �[h1(u) + h2(u)] = �h1(u) + �h2(u) . If h is 
proper and dom(h) , then �h(u) is closed and convex. We recall that the graph of �h 
for a function h ∈ �0(H) , given by the set gra(�h) = {(u, �h(u)) ∶ u ∈ H} , is sequen-
tially closed in the strong-to-weak topology, meaning that for un → u , �n ∈ �h(un) , 
and �n ⇀ � , it follows that � ∈ �h(u) . The normal cone NC(u) is strong-to-weak 
sequentially closed if C is convex.

Throughout, (�,F,ℙ) will denote a probability space, where � represents the 
sample space, F ⊂ 2𝛺 is the �-algebra of events on the power set of � , denoted 
by 2� , and ℙ ∶ � → [0, 1] is a probability measure. Given a random vector 
𝜉 ∶ 𝛺 → 𝛯 ⊂ ℝ

m , we write � ∈ � to denote a realization of the random vector. The 
operator �[⋅] denotes the expectation with respect to this distribution; for a para-
metrized functional J ∶ H × � → ℝ , this is defined as the integral over all elements 
in � , i.e.,

A filtration is a sequence {Fn} of sub-�-algebras of F  such that F1 ⊂ F2 ⊂ ⋯ ⊂ F. 
We define a discrete H-valued stochastic process as a collection of H-valued random 
variables indexed by n, in other words, the set {�n ∶ � → H | n ∈ ℕ}. The stochastic 
process is said to be adapted to a filtration {Fn} if and only if �n is Fn-measurable 
for all n. The natural filtration is the filtration generated by the sequence {�n} and 
is given by Fn = �({�1,… , �n}).1 If for an event F ∈ F  it holds that ℙ(F) = 1 , or 
equivalently, ℙ(��F) = 0 , we say F occurs almost surely (a.s.). Sometimes we also 
say that such an event occurs with probability one. A sequence of random variables 
{�n} is said to converge almost surely to a random variable � if and only if

�h ∶ H ⇉ H ∶ u ↦ {v ∈ H ∶ ⟨y − u, v⟩ + h(u) ≤ h(y) ∀y ∈ H}.

NC(u) ∶= {z ∈ H ∶ ⟨z,w − u⟩ ≤ 0, ∀w ∈ C}.

𝔼[J(u, �)] = ∫
�

J(u, �(�)) dℙ(�).

1 The �-algebra generated by a random variable � ∶ � → ℝ is given by �(�) = {�−1(B) ∶ B ∈ B} , where 
B is the Borel �-algebra on ℝ . Analogously, the �-algebra generated by the set of random variables 
{�

1
,… , �

n
} is the smallest �-algebra such that �

i
 is measurable for all i = 1,… , n.
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For an integrable random variable � ∶ � → ℝ , the conditional expectation is 
denoted by �[�|Fn] , which is itself a random variable that is Fn-measurable and 
which satisfies ∫

A
𝔼[�|Fn](�) dℙ(�) = ∫

A
�(�) dℙ(�) for all A ∈ Fn . Almost sure 

convergence of H-valued stochastic processes and conditional expectation are 
defined analogously.

Given a random operator F ∶ X ×� → Y  , where X and Y are Banach spaces, we 
will sometimes use the notation F� ∶= F(⋅,�) ∶ X → Y  for a fixed (but arbitrary) 
� ∈ � . For a Banach space (X, ‖ ⋅ ‖X) , the Bochner space Lp(�,X) is the set of all 
(equivalence classes of) strongly measurable functions u ∶ � → X having finite 
norm, where the norm is defined by

A sequence {�n} in L1(�,X) is called a martingale if a filtration {Fn} exists such that 
�n is Fn-measurable and �[�n+1|Fn] = �n is satisfied for all n.

For an open subset U of a Banach space X and a function J� ∶ U → ℝ , we denote 
the Gâteaux derivative at u ∈ U in the direction v ∈ X by dJ�(u;v). The Fréchet 
derivative at u is denoted by J�

�
∶ U → L(X,ℝ) , where L(X,ℝ) is the set of bounded 

and linear operators mapping X to ℝ . We recall this is none other than the dual space 
X∗ and we denote the dual pairing by ⟨⋅, ⋅⟩X∗,X . For an open subset U of a Hilbert 
space H and a Fréchet differentiable function j ∶ U → ℝ , the gradient ∇j ∶ U → H 
is the Riesz representation of j� ∶ U → H∗ , i.e., it satisfies ⟨∇j(u), v⟩ = ⟨j�(u), v⟩H∗,H 
for all u ∈ U and v ∈ H. In Hilbert spaces, the Riesz representation relates elements 
of the dual space to the Hilbert space itself, allowing us to drop the dual pairing 
notation and use simply ⟨⋅, ⋅⟩.

The notation C1,1

L
(U) is used to denote the set of continuously differentiable func-

tions on U ⊂ H with an L-Lipschitz gradient, meaning ‖∇j(u) − ∇j(v)‖ ≤ L‖u − v‖ 
is satisfied for all u, v ∈ U. The following lemma gives a classical Taylor estimate 
for such functions.

Lemma 2.1 Suppose j ∈ C
1,1

L
(U) , U ⊂ H open and convex. Then for all u, v ∈ U,

3  Asymptotic convergence results

In this section, we show asymptotic convergence results for two variants of the sto-
chastic proximal gradient method in Hilbert spaces for solving Problem (P). Let 
G ∶ H × � → H be a parametrized operator (the stochastic gradient) approximating 

ℙ

({
� ∈ � ∶ lim

n→∞
�n(�) = �(�)

})
= 1.

‖u‖Lp(𝛺,X) ∶=

�
(∫

𝛺
‖u(𝜔)‖p

X
dℙ(𝜔))1∕p, p < ∞

ess sup 𝜔∈𝛺‖u(𝜔)‖X , p = ∞
.

j(v) + ⟨∇j(v), u − v⟩ − L

2
‖u − v‖2 ≤ j(u) ≤ j(v) + ⟨∇j(v), u − v⟩ + L

2
‖u − v‖2.
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(in a sense to be specified later) the gradient ∇j ∶ H → H and let tn be a positive step 
size. Both algorithms in this section will share the basic iterative form

where h is the nonsmooth term from Problem (P). The following assumptions will 
be in force in all sections.

Assumption 3.1 Let {Fn} be a filtration and let {un} and {G(un, �n)} be sequences of 
iterates and stochastic gradients. We assume 

 (i) The sequence {un} is a.s. contained in a bounded set V ⊂ H and un is adapted 
to Fn for all n.

 (ii) On an open and convex set U such that V ⊂ U ⊂ H , the expectation j ∈ C
1,1

L
(U) 

is bounded below.
 (iii) For all n, the H-valued random variable rn ∶= �[G(un, �n)|Fn] − ∇j(un) 

is adapted to Fn and for Kn ∶= ess sup �∈�‖rn(�)‖ , 
∑∞

n=1
tnKn < ∞ and 

supn Kn < ∞ are satisfied.
 (iv) For all n, �n ∶= G(un, �n) − �[G(un, �n)|Fn] is an H-valued random variable.

Remark 3.2 The assumption that the sequence {un} stays bounded with probability 
one is by no means automatically fulfilled, but can be verified or enforced in dif-
ferent ways. We refer to [6, Section 5.2] and [13, Section 6.1] for conditions on the 
function, constraint set, and/or regularizers that ensure boundedness of iterates. The 
conditions in Assumption 3.1 allow for additive bias rn in the stochastic gradient in 
addition to zero-mean error �n . The requirement that un and rn are adapted to Fn 
is automatically fulfilled if {Fn} is chosen to be the natural filtration generated by 
{�1,… , �n} . Together, Assumption 3.1(iii) and Assumption 3.1(iv) imply

and �[�n|Fn] = 0. Notice that a single realization �n ∈ � can be replaced by mn 
independently drawn realizations �1

n
,… , �

mn

n ∈ � since

This set of mn samples is sometimes called a “batch”; batches clearly reduce the 
variance of the stochastic gradient.

The result in Sect.  3.1 shows asymptotic convergence of the proximal gradient 
method with constant step sizes and increasing sampling. In Sect.  3.2, we switch 
to the versatile ordinary differential equation (ODE) method to prove convergence 
of the stochastic proximal gradient method with decreasing step sizes. We empha-
size that the convergence results generalize existing convergence theory from the 
finite-dimensional case. Our analysis includes convergence in possibly infinite-
dimensional Hilbert spaces. Additionally, we allow for stochastic gradients subject 

un+1 ∶= proxtnh(un − tnG(un, �n)),

G(un, �n) = ∇j(un) + rn +�n

�[G(un, �n)|Fn] =
1

mn

�

[
mn∑

i=1

G(un, �
i
n
)|Fn

]
.
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to additive bias, which is not covered by existing results. This theory can be used to 
develop mesh refinement strategies in applications with PDEs [20].

3.1  Variance‑reduced stochastic proximal gradient method

In this section, we show under what conditions the variance-reduced stochastic 
proximal gradient method converges to stationary points for Problem (P). With 
�n = (�1

n
,… , �

mn

n ), the stochastic gradient is given by the average

over an increasing number of samples mn . The algorithm is presented below, 
which uses constant step sizes tn ≡ t depending on the Lipschitz constant L from 
Assumption 3.1(ii). 

Remark 3.3 If h(u) = �C(u) and �C denotes the projection onto C, then the algorithm 
reduces to un+1 ∶= �C

�
un − t

∑mn
i=1

G(un,�
i
n
)

mn

�
, i.e., the variance-reduced projected sto-

chastic gradient method.

In addition to Assumption 3.1, the following assumptions will be in force in this 
section.

Assumption 3.4 Let {un} and {G(un, �n)} be generated by Algorithm 1. We assume 

 (i) The function h satisfies h ∈ �0(H).
 (ii) For all n, 

 is  an H-valued random variable and there exists an M ≥ 0 such that 
�[‖wn‖2�Fn] ≤ M

mn

 and 
∑∞

n=1
1

mn

< ∞.

Remark 3.5 We use assumptions similar to those found in [35], but we do not require 
the effective domain of h to be bounded; we instead use boundedness of the iterates 

G(un, �n) =

∑mn

i=1
G(un, �

i
n
)

mn

wn ∶=

∑mn

i=1
G(un, �

i
n
)

mn

− ∇j(un)
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by Assumption  3.1(i). Notice that wn = rn +�n from Assumption  3.1(iv), hence 
Assumption 3.4(ii) also provides a condition on the rate at which rn and �n must 
decay.

For the convergence result, we need the following lemma [46].

Lemma 3.6 (Robbins–Siegmund) Assume that {Fn} is a filtration and vn , an , bn , cn 
are nonnegative random variables adapted to Fn. If

and 
∑∞

n=1
an < ∞,

∑∞

n=1
bn < ∞ a.s., then with probability one, {vn} is convergent 

and 
∑∞

n=1
cn < ∞.

To show convergence, we first present a technical lemma.

Lemma 3.7 Let u ∈ U and t > 0 . Suppose v ∶= proxth(u − tg) ∈ U for a given 
g ∈ H . Then for any z ∈ U,

Proof We first claim that for all y, z ∈ H , t > 0 and p = proxth(y),

This follows by definition of the prox operator. Indeed, for t > 0 , p = proxth(y) if and 
only if for all z ∈ H,

It is straightforward to verify the following equality (the law of cosines)

Multiplying (3.4) by 1
2t

 and adding it to (3.3), we get (3.2). Now, since j ∈ C
1,1

L
(U) , it 

follows by Lemma 2.1 for u, v, z ∈ U that

Combining (3.5) and (3.6), we get

�[vn+1|Fn] ≤ vn(1 + an) + bn − cn a.s.

(3.1)
f (v) ≤ f (z) + ⟨v − z,∇j(u) − g⟩ +

�
L

2
−

1

2t

�
‖v − u‖2

+
�
L

2
+

1

2t

�
‖z − u‖2 − 1

2t
‖v − z‖2.

(3.2)h(p) +
1

2t
‖p − y‖2 ≤ h(z) +

1

2t
‖z − y‖2 − 1

2t
‖p − z‖2.

(3.3)h(z) ≥ h(p) +
1

t
⟨y − p, z − p⟩.

(3.4)‖z − y‖2 = ‖z − p‖2 + ‖p − y‖2 − 2⟨y − p, z − p⟩.

(3.5)j(v) ≤ j(u) + ⟨∇j(u), v − u⟩ + L

2
‖v − u‖2,

(3.6)j(u) ≤ j(z) + ⟨∇j(u), u − z⟩ + L

2
‖z − u‖2.
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Now, by (3.2) applied to v = proxth(u − tg),

if and only if

Finally, adding (3.7) and (3.8), and using that f = j + h , we get (3.1).   ◻

In the following, we define

as the iterate at n + 1 if the true gradient were used.

Lemma 3.8 For all n,

Proof Using Lemma 3.7 with v = ūn+1 , u = z = un , and g = ∇j(un) , we have

Again using Lemma 3.7, with v = un+1 , z = ūn+1 , u = un , and g = ∇j(un) + wn , we 
get

By Young’s inequality, ⟨un+1 − ūn+1,wn⟩ ≤ 1

2t
‖un+1 − ūn+1‖2 +

t

2
‖wn‖2, so combin-

ing (3.11) and (3.12), we obtain since 0 < t <
1

2L
 that

(3.7)j(v) ≤ j(z) + ⟨∇j(u), v − z⟩ + L

2
‖v − u‖2 + L

2
‖z − u‖2.

h(v) +
1

2t
‖v − (u − tg)‖2 ≤ h(z) +

1

2t
‖z − (u − tg)‖2 − 1

2t
‖v − z‖2

(3.8)
h(v) +

1

2t
‖v − u‖2 + ⟨v − u, g⟩

≤ h(z) +
1

2t
‖z − u‖2 + ⟨z − u, g⟩ − 1

2t
‖v − z‖2.

(3.9)ūn+1 ∶= proxth(un − t∇j(un))

(3.10)

�[f (un+1)�Fn] ≤ f (un) −
�
1

2t
− L

�
‖ūn+1 − un‖2 +

t

2
�[‖wn‖2�Fn] a.s.

(3.11)f (ūn+1) ≤ f (un) +
�
L

2
−

1

t

�
‖ūn+1 − un‖2.

(3.12)
f (un+1) ≤ f (ūn+1) − ⟨un+1 − ūn+1,wn⟩ +

�
L

2
−

1

2t

�
‖un+1 − un‖2

+
�
L

2
+

1

2t

�
‖ūn+1 − un‖2 −

1

2t
‖un+1 − ūn+1‖2.

(3.13)

f (un+1) ≤ f (un) +
�
L −

1

2t

�
‖ūn+1 − un‖2 +

�
L

2
−

1

2t

�
‖un+1 − un‖2

+
t

2
‖wn‖2

≤ f (un) +
�
L −

1

2t

�
‖ūn+1 − un‖2 +

t

2
‖wn‖2.
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Taking conditional expectation on both sides of (3.13), and noting that ūn+1 is Fn- 
measurable by Fn-measurability of un , we get (3.10).   ◻

Remark 3.9 Any bounded sequence {un} in H contains a weakly convergent subse-
quence {unk} such that unk ⇀ u for a u ∈ H. Generally this convergence is not strong, 
so we cannot conclude from ‖ūn+1 − un‖2 → 0 that there exists a ũ such that, for 
a subsequence {unk} , limk→∞ ūnk+1 = limk→∞ unk = ũ. Therefore, to obtain con-
vergence to stationary points, we will assume that {un} has a strongly convergent 
subsequence.

We are ready to state the convergence result for sequences generated 
by Algorithm 1.

Theorem 3.10 Let Assumptions 3.1 and 3.4 hold. Then

1. The sequence {f (un)} converges a.s.
2. The sequence {‖ūn+1 − un‖} converges to zero a.s.
3. Every strong accumulation point of {un} is a stationary point with probability 

one.

Proof The sequence {un} is contained in a bounded set V by Assumption 3.1(i). By 
Assumption 3.4(i), h ∈ �0(H) must therefore be bounded below on V [4, Corollary 
9.20]; j is bounded below by Assumption 3.1(ii). W.l.o.g. we can thus assume f ≥ 0 . 
Since 1

2t
> L and 

∑∞

n=1
�[‖wn‖2�Fn] < ∞ by Assumption  3.4(ii), we can apply 

Lemma  3.6 to (3.10) to conclude that f (un) converges almost surely. The second 
statement follows immediately, since by Lemma 3.6,

which implies that for almost every sample path, limn→∞ ‖ūn+1 − un‖2 = 0.

For the third statement, we have that there exists a subsequence {unk} such that 
unk → u . We argue that then ūnk+1 → u . Since {ūnk+1} is bounded, there exists a 
weak limit point ũ (potentially on a subsequence with the same labeling). Then, 
using weak lower semicontinuity of the norm as well as the rule ⟨an, bn⟩ → ⟨a, b⟩ for 
an ⇀ a and bn → b,

implying u = ũ. It follows ūnk+1 → u by assuming limk→∞ ‖ūnk+1‖
2 ≠ ‖u‖2 and arriv-

ing at a contradiction. Now, by definition of the prox operator,

(3.14)
∞�

n=1

‖ūn+1 − un‖2 < ∞ a.s.,

0 = lim
k→∞

‖ūnk+1 − unk‖
2 = lim

k→∞
‖ūnk+1‖

2 − 2⟨ūnk+1, unk⟩ + ‖unk‖
2

= lim inf
k→∞

‖ūnk+1‖
2 − 2⟨ūnk+1, unk⟩ + ‖unk‖

2

≥ ‖ũ‖2 − 2⟨ũ, u⟩ + ‖u‖2 = ‖ũ − u‖2 ≥ 0,
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Clearly, �H(v) = �h(v) + ∇j(unk ) +
1

t
(v − unk ) . By optimality of ūnk+1 (see Fermat’s 

rule, [4, Theorem 16.2]), 0 ∈ 𝜕H(ūnk+1) , or equivalently,

Taking the limit as k → ∞ , and using continuity of ∇j , we conclude by strong-to-
weak sequential closedness of gra(�h) that

so therefore u is a stationary point.   ◻

3.2  Stochastic proximal gradient method: decreasing step sizes

An obvious drawback of Algorithm 1 is the fact that step sizes are restricted to 
small steps bounded by a factor depending on the Lipschitz constant, which in 
applications might be difficult to determine. Additionally, the algorithm requires 
increasing batch sizes to dampen noise, which is unattractive from a complexity 
standpoint. In this section, we obtain convergence with a nonsmooth and convex 
term h using the step size rule

This step size rule dampens noise enough so that increased sampling is not 
necessary.

We observe Problem (P) with

For asymptotic arguments, it will be convenient to treat the term �C separately. To 
that end, we define

and note that f (u) = �(u) + �C(u). The stochastic gradient G(u, �) ∶ H × � → H can 
be comprised of one or more samples as in the unconstrained case; see Remark 3.2. 
The algorithm is now stated below. 

ūnk+1 = proxth(unk − t∇j(unk ))

= argmin
v∈H

�
h(v) +

1

2t
‖v − unk + t∇j(unk )‖

2
�

= argmin
v∈H

�
h(v) + ⟨∇j(unk ), v⟩ +

1

2t
‖v‖2 − 1

t
⟨v, unk⟩ =∶ H(v)

�
.

−
1

t
(ūnk+1 − unk ) ∈ ∇j(unk ) + 𝜕h(ūnk+1).

(3.15)0 ∈ ∇j(u) + �h(u),

(3.16)tn ≥ 0,

∞∑

n=1

tn = ∞,

∞∑

n=1

t2
n
< ∞.

h(u) ∶= �(u) + �C(u).

�(u) ∶= j(u) + �(u)
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To prove convergence of Algorithm 2, we will use the ODE method, which dates 
back to [33, 36]. While we use many ideas from [13], we emphasize that we general-
ize results to (possibly infinite-dimensional) Hilbert spaces and moreover, we handle 
the case when j is the expectation.

We define the set-valued map S ∶ C ⇉ H by

Additionally, we define the sequence of (single-valued) maps Sn ∶ C → H for all n 
by

In addition to Assumption 3.1, the following assumptions will apply in this section.

Assumption 3.11 Let {un} and {G(un, �n)} be generated by Algorithm 2. We assume 

(i) The set C is nonempty, bounded, convex, and closed.
(ii) The function � ∈ �0(H) with dom(�) = H is locally Lipschitz and bounded below 

on C, and there exists a function L� ∶ H → ℝ , which is bounded on bounded 
sets, satisfying 

(iii) There exists a function M ∶ H → [0,∞) , which is bounded on bounded sets, 
such that �[‖G(u, �)‖2] ≤ M(u).

(iv) For any strongly convergent sequence {un} , �[supn ‖G(un, 𝜉)‖] < ∞ holds.
(v) The set of critical values {f (u) ∶ 0 ∈ �f (u)} does not contain any segment of 

nonzero length.

Remark 3.12 To handle the infinite-dimensional case, we use assumptions that are 
generally more restrictive than in [13]; we restrict ourselves to the case where C 
and � are convex and we assume higher regularity of j in Assumption 3.1(ii) to han-
dle the case j(u) = �[J(u, �)] . However, we allow for bias rn , which is not covered 

S(u) ∶= −∇j(u) − ��(u) − NC(u).

Sn(u) ∶= −∇j(u) −
1

tn
�[u − tnG(u, �) − proxtnh(u − tnG(u, �))].

(3.17)L�(u) ≥ sup
z∶�(z)≤�(u)

�(u) − �(z)

‖u − z‖ .
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in [13]. We note that C does not need to be bounded if � is Lipschitz continuous 
over C. Assumption 3.11(ii) is satisfied if dom(��) = H and �� maps bounded sets 
to bounded sets; see also [4, Proposition 16.17] for equivalent conditions. The last 
assumption is technical but standard; see [48, Assumption H4].

The main result is the following, which we will prove in several parts. 
Throughout, we use the notation gn ∶= G(un, �n).

Theorem 3.13 Let Assumptions 3.1 and 3.11 hold. Then

1. The sequence {f (un)} converges a.s.
2. Every strong accumulation point u of the sequence {un} is a stationary point with 

probability one, namely, 0 ∈ �f (u) a.s.

Lemma 3.14 The sequence {un} satisfies the recursion

where yn = Sn(un) and wn = −
1

tn
�[proxtnh(un − tngn)|Fn] +

1

tn
proxtnh(un − tngn).

Proof Note that un and rn are Fn-measurable, so �[gn|Fn] = ∇j(un) + rn . Then

where we used that �n is independent from �1,… , �n−1 , so

By definition of yn and wn , we arrive at the conclusion.   ◻

Lemma 3.15 For any u ∈ C , g ∈ H and t > 0 , we have for ū = proxth(u − tg) that

Proof By definition of the proximity operator,

or equivalently (note ū, u ∈ C),

(3.18)un+1 = un + tn(yn − rn + wn),

un+1 − un = proxtnh(un − tngn) − un

= −tn�[gn|Fn] − �[un − tngn − proxtnh(un − tngn)|Fn]

− �[proxtnh(un − tngn)|Fn] + proxtnh(un − tngn)

= tnSn(un) − tnrn − �[proxtnh(un − tngn)|Fn] + proxtnh(un − tngn),

(3.19)
�[un − tngn − proxtnh(un − tngn)|Fn]

= �[un − tnG(un, �) − proxtnh(un − tnG(un, �))].

1

t
‖ū − u‖ ≤ 2L𝜂(u) + 2‖g‖.

𝜂(ū) + 𝛿C(ū) +
1

2t
‖ū − (u − tg)‖2 ≤ 𝜂(u) + 𝛿C(u) +

1

2t
‖u − (u − tg)‖2,
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By (3.17), in the case 𝜂(u) ≥ 𝜂(ū) , we obtain

Notice that the last inequality (3.20) is trivial whenever 𝜂(u) ≤ 𝜂(ū) . This yields the 
conclusion.   ◻

Lemma 3.16 The sequence {yn} is bounded a.s.

Proof By the characterization of yn = Sn(un) from Lemma 3.14 and (3.19), followed 
by Jensen’s inequality, and the application of Lemma 3.15 in the fourth inequality, 
we get

The last step follows by �[‖gn‖�Fn] = �[‖G(un, �)‖] and Assumption 3.11(iii) with 
Jensen’s inequality. We have from Assumption 3.1(i) that {un} is bounded a.s.; there-
fore, all terms on the right-hand side of (3.21) are bounded a.s.   ◻

For Lemma  3.18, we need the following result, which is a generalization of 
a convergence theorem for quadratic variations from [57, p.  111] to Bochner 
spaces. The proof can be found in Sect. A.

Lemma 3.17 Let {vn} be an H-valued martingale. Then {vn} is bounded in L2(�,H) 
if and only if

and when this is satisfied, vn → v∞ a.s. as n → ∞.

Lemma 3.18 The series 
∑N

j=1
tjwj a.s. converges to a limit as N → ∞.

Proof Recall the elementary inequality �[‖X − �[X�Fn]‖2�Fn] ≤ �[‖X‖2�Fn] , 
which holds for any random variable X. By Lemma 3.14 with

𝜂(ū) +
1

2t
‖ū − u‖2 + ⟨ū − u, g⟩ ≤ 𝜂(u).

(3.20)

1

t
‖ū − u‖2 ≤ 2(𝜂(u) − 𝜂(ū)) − 2⟨ū − u, g⟩ ≤ 2L𝜂(u)‖ū − u‖ + 2‖ū − u‖‖g‖.

(3.21)

‖yn‖ ≤ ‖∇j(un)‖ + ‖ 1

tn
�[un − tngn − proxtnh(un − tngn)�Fn]‖

≤ ‖∇j(un)‖ + �
�
‖ 1

tn

�
un − tngn − proxtnh(un − tngn)

�
‖�Fn

�

≤ ‖∇j(un)‖ + �[‖gn‖�Fn] + �
�
‖ 1

tn

�
un − proxtnh(un − tngn)

�
‖�Fn

�

≤ ‖∇j(un)‖ + �[‖gn‖�Fn] + 2L�(un) + 2�[‖gn‖�Fn]

≤ ‖∇j(un)‖ + 3
√
M(un) + 2L�(un).

(3.22)
∞�

n=1

�[‖vn+1 − vn‖2] < ∞,
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followed by Lemma 3.15 and Assumption 3.11(iii), we get

Let vn ∶=
∑n

j=1
tjwj . We show that vn is a square integrable martingale, 

i.e.,  vn ∈ L2(�,H) for every n and supn �[‖vn‖2] < ∞. It is clearly a martingale, 
since for all n, �[wn|Fn] = 0 and thus

To show that vn is square integrable, we use (3.23) and the fact that �[vn] = 0 for all 
n to conclude that its quadratic variations are bounded. Indeed,

Because of the condition (3.16), we have that supn �[An] < ∞. We have obtained 
that {vn} is square integrable, so by Lemma  3.17, it follows that {vn} converges 
a.s. to a limit as n → ∞ .   ◻

Lemma 3.19 The following is true with probability one:

Proof This is a simple consequence of (3.18) and a.s. boundedness of yn , rn , and wn 
for all n by Lemmas 3.16, 3.18, and Assumption 3.1(iii), respectively.   ◻

Lemma 3.20 For any sequence {zn} in C such that zn → z as n → ∞, it follows that

Proof Notice that C is closed, so z ∈ C . The fact that S(z) is nonempty, closed, 
and convex follows by these properties of ∇j(z) , ��(z) , and NC(z) . We define 
g�
n
∶= G(zn, �) and

Clearly, �𝜉[S̃n(zn, 𝜉)] = Sn(zn). Now, by Jensen’s inequality and convexity of the 
mapping u ↦ d(u, S(z)),

X ∶=
1

tn
(proxtnh(un − tngn) − un),

(3.23)
�[‖wn‖2�Fn] ≤ 1

t2
n

�[‖proxtnh(un − tngn) − un‖2�Fn]

≤ 4(L𝜂(un))
2 + 4M(un) < ∞.

�[vn|Fn] = �[tnwn|Fn] +

n−1∑

j=1

tjwj = vn−1.

An ∶=

n�

j=2

�[‖vj − vj−1‖2�Fj] =

n�

j=2

t2
j
�[‖wj‖2�Fj].

(3.24)lim
n→∞

‖un+1 − un‖ = 0.

(3.25)lim
m→∞

d

(
1

m

m∑

n=1

Sn(zn), S(z)

)
= 0 a.s.

(3.26)S̃n(zn, 𝜉) ∶= −∇j(zn) −
1

tn
(zn − tng

𝜉
n
− proxtnh(zn − tng

𝜉
n
)).
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Notice that z̄ = proxth(u) if and only if 0 ∈ 𝜕𝜂(z̄) + NC(z̄) +
1

t
(z̄ − u) , so with

there exist 𝜁𝜂,n ∈ 𝜕𝜂(z̄n) and 𝜁C,n ∈ NC(z̄n) such that

Because {zn} converges, it is contained in a bounded set. Hence, by Lemma 3.15, we 
get

which must be almost surely finite by Assumption  3.11(iv). Now, by (3.26) and 
(3.27), followed by (3.28),

By the simple rule d(u + v,A + B) ≤ d(u,A) + d(v,B) for sets A and B and points 
u, v ∈ H , we get by definition of S(z) that

By strong-to-weak sequential closedness of gra(��) and gra(NC) as well as continu-
ity of ∇j , it follows that

We show that d(S̃n(zn, 𝜉), S(z)) is almost surely bounded by an integrable function 
M̃(z) for all n. Using elementary arguments and (3.29) in the third inequality,

d

(
1

m

m∑

n=1

Sn(zn), S(z)

)
≤ 1

m

m∑

n=1

d(Sn(zn), S(z))

≤ 1

m

m∑

n=1

�𝜉

[
d(S̃n(zn, 𝜉), S(z))

]
.

(3.27)z̄n ∶= proxtnh(zn − tng
𝜉

n
),

(3.28)−(𝜁𝜂,n + 𝜁C,n) =
1

tn
(z̄n − zn + tng

𝜉
n
).

(3.29)‖𝜁𝜂,n + 𝜁C,n‖ =
1

tn
‖z̄n − zn + tng

𝜉

n
‖ ≤ 2L𝜂(zn) + 3‖g𝜉

n
‖,

d(S̃n(zn, 𝜉), S(z)) = d(−∇j(zn) +
1

tn
(z̄n − zn + tng

𝜉
n
), S(z))

= d(−∇j(zn) − 𝜁𝜂,n − 𝜁C,n, S(z)).

d(S̃n(zn, 𝜉), S(z)) ≤ ‖∇j(zn) − ∇j(z)‖ + d(𝜁𝜂,n, 𝜕𝜂(z)) + d(𝜁C,n,NC(z)).

(3.30)lim
n→∞

d(S̃n(zn, 𝜉), S(z)) = 0 a.s.

d(S̃n(zn, 𝜉), S(z))

≤ d(−∇j(zn) − 𝜁𝜂,n − 𝜁C,n, S(z))

≤ ‖∇j(zn) − ∇j(z)‖ + d(𝜁𝜂,n + 𝜁C,n, 𝜕𝜂(z) + NC(z))

≤ ‖∇j(zn) − ∇j(z)‖ + 2L𝜂(zn) + 3‖g𝜉
n
‖ + d(0, 𝜕𝜂(z) + NC(z))

≤ sup
n∈ℕ

�
‖∇j(zn) − ∇j(z)‖ + 2L𝜂(zn) + 3‖g𝜉

n
‖ + d(0, 𝜕𝜂(z) + NC(z))

�
,
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which is almost surely bounded by Assumption 3.11(ii) and Assumption 3.11(iv). 
By the dominated convergence theorem, it follows by (3.30) that as n → ∞ , 
�𝜉[d(S̃n(zn, 𝜉), S(z))] → 0 . Finally, (3.25) follows from the fact that if an → 0 as 
n → ∞ , it follows that 1

m

∑m

n=1
an → 0 as m → ∞ .   ◻

Now we will show a compactness result, adapted from [15], namely that in the 
limit, the time shifts of the linear interpolation of the sequence {un} can be made 
arbitrarily close to trajectories, or solutions, of the differential inclusion

The set C(I, H) denotes the space of continuous functions from I to H. We recall that 
if z(⋅) ∈ C([0,∞),H) satisfies (3.31) and is absolutely continuous on any compact 
interval [a, b] ⊂ (0,∞) , it is called a strong solution. The existence and uniqueness 
of this solution is guaranteed by the following result.

Proposition 3.21 For every z0 = z(0) ∈ C there exists a unique strong solution 
z ∈ C([0,∞),H) to the differential inclusion (3.31).

Proof The function u ↦ �(u) + �C(u) is proper, convex, and lower semicontinuous 
and B ∶= −∇j is Lipschitz continuous. Therefore, by [8, Proposition 3.12], the state-
ment follows.   ◻

For the next result, we set sn ∶=
∑n−1

j=1
tj and define the linear interpola-

tion u ∶ [0,∞) → H of iterates as well as the piecewise constant extension 
y ∶ [0,∞) → H of the sequence {yn} via

The time shifts of u(⋅) are denoted by u(⋅ + �) for 𝜏 > 0 . We define u� ∶ [0,∞) → H 
by

as the solution to the ODE

which is guaranteed to exist by [9, Theorem 1.4.35].

Theorem  3.22 For any T > 0 and any nonnegative sequence {�n} , the sequence 
of the time shifts {u(⋅ + �n)} is relatively compact in C([0,  T],  H). If �n → ∞ , all 
limit points ū(⋅) of the time shifts {u(⋅ + �n)} are in C([0, T], H) and there exists a 
ȳ ∶ [0, T] → H such that ȳ(t) ∈ S(ū(t)) and ū(t) = ū(0) + ∫ t

0
ȳ(s) ds.

(3.31)ż(t) ∈ S(z(t)).

(3.32)

u(t) ∶= un +
t − sn

sn+1 − sn
(un+1 − un), y(t) ∶= yn, ∀t ∈ [sn, sn+1),∀n ∈ ℕ.

(3.33)u�(t) ∶= u(�) + ∫
t

�

y(s) ds

u̇𝜏(⋅) = y(⋅), u𝜏(𝜏) = u(𝜏),
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Proof Relative compactness of time shifts. We first claim that for all T > 0,

We consider a fixed (but arbitrary) sample path � = (�1,�2,…) throughout the 
proof. Let p ∶= min{n ∶ sn ≥ �} and q ∶= max{n ∶ sn ≤ t} . By (3.33) and (3.32),

Notice that due to the recursion (3.18),

Plugging (3.36) into (3.35), we get

Therefore,

Note that by (3.32), it follows that

Moreover, by (3.32), we have

Therefore,

(3.34)lim
�→∞

sup
t∈[�,�+T]

‖u�(t) − u(t)‖ = 0 a.s.

(3.35)

u�(t) = u(�) + ∫
t

�

y(s) ds = u(�) + ∫
sp

�

y(s) ds +

q−1∑

�=p

t
�
y
�
+ ∫

t

sq

y(s) ds.

(3.36)
q−1∑

�=p

t
�
y
�
= uq − up −

q−1∑

�=p

t
�
(w

�
− r

�
).

u�(t) − u(t) = u(�) + uq − up − u(t) + ∫
sp

�

y(s) ds

−

q−1∑

�=p

t
�
(w

�
− r

�
) + ∫

t

sq

y(s) ds.

‖u�(t) − u(t)‖ ≤ ����
u(�) − up + �

sp

�

y(s) ds
����
+
�����
uq − u(t) + �

t

sq

y(s) ds
�����

+

������

q−1�

�=p

t
�
w
�

������
+

������

q−1�

�=p

t
�
r
�

������
.

‖u(�) − up‖ ≤ ‖up−1 − up‖ = tp−1‖yp−1 − rp−1 + wp−1‖,
‖uq − u(t)‖ ≤ ‖uq − uq+1‖ = tq‖yq − rq + wq‖.

�����
sp

�

y(s) ds
����
≤ tp−1‖yp−1‖ and

������
t

sq

y(s) ds
�����
≤ tq‖yq‖.
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We take the limit p, q → ∞ on the right-hand side of (3.37) and observe that by 
Lemma  3.16, limn→∞ supm≥n tm‖ym‖ = 0 and by Lemma  3.18, we have 
limn→∞ supm≥n ‖

∑m−1

�=n
t
�
w
�
‖ = 0 as well as limn→∞ supm≥n tm‖wm‖ . By Assump-

tion 3.1(iii), we have limn→∞ supm≥n ���
∑m−1

�=n
t
�
r
�

��� = 0. We have shown (3.34), so it 
follows that the set

is a family of equicontinuous functions.
To invoke the Arzelà–Ascoli theorem, we first show that the set

is relatively compact for all t ∈ [0, T] , T > 0 . We show this by proving that arbitrary 
sequences in A(t) have a Cauchy subsequence, which converge in H by completeness 
of H. To this end, let 𝜀 > 0 be arbitrary and observe first the case �n → ∞. Let nk be 
the index such that �k ∈ [snk , snk+1) and

Similarly, let mj be the index such that �j ∈ [smj
, smj+1

) . Thus we have

Using (3.36), we get (w.l.o.g. �k ≤ �j)

Combining (3.38) and (3.39), and observing that 
||||

�k−snk

snk+1
−snk

||||
≤ 1 as well as 

||||
�j−smj

smj+1
−smj

||||
≤ 1 , we obtain

(3.37)

‖u�(t) − u(t)‖ ≤ tp−1(2‖yp−1‖ + ‖rp−1‖ + ‖wp−1‖)

+ tq(2‖yq‖ + ‖rq‖ + ‖wq‖) +
������

q−1�

�=p

t
�
w
�

������
+

������

q−1�

�=p

t
�
r
�

������
.

A ∶= {u�(⋅) ∶ � ∈ [0,∞)}

A(t) ∶= {u�(t) ∶ � ∈ [0,∞)}

u�k (t) = unk +
�k − snk

snk+1 − snk

(unk+1 − unk ) + ∫
t

�k

y(s) ds.

(3.38)

‖u�k (t) − u�j(t)‖

≤ �����

�k − snk

snk+1 − snk

(unk+1 − unk ) −
�j − smj

smj+1
− smj

(umj+1
− umj

)
�����

+
�����
unk − umj

+ �
�j

�k

y(s) ds
�����
.

(3.39)

�����
unk − umj

+ �
�j

�k

y(s) ds
�����
≤ ‖unk − unk+1‖ +

������
snk+1

�k

y(s) ds
�����

+

������
�

�j

smj

y(s) ds

������
+

������

mj−1�

�=nk+1

t
�
(w

�
− r

�
)

������
.
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By Lemma 3.19 as well as convergence of the other terms on the right-hand side of 
(3.40), for 𝜀 > 0 there exists a N such that for all k, j > N , ‖u�k (t) − u�j(t)‖ ≤ � for all 
k, j > N and thus {u�n(t)} has a Cauchy subsequence for �n → ∞ . Now we observe 
the case where the sequence {�n} is bounded. Then 𝜏n → 𝜏 for some 𝜏 > 0 at least on 
a subsequence (with the same labeling). By convergence of {�n} we get that mj = nk 
for k, j ≥ N and N large enough. Therefore (3.38) reduces to

We can bound terms on the right-hand side of (3.41) as before to obtain that {u�n(t)} 
has a Cauchy subsequence. We have shown that A(t) is relatively compact for all 
t ∈ [0, T] , T > 0 , so by the Arzelà–Ascoli theorem, it follows that the set A is rela-
tively compact.

Now, the relative compactness of the set of time shifts {u(⋅ + �) ∶ � ∈ [0,∞)} 
follows from the relative compactness of the set A. Indeed, for any sequence 
{u�n(⋅ + �n)} there exists a convergent subsequence such that u𝜏nk (⋅ + 𝜏nk ) → ū(⋅) for 
some ū(⋅) ∈ C([0, T],H) . Now, for the time shift u(⋅ + �nk ) , we have

so it follows that u(⋅ + 𝜏nk ) → ū(⋅) in C([0,  T],  H) as �nk → ∞ by convergence of 
u
�nk (⋅) and (3.34). If 𝜏nk → 𝜏 , then u(⋅ + 𝜏nk ) → u(⋅ + 𝜏) by uniform continuity of u(⋅) 

on [0, 𝜏 + T].

Limit points are trajectories of the differential inclusion. Let {�n} be a sequence 
such that as �n → ∞ , u𝜏n(⋅ + 𝜏n) → ū(⋅) in C([0,  T],  H) (potentially on a subse-
quence). The sequence {y(⋅ + 𝜏n)} ⊂ L2([0, T],H) is bounded by boundedness of 
{yn} , and since L2([0, T],H) is a Hilbert space, there exists a subsequence {nk} such 
that y(⋅ + 𝜏nk ) ⇀ ȳ(⋅) in L2([0, T],H) for some ȳ ∈ L2([0, T],H) . Notice that for 
{�nk} , by (3.33) it follows that

By (3.34), u𝜏nk (⋅ + 𝜏nk ) → ū(⋅) in C([0, T], H) as k → ∞ . Taking k → ∞ on both sides 
of (3.42) we get, due to y(⋅ + 𝜏nk ) ⇀ ȳ(⋅) for t ∈ [0, T] , that

(3.40)

‖u�k (t) − u�j (t)‖ ≤ 2‖unk+1 − unk‖ + ‖umj+1
− umj

‖ + tnk‖ynk‖

+ tmj
‖ymj

‖ +
������

mj−1�

�=nk+1

t
�
(w

�
− r

�
)

������
.

(3.41)‖u�k (t) − u�j (t)‖ ≤ �����

�k − �j

snk+1 − snk

�����
‖unk+1 − unk‖ +

������
�j

�k

y(s) ds
�����
.

sup
t∈[0,T]

‖u(t + 𝜏nk ) − ū(t)‖

≤ sup
t∈[0,T]

‖u(t + 𝜏nk ) − u
𝜏nk (t + 𝜏nk )‖ + sup

t∈[0,T]

‖u𝜏nk (t + 𝜏nk ) − ū(t)‖,

(3.42)u
�nk (t + �nk ) = u

�nk (�nk ) + ∫
t

0

y(s + �nk ) ds.

ū(t) = ū(0) + ∫
t

0

ȳ(s) ds.
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Now, we will show that ȳ(t) ∈ S(ū(t)) for a.e. t ∈ [0, T] . By the Banach-Saks theo-
rem (cf. [42]), there exists a subsequence of {y(⋅ + �nk )} (where we use the same 
notation for the sequence as its subsequence) such that

Recall that yn = Sn(un) by Lemma 3.14 and set �t
k
∶= max{� ∶ s

�
≤ t + �nk}. Then 

we have

Therefore, since t + �nk ∈ [�t
k
,�t

k
+ 1],

which a.s.  converges to zero as k → ∞ , since u(⋅ + 𝜏nk ) → ū(⋅) and the fact that 
tn → 0 by (3.16) (combined a.s.  boundedness of yn, rn , and wn for all n by 
Lemma  3.16, Assumption  3.1(iii), and Lemma  3.18, respectively). Now, using 
y(t + �nk ) = y

�
t
k
 , we get

which converges to zero as m → ∞ by (3.43) and Lemma 3.20, where we note that 
u(s

�
t
k
) → ū(t) as k → ∞ by (3.44). Since S(ū(t)) is a closed set and the sample path 

was chosen to be arbitrary, we have that the statement must be true with probability 
one.   ◻

Now, we show that there is always a strict decrease in � along a trajectory that 
originates at a noncritical point z(0).

Lemma 3.23 Whenever z ∶ [0,∞) → C is a trajectory satisfying the differential 
inclusion (3.31) and 0 ∉ S(z(0)), then there exists a T > 0 such that

Proof We modify the proof from [13, Lemma 5.2]. Let �, � satisfying 0 < 𝛿 < 𝜏 be 
fixed but arbitrary. From Theorem 3.21 we have that z is absolutely continuous on 
[�, �] . It is straightforward to show that �◦z ∶ [�, �] → ℝ is absolutely continuous, 

(3.43)lim
m→∞

1

m

m∑

k=1

y(⋅ + 𝜏nk ) = ȳ(⋅).

y(t + �nk ) = y(s
�
t
k
) = y

�
t
k
= S

�
t
k
(u

�
t
k
).

(3.44)

‖u(s
�
t
k
) − ū(t)‖ ≤ ‖u(s

�
t
k
) − u(t + 𝜏nk )‖ + ‖u(t + 𝜏nk ) − ū(t)‖

≤ ‖u(s
�
t
k
) − u(s

�
t
k
+1)‖ + ‖u(t + 𝜏nk ) − ū(t)‖

≤ t
�
t
k
(‖y

�
t
k
‖ + ‖r

�
t
k
‖ + ‖w

�
t
k
‖) + ‖u(t + 𝜏nk ) − ū(t)‖,

d(ȳ(t), S(ū(t)))

≤ ‖‖‖‖‖
1

m

m∑

k=1

y(t + 𝜏nk ) − ȳ(t)
‖‖‖‖‖
+ d

(
1

m

m∑

k=1

y(t + 𝜏nk ), S(ū(t))

)

≤ ‖‖‖‖‖
1

m

m∑

k=1

y(t + 𝜏nk ) − ȳ(t)
‖‖‖‖‖
+ d

(
1

m

m∑

k=1

S
�
t
k
(u(s

�
t
k
)), S(ū(t))

)
,

(3.45)𝜑(z(T)) < sup
t∈[0,T]

𝜑(z(t)) ≤ 𝜑(z(0)).
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since C is bounded and � is a composition of a locally Lipschitz map with an abso-
lutely continuous function. Therefore, by Rademacher’s theorem, it is differentiable 
for almost every t ∈ [�, �]. On the other hand, notice that since � is locally Lipschitz 
near z(t) and convex, it is Clarke regular, so the chain rule 𝜕(𝜂◦z)(t) = 𝜕𝜂(z(t))◦ż(t) 
holds by [11, Theorem 2.3.10]. The chain rule for j holds by differentiability. There-
fore for almost every t, it follows for all v ∈ ��(z(t)) that

We now observe the following property for the subdifferential of �C , namely,

Indeed, since z(⋅) takes values in C and by definition of the subdifferential, for all 
r ≥ 0 it follows that

Hence,

The reverse inequality can be obtained by using the left limit of the difference quo-
tient, and we get (3.47). By (3.46) and (3.47), we obtain for a.e. t that

We now show that ‖ż(t)‖ = d(0, S(z(t))) . Trivially, d(0, S(z(t))) ≤ ‖� − 0‖ for all 
� ∈ S(z(t)) , so it follows that d(0, S(z(t))) ≤ ‖ż(t)‖. Notice that for all v,w ∈ ��(z(t)) , 
by (3.46), 0 = ⟨v − w, ż(t)⟩. Setting W ∶= span(��(z(t)) − ��(z(t))) , we get 
ż(t) ∈ W⟂ . Clearly, −ż(t) ∈ (−ż(t) +W) ∩W⟂ so ‖ż(t)‖ ≤ d(0,−ż(t) +W) . Since 
𝜕𝜑(z(t)) ⊂ ż(t) +W , it follows ‖ż(t)‖ ≤ d(0, 𝜕𝜑(z(t))) and we get ‖ż(t)‖ = d(0, S(z(t))).

Now, notice that by (3.48) and the fact that ż(t) ∈ S(z(t)) , we have for a.e. t that

Since �◦z is absolutely continuous on [�, �],

and hence �(z(�)) ≥ �(z(�)) . Using the continuity of �◦z , and the fact that 
0 < 𝛿 < 𝜏 were arbitrarily chosen, we get �(z(0)) ≥ �(z(t)) for all t > 0 . To finish 
the proof, we must find some T > 0 such that 𝜑(z(T)) < supt∈[0,T] 𝜑(z(t)) . Suppose 
that d(0, S(z(t))) = 0 for a.e. t ∈ [0, T] for all T > 0 . Since ‖ż(t)‖ = d(0, S(z(t))) then 
z ≡ z(0) . This is a contradiction, since ż(⋅) ∈ S(z(⋅)) and 0 ∉ S(z(0)) . By (3.49), we 
conclude that there exists a T > 0 such that (3.45) holds.   ◻

(3.46)(𝜑◦z)�(t) = 𝜕(𝜑◦z)(t) = (∇j(z(t)) + 𝜕𝜂(z(t)))◦ż(t) = ⟨v, ż(t)⟩.

(3.47)⟨v, ż(t)⟩ = 0 ∀v ∈ NC(z(t)).

0 = �C(z(t + r)) − �C(z(t)) ≥ ⟨v, z(t + r) − z(t)⟩.

0 ≥ lim
r→0+

�
v,
z(t + r) − z(t)

r

�
= ⟨v, ż(t)⟩.

(3.48)⟨v, ż(t)⟩ = 𝜕(𝜑◦z)(t) ∀v ∈ −S(z(t)).

𝜕(𝜑◦z)(t) = −‖ż(t)‖2 = −d(0, S(z(t)))2.

(3.49)�(z(�)) = �(z(�)) − ∫
�

�

d(0, S(z(s)))2 ds
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The following proof is standard, but we need to make several arguments dif-
ferently in the infinite-dimensional setting. We will proceed as in [13]. We define 
the level sets of � as

Proposition 3.24 For all 𝜀 > 0 there exists a N such that for all n ≥ N, if un ∈ L�, 
then un+1 ∈ L2� a.s.

Proof First, we remark that � is uniformly continuous on V, since �(⋅) satis-
fies (3.17) and, in turn, is Lipschitz continuous on V, as well as the fact that j is 
Lipschitz continuous on V. Therefore, for any 𝜀 > 0 there exists a 𝛿 > 0 such that 
if ‖un+1 − un‖ < 𝛿 , then |𝜑(un+1) − 𝜑(un)| < 𝜀. Now, we choose N such that 
‖un+1 − un‖ < 𝛿 for all n ≥ N , which is possible by Lemma 3.19. Then it must fol-
low that |𝜑(un+1) − 𝜑(un)| < 𝜀 for all n ≥ N as well. Now, since un ∈ L� , it follows 
that �(un+1) ≤ 2� , so therefore un+1 ∈ L2� .   ◻

Lemma 3.25 The following equalities hold.

Proof We argue that lim infn→∞ �(un) ≤ lim inft→∞ �(u(t)) ; the other direc-
tion is clear by construction of u(⋅) from (3.32). Let {�n} be a sequence such that 
�n → ∞ , limn→∞ u(𝜏n) = ū for some ū ∈ H , and lim infn→∞ 𝜑(u(𝜏n)) = 𝜑(ū) . With 
kn ∶= max{n ∶ tk ≤ �n} , we get

which converges to zero as n → ∞ by (3.24) and convergence of the sequence 
{u(�n)}. Therefore ukn → ū and so by continuity of � , it follows that

Analogous arguments can be made for the claim

  ◻

Lemma 3.26 Only finitely many iterates {un} are contained in H∖L2�.

Proof We choose 𝜀 > 0 such that � ∉ �(S−1(0)), which is possible for arbitrarily 
small � by Assumption 3.11(v), where we note that �(S−1(0)) = f (S−1(0)) . We con-
struct the process given by the recursion

Lr ∶= {u ∈ H ∶ �(u) ≤ r}.

(3.50)

lim inf
n→∞

�(un) = lim inf
t→∞

�(u(t)) and lim sup
n→∞

�(un) = lim sup
t→∞

�(u(t)).

‖ukn − ū‖ ≤ ‖ukn − u(𝜏n)‖ + ‖u(𝜏n) − ū‖ ≤ ‖ukn − ukn+1‖ + ‖u(𝜏n) − ū‖,

lim inf
t→∞

𝜑(u(t)) = 𝜑(ū) = lim
n→∞

𝜑(ukn ) ≥ lim inf
n→∞

𝜑(un).

lim sup
n→∞

�(un) = lim sup
t→∞

�(u(t)).
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and so on. We argue by contradiction and recall that sn =
∑n−1

j=1
tj . Suppose infinitely 

many {un} are in H∖L2� , then it must follow that ij → ∞ as j → ∞ . By Theo-
rem  3.22, {u(⋅ + sij )} is relatively compact in C([0,  T],  H) for all T > 0 and there 
exists a subsequence (with the same labeling) and limit point z(⋅) such that z(⋅) is a 
trajectory of (3.31). Now, since by construction �(uij ) ≤ � and 𝜑(uij+1) > 𝜀 , it fol-
lows that

Recall that limj→∞ uij = u(⋅ + sij ) = z(0) . Taking the limit j → ∞ on both sides of 
(3.51), by continuity of � , we get

meaning z(0) is not a critical point of � . Thus we can invoke Lemma 3.23 to get the 
existence of a T > 0 such that

By uniform convergence of u(⋅ + sij ) to z(⋅) , it follows for j sufficiently large that

so

Therefore it must follow that

for j sufficiently large. We now find a contradiction to the statement (3.53). This is 
done by observing the sequence �j ∶= max{� ∶ sij ≤ s

�
≤ sij + T}. From (3.52), we 

have that there exists a 𝛿 > 0 such that �(z(T)) ≤ � − 2�. Observe that

Therefore u
�j
→ u(T + sij ) and hence u

�j
→ z(T) as j → ∞ . By continuity, we get 

limj→∞ �(u
�j
) = �(z(T)). Thus 𝜑(u

�j
) < 𝜀 − 𝛿 for j sufficiently large, a contradiction 

to (3.53).   ◻

i1 ∶= min{n ∶ un ∈ L𝜀 and un+1 ∈ L2𝜀�L𝜀},

e1 ∶= min{n ∶ n > i1 and un ∈ H�L2𝜀},

i2 ∶= min{n ∶ n > e1 and un ∈ L𝜀},

(3.51)
� ≥ �(uij ) = �(uij+1) + �(uij ) − �(uij+1)

≥ � + �(uij ) − �(uij+1).

lim
j→∞

�(uij ) = �(z(0)) = �,

(3.52)𝜑(z(T)) < sup
t∈[0,T]

𝜑(z(t)) ≤ 𝜑(z(0)) = 𝜀.

sup
t∈[0,T]

|𝜑(u(t + sij )) − 𝜑(z(t))| < 𝜀,

sup
t∈[0,T]

�(u(t + sij )) ≤ sup
t∈[0,T]

|�(u(t + sij )) − �(z(t))| + sup
t∈[0,T]

�(z(t)) ≤ 2�.

(3.53)seij
> sij + T

‖u
�j
− u(T + sij )‖ = ‖u(s

�j
) − u(T + sij )‖ ≤ ‖u

�j
− u

�j+1
‖ → 0 as j → ∞.



1 3

Stochastic proximal gradient methods for nonconvex problems…

Proposition 3.27 The limit limt→∞ �(u(t)) exists.

Proof W.l.o.g.  assume lim inft→∞ �(u(t)) = 0 ; this is possible by the fact that j 
and � are bounded below. Choosing 𝜀 > 0 such that � ∉ �(S−1(0)), we have by 
Lemma 3.26 that for N sufficiently large, un ∈ L2� for all n ≥ N . Since � can be cho-
sen to be arbitrarily small, we conclude that limt→∞ �(u(t)) = 0.   ◻

Proof of Theorem 3.13 The fact that {�(un)} converges follows from Proposition 3.27 
and Lemma 3.25. Since {un} ⊂ C , it trivially follows that {f (un)} converges a.s. Let 
ū be a limit point of {un} and suppose that 0 ∉ S(ū) . Let {unk} be a subsequence 
converging to ū and let z(⋅) be the limit of {u(⋅ + snk )} . Then, by Lemma 3.23, there 
exists a T > 0 such that

However, it follows from Proposition 3.27 that

which is a contradiction to (3.54).   ◻

4  Application to PDE‑constrained optimization under uncertainty

In this section, we apply the algorithm presented in Sect. 3.2 to a nonconvex prob-
lem from PDE-constrained optimization under uncertainty. In Sect. 4.1, we set up 
the problem and verify conditions for convergence of the stochastic proximal gradi-
ent method. We show numerical experiments in Sect. 4.2.

4.1  Model problem

We first introduce notation and concepts specific to our application; see [18, 52]. 
Let D ⊂ ℝ

d , d ≤ 3 be an open and bounded Lipschitz domain. The inner prod-
uct between vectors x, y ∈ ℝ

d is denoted by x ⋅ y =
∑d

i=1
xiyi . For a function 

v ∶ ℝ
d
→ ℝ , let ∇v(x) = (𝜕v(x)∕𝜕x1,… , 𝜕v(x)∕𝜕xd)

⊤ denote the gradient and for 
w ∶ ℝ

d
→ ℝ

d , let ∇ ⋅ w(x) = �w1(x)∕�x1 +⋯ + �wd(x)∕�xd denote the diver-
gence. We define the Sobolev space H1(D) = { u ∈ L2(D) having weak derivatives 
�u∕�xi ∈ L2(D) , i = 1,… , d } and the closure of C∞

c
(D) in H1(D) by H1

0
(D).

We will focus on a semilinear diffusion-reaction equation with uncertainties, 
which describes transport phenomena at equilibrium and is motivated by [41]. We 
assume that there exist random fields a ∶ D ×� → ℝ and r ∶ D ×� → ℝ , which 
are the diffusion and reaction coefficients, respectively. To facilitate simulation, we 
will make a standard finite-dimensional noise assumption, meaning the random field 
has the form

(3.54)𝜑(z(T)) < sup
t∈[0,T]

𝜑(z(t)) ≤ 𝜑(ū).

𝜑(z(T)) = lim
k→∞

𝜑(u(T + snk )) = lim
t→∞

𝜑(u(t)) = 𝜑(ū),
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where �(�) = (�1(�),… , �m(�)) is a vector of real-valued uncorrelated random 
variables 𝜉i ∶ 𝛺 → 𝛯i ⊂ ℝ . The support of the random vector will be denoted by 
� ∶=

∏m

i=1
�i . We consider the following PDE constraint, to be satisfied for almost 

every � ∈ �:

Optimal control problems with semilinear PDEs involving random coefficients have 
been studied in, for instance, [26, 27]. We include a nonsmooth term as in [14] with 
the goal of obtaining sparse solutions. In the following, we assume that �1 ≥ 0 , 
�2 ≥ 0 , and yD ∈ L2(D) . The model problem we solve is given by

The following assumptions will apply in this section. In particular, we do not require 
uniform bounds on the coefficient a(⋅, �) , which allow for modeling with log-normal 
random fields.

Assumption 4.1 We assume yD ∈ L2(D) , ua, ub ∈ L2(D) , and ua ≤ ub . There 
exist amin(⋅), amax(⋅) such that 0 < amin(𝜉) < a(⋅, 𝜉) < amax(𝜉) < ∞ in D a.s.  and 
a−1
min

, amax ∈ Lp(�) for all p ∈ [1,∞) . Furthermore, there exists rmax(⋅) such that 
0 ≤ r(⋅, 𝜉) ≤ rmax(𝜉) < ∞ a.s. and rmax ∈ Lp(�) for all p ∈ [1,∞).

Existence of a solution to Problem (P’) follows by applying [27, Proposition 3.1]. 
The following result holds by [27, Proposition 2.1] combined with standard a priori 
estimates for a fixed realization � to obtain (4.2) and (4.3).

Lemma 4.2 For almost every � ∈ � , (4.1) has a unique solution 
y(�) = y(⋅, �) ∈ H1

0
(D) and there exists a positive random variable C1 ∈ Lp(�) for 

all p ∈ [1,∞) independent of u such that for almost every � ∈ �,

Additionally, for y1(�) and y2(�) solving (4.1) with u = u1 and u = u2, respectively, 
we have for almost every � ∈ � that

By Lemma 4.2, the control-to-state operator T(�) ∶ L2(D) → H1
0
(D), u ↦ T(�)u 

is well-defined for almost every � and all u ∈ L2(D) . Additionally, for almost 

a(x,�) = a(x, �(�)), r(x,�) = r(x, �(�)) in D ×�,

(4.1)
−∇ ⋅ (a(x, �)∇y(x, �)) + r(x, �)(y(x, �))3 = u(x), (x, �) ∈ D × �,

y(x, �) = 0, (x, �) ∈ �D × �.

(P’)

min
u∈C

�
�(u) ∶=

1

2
�[‖y(�) − yD‖2L2(D)] +

�2

2
‖u‖2

L2(D)
+ �1‖u‖L1(D)

�

s.t. − ∇ ⋅ (a(x, �)∇y) + r(x, �)y3 = u(x), (x, �) ∈ D × �,

y = 0, (x, �) ∈ �D × �,

C ∶= {u ∈ L2(D) ∶ ua(x) ≤ u(x) ≤ ub(x) a.e. x ∈ D}.

(4.2)‖y(�)‖L2(D) ≤ C1(�)‖u‖L2(D).

(4.3)‖y1(�) − y2(�)‖L2(D) ≤ C1(�)‖u1 − u2‖L2(D).



1 3

Stochastic proximal gradient methods for nonconvex problems…

every � ∈ � , this mapping is in fact continuously Fréchet differentiable; this can 
be argued by verifying [23, Assumption 1.47] as in [23, pp. 76-78]. With that, we 
define the reduced functional J ∶ L2(D) × � → ℝ by 
J(u, �) ∶=

1

2
‖T(�)u − yD‖2L2(D) +

�2

2
‖u‖2

L2(D)
 and we can define the stochastic 

gradient.

Proposition 4.3 J ∶ L2(D) × � → ℝ is continuously Fréchet differentiable and the 
stochastic gradient is given by

where, given a solution y = y(⋅, �) to (4.1), the function p = p(⋅, �) ∈ H1
0
(D) is the 

solution to the adjoint equation

Furthermore, for almost every � ∈ � , with the same C1 ∈ Lp(�) for all p ∈ [1,∞) 
as in Lemma 4.2,

Additionally, for p1(�) and p2(�) solving (4.5) with y = y1(�) and y = y2(�) , respec-
tively (where yi(�) solves (4.1) with u = ui),

The proofs of the above and following proposition are in Sect. B. We define 
j ∶ L2(D) → ℝ by j(u) ∶= �[J(u, �)] for all u ∈ L2(D) and show that it is continu-
ously Fréchet differentiable in the following proposition.

Proposition 4.4 The function j ∶ L2(D) → ℝ is continuously Fréchet differentiable 
and �[G(u, �)] = ∇j(u) for all u ∈ L2(D).

Now, we present the main result of this section, which is the verification of 
assumptions for the convergence of Algorithm 2.

Theorem  4.5 Problem (P’) satisfies Assumption  3.1(ii) as well as 
Assumptions 3.11(i)–3.11(iv).

Proof For Assumption  3.1(ii), we note that by Proposition  4.4, j is continuously 
Fréchet differentiable and �[G(u, �)] = ∇j(u) for all u ∈ L2(D) . Now, for arbitrary 
u1, u2 ∈ L2(D) , we have by Jensen’s inequality, (4.4), and Hölder’s inequality applied 
to (4.7) and (4.3) that

(4.4)G(u, �) ∶= �2u − p(⋅, �),

(4.5)
−∇ ⋅ (a(x, �)∇p) + 3r(x, �)y2p = yD − y, (x, �) ∈ D × �

p = 0, (x, �) ∈ �D × � .

(4.6)‖p(⋅, �)‖L2(D) ≤ C1(�)‖yD − y(�)‖L2(D).

(4.7)‖p1(�) − p2(�)‖L2(D) ≤ C1(�)‖y1(�) − y2(�)‖L2(D).
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Since ‖C1‖2L2(𝛯)
< ∞ it follows that j ∈ C

1,1

L
(L2(D)).

Assumption 3.11(i) is obviously satisfied. For Assumption 3.11(ii), we have that 
the function �(u) = �1‖u‖L1(D) ∈ �0(L

2(D)) and is clearly bounded below; addition-
ally, � is globally Lipschitz and therefore satisfies (3.17). For Assumption 3.11(iii), 
we have by (4.4), (4.6), and (4.2) the bound

and furthermore �[‖G(u, 𝜉)‖2
L2(D)

] =∶ M(u) < ∞ by integrability of � ↦ C1(�) . 
Assumption 3.11(iv) follows for any u ∈ C (and hence any convergent sequence {un} 
in C) by (4.8).   ◻

The last assumption from Assumption 3.11 is technical and difficult to verify for 
general functions in infinite dimensions. Indeed, [31] gave an example of a C∞-function 
whose critical values make up a set of measure greater than zero. In finite dimensions 
the story is easier: the Morse–Sard theorem guarantees that Assumption 3.11(v) holds 
if f ∶ ℝ

n
→ ℝ and f ∈ Ck for k ≥ n . In infinite dimensions, certain well-behaved 

functions, in particular Fredholm operators, see [50], satisfy this assumption.

4.2  Numerical experiments

In this section, we demonstrate Algorithm 2 on Problem (P’). Simulations were run 
using FEniCS by [2] on a laptop with Intel Core i7 Processor (8 x 2.6 GHz) with 
16 GB RAM. Let the domain be given by D = (0, 1) × (0, 1) and the constraint set 
be given by C = {u ∈ L2(D) | − 0.5 ≤ u(x) ≤ 0.5 ∀x ∈ D}. We modify [14, Exam-
ple 6.1], with yD(x) = sin(2�x1) sin(2�x2) exp(2x1)∕6 , �1 = 0.008 , and �2 = 0.001. 
We generate random fields using a Karhunen-Loève expansion, with means a0 = 0.5 
and r0 = 0.5 , number of summands m = 20 , and �a,i, �r,i ∼ U(−

√
0.5,

√
0.5) , where 

U(a, b) denotes the uniform distribution between real numbers a and b, a < b . The 
eigenfunctions and eigenvalues are given by

where we reorder terms so that the eigenvalues appear in descending order (i.e., 
𝜙1 = �̃�1,1 and 𝜆1 = �̃�1,1 ) and we choose correlation length l = 0.5 . Thus

‖∇j(u1) − ∇j(u2)‖L2(D) ≤ �[‖G(u1, �) − G(u2, �)‖L2(D)]
≤ �2‖u1 − u2‖L2(D) + �[‖p1(�) − p2(�)‖L2(D)]

≤ �2‖u1 − u2‖L2(D) +
�
�[(C1(�))

2]
�1∕2�

�[‖y1(�) − y2(�)‖2L2(D)]
�1∕2

≤ �2‖u1 − u2‖L2(D) + ‖C1‖2L2(�)
‖u1 − u2‖L2(D).

(4.8)‖G(u, �)‖L2(D) ≤ �2‖u‖L2(D) + C1(�)‖yD‖L2(D) + (C1(�))
2‖u‖L2(D)

�̃�j,k(x) ∶= 2 cos(j𝜋x2) cos(k𝜋x1), �̃�k,j ∶=
1

4
exp(−𝜋(j2 + k2)l2), j, k ≥ 1,

(4.9)a(x, �) = a0 +

m�

i=1

√
�i�i�

a,i, r(x, �) = r0 +

m�

i=1

√
�i�i�

r,i.
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For Algorithm  2, we generate samples with �n = (�a,1
n
,… , �a,m

n
, �r,a

n
,… , �r,m

n
) 

at each iteration n. The step size is chosen to be tn = �∕n with � = 100 , where 
the scaling was chosen such that � ≈ 1∕‖G(u1, �1)‖ . The initial point was 
u1(x) = sin(4�x1) sin(4�x2).

A uniform mesh T  with 9800 shape regular triangles T was used. We denote 
the mesh fineness with ĥ = maxT∈T diam(T) . The state and adjoint were discre-
tized using piecewise linear finite elements, (where Pi denotes the space of poly-
nomials of degree up to i), given by the set

For the controls, we choose a discretization of L2(D) by piecewise constants, given 
by the set

We use the L2-projection Pĥ ∶ L2(D) → Uĥ defined for each v ∈ L2(D) by

This is done to project the stochastic gradient onto the L2(D) space as in [20]. Hence, 
the last line of Algorithm  2 is given by the expression 
un+1 ∶= proxtnh

(
un − tnPĥG(un, 𝜉n)

)
. For the computation of the proximity operator 

proxt(�+�C)(z) = argmin −0.5≤v≤0.5{�1‖v‖L1(D) + 1

2t
‖v − z‖2

L2(D)
} , we use the formula 

from [5, Example 6.22], defined piecewise on each element of the mesh. For each 
T ∈ T  , it is given by

For convergence plots, we use a heuristic to approximate the objective function and 
the measure of stationarity by increasing sampling as the control reaches stationarity. 
To be more precise, we use a sequence of sample sizes {mn} with mn = 10⌊ n

50
⌋ + 1 

newly generated i.i.d. samples (�n,1,… , �n,mn
) and compute

The algorithm is terminated for n ≥ 50 if r̂n ∶=
∑n

k=n−50
rn ≤ tol with tol = 2e−4 . 

The parameters for our heuristic termination rule were tuned, for illustration pur-
poses only, so that the algorithm stopped after several hundred iterations. A plot of 
the control after termination is shown in Fig. 1. The effect of the sparse term � as 
well as the constraint set C can be seen clearly. Decay of the objective function value 

Vĥ ∶= {v ∈ H1
0
(D) ∶ v|T ∈ P1(T) for all T ∈ T}.

Uĥ ∶= {u ∈ L2(D) ∶ v|T ∈ P0(T) for all T ∈ T}, Cĥ ∶= Uĥ ∩ C.

Pĥ(v)
||T∶=

1

|T| ∫T

v dx.

proxt(�+�C)(z|T ) = min{max{|z|T | − t�1, 0}, 0.5}sgn(z|T ).

f̂n ∶=
1

mn

mn∑

j=1

J(un, 𝜉n,j) + 𝜂(un),

rn ∶=

‖‖‖‖‖‖
un − prox𝜂+𝛿C

(
un −

1

mn

mn∑

j=1

PĥG(un, 𝜉n,j)

)‖‖‖‖‖‖L2(D)
.
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and the stationarity measure are shown in Fig. 2. We see convergence of the objec-
tive function values and the stationarity measure tends to zero as expected.

Additionally, we conduct an experiment to demonstrate mesh independence of 
the algorithm by running the algorithm once each for different meshes and compar-
ing the number of iterations needed until the tolerance tol is reached. In Table 1, we 
see that these iteration numbers are of the same order. The estimate for the objective 
function f̂N is also included at the final iteration N, demonstrating how solutions 
become more exact on finer meshes.

5  Conclusion

In this paper, we presented asymptotic convergence analysis for two variants of the 
stochastic proximal gradient algorithm in Hilbert spaces. The main results address 
the asymptotic convergence to stationary points of general functions defined over 
a Hilbert space. Moreover, we presented an application to the theory in the form 
of a problem from PDE-constrained optimization under uncertainty. Assumptions 

Fig. 1  The control u after 251 
iterations

Fig. 2  Behavior of the objective function (left) and the stationarity measure (right)
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for convergence were verified for a tracking-type problem with a L1-penalty term 
subject to a semilinear elliptic PDE with random coefficients and box constraints. 
Numerical experiments demonstrated the effectiveness of the method.

The ODE method from Sect. 3.2 allowed us to prove a more general result with 
weaker assumptions on the objective function. However, we needed to introduce an 
assumption on the set of critical values in the form of Assumption 3.11(v). While 
we did not verify this assumption for our model problem, it would be interesting 
to know whether this assumption is verifiable for this class of problems. We had 
to be slightly more restrictive on the nonsmooth term in Sect.  3.2 than we were 
in Sect.  3.1. The advantages in terms of computational cost of Algorithm  2 over 
Algorithm 1 are clear: the use of decreasing step sizes in Algorithm 2 means that 
increased sampling is not needed. Additionally, there is no need to determine the 
Lipschitz constant for the gradient, which in the application depends on (among 
other things) the Poincaré constant and the lower bound on the random fields, and 
thus lead to a prohibitively small constant step size. This phenomenon has been 
demonstrated in [20].

How to scale the decreasing step size tn remains an open question. In practice, 
the scaling of the step size can be tuned offline. An improper choice of the scaling 
c in the step size tn = c∕n� for 0.5 < 𝛼 ≤ 1 can lead to arbitrarily slow convergence; 
this was demonstrated in [39]. While this was not the focus of our work, efficiency 
estimates for nonconvex problems might also be possible following the work by [7, 
21, 35]. In lieu of efficiency estimates, it would be desirable to have better termina-
tion conditions that do not rely on increased sampling as our heuristic did in the 
numerical experiments. Finally, it would be natural to investigate mesh refinement 
strategies as in [20]. For more involved choices of nonsmooth terms, the prox com-
putation is also subject to numerical error and should be treated.
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Table 1  Experiment showing 
mesh independence ĥ # triangles Objective function f̂

N
# iterations N 
until r̂

N
≤ tol

7.1e−2 800 4.160e−2 191

4.7e−2 1800 4.157e−2 295

3.5e−2 3200 4.157e−2 233

2.8e−2 5000 4.156e−2 257

2.4e−2 7200 4.156e−2 271

2.0e−2 9800 4.155e−2 251
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are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen 
ses/by/4.0/.

A Auxiliary results

To prove Lemma 3.17, we first need the following result.

Proposition A.1 For 1 ≤ p ≤ ∞, every H-valued martingale that is bounded in the 
Bochner space Lp(�,H) converges a.s.

Proof Since H is a Hilbert space, it is reflexive and therefore has the Radon–
Nikodym property by [43, Corollary 2.11]. The rest of the proof can be found in [43, 
Theorem 2.5].   ◻

Proof of Lemma  3.17 It is straightforward to show that 
�[‖vn‖2] = �[‖v1‖2] +

∑n−1

k=1
�[‖vk+1 − vk‖2], and therefore boundedness of vn for 

all n follows from (3.22) and vice versa. Supposing now that (3.22) holds, the fact 
that {vn} converges to a limit v∞ follows by Proposition A.1.   ◻

B Auxiliary proofs for application

Proof of Proposition 4.3 Continuous differentiability of J(⋅, �) ∶ L2(D) → ℝ follows 
from continuous differentiability of u ↦ T(�)u  and the fact that 
(u, y) ↦ J̃(u, y) =

1

2
‖y − yD‖2L2(D) +

𝜆2

2
‖u‖2

L2(D)
 is continuously Fréchet differentiable. 

One obtains (4.4) and (4.5) by fixing a realization � ∈ � and computing the deriva-
tive of u ↦ J(u, �) as in, e.g., [23, pp. 58-59]. Bounds (4.6) and (4.7) follow from 
standard a priori estimates.   ◻

Proof of Proposition 4.4 We verify the conditions of Lemma C.3 from Sect. C. Fré-
chet differentiability of J ∶ L2(D) × � → ℝ for almost every � follows from Proposi-
tion 4.3. The function j is well-defined and finite-valued for all u ∈ L2(D) , since

is finite by T(�)u = y(�) and (4.2) along with the assumption that yD ∈ L2(D) . Now, 
for every v ∈ C , there exists a yv(�) satisfying (4.1) with u = v and a pv(�) satisfying 
(4.5) with y = yv(�) . Thus by (4.6) followed by (4.2),

j(u) =
1

2
�[‖y − yD‖2L2(D)] +

�2

2
‖u‖2

L2(D)
≤ �[‖T(�)u‖2

L2(D)
] + ‖yD‖2L2(D) +

�2

2
‖u‖2

L2(D)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Notice that C ∈ Lp(�) for all p ∈ [1,∞) by nature of the mapping � ↦ C1(�) . There-
fore, the conditions of Lemma C.3 are satisfied and we have proven Fréchet differen-
tiability of j.   ◻

C Differentiability of expectation functionals

Let (X, ‖ ⋅ ‖X) be a Banach space and let J ∶ X ×� → ℝ be a random variable 
functional. We summarize under what conditions we can exchange the integral 
and the derivative for the functional j ∶ X → ℝ , where j(u) = ∫

�
J(u,�) dℙ(�).

The following definition gives the minimal requirement for exchanging the 
derivative and expectation, namely, requiring J ∶ X ×� → ℝ to be L1-Fréchet 
differentiable.

Definition C.1 A p-times integrable random functional J ∶ X ×� → ℝ 
is called Lp-Fréchet differentiable at u if for an open set U ⊂ X there 
exists a bounded and linear random operator A ∶ U ×� → ℝ such that 
limh→0 ‖J�(u + h) − J�(u) + A(u,�)h‖Lp(�)∕‖h‖X = 0.

By Hölder’s inequality, if u ↦ J(u, ⋅) is Lp-differentiable and 1 ≤ r < p , then it 
is also Lr-differentiable with the same derivative. This implies that j ∶ X → ℝ is 
Fréchet differentiable at u.

The condition in Definition  C.1 might be difficult to verify directly. For this 
reason, we consider other assumptions on an open neighborhood U of X contain-
ing u. We denote the functional J(⋅,�) ∶ X → ℝ for a fixed realization � ∈ � by 
J� ∶ X → ℝ.

Assumption C.2 

 (vi) The expectation j(v) is well-defined and finite-valued for all v ∈ U.

 (vii) For almost every � ∈ � , the functional J� ∶ X → ℝ is Fréchet differentiable 
at u. Moreover, there exists a positive random variable C(⋅) ∈ L1(�) such that 
for all v ∈ U and almost every � ∈ � , 

Lemma C.3 Suppose Assumption C.2 holds. Then j is Fréchet differentiable at u and

‖G(v, �)‖L2(D) = ‖�2v − pv(�)‖L2(D) ≤ �2‖v‖L2(D) + C1(�)‖yD − yv(�)‖L2(D)
≤ �2‖v‖L2(D) + C1(�)‖yD‖L2(D) + (C1(�))

2‖v‖L2(D) =∶ C(�).

(C.1)‖J�
�
(v)‖X∗ ≤ C(�).

(C.2)j�(u) = �[J�
�
(u)].
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Proof By the mean value theorem, for h close enough to u, there 
exists a z within the neighborhood containing u + h and u that satisfies 
�J�(u + h) − J�(u)� ≤ ‖J�

�
(z)‖X∗‖h‖X . Now, we have for almost every � ∈ � that

By Assumption  C.2(vii), C(⋅) is integrable, so by Lebesgue’s dominated conver-
gence theorem, it follows that

where the last equality follows by Assumption C.2(vii). Now consider the mapping 
F ∶ h ↦ ∫

�
J�
�
(u)h dℙ(�). It is straightforward to show that this is a bounded and 

linear operator. Therefore, we use Assumption C.2(vi) to get

where the second equality holds by the triangle inequality and and (C.3). Therefore j 
is Fréchet differentiable at u with derivative F = ∫

�
J�
�
(u) dℙ(�) .   ◻
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