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Perfect numerical semigroups with embedding dimension three

By MARÍA ÁNGELES MORENO-FRÍAS (Puerto Real)

and JOSÉ CARLOS ROSALES (Granada)

Abstract. A numerical semigroup is perfect if it has no isolated gaps. In this

paper, we will characterize the perfect numerical semigroups with embedding dimension

three, and we show how to obtain them all. Also, we obtain formulas for each of the

genus and the pseudo-Frobenius numbers of these semigroups.

1. Introduction

We denote by Z and N the set of integers and the nonnegative integers

numbers, respectively.

A submonoid of (N,+) is a subset M of N which is closed by the sum and

0 ∈M. A numerical semigroup is a submonoid S of (N,+) such that N\S = {x ∈
N | x /∈ S} is finite.

If A is a non-empty subset of N, we denote by 〈A〉 the submonoid of (N,+)

generated by A, that is, 〈A〉={λ1a1 + · · · + λnan | n∈N \ {0}, {a1, . . . , an}⊆A
and {λ1, . . . , λn} ⊆ N}. It is well known (for example, see [10, Lemma 2.1]) that

〈A〉 is a numerical semigroup if and only if gcd(A) = 1.

If M is a submonoid of (N,+) and M = 〈A〉, then we say that A is a system

of generators of M . Moreover, if M 6= 〈B〉 for every B ( A, then we say that A

is a minimal system of generators of M . In [10, Corollary 2.8] it is shown that

every submonoid of (N,+) has a unique minimal system of generators, which
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in addition is finite. We denote by msg(M) the minimal system of generators

of M . The cardinality of msg(M) is called the embedding dimension of M and

will be denoted by e(M). It is clear that N is the unique numerical semigroup

with embedding dimension one.

If S is a numerical semigroup, the elements of N\S are known as the gaps of S.

We will say that a gap h of S is isolated if {h−1, h+1} ⊆ S. A perfect numerical

semigroup is a numerical semigroup without isolated gaps. N is a perfect numerical

semigroup.

The perfect numerical semigroups were introduced in [3]. They are a family of

numerical semigroups, whose name comes from topology, specifically the concept

of a perfect set (set without isolated points). The family of perfect semigroups is

arranged in a tree, and this construction allows us to study certain aspects and

properties of them (see [3]).

The importance of the study of perfect numerical semigroups lies in the fact

that, so far, in the tree of the families of numerical semigroups studied (see [7],

[5] and [6]), children had one more gap than their parents; however, in the family

of perfect numerical semigroups children have now two gaps more than their

parents do.

Let M be a submonoid of (N,+) such that M 6= {0}. The multiplicity of M ,

denoted by m(M), is the smallest positive integer which belongs to M. From

[10, Propositions 2.2 and 2.10], we deduce that e(M) ≤ m(M). We will say that

a numerical semigroup has maximal embedding dimension if e(S) = m(S).

If S is a numerical semigroup, then the greatest integer number that does

not belong to S is called the Frobenius number of S, and it will be denoted by

F(S). Note that F(N) = −1 and F(S) ∈ N \ {0} if S 6= N.
The main aim of the study of perfect numerical semigroups is to advance in

the resolution of important open problems existing in the field of numerical semi-

groups such as finding a formula for the Frobenius number (see [4]) in embedding

dimension greater or equal than 3 and Wilf’s conjecture (see [11]), among others.

In [3], some properties of the perfect numerical semigroups have already been

studied: construction of an algorithmic procedure that allows us to obtain all the

perfect semigroups with a fixed multiplicity, perfect numerical semigroups with

maximal embedding dimension, the perfect closure of a numerical semigroup, etc.

In this work, we will prove that numerical semigroups with embedding di-

mension two are not perfect (see Corollary 4), and we will study perfect numerical

semigroups with embedding dimension three, in order to study the behaviour of

these semigroups and to see if that can be generalized to semigroups with greater

embedding dimension. In Proposition 8, we prove that a numerical semigroup S
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with embedding dimension three is perfect if and only if F(S)− 1 /∈ S. The main

result of Section 3 is Theorem 17, which explicitly presents how all the perfect

semigroups with embedding dimension three are generated.

2. Pseudo-Frobenius numbers

Let S be a numerical semigroup. Following the notation introduced in [8],

we say that an element x ∈ Z \ S is a pseudo-Frobenius number of S if x+ s ∈ S
for all s ∈ S \ {0}. We will denote by PF(S) the set of pseudo-Frobenius numbers

of S, and its cardinality will be called the type of S, denoted by t(S). From the

definition it easily follows that F(S) ∈ PF(S), in fact, it is the maximum of

this set.

Lemma 1. If S is a perfect numerical semigroup, then F(S)− 1 /∈ S.

Proof. If S = N, then F(S) − 1 = −2 /∈ S. If S 6= N, then F(S) ∈ N \ S
and F(S) + 1 ∈ S. As S is perfect, we have that F(S) is not an isolated gap.

Therefore F(S)− 1 /∈ S. �

The following result appears in [8, Proposition 12].

Lemma 2. Let S be a numerical semigroup and x ∈ Z. Then x /∈ S if and

only if there exists f ∈ PF(S) such that f − x ∈ S.

Let S be a numerical semigroup with t(S) = 1. Then PF(S) = {F(S)}.
If S 6= N, then 1 /∈ S, and applying Lemma 2, we have F(S) − 1 ∈ S. Hence,

according to Lemma 1, S is not a perfect numerical semigroup. Therefore, we have

the following result.

Proposition 3. If S is a numerical semigroup such that S 6= N and t(S) = 1,

then S is not a perfect numerical semigroup.

In [10, Example 2.22] it is proven that if S is a numerical semigroup with

e(S) = 2, then t(S) = 1. Thus, applying Proposition 3, we have the following

result.

Corollary 4. If S is a numerical semigroup and e(S) = 2, then S is not

a perfect numerical semigroup.

Lemma 5. Let S be a numerical semigroup such that t(S) = 2. Then

PF(S) = {F(S)− 1,F(S)} if and only if F(S)− 1 /∈ S.
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Proof. If PF(S) = {F(S)− 1,F(S)}, then F(S)− 1 ∈ Z \ S, and therefore,

F(S)− 1 /∈ S.
Conversely, t(S) = 2, implies S 6= N. If F(S)− 1 /∈ S, then F(S)− 1 ∈ Z \ S.

Now S 6= N, implies 1 /∈ S. Consequently, if s ∈ S \{0}, we have F(S)−1+s ∈ S,

because F(S) − 1 + s > F(S). Hence F(S) − 1 ∈ PF(S). As t(S) = 2, we have

PF(S) = {F(S)− 1,F(S)}, since F(S) ∈ PF(S). �

Theorem 6. Let S be a numerical semigroup with t(S) = 2. Then, S is

a perfect numerical semigroup if and only if F(S)− 1 /∈ S.

Proof. If S is a perfect numerical semigroup, then by Lemma 1, we know

that F(S) − 1 /∈ S. Conversely, if F(S) − 1 /∈ S, then by Lemma 5, we have

PF(S) = {F(S) − 1,F(S)}. Now, we suppose that h is a gap in S. That is,

h ∈ N \ S. Then, by Lemma 2, we have F(S) − h ∈ S or F(S) − 1 − h ∈ S.

We will study these two cases. If F(S) − h ∈ S, as F(S) − 1 /∈ S, we deduce

that F(S) − 1 − (F(S) − h) /∈ S, and therefore h − 1 /∈ S. If F(S) − 1 − h ∈ S,

as F(S) /∈ S, we deduce that F(S)− (F(S)− 1− h) /∈ S, and therefore h+ 1 /∈ S.

This way, we have proven that given a gap h in S, then also either h− 1 or h+ 1

is a gap in S. Hence, S is a perfect numerical semigroup. �

The following result is deduced from [2, Theorem 11].

Lemma 7. If S is a numerical semigroup with e(S) = 3, then t(S) ∈ {1, 2}.

Proposition 8. Let S be a numerical semigroup with e(S) = 3. Then S is

a perfect numerical semigroup if and only if F(S)− 1 /∈ S.

Proof. By Lemma 1, we know that if S is a perfect numerical semigroup,

then F(S)− 1 /∈ S. Conversely, if F(S)− 1 /∈ S, then we deduce that F(S)− 1 ∈
PF(S). Applying Lemma 7, we have PF(S)={F(S)−1,F(S)}. Therefore, t(S)=2,

and applying Theorem 6, we have that S is a perfect numerical semigroup. �

We finish this section showing an example which proves that Proposition 8

is not true for e(S) = 4.

Example 9. Let S = {0, 5, 7, 10,→} = 〈5, 7, 11, 13〉 (the symbol → means

that every integer greater than 10 belongs to the set). Then e(S) = 4, F(S) = 9

and F(S) − 1 = 8 /∈ S. The numerical semigroup S is not perfect, since 6 is

an isolated gap of S.
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3. The six parameters

Let S be a numerical semigroup and n ∈ S \ {0}, the Apéry set of n in S

(named so in honour of [1]) is Ap(S, n) = {s ∈ S | s − n /∈ S}. The following

result appears in [10, Lemma 2.4].

Lemma 10. If S is a numerical semigroup and n ∈ S \{0}, then Ap(S, n) =

{0 = w(0), w(1), . . . , w(n − 1)}, where w(i) is the least element of S congruent

with i modulo n for all i ∈ {0, . . . , n− 1}.

Notice that as a consequence of the previous lemma, the cardinality of

Ap(S, n) is n.

If S is a numerical semigroup, then we can define on Z the following order

relation: a ≤S b if b−a ∈ S. The following result is deduced from [2, Proposition

8].

Proposition 11. If S is a numerical semigroup, n ∈ S \{0}, {w1, . . . , wt} =

Maximals≤S
(Ap(S, n)), then PF(S) = {w1 − n, . . . , wt − n}.

The following result has an immediate proof.

Lemma 12. Let S be a numerical semigroup and msg(S) = {n1, n2, . . . , ne},
then Ap(S, n1) ⊆ 〈n2, . . . , ne〉.

Proposition 13. Let S be a numerical semigroup such that F(S) − 1 /∈ S.
If msg(S) = {n1, . . . , ne} and e(S) ≥ 3, then gcd{n2, . . . , ne} = 1.

Proof. It is clear that {F(S),F(S) − 1} ⊆ PF(S). Therefore, we have

{F(S) + n1,F(S) − 1 + n1} ⊆ Ap(S, n1). Then, by Lemma 12, we have

{F(S) + n1,F(S) − 1 + n1} ⊆ 〈n2, . . . , ne〉. As F(S) + n1, F(S) − 1 + n1 are

two consecutive integers, we get gcd{F(S) + n1,F(S) − 1 + n1} = 1, and hence

gcd{n2, . . . , ne} = 1. �

Note that in the previous proposition, the system of generators is not ordered.

Therefore, if S is a perfect numerical semigroup, by Lemma 1, we can assert that

F(S)− 1 /∈ S, and from Proposition 13, we have the following result.

Corollary 14. Let S be a perfect numerical semigroup and msg(S) =

{n1, n2, n3}. Then n1, n2 and n3 are pairwise relatively prime positive integers.

From [9, Theorem 9, Corollary 14], we deduce the following proposition.

It shows how we can build all numerical semigroups with embedding dimension

three such that their minimal generators are pairwise relatively prime. Moreover,

we also see what their pseudo-Frobenius numbers are.
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Proposition 15. If a12, a13, a21, a23, a31 and a32 are positive integers such

that m1 = a12a13 + a12a23 + a13a32, m2 = a13a21 + a21a23 + a23a31 and m3 =

a12a31 + a21a32 + a31a32 are pairwise relatively prime, then 〈m1,m2,m3〉 is a nu-

merical semigroup with embedding dimension three. Conversely, every numerical

semigroup with embedding dimension three and with a minimal system of gener-

ators pairwise relatively prime has this form. Additionally, PF (〈m1,m2,m3〉) =

{f1 = −a12a13 − a12a23 − a12a31 − a13a21 − a13a32 − a21a23 − a21a32 − a23a31−
a31a32 +a12a13a21 +a12a21a23 +a12a13a31 + 2a12a23a31 +a13a21a32 +a21a23a32+

a13a31a32 + a23a31a32, f2 = f1 + a13a21a32 − a12a23a31} .

Remark 16. Note that if m1,m2 and m3 are the positive integers from Propo-

sition 15, then F (〈m1,m2,m3〉) = max{f1, f2} and PF (〈m1,m2,m3〉) = {F(〈m1,

m2,m3〉),F(〈m1,m2,m3〉)− |a13a21a32 − a12a23a31|}, where |z| denotes the ab-

solute value of z.

Theorem 17. If a12, a13, a21, a23, a31 and a32 are positive integers such that

m1 = a12a13 +a12a23 +a13a32, m2 = a13a21 +a21a23 +a23a31 and m3 = a12a31 +

a21a32 + a31a32 are pairwise relatively prime, and |a23a12a31 − a32a13a21| = 1,

then 〈m1,m2,m3〉 is a perfect numerical semigroup with embedding dimension

three. Moreover, every perfect numerical semigroup with embedding dimension

three has this form.

Proof. From Proposition 15 and Remark 16, we easily deduce that S =

〈m1,m2, m3〉 is a numerical semigroup with embedding dimension three and

PF(S) = {F(S),F(S) − 1}. Then, F(S) − 1 /∈ S, and applying Proposition 8,

we have that S is a perfect numerical semigroup.

Let T be a perfect numerical semigroup with embedding dimension three.

From Corollary 14, we know that if msg(T ) = {n1, n2, n3}, then n1, n2 and n3
are pairwise relatively prime positive integers. Applying now Proposition 15,

we deduce that there exist positive integers a12, a13, a21, a23, a31 and a32 such that

n1 = a12a13 + a12a23 + a13a32, n2 = a13a21 + a21a23 + a23a31 and n3 = a12a31 +

a21a32 + a31a32. As T is perfect, by Lemma 1 we know that F(T )− 1 /∈ T . Using

now the Lemmas 5 and 7, we obtain PF(T ) = {F(T ),F(T )− 1}. By Remark 16,

we can assert |a23a12a31 − a32a13a21| = 1. �

If S is a numerical semigroup, then the cardinality of N \ S is called the

genus of S, and we denote it by g(S). The following result is deduced from [9,

Corollary 18].

Proposition 18. If a12, a13, a21, a23, a31 and a32 are positive integers such

that m1 = a12a13 + a12a23 + a13a32, m2 = a13a21 + a21a23 + a23a31 and m3 =
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a12a31 + a21a32 + a31a32 are pairwise relatively prime, then g (〈m1,m2,m3〉) =
1
2 (1− a12a13 − a12a23 − a12a31 − a13a21 − a13a32 − a21a23 − a21a32 − a23a31−
a31a32+a12a13a21+a12a21a23+a12a13a31+2a12a23a31+2a13a21a32+a13a31a32+

a21a23a32 + a23a31a32) .

We finish this work illustrating the previous results with an example.

Example 19. Let a12 = 2, a13 = 5, a21 = 1, a23 = 7, a31 = 3 and a32 = 4.

Then, m1 = 1 · 5 + 1 · 7 + 5 · 4 = 32, m2 = 5 · 1 + 1 · 7 + 7 · 3 = 33 and m3 =

1 ·3+1 ·4+3 ·4 = 19 are pairwise relatively prime, and |a23a12a31 − a32a13a21| =
|7 · 1 · 3− 4 · 5 · 1| = |21− 20| = 1. Applying Theorem 17, we can assert that

S = 〈19, 32, 33〉 is a perfect numerical semigroup with embedding dimension three.

By Proposition 15, we know that PF(S) = {177, 176}. So, F(S) = 177. Now,

applying Proposition 18, we have g(S) = 99.
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MARÍA ÁNGELES MORENO-FRÍAS
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