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Abstract: The COVID-19 pandemic has highlighted the need for finding mathematical models to
forecast the evolution of the contagious disease and evaluate the success of particular policies in
reducing infections. In this work, we perform Bayesian inference for a non-homogeneous Poisson
process with an intensity function based on the Gompertz curve. We discuss the prior distribution
of the parameter and we generate samples from the posterior distribution by using Markov Chain
Monte Carlo (MCMC) methods. Finally, we illustrate our method analyzing real data associated with
COVID-19 in a specific region located at the south of Spain.

Keywords: Bayesian inference; modeling epidemics; non-homogeneous poisson process; Gompertz
curve; inverse Gaussian

1. Introduction

In December 2019, the number of pneumonia cases inexplicably increased in China.
Later, scientists discovered that they were caused by a novel kind of coronavirus, called
SARS-CoV-2, which appeared for the first time in Wuhan, China, see [1,2]. From that date,
the disease began spreading in a huge number of countries and regions outside China
where have confirmed new cases and deaths almost every day. The COVID-19, the disease
related to this new coronavirus, has had a huge impact in human health and social life all
over the world, even more than some other infectious diseases occurred in recent years.
At the time the paper was submitted, it had already affected 68.31 millions of people with
1.56 millions of deaths (taken from Our World in Data, https://ourworldindata.org/).
In fact, COVID-19 has become an important risk factor of mortality currently around
the world.

Due to the impact on health, society and economy there is a need to find mathematical
models that lead us to understand the evolution of that disease and evaluate if a particular
policy has been successful in achieving the intended outcomes, e.g., to reduce the infections.
It is well-known that the infectious disease transmission is a complex diffusion process due
to social relationships. Different models have been widely developed in the literature to
study the transmission process of infectious diseases theoretically, that allows us accurately
predict the future development trend of infectious diseases, see among others [3–10]. While
the traditional epidemiological models describe the dynamic behavior of the diseases
through differential equations allowing the laws of transmission within the population,
the statistic models (also so-called phenomenological models) which follow certain laws of
epidemiology [9,11], are widely used in real-time forecasting for infection trajectory or size
of epidemics in early stages of pandemic [12,13].

The main objective of this paper is to develop a model for the cumulative number
of COVID-19 cases from a Bayesian perspective. Once the model is fitted, we will be
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able to make predictions to evaluate the trend of new infected cases. Bayesian methods
provide an excellent theoretical framework for analyzing experimental data and the main
key of its success lies on its ability to incorporate prior knowledge about the quantity of
interest as a distribution function. In this case, there exists a lot of information about the
new coronavirus during the pandemic which is worth to take into account as well as the
behaviour of other types of coronavirus.

The goal of the Bayesian approach is to learn about the parameters which describe
our phenomenon of interest by taking into account different sources of information. Often,
the decision makers have access to external information such as expert views and past
studies or data from other locations. This previous knowledge is incorporated into the
Bayesian analysis as the prior distribution. It is well known that the prior distribution leads
in general to a better estimation of the quantity under study, when it is used together with
experimental data. Thorough reviews of the Bayesian approach can be found in [14–16].

Let [X|Θ = θ] = Xθ be the underlying observation having a probability density
function (PDF), pθ(x), where θ means the unknown parameter belonging to the parameter
space Θ ⊆ Rn, n ∈ N, n ≥ 1. As explained above, under the Bayesian approach, prior
beliefs about parameters are combined with sample information based on the experience
from a sample x = (x1, . . . , xn) of the variable Xθ by using the Bayes theorem.

Let π be the prior belief on Θ which incorporates our beliefs about the parameter θ
before any data observation. It is also common to denote by π(θ) the PDF of a particular
prior distribution π. In literature, it is possible to find that prior distributions can be
obtained using many methods. It is remarkable that, in general, it is not easy to find
the best way to express the prior information as a prior distribution function. However,
insightful choice of prior may be crucial for obtaining a proper estimate of the posterior.

At this point and based on a sample of the underlying distribution, x = {x1, . . . , xn},
jointly with the prior density, π(θ), and Bayes’ theorem we obtain the posterior distribution,
denoted by πx, as a random variable having the following PDF

πx(θ) = π(θ|x) = l(θ|x)π(θ)

mπ(x)
, (1)

where l(θ|x) denotes the likelihood function of the sample and mπ(x) denotes the marginal
density given by

mπ(x) =
∫

Θ
l(θ|x)π(θ)dθ.

Just as the prior distribution π reflects the knowledge about θ before any experimen-
tation, so πx reflects the update belief about θ after having a sample x. That means that the
posterior distribution mixes the prior belief with the information contained in the sample
about θ. For further information see [14]. Finally, the posterior distribution can be used to
solve all standard statistical problems, like point and interval estimation, hypothesis testing
and predictions. Recently, we find a rapid increase in the number of publications related to
model COVID-19 using Bayesian techniques in literature, see for example [17–21].

2. The Model

Our interest is focused on finding a probabilistic model to describe the evolution of
the SARS-CoV-2 in a specific region and forecast the number of new cases in near future
time intervals from a Bayesian perspective. Based on the interpretation of the model as
a complex system, we assume the total number of infections experienced up to time t is
a non-homogeneous Poisson process (NHPP) denoted by {N(t), t ≥ 0}. One of the main
issue in the NHPP model is to determine an appropriate intensity function, λ(·), which
leads us to an increasing and invertible mean value function representing the expected
number of infections experienced up to t, i.e.,

Λ(t) = E[N(t)] =
∫ t

0
λ(x)dx.
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Further details on the statistical analysis and NHPPs can be found in [22,23] and a
comprehensive catalogue of intensity functions is given in [24].

For the purpose of this work, we will consider the classical Gompertz curve to explain
the cumulative number of new cases. Our choice is based on the intuitive biological
interpretation of its parameters and the fact that this curve is widely used in growth
analysis in Biology. Additionally, the Gompertz curve is of particular interest to describe a
growth curve for population studies in situations where growth is not symmetrical about
the point of infection, see [25–28], for further information about the Gompertz model.
Moreover, the Gompertz curve have been widely used in epidemiology and virology to
explain the behaviour of many biological processes, see for example [29–32]. Concerning to
the COVID-19 we refer the readers to [33–38]. Finally, we also recommend readers see [39]
where authors propose a generalized Gompertz growth model. Remarking its limitations
we will find that the Gompertz model does not address the core issues of epidemiological
models, namely, the well-mixing hypothesis and lack of spatial influences.

Among the different reparameterisations we find in literature we will consider the
following expression of the Gompertz curve given by

g(t|θ) = a exp(−b exp(−ct)), θ = (a, b, c) ∈ R+ ×R+ ×R+, (2)

where t represents the time since the first case of infection and a, b and c are parameters
having a biological interpretation. A detailed interpretation of those parameters can
be found in [33]. To sum up, a represents the upper asymptote of infections and also
determines the area under the curve ∂g(t|θ)/∂t, b sets the displacement along the time and
it is related with the initial cases at time zero, g(0|θ), and also determines the location of
the maximum on the time axis, tmax = ln(b)/c, as we will discuss later on. Finally, c is a
coefficient that determines the exponential decay rate of the relative growth rate of g(t), i.e.,

1
g(t|θ)

∂g(t|θ)
∂t

= cb exp(−ct).

It is also worth mentioning that 1/c measures the width (duration) of the curve,
see [33] for further information.

It is clear that the Gompertz curve considers some initial counts at time zero and also
we should take in account that N(0) is assumed to be zero in a NHPP process. Therefore,
in order to avoid the problem of detecting the initial moment, in other words the disease
initial outbreak, we will consider

Λ(t|θ) = g(t|θ)− g(0|θ), θ = (a, b, c) ∈ R+ ×R+ ×R+. (3)

A straightforward computation shows that the intensity function is given by

λ(t|θ) = ∂Λ(t|θ)
∂t

=
∂g(t|θ)

∂t
= a b c exp(−b exp(−ct)− ct), θ = (a, b, c) ∈ R+ ×R+ ×R+. (4)

2.1. The Likelihood Function

Let N(t) be a Poisson process with intensity function λ(t|θ) given in (4). Suppose that
the vector of observed times x = (t1, . . . , tn) recorded in the interval (0, T], where T is a
known value, satisfies t1 < . . . < tn, then, from Theorem 5.4 in [23], the likelihood function
is given by

l(θ|x) = exp(−Λ(T|θ))
n

∏
i=1

λ(ti),

= exp(a exp(−b exp(−c T))− a exp(−b))
n

∏
i=1

a b c exp(−b exp(−c ti)− c ti),

= anbncn exp(a exp(−b exp(−c T))) exp(−b
n

∑
i=1

exp(−c ti)− c
n

∑
i=1

ti). (5)
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2.2. The Prior Distribution

As has been mentioned, the prior distribution represents prior beliefs and tries to
reflect the analyst’s pre-data knowledge about the parameter. Among the various ways of
choosing a prior, see Chapter 3 in [14], we will consider the objective and informative one.
Our choice is based on the fact that official media provide a vast amount of information
around the world. It is reasonable that all this huge amount of information can help us to
formulate a proper prior.

In our case, the specific prior belief π(θ), θ = (a, b, c) ∈ R+ ×R+ ×R+ is a multi-
variate random vector having a particular dependence structure. We first try to identify
the marginal distribution associated with the parameter a. We recall that it represents an
expected asymptote of the cumulative number of infections. For our purpose, we collect
data about new confirmed cases per day per 100,000 people in different countries in the
world and, more specifically, in the different regional governments in Spain, Autonomous
Communities (AC). At first glance, data are far from being normal distributed, but right
skewed and having a heavy right tail. This is not surprising if we take in account the effect
of many uncontrollable sociopolitical covariates in each region or country. At this moment
we decided just consider the Spanish AC and we fit different heavy-tailed distributions to
the observations by using parametric methods, see Figure 1. Among all distributions were
tested, the Birnbaum-Saunders, gamma, log-normal and inverse Gaussian distributions
seem fit the data, (p-value > 0.80). Finally, we decided to use the inverse Gaussian for
different reasons. First, it’s suitable for modeling phenomena where there is a greater
likelihood of getting extremely large values compared to other distributions, which agrees
with the high contagious nature of the new disease. Second, it better reflects a sharp peak in
the histogram. Finally, it has the advantage it is easier to estimate probabilities. Then, just
denoting by r the expected new confirmed cases per day per 100,000 people, it is assumed
that r follows an inverse Gaussian, denoted by r ∼ IG(µ, β), having a mean parameter
µ > 0 and a shape parameter β > 0.

0.000

0.001

0.002

0 500 1000 1500
Cases per day per 100000 people

D
en

si
ty

Birbaum−Saunders
Gamma
Inverse Gaussian
Lognormal

Figure 1. Goodness of fit new confirmed cases per day per 100,000 people, April 2020.

Remark 1. For the Spanish ACs, the choice of the inverse Gaussian seems reasonable as we have
argued before. However, a more detailed study should be necessary to propose a prior distribution
having a valid global interpretation. Anyway, due to the particular nature of r, we think a right-
skewed density should be always a nice choice. This could be a subject for future research.

From the previous arguments, considering a population of P inhabitants in a specific
region and taking into account that inverse Gaussian distributions are a scale family, the
specific marginal prior belief for the parameter a is also an inverse Gaussian, IG(αµ, αβ),
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where α = P/100,000 informs us about the size of the population. Therefore, the baseline
prior density is given by

π(a) =

√
αβ

2πa3 exp
(
− β(a− αµ)2

2αµ2a

)
. (6)

At this point we will analyze the parameter b. From Expression (2), it is well-known
that the parameter b depends on both the initial cases and the asymptote a and can be
expressed as

b = ln
(

a
M0

)
,

where M0 represents the unknown initial cases at time zero in a specific region. It is
not unrealistic suppose those initial cases are independent of the parameters and can
be assumed to follow a discrete uniform distribution with range {1, . . . , M}, denoted by
U{1, M}, where M represents a bound for the infections when considering t = 0. From the
previous arguments, the conditional prior distribution of b given a also follows a discrete
uniform distribution with range {ln(a/M), ln(a/(M− 1)), . . . , ln(a)}, that is,

π(b|a) ∼ ln
(

a
U{1, M}

)
. (7)

Remark 2. Here in Expression (7) we have induced some variability in the number of cases at time
zero. This could be especially useful when the reported cases could be lower than the real cases.
The role of M can be even interesting to detect infected group arrivals. This argument leads us
to assume that the conditional distribution π(b|a) is discrete, although the distribution for b is
continuous. This can be easily observed just computing π(b). It is also clear by construction that
we introduce a dependence structure between parameters a and b. On the other hand, we realize
the difficulty to establish the "time zero". For such a purpose, it can be defined as the date when
the number of cases divided by the population first exceeds a certain threshold which should be
sufficiently high to reflect a spread of the epidemic, as it is described in [33]. In fact, in the real
example in Section 3 we have considered a similar argument just looking for the closest day to the
epidemic growth in Andalusia.

Finally, for constructing the prior distribution of the parameter c we will assume to
be independent of the other parameters. This fact can be empirically seen in [34,35,37]
where authors describe different estimates of c in several countries. Moreover, Figure 7
described in [33] based on data from 73 countries shows a spread over more than one order
of magnitude. Therefore, we will assume that c follows a continuous uniform distribution
on the interval [c1, c2] independent of the marginal distributions of a and b, that is,

π(c|a, b) ∼ U(c1, c2), (8)

where c1 and c2 represent the lower and upper bounds of the parameter, respectively.
The model depends on several hyper-parameters, namely µ, β, M, c1 and c2. The

parameter α can not be considered an hyper-parameter due to its value is known in practice.
We will consider some specific values for the hyper-parameters later on. We recall that the
hyper-parameters µ and β are related to the inverse Gaussian and that distribution has
been selected according to the Spanish ACs.

2.3. The Posterior Distribution

Due to the complexity of the calculation of the normalization constant mπ(x) in
Equation (1), we will use a Markov Chain Monte Carlo algorithm (MCMC) to obtain
independent samples in order to characterize the posterior distribution πx(θ). Specifi-
cally, we will use the no-U-turn sampler (NUTS) as MCMC algorithm due to its good
performance in this kind of problems.
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The NUTS algorithm is an adaptive extension of the Hamiltonian Monte Carlo (HMC)
which requires no hand-tuning to obtain samples from (unnormalized) distribution. One of
the main drawbacks of the HMC algorithm is the hand-tuning of two parameters namely
step size, ε, and desired number of steps, L. Incorrect values of these parameters leads
a poor HMC’s performance. NUTS overcomes this problem eliminating the need to set
a number of steps L by adding a stop criterion on the Hamiltonian simulation. To sum
up, the main idea behind NUTS is the use of a recursive algorithm to build a set of likely
candidate points that spans a wide swath of the target distribution, stopping automatically
when it starts to double back and retrace its steps. For further details, see Algorithms 2 and
3 in [40].

Furthermore, we will use Stan’s programming language and rstan package [41–43]
which have an implementation of the NUTS algorithm and several tools to check the
goodness of the inference. One standard method to check the convergence of the MCMC
algorithm is the Gelman-Rubin statistic, which using multiple sampling chains, measures
the degree to which variance (of the means) between chains exceeds what one would
expect if the chains were identically distributed. Values of this statistic close to 1 indicates
approximate convergence to the posterior distribution.

2.4. The Characteristics of Interest and How to Estimate Them

First we recall that a NHPP describing the cumulative number of confirmed cases up
to time t, N(t), follows a Poisson distribution with mean parameter given by Λ(t|θ), i.e.,
N(t) ∼ Pois(Λ(t|θ)). We also recall that the NHPP assumes that the cumulative number
of confirmed cases during a time interval of the form (t, t + h) depends on the current time
t and the length of time interval h, and does not depend on the past history of the process.
Based on the previous properties, we study the evolution of the disease by the following
characteristics of potential interest.

Fixing a known value T, we are first interested in predicting the expected number
of new cases of COVID-19 in future time intervals of the form (T + h1, T + h2), h1 < h2,
denoted by ET+h2

T+h1
(θ). From both, Expression (3) and the mentioned properties of a NHPP,

we obtain that

ET+h2
T+h1

(θ) = E[N(T + h2)− N(T + h1)] = Λ(T + h2|θ)−Λ(T + h1|θ),
= a (exp(−b exp(−c (T + h2)))− exp(−b exp(−c (T + h1)))). (9)

To evaluate the estimates we are also interested in computing different quantiles. The
quantile at level p ∈ (0, 1) of the cumulative number of confirmed cases during the time
interval (T + h1, T + h2) is given by

QT+h2
T+h1

(p, θ) = inf{n, Pr{N(T + h2)− N(T + h1) ≤ n} ≥ p}. (10)

It is clear that QT+h1
T+h1

(p, θ) represents the maximum cumulative number of confirmed
cases with 100p% confidence within the interval (T + h1, T + h2) and corresponds to the
quantile function of a Poisson distribution. For example, if we consider p = 0.95, that
means that there is a 0.05 probability that the number of contagious will fall in value by
more than QT+h2

T+h1
(0.95, θ). This value can be useful to evaluate the impact of a particular

policy to reduce infections as we will see later on.
In order to control the epidemiological process we are also interested in estimating the

point of the expected maximum rate of increase, denoted by Tmax(θ). This point is easily
computed by solving ∂2Λ(t|θ)/∂t2 = 0. The argument, Tmax(θ), is given by

Tmax(θ) =
log(b)

c
. (11)
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We would like to emphasize that it does not depend on the parameter a. In the
Gompertz curve, Tmax(θ) represents the inflection value after a period of rapid growth.
Finally, we will also estimate the Gompertz curve given by Expression (2).

Expressions (9)–(11) provide us three functionals of interest that depend on the pa-
rameter θ. After computing the posterior distribution of the parameter, πx, we obtain three
univariate random variables by mapping πx through those functionals, namely ET+h2

T+h1
(πx),

QT+h2
T+h1

(p, πx) and Tmax(πx). Moreover, by mapping πx in Expression (2) we will obtain a
random Gompertz curve given by g(t | πx).

From the mentioned fact that the posterior distribution has not a closed-form ex-
pression, the empirical probability distributions of ET+h2

T+h1
(πx), QT+h2

T+h1
(p, πx) and Tmax(πx)

and the random curve g(t | πx) can be obtained from the empirical distribution of the
posterior distribution using the chains obtained by NUTS algorithm. As usual, in order
to make predictions, we will compute the posterior mean and the 95% Bayesian credible
quantile-based interval (CI) in each of the three empirical distributions.

3. A Real Example about COVID-19 Survey in Andalusia

In this section we will illustrate our method analyzing real data associated to the
COVID-19 in a specific region located at the south of Spain, the province of Cádiz. We
collect data from the Spanish National Network for Epidemiological Surveillance (RENAVE,
by its Spanish initials). At this moment, we would like to emphasize the difficulty of
choosing the time zero as we mentioned in Remark 2. Here we consider the time zero on
25 February where the first case of the COVID-19 pandemic was confirmed in Andalusia
which also coincides with the closest day to the epidemic growth. Data reflect the total
number of confirmed cases with SARS-CoV-2, namely all those who have a positive test
on Polymerase Chain Reaction (PCR) plus those positive in a rapid antibody test made in
laboratory. We discard individuals having positive test using other methods, like antigen
detection or Enzyme-Linked ImmunoSorbent Assay (ELISA).

Remark 3. It is important to decide how to be date a positive test. Following the instructions from
RENAVE, if the person has symptoms, we will date the new case the day that symptoms start. If the
person is asymptomatic, we will date it seven days before a positive test is recorded.

Figure 2 shows the evolution of the daily new cases of COVID-19 in the province
of Cádiz (black line) from 25th February to 4th October 2020. Blue color band shows the
first State of Alarm in Spain declared to control infections. Note that most of the different
provinces in Andalusia have a similar profile.

Remark 4. It is worth noticing the differences we observe between the profiles of the first and
second waves. Those differences cannot simply be attributed to a higher reproduction rate, but also
to the increase of the number of people tested during the second wave, among other reasons. The
number of cases estimated during the first wave was highly inaccurate. For example, recent estimates
in France place over 9 in 10 undetected cases for the first wave, see [44]. According to Spanish
data, in the first wave tests were made especially on hospitalized people and people with serious
symptoms, introducing a high correlation between the seriousness and the number of confirmed
cases. In the second wave more tests were available, for example allowing testing of asymptomatic
individuals and screening in certain populations. On top of that, the vast majority of tests only
capture infections in the respiratory system while antibody studies have issues involving bias in
the collection procedures or natural reduction of antibody production. However, the technology of
testing have improved substantially over time, even along the first wave. Additionally, European
Centre for Disease Prevention and Control (ECDC) shows curves for different age groups which
demonstrate that, while the first wave were dominated by the elderly, the early stage of the second
wave was entirely dominated by the young adults, and hence there were almost no deaths. Therefore,
it is apparent the dynamics of the spread of the infection was very different in the two first waves.
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Figure 2. Time series of the daily new reported cases of COVID-19 in the province of Cádiz. Blue
color shows the period of the State of Alarm in Spain from 14 March to 21 June 2020.

At this moment, we evaluate the hyper-parameters of the different marginal prior
distributions given in (6)–(8). The population of the province of Cádiz is estimated at
p = 1,240,155 inhabitants, so the value of α is 12.40155. Just considering the confirmed
cases per 100,000 people shown in Figure 1 for the Spanish ACs at the beginning of the
pandemic and changing the scale by α we obtain the Maximum Likelihood Estimate (MLE)
for the mean and the scale parameters in (6), i.e., µ = 399.95 and β = 525.21, respectively.
The value M = 10 was determined because it was not found any case where the number of
infections at the beginning were bigger. We would like to emphasize that in this first wave
M had little informative value to obtain the posterior distribution of b as we have checked
by taking different values for M and just observing the posterior expected quantity for
M0 = 1.14 and its posterior standard deviation equal to 0.15 shown in Table 1. In other
words, the result of the estimation is essentially independent of the choice of M in this case.
Finally, to bound the values of c1 = 0.01 and c2 = 0.2, we take into account the highest
and the lowest values found in Spain and other countries, as it is seen in [34,35,37]. Those
values are also reasonable with the observed range in Figure 1 described in [33].

3.1. Forecasts for the Characteristics of Interest at Different Scenarios

In order to evaluate our model, we will estimate the functionals given in (9)–(11) at
different stages of the pandemic. As a natural question, we first are interested in evaluating
the benefits of the first lockdown imposed by the Spain’s central government. Second,
we will locate our estimates during the lockdown and close to the end of the State of Alarm
to verify not only that predictions are quite accurate, but also how daily new cases decrease.
Finally, just observing the evolution of our estimates after the easing of Spain’s lockdown
restrictions, we will be able to detect the beginning of the second and third waves by the
increase of the daily number of new reported contagious.

3.1.1. First Scenario: The Benefits of the Lockdown

The lockdown in Spain was imposed on 14 March 2020. Therefore, in order to evaluate
the benefits of that decision in the province of Cádiz, we will first consider T, the ending
day, as 15 March 2020. The idea is to make daily predictions of the following week, from
16 March 2020 to 22 March 2020. Moreover, it is worth mentioning that week was close
to the date of the maximum number of daily new reported cases of COVID-19 in the first
wave. We are aware that the classical Gompertz curve is a poor model in the early stages of
an epidemic. However one of the advantages of the Bayesian approach is the incorporation
of prior information which leads to a better inference for small samples.

Figure 3a shows the observed time series of the daily cumulative cases up to T—to
feed the Bayesian model—and a week after T (brown). Likewise, it shows a set of 500
Gompertz curves obtained by an i.i.d. random sample of size 500 from the posterior
distribution πx (grey). It is remarkable the band of the Gompertz curves leads us to predict



Mathematics 2021, 9, 228 9 of 16

the trend of daily cumulative positive cases of SARS-CoV-2 by incorporating variability.
Figure 3b shows the observed time series of the daily cases up to T (black) and a week
after T (brown). It also shows the expectation (blue) and the 95% CI (blue dash line) of
ET+d+1

T+d (πx) as forecasts of the expected number of new daily cases of COVID-19 where
d ∈ {0, . . . , 6}.

At first glance, a change in trend can be observed between the predictions of the
expected values (which continues an upward trend) and the observed data after T, which
begins a downward trend. For that reason, it seems that the lockdown imposed by the
authorities was beneficial to control the initial evolution of the pandemic by reducing the
daily number of expected new cases.
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Figure 3. (a) Time series of observed daily cumulative cases up to T (black) and a week after T (brown). A band of Gompertz
curves given by an i.i.d. random sample of size 500 of g(t | πx) (grey). (b) Time series of observed daily cases up to T (black)
and a week after T (brown). The expectation (blue) and the 95% CI (blue dash line) of ET+d+1

T+d (πx), d ∈ {0, . . . , 6}.

Regarding to the parameters of interest, it is remarkable that in case of no restrictions—
no government interventions- after T, we estimate that the 95% CI for the parameter
a—maximum number of infected—would lie on the interval (10,865.82, 56,400.37) hav-
ing a posterior mean of 27,766.41 inhabitants, see Table 1. As the population size in
Cádiz is 1,240,155 inhabitants, no restrictions could mean that approximately the 2% of
population would be infected by the disease. Of course, this number could have meant
the collapse of the health system and would have caused a much higher number of
deaths. Additionally, the posterior mean of the time to reach the peak would have been
Eπx [Tmax(θ)] = 53.13 days, letting the effect of the pandemic considerably would have
dragged on. Fortunately it was not the case.

Table 1. Bayesian estimates of the the main parameters in the hypothetical scenario of no restrictions
in the first wave in the province of Cádiz (1,240,155 inhabitants).

Param. Post. Mean sd 2.5% CI 50% CI 97.5% CI ne f f R̂

a 27,766.41 11,916.20 10,865.82 25,456.36 56,400.37 3221.76 1
b 10.02 0.44 9.15 10.03 10.83 3138.09 1
c 0.04 0.00 0.04 0.04 0.05 2919.79 1

M0 1.14 0.15 1.00 1.09 1.53 4115.42 1
Tmax 53.13 4.48 44.29 53.10 61.86 2953.03 1

Results of this model can be checked in a ShinyStan App at https://micromegas.
shinyapps.io/COVID-19-Scenario1-CA-province/.

3.1.2. Second Scenario: The Evolution of the Pandemic during the Lockdown

Now we will evaluate the goodness of fit of our model by making predictions during
the lockdown period. For such a purpose, we will consider T, the ending day, as 3 May

https://micromegas.shinyapps.io/COVID-19-Scenario1-CA-province/
https://micromegas.shinyapps.io/COVID-19-Scenario1-CA-province/
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2020. As in the first scenario, the idea is to make daily predictions for the following week,
from 4 May 2020 to 10 May 2020. It is worth mentioning that the decrease of the number of
new daily cases during the lockdown was the reason why Spanish authorities justified the
end of the lockdown on 21 June 2020.

Analogously to Figures 3 and 4a shows the time series of observed daily cumulative
cases up to T (black) and a week after T (brown). Moreover, shows a band of Gompertz
curves obtained from an i.i.d. random sample of the posterior distribution πx (grey).

Moreover, analogously to Figures 3 and 4b shows the observed time series of daily
new cases (black) up to T and a week after T (brown). It also shows the forecasts of the
expected number of new daily cases as the posterior mean of ET+d+1

T+d (πx) (blue) and its
95% CI (blue dash line). In addition, we also compute the 95% CI of QT+d+1

T+d (0.975, πx)

(red band) and QT+d+1
T+d (0.025, πx) (green band), where a ∈ {0, . . . , 6}. Those quantiles lead

us to measure where the middle 95% of the daily new cases lies.
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Figure 4. (a) Time series of observed daily cumulative cases up to T (black) and a week after T (brown). A band of Gompertz
curves given by an i.i.d. random sample of size 500 of g(t | πx) (grey). (b) Time series of observed daily cases up to T (black)
and a week after T (brown). The expectation (blue) and the 95% CI (blue dash line) of ET+d+1

T+d (πx), d ∈ {0, . . . , 6}. The 95%
CI of QT+d+1

T+d (0.975, πx) (red band) and QT+d+1
T+d (0.025, πx) (green band), where d ∈ {0, . . . , 6}.

At first glance, the trend of both daily and cumulative expected values are quite similar
to the observed data which implies that our model fits reasonably well the observations.
Table 2 shows a summary of the Bayesian estimates of the main parameters. As a first
conclusion, it seems the lockdown had a direct effect on the estimates compared to the
values given in Table 1. Now the posterior mean of the maximum cumulative number of
confirmed cases in the province of Cádiz, parameter a, is about 1543.87 people, close to the
official cumulative number of confirmed cases at the end of the State of Alarm and having
a 95% CI of (1465.62, 1622.46). Therefore, we estimate that about 0.12% of the population
of the province of Cádiz was detected as a confirmed case of COVID-19 in the first wave
and until the end of the lockdown. Taking into account that less than one out of ten cases
was detected in the first wave, as it is described in [44], our result seems consistent with
seroprevalence studies made in Spain, where it was determined that 1.7% of inhabitant in
the province of Cádiz presented IgG antibody against SARS-CoV2. Additionally, we also
estimate that Eπx(Tmax(θ)) = 24.73 days having a 95% CI (24.02, 25.43). All those estimates
are close to the official data provided by RENAVE which predicts the peak in 20 days from
25 February 2020. To sum up, we would like to emphasize that a direct computation shows
that the effect of the lockdown reduced the number of infected cases by about 94.5%.
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Table 2. Bayesian estimates of the the main parameters during the lockdown in the first wave in the
province of Cádiz (1,240,155 inhabitants).

Param. Post. Mean sd 2.5% CI 50% CI 97.5% CI ne f f R̂

a 1543.87 40.13 1465.62 1543.42 1622.46 6867.77 1
b 7.25 0.09 7.03 7.28 7.37 6590.83 1
c 0.08 0.00 0.08 0.08 0.08 6210.55 1

M0 1.10 0.10 1.00 1.06 1.36 6583.56 1
Tmax 24.73 0.36 24.02 24.72 25.43 7327.45 1

Results of this model can be checked in a ShinyStan App at https://micromegas.
shinyapps.io/COVID-19-Scenario2-CA-province/.

In Spain, the end of the lockdown was on 21 June 2020 and our model fits reasonable
well during that period and forecasts stop being as good after lockdown. It is apparent
the easing of restrictions lead to a new change in the trend and the arrival of a new wave.
We will see in the following scenario how we can predict it.

3.2. Detecting the Beginning of a New Wave

As we have mentioned, the model fits well the evolution of the number of new cases
during the lockdown. By considering T, the end of the lockdown, as 21 June, we next
propose a classical tool to detect the beginning of a future wave based on the 99% percentile
of the number of daily new cases. For such a purpose, we first estimate daily quantiles by
the posterior mean of QT+d+1

T+d (0.99, πx), where d ∈ {0, . . . , 41}, i.e., for the first 42 days—
6 weeks—after the lockdown. Second, for the ith week we count the cumulative number of
confirmed cases where the observed daily number of contagious exceeding the estimate of
the 99% daily quantile, and we will denote it by W+

i , i = 1, . . . , 6. For example, W+
1 = 1

means that just one day the observed new daily cases exceed the estimate of the 99% daily
quantile in the first week after the lockdown. It is apparent that W+

i is a risk measure that
takes values from 0 to 7, i = 1, ..., 6, and the larger the value, the greater the probability of a
new wave.

Table 3 shows the values of W+
i , i = 1, . . . , 6, in the province of Cádiz. Note the first

week ranges from 22 June to 28 June and the sixth week from 27 July to 2 August. It is
apparent that easing COVID-19 restrictions after the lockdown leads to more spreading of
coronavirus in just a few weeks.

Table 3. The risk measure week-by-week to predict a new wave of COVID-19 in the province of
Cádiz where the first week ranges from 22 June to 28 June and the 6 week from 27 July to 2 August.

Week 1st 2nd 3rd 4th 5th 6th

W+
i 2 3 3 6 7 7

Again we face the problem to establish the time zero as mentioned in Remark 2.
The value W+

5 = 7 in Table 3 implies that in all days in the 5th week the observed new
daily cases exceed the estimate of the 99% daily quantile. Therefore, in order to make
predictions in the second wave we have considered the initial date as 27 July, five weeks
after the lockdown was finished, and T, the ending day, as 13 September 2020. We would
like to emphasize that Spain had one of the most restrictive lockdown in the world in the
first wave. After the lockdown people were afraid of going back to normal. We think this
was the main reason of slow growth at the beginning of July. However, little by little people
in summer were more confidence and jointly to an attempt to save the tourist season,
infections started growth again at the end of July. It is apparent that initial conditions in the
first and second waves are different. Therefore the value of the hyper-parameter M = 100
was determined taking into account that the initial cases of the second waves are, in some
sense, determined by the cases at the end of the first wave. Finally, we consider the same
prior information for the parameters a and c in order to have more prior variability.

https://micromegas.shinyapps.io/COVID-19-Scenario2-CA-province/
https://micromegas.shinyapps.io/COVID-19-Scenario2-CA-province/
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The parameters of interest are shown in Table 4. Note the second wave can be
interpreted as an intermediate scenario between having no restrictions and the lockdown.
Now the posterior mean of the maximum number of infected in the province of Cádiz, a, is
about 14,980.964 people and we also estimate that Eπx(Tmax(θ)) = 55.179. We recall that
differences between the first and second wave can be attributed to both a higher rate of
contagious and an increase of the number of people tested as described in Remark 4.

Table 4. Bayesian estimates of the main parameters during the second wave in the province of Cádiz
(1,240,155 inhabitants).

Param. Post. Mean sd 2.5% CI 50% CI 97.5% CI ne f f R̂

a 14,980.964 1630.937 12,335.926 14,791.462 18,628.804 1332.199 1.002
b 5.746 0.116 5.523 5.745 5.975 3338.672 1.000
c 0.032 0.002 0.028 0.032 0.035 1304.779 1.002

M0 48.342 8.654 33.606 47.567 67.095 1550.593 1.001
Tmax 55.179 3.037 49.978 54.926 61.736 1318.682 1.002

As a complementary study, Andalusia is divided into eight provinces, namely Almeria,
Granada, Jaén, Málaga, Sevilla, Córdoba, Cádiz and Huelva. We compute the evolution
of the risk measure given in Table 3 for all of them. In order to make predictions, we only
should take in account they have different population size, i.e., different α = P/100,000 in
Expression (6). Table 5 shows the population sizes, P, of the eight Andalusian provinces
(population size according to the Instituto Nacional de Estadística https://www.ine.es/
up/9Gq4uzeUiT).

Table 5. Population size of the eight provinces of Andalusia.

Prov. Almería Cádiz Córdoba Granada Huelva Jaén Málaga Sevilla

P 716,820 1,240,155 782,979 914,678 521,870 633,564 1,661,785 1,942,389

Figure 5 shows the evolution of the risk measure in Andalusia by using a color map.
This figures allows us to make inter-provincial comparisons and detect how the effects of
COVID-19 vary between provinces and territories.

To conclude our analysis, we have studied the evolution of the confirmed cases in the
province of Cádiz during the autumn period. We first fix the beginning of the second wave
as 27 July and T as 20 September. By using a similar argument as in the detection of the
second wave, we compute the measure W+

i for the following four weeks, i = 1, 2, 3 and
4, obtaining 3, 3, 4 and 6, respectively. It seems a third wave appears in the fourth week
from the beginning of the second wave. In addition, that fourth week coincides with a
vacation period in Spain. Therefore, we finally establish the beginning of the third wave as
11 October. In contrast to the second wave, the third wave appears before flattening the
second curve.

By using data from 11 October to 8 December 2020—the submission date of this
work—we present in Table 6 the parameters of interest of the third wave. Again the hyper-
parameter M = 1000 has been modified because the third wave started having higher
initial values at time zero.

https://www.ine.es/up/9Gq4uzeUiT
https://www.ine.es/up/9Gq4uzeUiT
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Figure 5. Evolution of the beginning of the second wave after the ending of the Lockdown in the
eight provinces of Andalusia.

Table 6. Bayesian estimates of the main parameters during the third wave in the province of Cádiz
(1240155 inhabitants).

Param. Post. Mean sd 2.5% CI 50% CI 97.5% CI ne f f R̂

a 18,009.32 200.45 17,622.73 18,007.82 18,416.35 3327.78 1
b 3.76 0.06 3.63 3.76 3.89 3210.05 1
c 0.052 0.001 0.050 0.052 0.053 2791.33 1

M0 418.81 29.54 363.10 418.00 481.48 2889.03 1
Tmax 25.54 0.23 25.08 25.54 26.01 8387.82 1
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Finally, we present in Figure 6 the band of Gompertz curve for the second wave (green)
and the band of Gompertz curve for the third wave (orange) obtained from an i.i.d. random
sample of the posterior distributions. It is apparent that models fit well data. From the
interpretation of 1/c as the width (duration) of a wave and just observing the estimates of
the parameter c in Tables 2, 4 and 6, it is apparent that the duration of the second wave (if
it were not interrupted by the third) would be more than twice longer that the duration of
the first one and the third wave seems to be a bit shorter than the second one.
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Figure 6. Time series of observed daily cumulative cases from 27 July to 8 December (black). The
Gompertz curves band for the second wave (green) and the Gomperts curves band for the third
wave (orange), given by an i.i.d. random sample of size 500 of g(t | πx) of the respective posterior
distributions.

4. Conclusions

We have presented a non-homogeneuos Poisson process with intensity function based
on the classical Gompertz curve for modeling and forecasting COVID-19 pandemic by
using Bayesian inference. In that context, we have discussed the prior distributions of the
parameters. In particular, we propose a right-skewed distribution as the baseline prior
distribution to model confirmed cases per day per 100,000 inhabitants. The inverse Gaus-
sian distribution seems reasonable for such a purpose in Spain. The presented framework
can be used for both estimating the number of individuals infected and evaluating the
success of different policies. Independently of the comparison of our model to other ones,
the Bayesian approach always suppose an improvement in the estimates when just small
samples are available.

Clearly inspired in Risk Theory and jointly to the well-known properties of the non-
homogeneuos Poisson process we propose an indicator which helps us to identify the
beginning of a new wave. That indicator is based on the estimates of the 99% percentile of
the number of daily new cases. To sum up, after fixing a model up to time T, we evaluate
the estimates of the new confirmed cases for the following weeks and we are able to detect
if real cases exceed certain threshold given by the quantiles which is the key to establish
a new wave. We would like to emphasize that our model is not able to predict the onset
of a new wave but at least is able to detect it. For such predictions we refer the reader
to dynamical models that incorporate mechanisms of social response, such as attempted
in [45].

To conclude, applying our method to the province of Cádiz, located at the South of
Spain, we were able to discuss the effectiveness of the first lockdown, the accuracy of the
estimates during that lockdown and the beginning of the second and third waves after the
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lockdown. For future works it would be interesting to apply robust Bayesian techniques
as described in [46–49]. In particular, it would be interesting to consider a band of prior
distributions for the parameter a as described in [46]. Additionally, the relative range of
variation of a is larger than for c where further research is needed to find causal mechanism
to interpret those ranges. Finally, it is worth mentioning that the hyper-parameter M—
which induces uncertainty in the initial cases—takes different values depending on the
wave. For example, it is apparent that the initial cases in the first, second and third waves
were different.
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