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Commentaries on Viewpoint: Managing the power grid: How myoglobin can

regulate Po, and energy distribution in skeletal muscle

EXERCISE, MYOGLOBIN, AND Po,: WHAT LIES BEYOND THE
“GRID”?

TO THE EDITOR: A recent article by Clanton (1) highlights an
insightful Viewpoint regarding the emerging role of myo-
globin (Mb) as an interstitial Po, (Pioz) regulator during
exercise by switching from a nitric oxide (NO) consumer to
an NO producer. We propose a point of contention that the
now well-known role of NO in regulating Pio2 during
exercise may include mechanisms independent of the mito-
chondrial “power grid.” The reduction of nitrite to NO
during periods of low-PiO2 by deoxyMb has been increas-
ingly discussed over the past decade in the context of
inorganic nitrate supplementation. Indeed, dietary supple-
mentation of inorganic nitrate (e.g., beetroot juice) increases
circulating NO bioavailability through serial reduction fa-
cilitated by deoxyMb (4). Here, NO boosts cGMP within
arteriolar vascular smooth muscle increasing local Pioz~
Recent works supporting this notion demonstrated that 8
weeks of inorganic nitrate supplementation improved blood
flow and vasodilation (i.e., O, delivery) during exercise in
patients with peripheral artery disease (3). A second mech-
anism by which inorganic nitrate supplementation increases
Pio2 may include suppressing a-mediated vasoconstriction
during exercise (functional sympatholysis) (2). Previous
works by Nelson and colleagues (5) demonstrated a single
dose of inorganic nitrate can improve functional muscle
oxygenation in patients with ischemia by blunting sympa-
thetic vasoconstriction. Collectively, regulating Pio2 during
exercise may not rest solely on the shoulders of mitochon-
dria, especially in clinical populations. Thus, the role of Mb
in regulating Pio2 via NO during exercise may not be
exclusive to skeletal muscle mitochondria and it could be
time to think beyond the “grid.”
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MANAGING THE POWER GRID: HOW MYOGLOBIN CAN
REGULATE Po; AND ENERGY DISTRIBUTION IN SKELETAL
MUSCLE

TO THE EDITOR: Clanton (1) concluded that the role of myoglo-
bin, in the setting of intracellular distribution of mitochondrial
function in active myofibers, is to optimize the effectiveness of
the mitochondrial reticulum network for generating proton
gradients and ATP by tuning regional mitochondrial activity to
intracellular Po, gradients (Pioz]- Myoglobin’s role in meta-
bolic control must be put in the perspective of the heterogene-
ity of skeletal muscle fibers and tissue before generalizing
conclusions.

During exercise, skeletal muscles are not homogenous with
respect to their contribution to the work performed, recruitment
patterns, fiber type composition, distribution of blood flow, and
Vo, (2). Thus it is inappropriate to extrapolate mean tissue
measurements (e.g., Pioz) to that in a single muscle fiber
beyond developing underlying principles (1).

For example, skeletal muscle fibers display heterogeneity in
glycogen storage, the predominant fuel source during high-
intensity exercise (3). The subsarcolemmal region where Clan-
ton suggests myoglobin directs the highest Pig during high-
intensity exercise to facilitate generation of a proton gradient
within the mitochondrial “power grid” (1, 4) contains a glyco-
gen store (3). The concept that the proton-motive force is
generated by mitochondria in the region with the highest Pioz,
a glycogen store, and where O, and glucose delivery are
privileged is intuitively satisfying. However, exercise-induced
changes in other regions of the network [e.g., depletion of
glycogen within the myofibrils, which alters sarcoplasmic
reticulum Ca®* release and muscle contraction (3)] can alter
metabolism. These observations suggest that both reductionist
and integrative approaches are now needed to unravel the
complex and fascinating role of myoglobin in skeletal muscle
metabolic control.
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COMMENTARY ON VIEWPOINT: MANAGING THE POWER
GRID: HOW MYOGLOBIN CAN REGULATE Po, AND ENERGY
DISTRIBUTION IN SKELETAL MUSCLE

TO THE EDITOR: Oxygen diffusion from the red blood cell (RBC)
to skeletal muscle mitochondria is governed by Fick’s law:
Vo, = Doy X APo,; where Vo, is oxygen flux, Do, is the
diffusion capacity, and APo, is the oxygen partial pressure
gradient between physiological compartments (i.e., microvas-
cular, interstitial, and intracellular). Increased Vo, imposed by
muscle contractions is thus determined by commensurate al-
terations in effective Do, and/or APo,. Our recent phosphores-
cence quenching investigation of both microvascular and in-
terstitial spaces revealed that the transcapillary APo, seen at
rest is largely maintained (rather than increased) during sub-
maximal contractions (2). This indicates that transcapillary
Vo, is contingent on elevations in effective Do, in already-
flowing capillaries as evidenced previously using intravital
microscopy (i.e., T RBC flux, velocity, and hematocrit from
rest to contractions) (4). Further down the O, transport path-
way, reductions in both interstitial (2) and intracellular Po, (5)
during contractions compounded with low attained intracellu-
lar Po, (~2-5 mmHg) (5) minimize the potential of trans-
sarcolemmal APo; to facilitate O, transport into the myocyte.
Enhanced Do, with contractions thus likely drives the bulk of
the Vo, increase across the sarcolemma. Within the myocyte,
it is traditionally considered that O, diffusion is facilitated by
myoglobin desaturation during contractions, which reduces the
so-called “functionally carrier-depleted region,” thus enhanc-
ing intracellular Do, (3). The fascinating model advanced by
Clanton (1) proposes additional mechanisms by which myo-
globin accommodates Vo, increases with contractions. How-
ever, a concern is that this thesis presumes constant Do, during
contraction transients. Consequently, a hybrid model incorpo-
rating the above mechanisms (i.e., including 1 Do, with
contractions) might reflect better our current understanding of
microcirculatory and intracellular O, transport.
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COMMENTARY ON VIEWPOINT: MANAGING THE POWER
GRID: HOW MYOGLOBIN CAN REGULATE Po, AND ENERGY
DISTRIBUTION IN SKELETAL MUSCLE

TO THE EDITOR: Oxygen exchange between myoglobin and the
electron transport chain is a complex and highly regulated
interaction, and as Dr. Clanton highlights (2), this level of the
oxygen cascade has a marked influence on diffusive oxygen
conductance and ultimately exercise capacity. 'H magnetic
resonance spectroscopy (MRS) has indeed provided important
in vivo, insight into deoxymyoglobin dynamics during exercise
(4). Until recently, however, assessment of cytochrome C
oxidase activity has remained largely limited to in situ
preparations and cellular models. With the advent of broad-
band near infrared spectroscopy (bb-NIRS), it is now pos-
sible to study the redox state of cytochrome C oxidase in
vivo (5). NIRS is also known to derive at least part of its
tissue saturation signal from myoglobin, potentially ad-
dressing some of the limitations associated with large-scale
MRS investigations. Finally, diffuse correlation spectros-
copy has emerged as a powerful noninvasive tool for the
direct assessment of microvascular perfusion (1). Taken
together, we contend that by combining bb-NIRS with
diffuse correlation spectroscopy and clinically approved
methods to manipulate nitrate-nitrite bioavailability (3), the
opportunity to translate the intriguing mechanisms de-
scribed by Dr. Clanton has never been so ripe.
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MYOGLOBIN/MITOCHONDRIA COUPLING—IS THERE A
BACKUP? VIEWPOINT ON VIEWPOINT

TO THE EDITOR: Myoglobin (Mb), small monomeric oxygen
binding heme protein, is expressed exclusively in heart and
skeletal muscle. In his recent Viewpoint (1), Clanton proposes
a mechanism of Mb/mitochondria coupling, in which Mb plays
vital role in regulation of mitochondrial respiration, serving as
a hypoxia sensor and protective switch. In hypoxia, Mb tem-
porary disables respiration chain in more hypoxic regions by
halting electron flow on cytochrome c oxidase (CcO) site,
using its nitrite reductase activity to produce nitric oxide (NO)
that temporary inhibits CcO activity. Because only deoxyMb
reduces nitrite, this reaction, followed by CcO-NO binding,
selectively protects mitochondria in more hypoxic regions and
increases access to oxygen for mitochondria in the regions of
highest oxygen availability. Mb structure, its colocalization
with mitochondria, and greater abundance in fast oxidative
fibers are highly conserved among species. Yet, interestingly,
this simple, but sophisticated mitochondria-protecting mecha-
nism is absent from Mb knockout mouse (2) and Antarctic
hemoglobin/myoglobin-lacking icefish (3). Neither of these
exhibits mitochondrial damage at normoxia, and functional and
molecular adaptations in Mb-lacking mouse (4) allow it to
support hypoxia without profound mitochondrial damage (5).
Increased capillary density and shift toward the higher amount
of slow-twitch fiber type, characteristic for Mb knockout
mouse, can perhaps be considered a reversal to simpler, but
still effective, backup mechanism of protecting mitochondria
against stress. It would be interesting to examine possible
hypoxic adaptation, if any, caused by disruption of NO/nitrite/
nitrate cycle in the skeletal muscle.
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IN VITRO MEASUREMENTS OF MUSCLE OXIDATIVE
CAPACITY UNDERESTIMATE IN VIVO VALUES EVEN MORE
WHEN THE MITOCHONDRIAL RETICULUM OPERATES
REGIONALLY

TO THE EDITOR: Across the upper half of skeletal muscle’s expan-
sive dynamic range, the sarcolemma-to-cytochrome oxidase
(CcO) O, diffusion gradient apparently changes little, implying
the diffusion distance is halved as Vo, rises toward maximum.
Tom Clanton (2) integrates recent discoveries related to myoglo-
bin (Mb) catalytic activity and mitochondrial structure (1, 3) to
offer a compelling explanation for this fundamental problem. In
his model, Mb senses O, availability and modulates CcO activity
via nitric oxide (NO). Briefly, rising ATP turnover decreases Po,
in the fiber interior toward the Mb Psq, which switches catalytic
activity toward NO production and inhibits CcO in the intermyo-
fibrillar region of the reticulum. In turn, cable properties recruit
greater electron transport in the subsarcolemmal (SS) region to
defend the protonmotive force, as hypothesized decades ago by
Skulachev and coworkers (1). Clanton’s elegant synthesis is
supported by the recent work of Glancy, Balaban, and coworkers,
which has substantially extended Skulachev’s original findings, in
addition to showing a relative concentration of CcO activity in the
SS region (3). Thus, Clanton’s clever model suggests that a subset
of tissue mitochondria should be able to account for in vivo
maximum oxidative flux. Unfortunately (for in vitro “mitochon-
driacs”), even whole tissue mitochondrial content assayed in vitro
can account for only slightly more than half of in vivo values (5),
despite the observation (4) that isolated mitochondria can generate
thermodynamic forces similar to non-invasive in vivo assess-
ments.
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COMMENTARY ON VIEWPOINT: MANAGING THE POWER
GRID: HOW MYOGLOBIN CAN REGULATE Po, AND ENERGY
DISTRIBUTION IN SKELETAL MUSCLE

To THE EDITOR: The discovery of mitochondrial reticulum
(MR) network in skeletal muscle puts forward the hypoth-
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esis that MR may function to transport oxygen. This model
was supported by Glancy et al. (3) who showed that the
efficient energy distribution is achieved through the conduc-
tion of membrane potential via MR system in myocytes. In
this Viewpoint (2), the concept of MR was further discussed
in the context of intracellular hypoxia such as during the
intense exercise.

We agree that myoglobin may play a critical role in main-
taining a relatively constant intracellular Po, in skeletal muscle
by regulating the nitric oxide (NO) levels. NO produced at low
Po, acts as an inhibitor for cytochrome ¢ oxidase (CcO), thus
preventing the consumption of oxygen (O») (1). The electron
chain is interrupted at low Po, regions while kept active at high
Po, regions of MR. This mechanism ensures a relatively
uniform Po, across the muscle fibers and simultaneously in-
creases the efficiency of O, utilization.

Myoglobin has shown to be able to generate reactive oxygen
species (ROS) in myocytes under low-oxygen conditions (4).
Furthermore, the dysfunction of CcO may also exacerbate the
electron leakage from the respiratory chain and subsequently
the formation of ROS. For instance, Zuo et al. (5) observed
ROS burst in the diaphragm in transition to hypoxia. The
increased ROS formation may likely be attributed to CcO
disruption by NO and comprise myoglobin regulation of both
Po, and energy in myocytes.
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THE IMPORTANCE OF DIFFUSION COEFFICIENT AND
TEMPERATURE IN MUSCLE O:

TO THE EDITOR: According to the Fick’s law of diffusion, the
flux of a molecule is proportional to its concentration
gradient. During exercise, this gradient for muscle oxygen
apparently decreases because intramuscular and interstitial
values become similar. Hence, how it is possible to explain
that, in this condition, the O, flow is doubled. To answer this
paradox, Clanton (1) offers one elegant model focusing on
the role of the myoglobin as sensor and controller of the
mitochondrial reticular network. While this presents a fine
mechanism from a valid biochemical approach, this model
assumes constancy in the diffusion coefficient, which min-
imizes the role of other physical factors and results in an
incomplete picture of this phenomenon. In addition to the
O, gradient, another factor affecting O, diffusion is temper-
ature (2), which changes drastically during exercise (3).
Kenny et al. (4) showed in humans that exercise levels as
low as 15 min at 60% Vo, could generate increases of up to
3°C, which can translate into an increase in diffusion around
11%. It would be expected that at higher duration and values
of Vo,, and according to the depth of the muscle, these
changes could have been even higher. In fact, Bentley et al.
(5) have been able to show even stronger changes in isolated
muscle of hamsters. Of course, Clanton’s model and the role
of temperature are not mutually exclusive considering that,
as recently shown, the temperature is not just changing
diffusion coefficient but also the mitochondrial adaptation.
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