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TEMPORAL CAVITY SOLITONS IN A DELAYED MODEL OF A

DISPERSIVE CAVITY RING LASER∗,∗∗
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Abstract. Nonlinear localised structures appear as solitary states in systems with multistability and
hysteresis. In particular, localised structures of light known as temporal cavity solitons were observed
recently experimentally in driven Kerr-cavities operating in the anomalous dispersion regime when
one of the two bistable spatially homogeneous steady states exhibits a modulational instability. We
use a distributed delay system to study theoretically the formation of temporal cavity solitons in an
optically injected ring semiconductor-based fiber laser, and propose an approach to derive reduced
delay-differential equation models taking into account the dispersion of the intracavity fiber delay line.
Using these equations we perform the stability and bifurcation analysis of injection-locked continuous
wave states and temporal cavity solitons.

Mathematics Subject Classification. 78A60, 70K50, 34K13, 37G15.

Received December 17, 2018. Accepted November 21, 2019.

1. Introduction

Temporal localised structures of light propagating along the axial direction in nonlinear cavities attracted
significant theoretical and experimental attention in the last decade due to their potential applications for optical
data storage and transmission [7, 12, 13, 15, 16]. Typically they appear in the vicinity of parameter regions
where a branch of spatially homogeneous steady states exhibits S-shaped hysteresis loop [1, 20, 22]. Similarly
to the solitons of nonlinear Schrödinger equation [40], dissipative optical localised structures known also as
temporal cavity solitons (TCSs) are localised in time and in longitudinal direction. They can be studied by
direct numerical simulations of complex Ginzburg-Landau-type equations [8, 11] or alternatively as stationary
solutions of properly constructed ordinary differential equations in the co-moving reference frame [30, 34, 35].
Although this approach allows for a detailed bifurcation analysis of TCSs, complex Ginzburg-Landau models
are hardly applicable to account accurately for some important physical effects in realistic laser devices, such
as those containing intracavity semiconductor medium [19, 33]. This is why travelling wave-type models [3, 37]
are commonly used to model the dynamics of semiconductor devices. However, since the traveling wave models
are rather complicated and their analysis is usually limited to direct numerical simulations, an alternative and
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more simple approach to the analysis of multimode semiconductor lasers was proposed in [32, 33, 36] based
on the use of delay differential equations (DDEs). DDE laser models can be derived from the travelling wave
equations under certain non-restrictive simplifying physical assumptions and proved to be a viable alternative to
the standard models based on partial differential equations. In addition to asymptotic stability analysis [25, 33]
the DDE approach allows for numerical study of continuous wave (CW) and periodic intensity regimes using
well-developed Floquet theory and software packages such as DDE-BIFTOOL [10, 17, 23, 25, 32, 33, 36].

In this paper, using DDE models we investigate the properties of TCSs in an optically injected laser containing
a semiconductor optical amplifier and a long dispersive fiber delay line [19, 25]. Physical mechanisms of the
formation of these solitons are similar to those reported earlier in the Lugiato-Lefever equation (LLE) with
anomalous dispersion [14] and in driven nonlinear cavities with dissipative nonlinearity and diffraction [6, 21,
24, 26]. The LLE is an externally driven, damped nonlinear Schrödinger equation for the electric field in a
passive optical cavity subject to weak optical injection slightly detuned from the resonant frequency of the
cavity. Although the LLE allows one to perform numerical bifurcation analysis of stationary homogeneous and
TCS solutions [13], the simplifying assumptions behind the LLE limit its applicability. For example, the LLE
fails to describe the bistability between two TCS branches corresponding to neighbouring longitudinal cavity
modes [9], which requires large detunings. On the other hand, this bistability is well captured in the framework
of the travelling wave equation approach [11]. Similarly to the travelling wave equations DDE models are free
from the small detuning approximation. Furthermore, they allow for an adequate account of the characteristic
features of intracavity semiconductor optical amplifier and inclusion of the dispersion of the fiber delay line by
incorporating the distributed delay term in the model equations [19]. Therefore, DDEs provide a more relevant
and rigorous tool to study TCS in the physical system considered here than the Ginzburg-Landau type models.
In the framework of time delay models, we propose another way to study moving CSs in optical resonators with
the help of differential equations involving nonlinear delay terms that complements the existing studies of the
effect of feedback loop described by linear delay term in form of Pyragas control [27], which can be applied to
the models of broad-area lasers [18, 28, 31], as well as to nonlinear optical cavities such as fiber resonators or
disk microresonators subjected to delayed optical feedback, where a LLE with time delay can be used to study
the drift of TCSs [29].

In this study, using the distributed DDE laser model of reference [19] and following the approach described
in [39], we perform linear stability analysis of CW states in the limit of large delay. We report the presence
of modulational instability (MI) of the upper part of CW solutions branch in the strong anomalous dispersion
regime. Above the MI threshold, we demonstrate numerically the formation of stable TCSs. Thereafter, we
derive a reduced DDE model with a single delay that preserves the effect of the chromatic dispersion on the
dynamics of the ring laser. With the help of the reduced model we perform numerical continuation and stability
analysis of the periodic TCS solutions in the reduced model using DDE-BIFTOOL [5]. Among other things, we
find a narrow region of multistability between TCSs of different width.

2. Model equations

2.1. Distributed DDE model

Schematic presentation of an optically injected long cavity laser under consideration is given in Figure 1 (left).
The laser containing a short semiconductor optical amplifier (SOA) section, linear frequency selective spectral
filter, and a long dispersive fiber delay line, is subject to external optical injection from a single-mode laser.
A similar device without external injection operating in the so-called Fourier domain mode-locked regime was
studied experimentally in [25]. A distributed DDE model to describe this device was derived in reference [19].
Here we write the distributed DDE model with an additional term describing single-mode coherent external
injection:

dA

dt
+ (γ − iw)A = γ

√
κe(1−iα)G/2+iϕB(t− T ) + η, (2.1)
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dG

dt
= γg

[
g0 −G− (eG − 1) |B(t− T )|2

]
, (2.2)

B(t) = A(t) + P (t), P (t) = −σ
∫ ∞

0

J1(2
√
σs)√

σs
e−iΩcsA(t− s)ds. (2.3)

Here A(t) and B(t) are the electric field envelopes at the entrance and at the output of the fiber delay line,
respectively; G(t) is the cumulative saturable gain in the SOA section, and T is the cavity round-trip time. The
parameter γ is the spectral filter bandwidth, ω describes the detuning between the central frequency of the filter
and the injection frequency, κ < 1 is the round trip attenuation factor due to the linear nonresonant losses in the
SOA and output of radiation from the cavity, α is the linewidth enhancement factor, ϕ describes the detuning
between injection frequency and the considered cavity mode, γg is the the carrier relaxation rate in SOA, g0 is
the pump parameter, and σ is proportional to the length of the fiber delay line. The parameter η describes the
injection rate. Since it is assumed that the reference frequency coincides with the frequency of the injection, the
injection term does not depend on time. For the complex resonance frequency Ωc, see equation (2.4).

2.2. Modelling dispersive fiber delay line

The distributed DDE model was derived in reference [19] following the procedure described in [32, 33, 36]
with the help the so-called lumped element approach. In this approach the travelling wave equations are solved
for each of the laser sections and the resulting solutions are combined to obtain a closed set of model DDEs.
In particular, in [19] it was assumed that the dispersion of the fiber delay line is created by a Lorentzian
absorption line with central frequency Ω and full width at half maximum Γ, which is strongly detuned from
the laser transition. Neglecting all nonlinearities, propagation of light in the fiber delay line was described by
the set of two differential equations for the electric field envelope E(t, z) and polarisation associated with the
absorption line PL(t, z):

∂E

∂z
= PL,

∂PL
∂t

= −iΩcPL − ζE, Ωc = Ω− iΓ, (2.4)

where z is the coordinate along the fiber line, t = t′ − z/vgr relates the retarded time t to the laboratory t′, and
vgr is the group velocity at the carrier frequency. The parameter ζ is proportional to the oscillator strength of
the Lorentzian absorption line, the latter is associated with the complex frequency Ωc.

The distributed delay term P (t − T ), which appears in the system (2.1)–(2.2) through equation (2.3), was
derived in [19] by integration of equations (2.4). An important drawback of the distributed DDE model (2.1)–
(2.2) is, however, that its numerical simulations are time consuming for small (positive) Γ due to the slow
decay of the Bessel function. Below we re-examine the derivation of the distributed delay term and describe an
approximate approach, which allows us to replace this term by a single Lorentz-type ODE for P (t). This will
be done by invoking the Laplace transformation to solve equation (2.4) and by using the Padé approximants
when performing the inverse Laplace transformation.

2.3. Derivation of the distributed delay term

The Laplace transformed system (2.4), assuming for simplicity that the polarisation relaxes between the
pulses and therefore taking P (z, t)|t≤0 = 0, reads

∂zÊ(z, ω) = P̂L(z, ω), −iωP̂L(z, ω) = −iΩcP̂L(z, ω)− ζÊ(z, ω). (2.5)

Here the Laplace image f̂(ω) of a causal function f(t) vanishing for t < 0 is defined by

f̂(ω) =

∫ ∞
0

f(t)eiωtdt with f(t) =

∫
R+iC

f̂(ω)e−iωt
dω

2π
, (2.6)
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Figure 1. Left: Schematic representation of a ring-cavity laser under single mode optical
injection. SOA abbreviates the semiconductor optical amplifier acting as gain medium, z is
the coordinate along the cavity axis. Right: S-shaped hysteresis loop formed by steady states
of equations (2.1)–(2.2) (injection-locked CW states), for P = σ = 0 and varying η. Other
parameters are γ = γg = 1, w = 0, κ = 0.3, α = 5, g0 = 1.19, ϕ = ϕc − 0.16, where ϕc satisfies
(4.1).

Figure 2. (a) A transformed integration contour in the complex ω plane for the Bromwich
integral (2.10). (b) Comparison of the Bessel function in the kernel of equation (2.3) to the
expressions derived from equation (2.10) using diagonal Padé approximants.

where ω ∈ C is the complex frequency having “sufficiently positive” imaginary part. The parameter C ∈ R is
large enough so that all singularities of f̂(ω) are below the integration contour R + iC in the complex plane.

Since typical f̂(ω), being analytically continued, has poles in the lower half-plane (on the real axes at most), it
is sufficient to set C = +0. The integration contour can then be pushed down as in Figure 2a.

Integrating equation (2.5) along the longitudinal coordinate z and performing inverse Laplace transform we
obtain

E(z, t) =

∫
R+iC

Ê(ω, z1) exp

[
− iζ(z − z1)

ω − Ωc

]
e−iωt

dω

2π
, (2.7)

where z1 is the longitudinal coordinate at the entrance of the fiber delay line. Taking z = z2, where z2 is the
delay line output coordinate, we write the relation between input and output fields, E(z1, t) and E(z2, t):

E(z2, t) = E(z1, t) +

∫
R+iC

Ê(ω, z1)

[
exp

(
− iσ

ω − Ωc

)
− 1

]
e−iωt

dω

2π
, (2.8)
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where σ = ζ(z2−z1). Introducing the notations E(z1, t) ≡ A(t) and E(z2, t) ≡ B(t) we can rewrite equation (2.8)
in the form:

B(t) = A(t) + P (t), P (t) =

∫ ∞
0

G(s)A(t− s)ds, (2.9)

with Green’s function G(t) vanishes for t < 0 and is defined by

G(t) =

∫
R+iC

[
exp

(
− iσ

ω − Ωc

)
− 1

]
e−iωt

dω

2π
= −σ

[ ∞∑
j=0

(−σt)j

(j + 1)!j!

]
e−iΩct = −σJ1(2

√
σt)√

σt
e−iΩct, (2.10)

for t > 0. To calculate the Bromwich integral in equation (2.10) we use the contour shown in Figure 2(a) and
expand the first exponential term. Equations (2.9) and (2.10) yield equation (2.3) [19]. In the next sections we
propose two approximations of Green’s function G(t) leading to DDE laser models with a single delay T .

2.4. Approximation of Green’s function I

When the dispersion of the fiber delay line is sufficiently weak, the main contribution to the integral in
equation (2.8) comes from the frequency domain satisfying the inequality |ω − Ωc| � σ. However, a naively
truncated Taylor expansion of the first exponential in equation (2.10) yields unphysical behaviour, e.g., polyno-
mial divergence for Γ = 0 and t→∞. A more relevant approach is to use Padé approximants [2]. The simplest
[1/1] diagonal approximation ex ≈ (1 + x/2)/(1− x/2) at x = 0 gives the expression

exp

(
− iσ

ω − Ωc

)
− 1 ≈ − iσ

ω − Ωc + i
2σ
, (2.11)

with a shifted pole at ω = Ω − i(Γ + 1
2σ). Since σ, is assumed to be positive, the pole still is in the lower

half-plane of the complex plane. The resulting Green’s function G(t) is then causal and vanishes for t→∞.
Substituting the [1/1] Padé approximant (2.11) into equation (2.10) and integrating along the contour shown

in Figure 2a we obtain

G(t) = −σe−iΩt−(Γ+ 1
2σ)t,

which gives the following ODE for the quantity P (t) defined by (2.9):

dP

dt
= −

(
Γ +

σ

2
+ iΩ

)
P − σA(t). (2.12)

Equation (2.12) can be used instead of the second equation in (2.3) to close the system (2.1)–(2.2). The above
scheme can be easily generalised by using higher order Padé approximants to construct causal approximations
of Green’s function G(t) as illustrated in Figure 2b.

Since the condition |ω−Ωc| � σ is quite restrictive for adequate description of the laser dynamics as discussed
in Sections 3.2 and 4.2, in the next subsection we propose an alternative and more accurate model to approximate
equation (2.3). This model also contains the distributed delay term and also leads to a single ODE for the
quantity P .
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2.5. Approximation of Green’s function II

Here we assume that the laser field has a narrow spectrum localised near the injection frequency ω0 = 0 and
apply the Padé approximation around this frequency. Rewriting equation (2.7) in the form

E(z, t) = exp

[
iζ(z − z1)

Ωc

] ∫
R+iC

Ê(ω, z1) exp

[
−iζ(z − z1)

Ωc
− iζ(z − z1)

ω − Ωc

]
e−iωt

dω

2π
,

replacing the first exponent under the integral with its [1/1] Padé approximant, and taking z = z2 we obtain:

B(t) = exp

[
iσ

Ωc

] [
1− iσ

2Ωc

1 + iσ
2Ωc

A(t) + P (t)

]
, (2.13)

where A(t) = E(z1, t), B(t) = E(z, t), and

P (t) =

∫ ∞
0

B(s)A(t− s)ds, (2.14)

with new Green’s function

B(t) =

∫
R+iC

(
1− iσ

2Ωc
− iσ

2(ω−Ωc)

1 + iσ
2Ωc

+ iσ
2(ω−Ωc)

−
1− iσ

2Ωc

1 + iσ
2Ωc

)
e−iωt

dω

2π
= −

σ exp

(
−iΩct− σt/2

1+ iσ
2Ωc

)
(

1 + iσ
2Ωc

)2 , (2.15)

calculated in a full analogy with that in the previous Section. Finally, substituting equation (2.13) into (2.1)
and (2.2) and differentiating equation (2.14) in time we obtain the following reduced DDE model

dA

dt
+ (γ − iw)A = γ

√
κe(1−iα)G/2+iϕB(t− T ) + η, (2.16)

dG

dt
= γg

[
g0 −G− (eG − 1) |B(t− T )|2

]
, (2.17)

dP

dt
= −

(
Γ +

σ/2

1 + iΘ
+ iΩ

)
P − σA

(1 + iΘ)2
, (2.18)

where

B(t) = e2iΘ

[
1− iΘ
1 + iΘ

A(t) + P (t)

]
and Θ =

σ

2Ωc
=

σ/2

Ω− iΓ
.

Note that the factor e2iΘ describing an additional phase shift and losses induced by the fiber delay line can
be easily eliminated by including it in the parameter ϕ and κ in equation (2.16). Furthermore, similarly to
equation (2.12), equation (2.18) suggests that the variable P (t) exhibits faster decay than e−Γt. Such decay
existing also for Γ = 0 is somewhat similar to the Landau damping.

3. Continuous wave (CW) states and their stability

3.1. Stability analysis in the limit of large delay

Steady state solutions of equations (2.1)–(2.3) correspond to the injection-locked CW laser regimes with the
rotation frequency equal to that of the injection field. Since the reference frequency is chosen to coincide with
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the injection frequency they can be written in the form A = A0e
iϕ0 and G = G0 with time independent A0,

G0, and ϕ0. Using these relations we get from equation (2.3) P = P0 =
(
e−σ/[Γ+iΩ] − 1

)
A0. Then, substituting

the expressions for A, G, and P into equations (2.1)–(2.3) we come to a system of transcendental equations for
A0, ϕ0, and G0, which can be solved numerically. For example, an S-shaped hysteresis loop formed by three
injection-locked CW states calculated in the absence of chromatic dispersion, σ = 0, is shown on Figure 1 (right).

Since our aim is to study formation of TCSs in the long laser with round-trip time T & 100, we can perform
linear stability analysis of steady state solutions of equations (2.1)–(2.3) in the limit of large delay using the
method described in [39]. Although originally this method was developed for DDEs with a single discrete delay,
it was demonstrated in [19, 38] that it is easily extended for the analysis of the distributed delay laser model. We
linearise the system (2.1)–(2.3) near the steady states A = A0 + δAeλτ , G = G0 + δGeλτ , and P = P0 + δPeλτ

with the relation δP = δA
(
e−σ/[Γ+λ+iΩ] − 1

)
obtained from (2.3). Substituting these expressions into (2.1) and

(2.2) we obtain the following characteristic equation for the eigenvalues λ describing the stability of the steady
state solution:

a2(λ)Y 2 + a1(λ)Y + a0(λ) = 0, (3.1)

where Y = e−λT is the exponential term that comes from the delayed variables A(t− T ) and P (t− T ) and

a0(λ) = −
[
(γ + λ)2 + w2

] (
γge

G0A2
0ce(0) + λ+ γg

)
,

a2(λ) =
[
2(γ cosϕ0 + w sinϕ0)ηA0 − η2 −

(
γ2 + w2

)
A2

0

](
γg +

λ+ γg
A2

0ce(0)

)
ce(λ),

a1(λ) =
1

A0

[
λ

ce(0)

(
(−w(A0λ+ η cosϕ0) + η(γ + λ) sinϕ0) sin Φ(λ)+((

γ(γ + λ) + w2
)
A0 − η(γ + λ) cosϕ0 − ηw sinϕ0

)
cos Φ(λ)

)
+

γg
2

{
sin Φ(λ)

(
c1(λ) cosϕ0 + c2(λ) sinϕ0 −

2A0

ce(0)
λw+

A3
0

(
α
(
γ(γ + λ) + w2

) (
eG0 − 1

)
− λw

(
eG0 + 1

)))
+

cos Φ(λ)

(
c1(λ) sinϕ0 − c2(λ) cosϕ0 +

2A0

ce(0)
(γ(γ + λ) + w2)+

A3
0

((
γ(γ + λ) + w2

) (
eG0 + 1

)
+ αλw

(
eG0 − 1

)))}]
.

with

ce(λ) = exp

[
− 2σ(Γ + λ)

(Γ + λ)2 + Ω2

]
, Φ(λ) = − λ(2Γ + λ)σΩ

(Γ2 + Ω2) [(Γ + λ)2 + Ω2]
,

c1(λ) = −η
{ [
w
(
eG0 + 1

)
+ α(γ + λ)

(
eG0 − 1

)]
A2

0 −
2w

ce(0)

}
.
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Figure 3. Real parts of two branches of pseudo-continuous spectrum ReΛ±(µ) for the injection-
locked CW states of (2.1)–(2.2) lying on the bottom (left), middle (center), and the upper (right)
part of the S-shaped curve shown in the right panel of Figure 1. η = 0.006, other parameters
are as in Figure 1.

c2(λ) = η
{ [

(γ + λ)
(
eG0 + 1

)
− wα

(
eG0 − 1

)]
A2

0 +
2(γ + λ)

ce(0)

}
.

In the limit of large delay time T →∞ the eigenvalues belonging to the pseudo-continuous spectrum can be
represented in the form λ = iµ+ Λ

T +O(1/T 2) with real µ [39]. Keeping only the single leading term iµ in a0(λ),

a1(λ), a2(λ) and two leading terms iµ + Λ
T in Y (λ), we obtain from (3.1) two branches of pseudo-continuous

spectrum given by

Λ±(µ) + iµT = − lnY = − ln

[
−a1(iµ)±

√
a1(iµ)2 − 4a2(iµ)a0(iµ)

2a2(iµ)

]
. (3.2)

Real parts of these eigenvalue branches are shown in Figure 3 for η = 0.006 and σ = 0. Left, central, and right
panels in this figure belong, respectively, to lower, middle, and upper parts of S-shaped CW branch shown in
Figure 1 (right). We see that for the chosen parameter values the CW solutions belonging to the upper and
lower parts of CW branch are stable. The middle part of the branch is always unstable.

Finally, we note that the necessary condition of the MI of CW solutions of a distributed DDE model (2.1)–
(2.3) without optical injection, η = 0, was obtained in [19]. In the next subsection we compare this condition
with those obtained with the simplified models (2.1)–(2.2), (2.12) and (2.16)–(2.18). In Section 4.1, we use these
conditions to locate MI of the injection-locked CW state and find a stable temporal cavity soliton.

3.2. Modulational instability

In this section we compare analytical conditions for the appearance of long wavelength MI of CW solutions of
the distributed DDE model with those obtained using the reduced DDE models. For simplicity we consider the
case when the external injection is absent, η = 0. In this case the system (2.1)–(2.3) has a phase shift symmetry
so that for any given solution A(t), P (t), and G(t) the phase shifted solution A(t)eiφ, P (t)eiφ, and G(t) with
arbitrary constant φ also a satisfies the system. Due to this symmetry CW solutions of this system take the
form A(t) = A0e

iνt, P (t) = P0e
iνt, and G(t) = G0 and the characteristic equation (3.1) remains invariant under

the transformations w → w− ν and Ω→ Ω + ν. In addition, for ν = 0 the amplitudes of the CW solutions |A0|,
|P0|, and G0 can be obtained explicitly [19].

Owing to the phase shift symmetry of equations (2.1)–(2.3) with η = 0 one of the two eigenvalue branches
Λ±(µ) satisfies the condition Λ(0) = 0. Long wavelength MI takes place when the second derivative of this branch
d2 Re Λ(µ)/dµ2 changes its sign at the point µ = 0 from negative to positive, see Figure 4. Using equation (3.2)
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and analytical expressions for the coefficients a0(λ), a1(λ), and a2(λ) entering the characteristic equation (3.1),
a necessary condition for appearance of MI of CW solution with the frequency ν in a laser with anomalously
dispersive fiber delay line and η = 0 can be obtained [19]:

[γ − α(w − ν)]
2

[γ2 + (w − ν)2]
2 ≥ −αD2. (3.3)

Here the second-order dispersion coefficient is given by

D2 = Im
d2

dν2

[
−σ

Γ + i(Ω + ν)

]
. (3.4)

Let us now for simplicity consider the particular limit when Γ = 0. In this limit the necessary and sufficient
MI condition for CW solutions of the distributed DDE model (2.1)–(2.3) takes a relatively simple form [19]:

[γ − α(w − ν)]
2 − (w − ν)2F

[γ2 + (w − ν)2]
2 ≥ −αD2, (3.5)

whereD2 is obtained by substitution Γ = 0 into (3.4) and F represents auxiliary terms responsible for appearance
of MI of the side modes which exists even in the normal dispersion regime:

F =
2(1 + α2)(1 + |A0|2eG0)

|A0|2(eG0 − 1)
.

Note that unlike (3.3) the condition (3.5) accounts for the MI of the side modes that can take place even in
the normal dispersion regime. Since in this study we are mainly interested in the formation of TCSs in the
anomalous dispersion regime, we consider the maximum gain mode, which cannot undergo MI in the normal
dispersion regime. For this mode we can set w = ν = 0. Then for Γ = 0 we have D2 = 2σ/Ω3 and the MI
condition (3.5) takes the simplified form

2ασ

Ω3
≤ − 1

γ2
. (3.6)

Next, we consider the MI of the CW solutions of the reduced DDE models (2.1)–(2.2), (2.12) and (2.16)–
(2.18). Since in this case the coefficients of the characteristic equation (3.1) become very cumbersome, we do
not provide an explicit formula for Y (µ). However, in the particular case Γ = 0, when only Landau damping
remains in equations (2.12) and (2.18), we can obtain rather simple analytical conditions of the MI.

For the reduced DDE model (2.1)–(2.2), (2.12) we get the following MI condition

[γ − α(w − ν)]
2 − (w − ν)2F

[γ2 + (w − ν)2]
2 ≥ − 32ασ(Ω + ν)

[σ2 + 4(Ω + ν)2]
2 . (3.7)

For the maximum gain mode with w = ν = 0 instead of (3.7) we obtain the condition

2ασ

(1 + σ2

4Ω2 )2Ω3
≤ − 1

γ2
, (3.8)

which differs from (3.6) by an additional term σ2

4Ω2 . Due to the presence of this term the condition (3.8) holds only
for moderate values of σ, while for large σ the absolute value of the left-hand side of this condition is always small
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Figure 4. Real parts of two branches of the pseudo-continuous spectrum ReΛ±(µ) for the
CW solutions (relative steady states) of (2.1)–(2.3) with η = 0.0, g0 = 1.2, ν = 0, Ω = −13,
Γ = 0.001, ϕ = ϕc obtained using equation (3.1), for the case of zero dispersion σ = 0 (left)
and strong anomalous dispersion σ = 2000 (right), where CW solution lost stability with via a
MI. Other parameters are as in Figure 1.

and tends to zero as σ →∞. In particular, from (3.8) we can obtain a necessary condition Ω ≥ −γ
√

3
√

3α/2
for the MI in the anomalous dispersion regime (Ω < 0). On the contrary, the condition (3.3) is always satisfied
in the anomalous dispersion regime when σ is sufficiently large.

Finally, for the second reduced DDE model (2.16)–(2.18) with Γ = 0 we get the MI condition, which coincides
exactly with (3.5) obtained with the distributed DDE model. It is worth noting that for Γ > 0 the exact
agreement with the distributed DDE model is lost, however, the reduced DDE model is regular enough for
Γ = 0 due to Landau damping in all our simulations. Therefore, we can conclude that the second reduced DDE
model (2.16)–(2.18) reproduces better the MI of the original distributed DDE model.

4. Temporal cavity solitons

In this section, we perform numerical analysis of the original distributed DDE model (2.1)–(2.3) and the
reduced DDE models (2.1)–(2.2), (2.12) and (2.16)–(2.18). For each of these three models we locate MI of
the upper part of S-shaped injection-locked CW branch and find numerically periodic TCSs in the range of
parameter values that are in the vicinity of this instability. Furthermore for reduced DDE models we per-
form numerical bifurcation analysis of TCSs using the software package DDE-BIFTOOL [5]. Note, that in our
numerical examples given below we choose w = 0 and ϕ = ϕc + δϕ in equations (2.1)–(2.3), where

ϕc = −α lnκ

2
+
σ(αΓ + Ω)

Γ2 + Ω2
(4.1)

is a phase shift that places the maximum gain mode of the laser at the reference (zero) frequency, which coincides
with the frequency of the injected field. In this case synchronisation of the laser output to the external injection
takes place at zero frequency and the bistability can be observed near the boundaries of the locking range.

4.1. Distributed DDE model

In reference [13] a formation of TCSs was reported in the anomalous dispersion regime, when the upper part
of the S-shaped CW branch exhibits a MI. Since unlike the experimental setup of this paper, semiconductor
based fiber laser can hardly be described by simple mean-field models, like the LLE, in this section we use the
distributed DDE model to find the parameter range where TCSs can exist. As it was demonstrated analytically
in reference [19] (see also Sect. 3.2) in the absence of external injection, η = 0, CW solutions of (2.1)–(2.3)
become modulationally unstable when anomalously dispersive (Ω < 0) fiber delay line is sufficiently long, i.e.,
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Figure 5. Top-left: S-shaped curve, formed by injection-locked CW states of (2.1)–(2.3) for
Ω = −13, Γ = 0.001, σ = 2000, ϕ = ϕc − 0.2, and other parameters are as in Figure 1. Other
panels: Real parts of two branches of the pseudo-continuous spectrum ReΛ±(µ) for the bottom
fold point at η ≈ 0.0051 (top-center), upper fold point at η ≈ 0.006 (top-right), and for three
steady states observed at η ≈ 0.0058, where short wavelength MI appears on the upper part
of the curve (bottom-right), the steady state from the middle part is unstable (bottom-center),
whereas the steady state from the bottom part is stable (bottom-left).

the parameter σ is sufficiently large. When the injection rate η becomes nonzero the MI remains in the system
but requires even larger values of σ. The pseudo-continuous spectrum of the upper branch steady state is shown
in Figure 5, where top-right and bottom-right panels illustrate long- and short-wavelength MI, respectively.
Note that for the parameter values of this figure threshold in σ is approximately 3 times higher than given by
(3.6) for η = 0.

Stable TCS solution of the distributed DDE laser model (2.1)–(2.3) with the repetition period close to the
cavity round trip time is shown in Figure 6. This solution was obtained numerically for small injection amplitude,
η = 0.0058, by seeding a sufficiently large localised perturbation of the CW solution, which belongs to the lower
part of the S-shaped bistability curve shown in Figure 5. A large spike of the field amplitude |A(t)| in Figure 6
is accompanied by a weak drop of the gain variable G(t). Unlike Figures 5 and 6, the next two figures, 7 and 8
correspond to the case of strong optical injection η ≈ 0.4, when the locking frequency is quite far from the center
of the locking cone ϕ = ϕc − 1.65. In this case the numerically calculated TCSs correspond to much narrower
and higher spikes of the electric field than in the case of weak injection, and the gain depletion is much stronger
as well, see Figure 8. It follows from our numerical simulations that the larger is the injection rate the higher is
the dispersion necessary to achieve MI and the formation of TCSs. Therefore, experimental observation of the
TCSs in a strongly injected laser would require the use of sufficiently long fiber delay line.

In the next two subsections we perform bifurcation analysis of the TCS solutions with the help of the reduced
DDE models (2.1)–(2.2), (2.12) and (2.16)–(2.18).
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Figure 6. Stabilised transient of the TCS solution for the field amplitude |A(t)| (left) and gain
G(t) (center), obtained using numerical solution of (2.1)–(2.3) for T = 400, η = 0.0058 and
other parameters as in Figure 5. Long-time transient of the field amplitude |A(t)| in a space-
time representation (right), where the time trace is divided into intervals of length T , and for
each subsequent interval a horizontal line representing the color code of the field amplitude is
plotted at the vertical position corresponding to the number of round-trips passed before this
interval.

Figure 7. Left: S-shaped curve (left) formed by injection-locked CW states of (2.1)–(2.3) for
σ = 6000, ϕ = ϕc − 1.65, α = 4.5, g0 = 1.38, and other parameters are as in Figure 5. Other
panels: Real parts of two branches of the pseudo-continuous spectrum ReΛ±(µ) for the steady
states observed at η ≈ 0.43, where MI appears on the upper part of the curve (right), and the
steady state from the bottom part is stable (center).

4.2. Reduced DDE model I

In this subsection, we briefly describe the results obtained using the simplest reduced DDE model (2.1)–(2.2),
(2.12). In particular, we show that this model has certain deficiencies that could be improved by using the second
DDE model (2.16)–(2.18), which is studied in the next subsection. Since some of the analysis of this subsection
does not appear to be in full qualitative agreement with that of the distributed DDE model, we leave a detailed
discussion of the results to the next subsection, where similar results are demonstrated to be more trustworthy.

According to the condition (3.8) in order to achieve MI we have to choose the parameter Ω sufficiently close
to zero. For that, we have used Ω = −0.3 that was first tested in the end of the previous subsection for the
distributed DDE model (2.1)–(2.3) as shown on Figure 9, and successfully located a MI of the injection-locked
CW state for σ = 0.061. Using DDE-BIFTOOL [5], we can observe the same S-shaped branch of injection-locked
CW states on Figure 10, where at η ≈ 0.009 the steady state from the bottom part of the curve is stable, the
steady state from the upper part is modulationally unstable, and the curves of the pseudo-continuous spectrum
are very similar to the ones observed in the full model. Nevertheless, one can immediately spot the difference
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Figure 8. Stabilised transient of the TCS solution (left) for the field amplitude |A(t)| (solid)
and gain G(t) (dashed), obtained using numerical solution of (2.1)–(2.3) for T = 400, η = 0.4
and other parameters as in Figure 7. Long-time transient of the field amplitude |A|(t) in a
space-time representation (right), see Figure 6 for details.
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Figure 9. Left: S-shaped curve (left) formed by injection-locked CW states of (2.1)–(2.3) for
σ = 0.05, Ω = −0.3, Γ = 0.05, ϕ = ϕc− 0.2, α = 5.1, g0 = 1.21, κ = 0.31, and other parameters
are as in Figure 5. Other panels: Real parts of two branches of the pseudo-continuous spectrum
ReΛ±(µ) for the steady states observed at η ≈ 0.0058, where MI appears on the upper part
of the curve (right), and the steady state from the bottom part is stable (center). We see that
comparing to Figure 5, where injection strength is similar, the losses induced by Lorentzian
absorption line deform the spectrum around µ = ±0.3 at the point of MI.

in the stability properties of the steady states in this DDE model: the upper part of the CW branch is always
modulationally unstable, whereas there is a Hopf bifurcation on the bottom part, which is not observed in the
full model. Similarly to LLE, the branch of TCS solutions is born in the fold bifurcation point of the bottom
part of the CW branch, and we observe a little bit different bifurcation scenario for the stable TCSs than in
LLE, which we will discuss in the next subsection in more detail. In particular, we can observe on Figure 11
multistable TCSs of different widths for η = 0.009, however we note that the shape of TCS is strongly distorted
in comparison to the shape of TCSs observed in the distributed DDE model, see Figure 6.

4.3. Reduced DDE model II

In this subsection we perform numerical investigation of the reduced DDE model (2.16)–(2.18) that, according
to Section 3.2, should be valid for larger σ and |Ω| than in the case of equations (2.1)–(2.2),(2.12), discussed
in the previous subsection. Another advantage of this model is that we could naturally eliminate linear losses
and phase shift induced by the Lorentzian absorption line and simplify our analysis, because the increase of
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Figure 10. Left: Bifurcation diagram of the reduced DDE model (2.1)–(2.2), (2.12) for σ =
0.061, Γ = 0.0195 obtained using DDE-BIFTOOL [5]. Other parameters are as in Figure 9.
Here, the simple S-shaped curve is formed by injection-locked CW states, whereas the branch
of the TCS solutions starts at the rightmost fold bifurcation point of the S-shaped curve, and
a spiralling behaviour is observed, which leads to the appearance of multiple stable branches
of TCSs of various types, which are depicted on Figure 11. We discuss this behaviour in more
details in the analysis demonstrated on Figure 12 of a more adequate reduced DDE model.
Other panels: Spectra of the steady states for η ≈ 0.009 for the bottom part (center) and the
upper part (left) of the S-shaped curve.

Figure 11. Profiles of various types of TCSs for the field amplitude |A(t)| (left) and gain
G(t) (right) obtained from (2.1)–(2.2), (2.12) using DDE-BIFTOOL for η = 0.009 and other
parameters are as in Figure 10.

parameter σ does not shift the S-shaped curve shown on Figure 1 (right) along the parameter η. We have
studied stability of the injection-locked CW states of this model in the limit of large delay for Ω = −2, σ = 9
very similarly to Section 3.1 and found a MI on the upper part of the S-shaped curve, where the pseudo-
continuous spectrum depicted on Figure 12 looks similarly to the spectrum of the steady state in the full model
(2.1)–(2.3) for large Ω = −13, which is shown on Figure 5 (bottom-right).

Next, we can obtain periodic TCSs as the direct numerical solution of (2.16)–(2.18) exactly as in Section 4.1
by choosing as an initial condition the stable background steady state from the bottom part of the CW branch
perturbed with a narrow Gaussian pulse e−(t+T/2)2/100 for t ∈ [−T, 0]. Alternatively, one can perturb optical
injection η with similar pulse, which is more realistic from the experimental point of view. On the other hand,
optical injection is usually performed using a single-mode CW laser, which does not normally emit short pulses,
hence we also explore a possibility to excite the TCSs by controlling the parameters of the system similarly to
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Figure 12. Left: Real parts of two branches of the pseudo-continuous spectrum ReΛ±(µ) for
the injection-locked CW state exhibiting MI in the reduced DDE model (2.16)–(2.18). Here,
Ω = −2, σ = 9, g0 = 1.33, κ = 0.25, η = 0.006, Γ = 0, ϕ = ϕc − 0.252 and other parameters
are as in Figure 1. Right: Bifurcation diagram obtained using DDE-BIFTOOL [5]. Here, the
simple S-shaped curve is formed by injection-locked CW states, whereas the branch of the TCS
solutions starts at the rightmost fold bifurcation point of the S-shaped curve, and a spiralling
behaviour is observed, where several stable parts of the TCSs branch shown on Figure 13 are
connected via fold bifurcations and unstable parts, and the width of the TCS increases after
each fold bifurcation.

Figure 13. Left: Magnified portion of the bifurcation diagram from Figure 12 for η ∈
[0.006045, 0.00607]. Right: Profiles of various types of TCSs for the field amplitude |A(t)|
observed in the bifurcation diagram for η ≈ 0.006056, where the TCS gets wider while we
continue the trajectory along the spiral.

[15]. In that paper, several branches of mode-locked periodic solutions with different number of pulses on a period
were observed to be multistable with a zero |A0| = 0 (laser off) background state below the lasing threshold in
a two-section passively mode-locked ring semiconductor laser, where each branch appeared and disappeared for
different values of injection current, and by increasing and decreasing injection current in the gain section g0

above and bellow the lasing threshold one can easily switch between the branches and obtain different number
of localised pulses on a period. Since in our system for η = 0.006 we observe a bistability between a bottom
steady state and a non-localised periodic solution that is born from the Hopf bifurcation of the upper steady
state under MI (see Fig. 12), trajectory of (2.16)–(2.18) usually converges to one of these solutions. We propose
the following technique to excite stable TCSs for the injection strength parameter η = ηb inside the region of
the S-shaped bistability. First, we choose a constant initial function A(t) = Ain, G(t) = Gin, P (t) = Pin for
t ∈ [−T, 0] and solve equations (2.16)–(2.18) for t ∈ [0, t1] with sufficiently strong injection η = η1 > ηb, for
which there is only one stable steady state that belongs to the upper part of the CW branch. We choose t1 so
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that |A(t1)| is sufficiently large, then reduce injection strength to η = η1 < ηb, for which there is also only one
stable steady state that belongs to the bottom part of the CW branch, and solve the system for t ∈ [t1, t2]. Here,
t2 is chosen so that |A(t2)| is sufficiently small, and finally we set η = ηb and solve the system for t ∈ [t2, t3],
and at the final moment of time the trajectory is close enough to a desired attractor. This technique turns out
to be quite sensitive to the choice of the parameters, however we could successfully excite single TCS per round
trip by taking ηb = 0.006, η1 = 0.007, η2 = 0.001, t1 = 40000, t2 = 47600 for the parameters used in Figure 12.

Some results of bifurcation analysis of (2.16)–(2.18) obtained using DDE-BIFTOOL are presented in
Figure 12 (right). Unlike the bifurcation diagram of Figure 10 obtained for the reduced DDE model (2.1)–
(2.2), (2.12), here we observe a better qualitative agreement with the diagram of the distributed DDE model
shown in Figure 5 (top-left). In particular, the bottom part of the S-shaped curve formed by injection-locked
CW state is always stable in the considered parameter range, whereas the upper part of the curve exhibits a
MI at η ≈ 0.006. Nevertheless, the the periodic TCS solutions looks similar to that shown in Figure 10. This
branch is born at the saddle-node bifurcation of the bottom part of the branch of the injection-locked CW states
at η ≈ 0.0061, stabilised via another fold bifurcation at η ≈ 0.006, and looses stability via a fold bifurcation
at η ≈ 0.00607. Further evolution of TCSs could be seen in a magnified portion of the bifurcation diagram
on Figure 13 (left). Here, another TCS gains stability at η ≈ 0.00605, which is a wider TCS, displayed on
Figure 13 (right), then it looses stability at η ≈ 0.006056, and we observe a spiralling behaviour with multiple
TCSs of increasing widths at η ≈ 0.006056. Spiralling behaviour is not observed in the LLE model[13], however
it bares similarities to the bifurcation scenario for the spatial cavity soliton branches demonstrated earlier in
the models of broad-area semiconductor devices [4]. We note that the shape of the main TCS pulse, shown on
Figure 13 (right), looks regular and much closer to the shape of the pulses obtained in the full model (2.1)–(2.3)
and demonstrated on Figures 6, 8 than to the pulses observed in the simplified model (2.1)–(2.2), (2.12) that
are discussed in the previous subsection and depicted on Figure 11.

5. Conclusion

In this paper, we have proposed for the first time an efficient methodological approach for numerical bifurca-
tion analysis of periodic TCSs in dispersive time-delay systems that was previously available only for envelope
PDEs. We have studied a model of an optically injected ring cavity laser containing a semiconductor gain
medium and long fiber delay line. The most basic and general prerequisite for the existence of TCSs in this
model is the presence of anomalous dispersion leading to a MI of the upper branch of the hysteresis loop formed
by CW solutions locked to external injection frequency. It was demonstrated recently [19] that the effect of
chromatic dispersion on the laser dynamics can be accurately accounted using a distributed DDE model (2.1)–
(2.3). Here we have revisited the derivation of the this model and developed with the help of Padé approximants
two reduced DDE models, which preserve the causality property of the original model. We have shown that
although both the reduced models can exhibit a MI in the anomalous dispersion regime, only the second reduced
model (2.16)–(2.18) reproduces well the MI threshold of the original distributed DDE model when the dispersion
is sufficiently strong. We have demonstrated numerically that all the three models, the distributed DDE one
and the two reduced models, can support TCSs in a certain parameter range and used the software package
DDE-BIFTOOL to continue TCS branches in the parameter space. In particular, we have spotted a spiralling
behaviour of the TCS branch similar to that reported earlier in spatially-distributed models with transverse
diffraction and dissipative nonlinearity [4, 6, 21]. Moreover, we have discussed possible techniques for excitation
and control of TCSs in realistic experimental setups and the role of hysteresis. We have observed that the slow
increase and decrease of the control parameter value leads to the attraction of the laser output trajectory to
one of the two bistable non-localised periodic patterns, and have demonstrated how to switch the operation of
the laser to the periodic localised TCS regime by a sufficiently fast and precise change of the control param-
eter that takes into account the properties of the hysteresis loop. Finally, the results of our analysis indicate
that the dynamics of the distributed DDE model proposed in [19] can be well captured by the reduced DDE
model (2.16)–(2.18). Therefore, we expect that being much simpler than the distributed DDE laser model these
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equations can become useful tool for studying the effect of chromatic dispersion on the dynamics of different
types of optoelectronic devices, and, in particular, mode-locked semiconductor lasers.
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