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Abstract

Image reconstruction from noisy data has a long history of methodological development
and is based on a variety of ideas. In this paper we introduce a new method called patch-
wise adaptive smoothing, that extends the propagation-separation approach by using
comparisons of local patches of image intensities to define local adaptive weighting schemes
for an improved balance of reduced variability and bias in the reconstruction result. We
present the implementation of the new method in an R package aws and demonstrate
its properties on a number of examples in comparison with other state-of-the art image
reconstruction methods.

Keywords: image denoising, patch-wise structural adaptive smoothing, total variation, non-
local means, R.

1. Introduction

Impairment of images by noise is one of the problems in image processing. Noise is often
inherently connected with the image acquisition process, deteriorates the image quality and
hinders image analysis. While the notion of images in general refers to two-dimensional data,
the problem of noise reduction also occurs in connection with data in higher dimensions,
especially in the context of medical imaging problems.
There is a vast literature on different noise reduction techniques. They typically employ an
assumption on the spatial structure of the imaging data. A common and simple assumption
is, e.g., that the data is characterized by spatially extended regions of homogeneity that are
separated by discontinuities. A more sophisticated assumption replaces local homogeneity
by local smoothness (Polzehl and Spokoiny 2008; Polzehl and Tabelow 2012). Alternatively,
geometric characterizations using orientation spaces or channels in feature space are discussed,
e.g., in Felsberg (2012); Felsberg, Forssén, and Scharr (2006); Florack (2012); Duits, Fuehr,
and Janssen (2012); Franken (2008).
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Typically, noise reduction methods must balance the variability reduction and the bias of
the reconstruction results, realizing some kind of edge preservation. They are based on a
large variety of basic methodology, achieving this goal to a different degree. They range
from kernel smoothing and local polynomials (Wand and Jones 1995; Fan and Gijbels 1996;
Simonoff 1996; Bowman and Azzalini 1997), the filter proposed by Lee (1980), bilateral fil-
tering (Tomasi and Manduchi 1998), scale space methods (Chaudhuri and Marron 2000), to
non-linear diffusion methods (Perona and Malik 1990; Scharr and Krajsek 2012; Weickert
1998) in a rather incomplete list.
The pointwise adaptive methods introduced in Lepski and Spokoiny (1997); Spokoiny (1998)
and Polzehl and Spokoiny (2003) aim in each design point for an optimal selection of a
maximal local bandwidth or largest window of positive weights in kernel or local polynomial
regression while controlling the bias of the estimates. A numerically efficient refinement of
these methods is provided in Astola, Katkovnik, and Egiazarian (2006) and Foi, Katkovnik,
and Egiazarian (2007).
In this paper we consider a class of noise reduction methods that has been introduced under
the name adaptive weights smoothing (AWS, Polzehl and Spokoiny 2000) and later refined as
propagation-separation approach (PS, Polzehl and Spokoiny 2006), which generalizes several
of the concepts above in non-parametric regression. PS has been extended to cover locally
smooth images (Polzehl and Spokoiny 2008) or color images (Polzehl and Tabelow 2007). Fur-
thermore, it has been successfully applied to a number of imaging problems in neuroimaging,
e.g., in functional magnetic resonance imaging (fMRI, Tabelow, Polzehl, Voss, and Spokoiny
2006; Polzehl, Voss, and Tabelow 2010) or in diffusion-weighted magnetic resonance imag-
ing (dMRI, Tabelow, Polzehl, Spokoiny, and Voss 2008; Becker, Tabelow, Voss, Anwander,
Heidemann, and Polzehl 2012; Becker, Tabelow, Mohammadi, Weiskopf, and Polzehl 2014).
PS combines local comparisons of image intensities to define adaptive weighting schemes with
a multiscale approach which iteratively inspects scale space from very local to large scales.
Buades, Coll, and Morel (2005) introduced an adaptive denoising method also extending
some of the filtering concepts above. Instead of comparing pairs of single local image inten-
sities to define adaptive weighting schemes, it uses non-local comparisons of larger patches
of intensities. Denoted as non-local means (NLM) it has been successfully applied to many
imaging problems, e.g., denoising MRI data (Manjón, Coupé, Martí-Bonmatí, Collins, and
Robles 2009). Non-local Bayesian noise reduction methods that improve on the original NLM
algorithm are considered, e.g., in Lebrun, Buades, and Morel (2013).
The purpose of this paper is to combine the strength of the multiscale approach of PS and
the patch-wise comparison of image intensities of NLM to present a new algorithm which we
call patch-wise adaptive smoothing (PAWS). We will demonstrate its performance on a series
of two- and three-dimensional images. This will show that PAWS overcomes two of the major
drawbacks of AWS (or PS), the occurrence of artificial structure within areas of smooth
intensity changes and non-smooth borders between neighboring regions with significantly
different intensity.
Furthermore, we will compare the results with those obtained considering the image recon-
struction as an energy minimizing problem with penalization, i.e., the total variation (TV,
Rudin, Osher, and Fatemi 1992) and the total generalized variation (TGV, Bredies, Kunisch,
and Pock 2010) approach. Even though these two approaches belong to a different family of
denoising methods than those based on propagation-separation, the comparison is neverthe-
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less very relevant. Indeed, there is a clear analogy of the relationship between TV and TGV
on the one hand and AWS and PAWS on the other. As we will discuss in the next section,
AWS employs a structural assumption of piecewise constant image intensity for the noise-
free data. This is very similar to TV regularization where the minimization of the `1 norm
of the gradient leads to its sparsity and thus to piecewise constant reconstructions. Hence,
TV and AWS suffer from the same type of artifacts, i.e., cartoon-like structures, which are
undesirable when the underlying ground truth image contains also piecewise smooth parts.
TGV is a higher order extension of TV which was introduced with the aim to eliminate these
artifacts. This is done by incorporating an infimal convolution type combination of the `1
norms of first and second order derivatives resulting in piecewise affine reconstructions. As
we see in the following sections, local polynomial AWS (lpAWS) and the new method PAWS
improve AWS in a very similar way by imposing a locally smooth structure on the denoised
image. Thus, they improve AWS in the same way that TGV improves TV, leading to more
naturally looking denoised images.
In this paper, we give an overview on the package aws (Polzehl 2020; Polzehl and Spokoiny
2006; Polzehl, Papafitsoros, and Tabelow 2018)1 for the R (R Core Team 2020) language
and environment for statistical computing and the implementation of the above-mentioned
methods for adaptive noise reduction including the new PAWS. We will explain the usage of
the corresponding functions by extensive examples with two- and three-dimensional data.
The outline of the paper is as follows: We first review the basic principles of the PS approach
and the NLMmethod. Then, we introduce the new PAWS algorithm. Furthermore, we shortly
review the pointwise adaptive estimation procedure and the variational approaches (TV and
TGV) before presenting the examples to demonstrate properties of the different methods in
various situations. Data and R scripts used to perform the analysis of the examples and to
produce the corresponding tables and figures are provided in the electronic supplements.

2. Adaptive weights smoothing
Adaptive weights smoothing for the restoration of images from noisy data was originally
introduced in Polzehl and Spokoiny (2000) and refined under the term propagation-separation
approach in Polzehl and Spokoiny (2006). It employs a structural assumption on the data,
more specifically, a local constant parameter model. It is designed as an iterative multi-scale
approach that inspects scale space from local to global and simultaneously infers on both the
parameter value and its spatial structure.

2.1. Local constant adaptive weights smoothing (AWS)
Let us assume that data Yi ∈ Y is observed at positions xi = (xi1 , . . . , xid) in a bounded
subset X of a d-dimensional metric space. We assume Yi to be distributed as Yi ∼ Pθi

, where
Pθi

, with density p(y, θi), depends on some local parameter θi (typically from Rp) and is
a probability distribution with support in Y from some parametric (typically exponential)
family Pθi

∈ PΘ.
The structural assumption is formulated such that there exists a partitioning X = ⋃

n=1,...,N Xn
1Polzehl et al. (2018) is a prior version of this manuscript that contains numerical results obtained with

MATLAB (The MathWorks Inc. 2019) implementations of non-local means and total-variation based algorithms.
In this manuscript they are replaced by an own implementation in R to achieve full reproducibility.
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into N subsets with Xn ∩ Xl = ∅ if n 6= l and θi ≡ θj if xi ∈ Xn and xj ∈ Xn for some n.
Literally speaking we assume that within any subset Xn the parameter θ as a function of x
is constant.
The method employs both a distance δ(xi, xj) in design space X as well as a distance η(θi, θj)
in parameter space Y. A common choice in case of X ⊂ Rd is the Euclidean distance

δ(xi, xj) = ‖xi − xj‖2
in design space and

η(θi, θj) = KL(Pθi
, Pθj

) =
∫
Y
p(y, θi) log p(y, θi)

p(y, θj)
dy

in parameter space which is the Kullback Leibler divergence between the probability distribu-
tions with parameters θi and θj at locations xi and xj , respectively. Henceforth, we abbreviate
the locations with indices i and j.
In general, adaptive weights smoothing can be defined for regular as well as irregular designs
X . However, the patch-wise smoothing algorithm that we propose in this paper requires X
to be a one-, two- or three-dimensional grid. Common examples include 2D or 3D images,
where X ⊂ Rd (d = 2, 3) is a cube and image intensities Yi are sampled at rectangular grid
points xi. Let XG denote the set of grid points in X and IG a set of indices enumerating the
points in XG.
Adaptive weights smoothing employs an iterative scheme with a sequence of increasing band-
widths h(k) for steps k = 0, . . . , k? alternating the computation of weighted maximum likeli-
hood estimates

θ̂
(k)
i = arg max

θ
l(Y,W (k)

i ; θ) = arg max
θ

∑
j∈IG

w
(k)
ij log(p(Yj , θ))

and the determination of adaptive weighting schemes W (k)
i = {w(k)

ij , j ∈ IG}. Specifically,
the weights w(k)

ij at iteration step k are given as the product of two terms: a kernel weight
Kloc

(
l
(k)
ij

)
with l(k)

ij = δ(xi, xj)/h(k) and a component Kst
(
s

(k)
ij

)
depending on

s
(k)
ij = N

(k−1)
i · η

(
θ̂

(k−1)
i , θ̂

(k−1)
j

)
/λ.

denoted as statistical penalty for two kernel functions Kloc and Kst. The term N
(k−1)
i =∑

j w
(k−1)
ij serves as a proxy for the variance reduction achieved for θ̂(k−1)

i . Note, that the
noise variance σ2 typically enters the function η and needs to be known or has to be estimated.
The adaptive weights smoothing (AWS) is summarized by Algorithm 1.
The sequence of bandwidths h(k) is chosen such that for λ =∞ the variance of the estimate
θ̂

(k)
i is reduced by a factor of ch compared to θ̂(k−1)

i . The specific value for ch is not very
important, cf. Li, Gilmore, Wang, Styner, Lin, and Zhu (2012). However, ch = 1.25 turned
out to be a good compromise between sufficient increase of variance reduction between steps
and careful increase of h(k) in order to obtain sufficiently neat coverage of the scale space.
The kernels Kloc and Kst are monotone non increasing functions on R+ 7→ R+ preferably
with compact support. Our default2 choice is

Kloc(x) = max(0, 1− x2), and Kst(x) = max(0,min(1, 4/3(1− x))).
2Kloc is up to a scale factor the Epanechnikov kernel, see, e.g., Fan and Gijbels (1996). Kst is a truncated

triangular kernel that exhibits a plateau leading to a stabilization of estimates in the iterative algorithm.
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Algorithm 1: Formal outline of adaptive weights smoothing (AWS).
Data: Observations Yi ∈ Y at locations xi ∈ XG.
Initialization: Set k = 0, h(0) = 1, w(0)

ij = Kloc
(
δ(xi, xj)

)
and initialize θ̂(0)

i as weighted
likelihood or least squares estimate.
while k ≤ k? do

For all locations i and j define

w
(k)
ij = Kloc

(
l
(k)
ij

)
Kst

(
s

(k)
ij

)
with

l
(k)
ij = δ(xi, xj)/h(k)

and
s

(k)
ij = N

(k−1)
i · η

(
θ̂

(k−1)
i , θ̂

(k−1)
j

)
/λ.

For all i define estimates

θ̂
(k)
i = arg max

θ
l(Y,W (k)

i ; θ)

and calculate
N

(k)
i =

∑
j∈IG

w
(k)
ij .

end
Result: Adaptively denoised parameters θ̂(k?)

i .

The main parameters of the procedure are the number k∗ of iterations and the scale parameter
λ of the statistical penalty. λ can be chosen independently from the data at hand by checking
a so-called propagation condition for simulated data, see Becker and Mathé (2013); Becker
(2014). For λ = 0 the data is not changed during the iteration, the choice λ =∞ corresponds
to a non-adaptive kernel estimate with kernel function Kloc and bandwidth h(k∗). An optimal
λ will lie between these two extremes and provide a nearly nonadaptive kernel estimate in
case of a globally constant parameter θ.
If the structural assumption is valid the AWS approach possesses interesting properties
(Polzehl and Spokoiny 2006): Within the interior of any homogeneous region Xn the final
estimate θ̂(k?)

i is similar to a nonadaptive kernel smoother with a bandwidth h(k∗) as specified
by the propagation condition (Becker and Mathé 2013; Becker 2014). On the other hand,
two different regions Xk and Xl of the partition are separated, i.e., w(k?)

ij ' 0 if xi ∈ Xn,
xj ∈ Xl, and the contrast η(θi, θj) exceeds some critical value that depends on the size of the
two regions. For details, see Polzehl and Spokoiny (2006).

2.2. Local polynomial adaptive weights smoothing (lpAWS)

The final estimate θ̂(k?)
i stabilizes for k∗ →∞. If the structural assumption of a local constant

parameter function θ(x) is not valid the algorithm nonetheless enforces a local constant param-
eter map, which leads to a cartoon-like appearance for the final estimate. In order to overcome
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this drawback and to relax the structural assumption on the data the propagation-separation
approach has been generalized for locally smooth functions θ(x) (Polzehl and Spokoiny 2008;
Polzehl and Tabelow 2012). Due to the increasing complexity of the algorithm we restrict
ourselves to the case d = 2 of a two-dimensional design space, i.e., 2D imaging data.
Specifically, we extend the structural assumption such that within a homogeneous region
xi, xj ∈ Xn, the data Yj can be modeled with additive Gaussian errors εj ∼ N(0, σ2

j ) as

Yj = θ>i Ψ(xj1 − xi1 , xj2 − xi2) + εj ,

where the components of Ψ(ξ1, ξ2) contain values of basis functions

ψm1,m2(ξ1, ξ2) = ξm1
1 · ξm2

2

for integers m1,m2 ≥ 0, m1 +m2 ≤ p and some polynomial order p.
For a given local model W (k)

i at iteration step k estimates θ̂(k)
i of θi are obtained by local

least squares as
θ̂

(k)
i =

(
B

(k)
i

)−1 ∑
j∈IG

w
(k)
ij Ψ(xj1 − xi1 , xj2 − xi2)Yj ,

with
B

(k)
i =

∑
j∈IG

w
(k)
ij Ψ(xj1 − xi1 , xj2 − xi2)Ψ(xj1 − xi1 , xj2 − xi2)>.

At each position xi (and xj) the estimates θ̂i (and θ̂j) are given in terms of a local set of basis
functions ψ. In order to make θ̂j and θ̂i comparable we perform a simple linear (coordinate)
transformation for θ̂j using the local model and denote the result by θ̂ji. At iteration step k
the statistical penalty in the Gaussian model above can then be defined as

s
(k)
ij = 1

λ2σ2
i

(
θ̂

(k−1)
i − θ̂(k−1)

ji

)>
B

(k−1)
i

(
θ̂

(k−1)
i − θ̂(k−1)

ji

)
,

where σ2
i is the (local) variance of εi. We refer to Polzehl and Spokoiny (2008) or Polzehl and

Tabelow (2012) for a more detailed description and examples using image data.
In general, local polynomial AWS improves the reconstruction results compared to the original
AWS procedure in case of locally smooth images. As by lpAWS the cartoon-like appearance of
the result is avoided, it enables larger variance reduction, i.e., the use of a larger k∗. However,
it also increases model flexibility and therefore requires more extended homogeneous regions
Xn to adapt to small contrasts in θ, i.e., to separate two regions Xn and Xl in terms of the
adaptive weights w(k?)

ij ' 0 .

2.3. Non-local means (NLM)

The non-local means filter has been introduced in Buades et al. (2005) and is related to the
adaptive weights smoothing described above. It requires a regular grid XG as design, we will
assume an isotropic grid. Instead of using only the data at locations i and j to define adaptive
weights wij it uses vectorized values in vicinities of the locations for comparison. In order to
formalize the basic idea we introduce a local patch, or vicinity, Vi = {vl(i) : ‖vl(i)− i‖1 ≤ s}
of a design point i, see Figure 1. It contains all ns = (2s + 1)d grid points xvl(i) within a
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i

vl(i)

2s + 1

Figure 1: Schematic example of a patch Vi of size s of a location i. It contains all locations
vl(i) with a maximum l1-distance of s from i.

d-dimensional cube of side length 2s. The index l = 1, . . . , ns varies over the locations vl(i)
in the patch Vi. We denote by YVi the vectorized data (Yv1(i), . . . , Yvns (i)).
The method then defines local adaptive weights

wij = Kst
(
‖YVj − YVi‖2/(

√
nsλσ)

)
, (1)

where Kst is typically chosen as a Gaussian kernel, σ denotes the standard deviation of Y
and λ is some bandwidth controlling adaptivity. Thus, NLM is a single step AWS method
(k? = 1) comparing YVj and YVi instead of Yj and Yi with an adaptation bandwidth λ, a
uniform location kernel Kloc, and h(1) =∞, giving rise to the notion “non-local”. Estimation
is performed by a weighted mean. For a discussion on the choice of λ we refer to Coupé, Yger,
Prima, Hellier, Kervrann, and Barillot (2008).
Two common refinements to reduce the computational burden of the NLM algorithm are to
restrict positive weights wij to a search cube Ri = {j : ‖j − i‖1 ≤ r} and to reduce the
dimension of the comparisons in (1) by using principal component analysis (PCA) on the
matrix of patch vectors (YVi)i∈IG

and using the first pc principal components instead of the
full patch vector (YV ).
Several further extensions and refinements of the basic method with a large number of ap-
plications in the medical imaging context have been proposed and utilized. We refer the
reader to the extensive literature on the topic. Examples are the efficient optimized blockwise
non-local means denoising filter (ONLM; Coupé et al. 2008) and the adaptive multi resolu-
tion non-local means filter (MRONLM; Coupé, Manjon, Robles, and Collins 2012). For both
reference implementations in MATLAB are available.

3. Patch-wise adaptive weights smoothing (PAWS)
The major drawback of the original and the local polynomial AWS is that their final estimates
for large k? reflect the strict structural assumption, but do not incorporate any information
on the smoothness of boundaries between homogeneous regions. Due to the construction of
the method, large noise realizations in some location of the data can be mistaken for structure
and lead to a speckled appearance of the final estimate. Here, we thus develop a new extension
of AWS by combining its multi-scale approach with the use of information about the local
spatial structure in terms of the local patches Vi as defined for NLM.
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Algorithm 2: Formal outline of patch-wise adaptive weights smoothing (PAWS).
Data: Observations Yi ∈ Y at locations xi ∈ XG.
Initialization: Set k = 0, h(0) = 1, w(0)

ij = Kloc
(
δ(xi, xj)

)
and initialize θ̂(0)

i as weighted
likelihood or least squares estimate.
while k ≤ k? do

For all locations i and j define

w
(k)
ij = Kloc

(
l
(k)
ij

)
Kst

(
s

(k)
ij

)
with

l
(k)
ij = δ(xi, xj)/h(k)

and
s

(k)
ij = max

l=1,...,ns

N
(k−1)
vl(i) · η

(
θ̂

(k−1)
vl(i) , θ̂

(k−1)
vl(j)

)
/λ.

For all i define estimates

θ̂
(k)
i = arg max

θ
l(Y,W (k)

i ; θ)

and calculate
N

(k)
i =

∑
j∈IG

w
(k)
ij .

end
Result: Adaptively denoised parameters θ̂(k?)

i .

This patch-wise adaptive weights smoothing (PAWS) procedure will employ a new form of the
statistical penalty s(k)

ij based on patches Vi. The variability of the estimates θ̂i at iteration step
k depends on the (local) weighting schemes W (k)

i . This is taken into account in the definition
of the statistical penalty s

(k)
ij by the use of the sum of weights N (k)

i . Depending on the
unknown underlying structure Xn the variability of the estimates θ̂vl(i) may vary considerably
over grid points vl(i) ∈ Vi. Thus, when we extend the definition s(k)

ij to comparisons between
patches, it should consider accuracy of the parameter estimates reflected by Nvl(i) as achieved
in former iteration steps. We thus define a suitable statistical penalty for PAWS by

s
(k)
ij = max

l=1,...,ns

N
(k−1)
vl(i) · η

(
θ̂

(k−1)
vl(i) , θ̂

(k−1)
vl(j)

)
/λ.

Taking the maximum over all locations l = 1, . . . , ns in the patch enables to balance spatial
differences in the variance of the estimates.
As for AWS the adaptation bandwidth λ in s

(k)
ij depends only on the parametric family

Pθi
∈ PΘ, the dimension of the design space d and, additionally, on the patch size s. We

choose it by a propagation condition, see Becker (2014). The algorithm is summarized in
Algorithm 2.
We illustrate the propagation of the weights W (k)

i with k for several ground truth situations
of the data. The example image is composed of four quadrants with a constant function, two
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Figure 2: Propagation of weights for PAWS. Left: Noisy image with contour lines of the
original structure added. 2nd, 3rd and 4th image (from left): reconstruction results for
k∗ = 26, 32, and 38 (hmax = 12, 25, and 50) and patch size s = 2 overlayed with contour
lines, levels 0.1 (dotted), 0.4 (dashed) and 0.7 (solid), of weighting schemes in nine selected
locations. Color labeling corresponds to varying scenarios, see text.

Figure 3: Propagation of weights for AWS. Left: Noisy image with contour lines of the original
structure added. 2nd, 3rd and 4th image (from left): reconstruction results for k∗ = 26, 32,
and 38 (hmax = 12, 25, and 50) overlayed with contour lines, levels 0.1 (dotted), 0.4 (dashed)
and 0.7 (solid), of weighting schemes in nine selected locations. Color labeling corresponds
to varying scenarios, see text.

linear functions with different gradient orientation and strength and a quadratic function,
plus additive Gaussian noise. In the left of Figure 2 we plotted the noisy image and contour
lines of the noise-free image for guidance. The other three plots provide the reconstruction
results θ(k) after k = 26, 32 and 38 iteration steps of the PAWS algorithm with a patch size
s = 2. For these iteration steps and for nine selected locations i we overlay contour lines of the
weights w(k)

ij corresponding to weights of 0.1 (dotted), 0.4 (dashed) and 0.7 (solid). We use
different colors to indicate different scenarios: red for a location within a local constant region,
blue in a region with a constant gradient, yellow for locations without intensity contrast at
the border of two quadrants, green for locations at discontinuities and cyan/magenta for two
locations with quadratic intensity profile but differing distance from the intensity minimum.
It can be seen that within a local constant intensity region the weights propagate isotropically
in all directions as for a non-adaptive kernel smoother (red). For locations within a region
with constant gradient the weighting schemes are more concentrated in gradient direction
while freely extending in the orthogonal direction (blue). The behavior at discontinuities
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depends on the image contrast and the distance to the discontinuity. We observe either
propagation within the homogeneous region (yellow) or only along the discontinuity if the
distance is less than s (green). In case of a nonlinear intensity map the weighting schemes
extend and concentrate along level sets with propagation restricted by their curvature.
Figure 3 provides the corresponding illustration for the original AWS procedure. Within the
local smooth regions we observe, with increasing bandwidth h(k), the formation of a local
constant image reconstruction and the propagation of weights within its constant segments.

4. Pointwise adaptive methods

Pointwise adaptive methods were introduced in 1D nonparametric regression in Lepski, Mam-
men, and Spokoiny (1997) and Lepski and Spokoiny (1997). These methods are based on an
adaptive choice of bandwidths from a sequence of increasing bandwidths h0 < h1 < · · · < hk∗

in each design point xi. Specifically, they select the largest bandwidth hk for which the kernel
estimates θ̂hk

(xi) do not significantly differ from any kernel estimate θ̂hl
(xi) with l < k. The

selected bandwidth h(xi) = hk then reflects the local smoothness of the regression curve.
This basic principle was modified in Spokoiny (1998) replacing the bandwidth selection with a
search for a largest V (xi) from some set V(xi) of intervals (windows) containing xi where the
estimate θ̂V (xi)(xi), employing a uniform kernel on V (xi), does not significantly differ from
any estimate θ̂U (xi) with U ⊂ V (xi) and U ∈ V(xi). This approach was generalized to image
denoising in 2D in Polzehl and Spokoiny (2003). The algorithm provided was computationally
expensive due to the complicated set of utilized windows.
A numerical efficient modification was introduced under the term intersecting confidence
intervals (ICI) in Astola et al. (2006), see also Foi et al. (2007) for a more concise description.
In 1D the approach in principle follows Spokoiny (1998). For images the method relies on
the partition of a circular region into a specified number S of sectors. For each sector kernel
estimates are used, where the support of the kernel is restricted to the specified sector. These
estimates can, for a specified bandwidth h, be efficiently computed using convolution by fast
Fourier transforms.
The method employs a sequence of bandwidths h0 < h1 < · · · < hk∗ and selects, for each
sector s, the largest k such that

θ̂
(s)
hk

(xi) ∈ Il(xi) ∀l < k,

where Il(xi) = [θ
¯

(s)
hl

(xi), θ̄(s)
hl

(xi)] is a confidence interval for θ̂(s)
hl

(xi) at a specified significance
level α. This leads, in each design point xi and for each sector s, to a bandwidth h(s)(xi)
and a corresponding estimate θ̂(s)

h(s)(xi)
(xi). In an optional step the estimates are stabilized

by local median filtering of the estimated bandwidths in each sector. In a final step the
estimates obtained for the S sectorial kernels are combined as a weighted mean, with weights
proportional to the variance of the individual estimates or, alternatively, selecting the least
variable sectorial kernel estimate. Figure 4 illustrates the properties of the method for a noisy
parrot image used in Section 7.1. The figure shows, for 10 locations xi, the support of 12
sectorial Epanechnikov kernels with estimated local bandwidths.
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Figure 4: ICI: adaptive kernel support.

5. Adaptive smoothing based on regularization
For data Y on regular Cartesian grids in two dimension, i.e., classical images, approaches
based on the numerical solution of optimization problems have been established. They often
employ an `1-regularization term that enforces sparsity of structures where the qualitative
local assumptions are violated. The penalties account for deviations from a constant image
intensity or constant gradient image. The optimization problem considered below codes
similar structural assumptions as the AWS procedures considered in the last section.

5.1. Total variation regularization (TV)
Total variation is a classical energy minimizing method (Rudin et al. 1992), where the denoised
image U is obtained as a minimizer of the energy

min
U

1
2‖U − Y ‖

2
2 + TVα(U). (2)

Here ‖U − Y ‖22 denotes the square of the Euclidean distance between U and Y (discrepancy
term), which corresponds to the fact that the data Y is assumed to be corrupted by Gaussian
noise. For an image U defined on a Cartesian grid d1 × d2, the term TVα(U) is the total
variation of U which in this discrete formulation reads

TVα(U) = α‖∇U‖1 = α
d1∑
i1=1

d2∑
i2=1

((Ui1+1,i2 − Ui1,i2)2 + (Ui1,i2+1 − Ui1,i2)2)1/2.

The scalar constant α > 0 balances the two terms in (2) and determines the amount of
filtering. Minimizing the `1 norm of the gradient results in sparsity of the gradient of the
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denoised image. As a result, total variation, like adaptive weights smoothing with a local
constant structural assumption, promotes piecewise constant reconstructions which on one
hand leads to edge preservation and sharp images. On the other hand it also leads to blocky
artifacts (staircasing effect) which is often undesirable in natural images. TV reconstructions
are typically accompanied by a certain loss of contrast. There is a vast literature concerning
TV minimization. Here we refer the reader to Caselles, Chambolle, and Novaga (2007) and
Ring (2000) for analytical properties, and to Hintermüller, Rautenberg, Wu, and Langer
(2017) for parameter selection as well as to the references therein.

5.2. Total generalized variation regularization (TGV)

Total generalized variation (Bredies et al. 2010) has been proposed as a higher order extension
of TV, aiming to avoid the staircasing effect and on the same time to retain the ability of TV
to preserve edges. In the case of Gaussian noise, one minimizes the functional

min
U

1
2‖U − Y ‖

2
2 + TGVα,β(U),

where
TGVα,β(U) = min

W
α‖∇U −W‖1 + β‖EW‖1.

Here, EW is the symmetrized gradient of W , i.e., EW = 1
2(∇W + ∇W>), and α, β > 0.

If W = 0 then TGVα,β(U) = TVα(U). If W = ∇U then TGVα,β(U) = β‖∇2U‖1. Thus,
the TGV functional can be interpreted as an optimal balance between first and second order
`1-type regularization. TGV minimization promotes piecewise affine reconstructions rather
than piecewise constant, typically resulting in more visually pleasing results than TV. One
drawback of TGV minimization is the presence of two regularization parameters that need
to be balanced, see Papafitsoros and Bredies (2015); De los Reyes, Schönlieb, and Valkonen
(2017), as well as the increased computational cost in comparison to TV. If the ground truth
is unknown a bilevel optimization problem in the spirit of Hintermüller et al. (2017) can be
devised in order to automatically select the regularization parameters.

6. The package aws
The package aws (Polzehl 2020) emerged as a reference implementation of structural adaptive
smoothing algorithms (Polzehl and Spokoiny 2000, 2006, 2008) and now provides a broad
collection of adaptive smoothing methods in 1D, 2D and 3D. All methods assume the data
to be given as a one-, two- or three-dimensional array, which we name nimg in the following.
The first class of methods consists of the structural adaptive smoothing methods introduced
in Sections 2.1, 2.2 and 3 and implemented in functions aws, lpaws (1D, 2D only) and paws3.
Smoothing of a 1D, 2D or 3D image nimg using a maximum bandwidth hmax is performed by

R> imghataws <- aws(nimg, hmax)
R> imghatlpaws <- lpaws(nimg, degree = 1, hmax)
R> imghatpaws <- paws(nimg, hmax, patchsize = 1)

3The package also contains a function pawsm restricting all computations to a mask specified as its second
argument mask.



Journal of Statistical Software 13

The functions carry arguments to specify the location kernel Kloc (lkern), with the default
specifying the (spherical) Epanechnikov kernel, the parametric family PΘ (family) and a
variance estimate (sigma2) in case of Gaussian image intensities. The default adaptation
bandwidth λ fulfills an propagation condition (Becker and Mathé 2013) at level α =1e-44.
If sigma2 is not provided we use the interquartile range of consecutive intensity differences,
i.e.,

R> sigma2 <- (IQR(diff(as.vector(nimg)))/1.908)^2

as an estimate that is robust with respect to discontinuities in the image. Functions vaws
and vpaws provide implementations for vector valued images. The local polynomial method
lpaws is restricted to one- and two-dimensional data. The result is an object of S4 class ‘aws’
with component theta containing the smoothed image.
Special functions exist for the case of irregular design XG (aws.irreg) and Gaussian data with
mean dependent variance (aws.gaussian). Function aws.segment provides the structural
adaptive segmentation algorithm introduced in Polzehl et al. (2010).
The non-local means filter, see Section 2.3, is employed using

R> imghatNLM <- nlmeans(nimg, lambda, sigma)

where lambda specifies the bandwidth λ of kernel Kst and sigma specifies an estimate of the
error standard deviation. The function returns a list of class ‘nlmeans’ with component theta
containing the one-, two- or three-dimensional reconstructed image.
The adaptive weights and non-local means algorithms are computationally demanding and
use Fortran code parallelized using openMP.
The regularization methods TV and TGV, see Section 5, are provided by TV_denoising and
TGV_denoising:

R> imghtTV <- TV_denoising(nimg, alpha, iter)
R> imghatTGV <- TGV_denoising(nimg, alpha, beta, iter)

where alpha (and beta) are the regularization parameters for TV and TGV as described
above. Iterations of the optimization algorithm are terminated if either the `1-norm or `∞-
norm of the difference of two consecutive image reconstructions are less than their specified
tolerance values, or the maximum number iter of iterations is reached. The implementation
is restricted to two-dimensional data. Both functions return a matrix.
A fourth class of methods enables pointwise adaptive smoothing using the intersection of
confidence intervals (ICI) method introduced in Astola et al. (2006):

R> imghatICIC <- ICIcombined(nimg, hmax, thresh, kern, sigma, nsector,
+ presmooth)
R> imghatICIS <- ICIsmooth(nimg, hmax, thresh, kern, sigma, nsector,
+ sector, presmooth)
R> imghatksm <- kernsm(nimg, h, kern, nsector, sector)

4We do not recommend changing the default.
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ICIcombined computes the ICI estimated described in Section 4. The function ICIsmooth
performs the bandwidth selection within a single circular sector, while the function kernsm
provides kernel estimates restricted to the specified sector. The default parameters nsector
= 1, sector = 1 provide a non-adaptive estimate with the specified kernel or derivative
kernel. The parameter hmax refers to the maximum bandwidth hk∗ , thresh is the quantile of
a Gaussian distribution that determines the coverage probabilities of the confidence intervals,
kern determines the type of kernel (defaults to "Gaussian"), nsector is the number of sectors
to use (2 in 1D, any positive integer in 2D, 8 in 3D) and presmooth (logical) determines if
spatial median filtering is applied on the estimated bandwidths. The functions create S4
objects of class ‘ICIsmooth’ or ‘kernsm’ with reconstructed images in component yhat.
Additionally the package contains the function qmeasures to evaluate the criteria listed in the
beginning of Section 7 and summary, print and plot methods for the reconstructed images.
For more information see the extensive documentation of the package.
We end this section with a (certainly incomplete) overview over the capabilities and utilized
methodologies of alternative packages: One-dimensional denoising can be performed in R us-
ing a large variety of methods that are implemented in R, i.e., packages stats and splines (R
Core Team 2020), and recommended or contributed packages like, e.g., KernSmooth (Wand
2020). There is only a small number of additional packages that enable denoising of 2D and
3D images available from the Comprehensive R Archive Network (CRAN) and Neuroconduc-
tor (Muschelli et al. 2019) websites. They can be categorized by the class of models they
use.
The package mmand (Clayden 2020) contains a function gaussianSmooth that performs
kernel smoothing using a Gaussian kernel, similar to our function kernsm with default argu-
ments. Non-adaptive smoothing is also available within the interface packages ANTsR (Avants
2020) and fslr (Muschelli, Sweeney, Lindquist, and Crainiceanu 2015; Jenkinson, Beckmann,
Behrens, Woolrich, and Smith 2012) available from Neuroconductor. Edge preserving smooth-
ing of 2D images by anisotropic diffusion is offered in package imager (Barthelme 2020) with
function blur_isotropic.
Total variation regularization for 2D images is also implemented in the package tvR (You
2019). Image denoising using wavelets can be done with packages wavethresh (Nason 2016,
2D and 3D) and waveslim (Whitcher 2020, 2D only). Denoising using a discrete cosine trans-
form (DCT) in 2D is implemented in imagerExtra (Ochi 2018). The orthogonal series based
approaches can adapt to the image structure and show, in our experience, a performance
similar to AWS and pointwise adaptive methods. These methods rely on numerically effi-
cient algorithms and are, compared to non-local means and adaptive weights algorithms, less
computationally intensive.

7. Examples
We illustrate and discuss the performance of our patch-wise adaptive weights smoothing
(PAWS) algorithm in comparison to the other adaptive smoothing procedures (AWS, lpAWS,
NLM, ICI, TV, TGV) in three examples with artificial Gaussian noise. Data and R scripts
to reproduce these examples are published alongside this paper. For the evaluation of the
reconstruction Û in comparison to the ground truth image U we use the following common
criteria:
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• Peak signal to noise ratio (PSNR):

PSNR(Û , U) = 20 log10(max(U)−min(U))− 10 log10(var(Û − U))

• Mean absolute error (MAE):

MAE(Û , U) = mean(|Û − U |)

• Structural similarity (SSIM), see Wang, Bovik, Sheikh, and Simoncelli (2004):

SSIM(Û , U) = (2 ·mean(Û) mean(U) + c1)(2 · cov(Û , U) + c2)
(mean(Û)2 mean(U)2 + c1)(var(Û)2 var(I)2 + c2)

with c1 = 10−4(max(U)−min(U))2 and c2 = 9c1.

• Mean absolute gradient error (MAGE):

MAGE(Û , U) = mean(|∇Û −∇U |)

using a numeric approximation of the gradient.

• Root mean squared gradient error (RMSGE):

RMSGE(Û , U) =
√

var(∇Û −∇U).

To access and manipulate the grayscale and color images in Examples 1 and 2 we exploit the
package adimpro (Tabelow and Polzehl 2019; Polzehl and Tabelow 2007).

7.1. Example 1 – Grayscale parrot image

The first example uses a grayscale image (resolution 256× 256) extracted from kodim23.png
(http://r0k.us/graphics/kodak/), see the left image in Figure 5. Spatially independent
Gaussian noise with four different standard deviations, σ = 0.04, σ = 0.08, σ = 0.16 and
σ = 0.32 was added after standardizing the image to a range [0, 1]. For each noise level we
computed reconstructions using AWS, with k∗ optimized with respect to PSNR; lpAWS, with
polynomial degree p = 1; TV, TGV, NLM, ICI and our new PAWS method with patch sizes
s = 1 and 2. For PAWS and lpAWS the number of iterations k∗ used was 18, 22, 24 and
24, corresponding to a maximum bandwidth h(k∗) of 4.9, 7.6, 9.5 and 9.5, for the four noise
levels. For the adaptation bandwidth λ we use the defaults in the functions aws, lpaws and
paws5. Parameters for TV (α), TGV (α and β), NLM (λ) and ICI (hmax, thresh, nsector)
were optimized with respect to PSNR for each noise level. The error standard deviation was
provided.
Numerical results with respect to PSNR, MAE and SSIM are provided in Tables 1–3. They
suggest a superior behavior of PAWS especially in case of low SNR. Figures 6 and 7 provide
the reconstructions achieved by AWS, PAWS with s = 2, lpAWS with a degree p = 1, TV,
TGV, NLM and ICI, for medium and low SNR (σ = 0.08, 0.16), together with the noisy
source images. All images are projected into the range of the original for display in order to
improve comparability.

5These values are determined by simulation to obey a propagation condition (Becker and Mathé 2013;
Becker 2014) at level α = 1e-4.

http://r0k.us/graphics/kodak/ 
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Figure 5: Example 2D images: grayscale image and color (sRGB) image.

noisy TV TGV AWS PAWS1 PAWS2 lpAWS1 NLM ICI
σ = 0.04 27.4 33.4 33.7 32.2 33.8 33.8 33.1 34.1 34.0
σ = 0.08 21.3 29.8 30.1 28.3 30.6 30.6 29.7 30.5 30.3
σ = 0.16 15.3 26.4 26.7 25.7 27.4 27.8 25.9 26.7 26.2
σ = 0.32 9.3 23.4 23.6 23.0 23.8 24.5 22.8 22.4 22.1

Table 1: PSNR of parrot reconstructions for the different noise levels. The index for PAWS
corresponds to the patch size (s = 1, 2, 3).

noisy TV TGV AWS PAWS1 PAWS2 lpAWS1 NLM ICI
σ = 0.04 0.0320 0.0141 0.0135 0.0166 0.0131 0.0131 0.0138 0.0132 0.0132
σ = 0.08 0.0641 0.0201 0.0191 0.0237 0.0182 0.0180 0.0191 0.0198 0.0195
σ = 0.16 0.1281 0.0287 0.0272 0.0297 0.0253 0.0244 0.0279 0.0303 0.0304
σ = 0.32 0.2563 0.0404 0.0384 0.0401 0.0379 0.0363 0.0420 0.0504 0.0470

Table 2: As Table 1 but reporting MAE.

noisy TV TGV AWS PAWS1 PAWS2 lpAWS1 NLM ICI
σ = 0.04 0.9843 0.9960 0.9962 0.9948 0.9964 0.9964 0.9957 0.9966 0.9965
σ = 0.08 0.9400 0.9908 0.9913 0.9872 0.9923 0.9924 0.9907 0.9922 0.9918
σ = 0.16 0.7966 0.9795 0.9807 0.9766 0.9841 0.9855 0.9772 0.9806 0.9783
σ = 0.32 0.4947 0.9574 0.9598 0.9551 0.9629 0.9684 0.9521 0.9467 0.9440

Table 3: As Table 1 but reporting SSIM.

7.2. Example 2 – Color image in 2D

The AWS and PAWS algorithms can be easily extended to handle color images using η(θi, θj) =
(θi − θj)>Σ−1

i (θi − θj) where θ ∈ R3 is a vector of intensities in the RGB channels and the
corresponding Σi the error covariance matrix, see Polzehl and Tabelow (2007). The extension
of TV and TGV to color images is straightforward as well.
For a color image example we used the right image in Figure 5. We added Gaussian noise with
standard deviation equal to 15% of the intensity range in each of the RGB channels of the
image. The reconstructions using TV and TGV were obtained using optimized parameters
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Figure 6: Reconstructions for noisy parrot image with σ = 0.08. The numbers in parentheses
are the PSNR values.

Figure 7: Reconstructions for noisy parrot image with σ = 0.16. The numbers in parentheses
are the PSNR values.

α (and β) with respect to PSNR. For AWS and PAWS we used k∗ = 24 (corresponding to
h(k∗) = 9.5) and adjusted the parameter λ to maximize PSNR. Figure 8 shows a zoom of the
noisy image and its reconstructions. The intensity values have again been projected into the
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Figure 8: Reconstruction results for the color image. For more details a zoomed image is
show. PSNR values are in parentheses, see also Table 4.

noisy AWS PAWS1 PAWS2 TV TGV
PSNR 16.4 26.3 27.9 27.8 27.1 27.2
MAE 7850 1920 1660 1680 1900 1880

Table 4: PSNR and MAE of the reconstruction results for the color image example.

range [0, 1] in each RGB channel for better comparability. PSNR and MAE results reported
in the headings of each image correspond to the full image size of 1700×1400 pixel. Note, that
the assumption of a local constant model is enforced in the AWS reconstruction in regions
with smoothly changing intensities. This effect is by far less prominent with both the PAWS
and TV/TGV reconstructions.

7.3. Example 3 – 3D brain image

Our third example uses a 3D T1-weighted image volume with a 1mm isotropic voxel resolution
from BrainWeb (http://brainweb.bic.mni.mcgill.ca/cgi/brainweb1; Kwan, Evans, and
Pike 1996; Collins et al. 1998; Kwan, Evans, and Pike 1999), see Figure 9. The package
oro.nifti (Whitcher, Schmid, and Thornton 2011; Whitcher, Schmid, Thornton, and Muschelli
2020) is employed to read the image. The image dimension is 181×217×181, image intensity
ranges between 0 and 4095 (12 Bit).

http://brainweb.bic.mni.mcgill.ca/cgi/brainweb1
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Figure 9: Example 3D brain images (T1w) from BrainWeb: axial (slice #91), coronal (slice
#109) and sagittal (slice #70) view.

noisy AWS PAWS1 PAWS2 NLMeans NLMeans wPCA
σ = 200 26.2 32.7 34.8 35.0 31.2 32.9
σ = 400 20.2 28.5 32.5 32.2 30.6 31.9
σ = 800 14.2 25.7 29.3 29.6 26.4 27.7

Table 5: PSNR of brain reconstructions for the different noise levels.

noisy AWS PAWS1 PAWS2 NLMeans NLMeans wPCA
σ = 200 159.7 70.5 51.3 51.1 80.5 64.0
σ = 400 319.1 112.4 68.3 71.9 89.1 74.8
σ = 800 638.3 148.1 99.6 98.5 150.0 126.9

Table 6: MAE of brain reconstructions for the different noise levels.

Images corrupted with noise were obtained by adding spatially independent Gaussian noise
with a standard deviation 200 (high SNR), 400 (medium SNR) and 800 (low SNR) to each
voxel intensity. For reconstruction we used AWS and PAWS with default values of λ chosen
according to a propagation condition (Becker and Mathé 2013). The value of k∗ for AWS
was selected to provide best results in terms of PSNR (specifically 11, 13 and 20 for the three
situations). For PAWS we used k∗ = 23 (h(k∗) = 3.85) for high SNR, k∗ = 26 (h(k∗) = 4.81)
for medium SNR and k∗ = 28 (h(k∗) = 5.6) in case of low SNR. For comparison we represent
results obtained with the non-local means implementation in package aws using a patch size
of 27 (patch half width 1; NLMeans) and with optimum number pc of principal components
(NLMeans wPCA). Parameters lambda and searchhw were optimized for each image with
respect to PSNR. A comparison with results using the original MATLAB implementations of
the efficient optimized blockwise non-local means denoising filter (ONLM; Coupé et al. 2008)
and the adaptive multi resolution non-local means filter (MRONLM; Coupé et al. 2012) can
be found in Polzehl et al. (2018).
Figure 10 illustrates the quality of reconstruction for the various methods for the central axial
slice. The values of PSNR and MAE are reported in Tables 5 and 6 and refer to all voxel
within a 3D brain mask obtained by thresholding the original 3D BrainWeb image.
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Figure 10: Example 3D brain images (T1w) from BrainWeb: axial view (slice 91) of noisy
image, AWS, PAWS (s = 1, 2) and NLMeans reconstructions without and with dimension
reduction in patch space by PCA. Rows show results for differing noise levels. The numbers
is parentheses refer to the PSNR of the 3D reconstruction within the brain mask. Numerical
values MAE over all voxel within a brain mask are reported in Tables 5 and 6.

noisy AWS PAWS1 PAWS2 NLMeans NLMeans wPCA
σ = 200 170.0 60.5 33.3 33.1 48.9 39.5
σ = 400 362.0 92.7 41.0 42.9 61.4 50.8
σ = 800 779.0 105.0 58.6 58.0 100.0 82.8

Table 7: MAGE of brain reconstructions for the different noise levels.

noisy AWS PAWS1 PAWS2 NLMeans NLMeans wPCA
σ = 200 200.0 75.6 53.0 51.3 80.5 65.5
σ = 400 418.0 115.0 64.4 65.5 81.3 68.8
σ = 800 879.0 154.0 91.8 88.7 126.0 107.0

Table 8: RMSGE of brain reconstructions for the different noise levels.

In Figure 11 we illustrate the accuracy of edge estimation. We show the central axial slice
of a 3D image that contains the norm of the standard numerical gradient approximation as
voxel intensity.
Non-local means (with optimized parameters) performs best for high SNR. Using dimension
reduction by PCA in patch space consistently improved results with respect to all considered
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Figure 11: Example 3D brain images (T1w) from BrainWeb: axial view (slice 91) of 3D edge
indicators for (from left to right) noisy image (2nd and 3rd row, original is used in the first row
for comparison), AWS, PAWS (s = 1, 2) and NLMeans reconstructions. Rows show results
for differing noise levels. Numerical values in parenthesis refer to MAGE. Numerical values
for MAGE and RMSGE are reported in Tables 7 and 8.

criteria. The patch-wise AWS algorithm outperforms the other methods in case of medium
and low SNR.

8. Discussion and conclusion

In this paper, we presented a new noise reduction algorithm PAWS based on the propagation-
separation approach that combines the multiscale approach of PS with the definition of adap-
tive weighting schemes based on comparisons of patches of image intensities. It can be easily
applied for data in any dimension d. The new PAWS method overcomes the problem of sin-
gular locations with extreme image intensity in the reconstruction and the roughness of the
boundaries of regions with homogeneous image intensity. The usage of the maximum statis-
tics in the definition of the statistical penalty automatically takes the different variability of
the estimates from the previous iteration step into account. PAWS shows also improved per-
formance if the image data is characterized by local smooth instead of local constant intensity
regions. It outperforms lpAWS in these cases and is, in contrast to lpAWS, easily applicable
for d-dimensional data with d > 2.
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We also described an implementation of PAWS as well as AWS and lpAWS within the R pack-
age aws which is freely available under the GPL from CRAN at https://CRAN.R-project.
org/package=aws. We demonstrated, that the combination of both ideas, the multiscale ap-
proach and the patch-wise comparison, leads to improved reconstruction results in comparison
to methods based on a single ingredient. We also demonstrated how the method compares
with regularization-based methods like TV and TGV, which in general show similar properties
and performance to the PS methods. Additional comparisons include the non-local means
filter and the pointwise-adaptive ICI method. We provided a concise description of the prin-
ciples and algorithmic details of all methods used in the examples. All required functionality
is implemented in the R package aws that provides a variety of adaptive smoothing methods
in 1D, 2D and 3D.
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