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Abstract.  In the present paper, the assessment of the hydrodynamics of the fish swimming in 

undisturbed and altered wake-flow is carried out identifying hydrodynamical forces and flow 

patterns of the fish swimming wake. URANS approach with k-/SST turbulence model are 

employed combining fish and turbine in the same simulation. Fish motion is realized using 

dynamically adaptive mesh. The actuator line method is employed to induce the wake of a 

hydrokinetic turbine, which is a simplified method that requires lower computational cost than 

full geometry simulations. This work brings a new numerical approach involving fish and 

turbine wake highlighting that fish swimming in the wake presents higher thrust forces than in 

the undisturbed flow, due to the x-component to velocity in the wake is lower than free flow 

velocity. 

1. Introduction 

Nowadays, hydrokinetic energy appears how a technological alternative in the context of sustainable 

energy. Based on the same principles as wind energy, hydrokinetic devices can produce electricity 

extracting kinetic energy contained in rivers, estuaries and, channels. Hydrokinetic turbine projects are 

growing considerably in the last decade however this technology is considered in the pre-commercial 

stage [1]. Environmental impact studies are a relevant issue yet in development. In literature are 

described main causes affecting aquatic life due to hydrokinetic devices installation such as sediment 

suspension, alteration of river hydraulic regimes, noise, electromagnetic fields, fish collisions with 

blades turbine, toxicity of paints and other chemicals and the installation of several hydrokinetic 

devices in arrangement [2,3]. Nevertheless, there are not found studies in the literature about 

hydrodynamic interaction between fish and turbine.  

The present paper aims to study fish swimming biomechanics under altered flow conditions similar to 

hydrokinetic wake topology. Firstly, a numerical methodology is developed to promote tuna fish 

(Thunnus atlanticus) model swimming in undisturbed flow promoting a reliable description of the 

vortex wake and the computation of hydrodynamic forces. Secondly, the methodology established is 

employed to carry out analysis of tuna fish (under the same kinematic parameters) swimming in the 

wake of a hydrokinetic turbine. Transient forces and wakes are computed and compare in both cases, 

without and with turbine. Simulations were realized in the open-source software OpenFOAM® using 

the dynamical mesh adaptive tool to simulate fish motion and in the framework of the turbulence, 

were employed a URANS approach and the k-/SST closure turbulence model. Finally, the turbine 

wake is induced using actuator line model simulations. 
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2. Numerical methodology 

2.1. Actuator Line Method 

The Actuator Line Method [4] is a simplified methodology combining Navier-Stokes equation with 

the Blade Element momentum method (BEMM) to compute the flow around a turbine, calculating 

wake-flow and hydrodynamical forces on the blades. ALM not employs rotor geometry, blades are 

considered lines discretized as points and each point represents a blade section. Hydrodynamic forces 

are computed from an iterative process where the flow solved by Navier-Stokes equations provided 

information about attack angle and velocity of the flow which are employed in BEM method 

calculating lift and drag forces on blades (inputting 2D lift and drag forces and airfoil geometry). After 

all, forces are projected on the background Cartesian grid as body-force field using a three-

dimensional Gaussian function and incorporated in the Navier-Stokes. This method is simulated from 

OpenFOAM® using the library turbinesFOAM [5]. 

In this work, the hydrokinetic turbine is a horizontal axis turbine HK10 designed by the Energy and 

Environmental laboratory at the University of Brasilia in the context of the P&D project AES Tiete 

HYDROK. The rotor has 4 blades and 2.2 m of diameter, blade sections are NACA4412 profiles. The 

operating point employed in the simulations is defined by the tip tip speed ratio, URTSR   , and 

the free flow velocity, smU 5.2 and, rotation velocity, rpm35 . For more information about 

the ALM simulations see [6] where a validation case is presented. The ALM reproduces the three-

dimensional structures expected in a wake turbine and therefore, we use this simplified method to 

induce the wake-flow for the fish swims in the altered flow. 

2.2. Fish geometry, kinematics and force computation  

Tuna fish geometry is the same as analysed by [7]. The fish body and caudal fin were generated from 

elliptical and airfoil cross-sections and envelope equations provided by the referenced study, see Fig. 2. 

Fish swims using the body/caudal fin (BCF) description under carangiform mode. Movement is 

characterized by undulatory waving motion of its flexible body from head to fin tail that generates a 

propulsive thrust force and it is described by sinusoidal equation ),( txh  [8] with variable amplitude  

)(xa  such as 

)(sin)(),( txkxatxh                                                           (1) 

2

210)( xaxaaxa                                                               (2) 

where ),( txh  is the midline fish displacement, ω tail-beat frequency and k the wake number, being 

2k the wavelength of propulsive traveling wave. The coefficients 0a , 1a  and 2a  are 

determined experimentally and reported in literature. In this work, the kinematic parameters employed 

were defined from the study of [7] being 675.1 , srad13 and the coefficients 0.00 a , 

14.01 a  and 
1

2 000236.0  ma . Simulations are carried out considering the fish steady in a 

constant velocity flow. 

Hydrodynamic force acting on fish in i-direction is computed from the instantaneous velocity and 

pressure fields, using an integral of the stress-tensor over the fish surface [9]. It is given by 

 
S

jijii dSnpntF )()(                                                          (3) 

where ij is the stress-tensor components and jn is the normal of the fish surface. The force time-

averaged value ( iF ) is obtained integrating the instantaneous force coefficient in an entire cycle of 

fish swim. If 0iF  (x is flow direction) the fish swims in a conditions of dynamical equilibrium 

between the drag and thrust forces. For positive values the fish accelerates upstream (thrust is greater 

than drag) and for negative value the effect is opposite. 
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2.3. Computational domain, numerical mesh and boundary conditions 

The computational domain employed in the simulations is a rectangular prism with dimensions 

4D×4D×7D. The inlet flow surface is placed 2D upstream of the turbine and the fish is 2D 

downstream to rotor (placed at system origin). In figure 3, the rotor is represented by a red rectangle 

just to help in understanding. Boundary condition imposed on inlet surface is uniform velocity and 

5%turbulence intensity. On the outlet surface, a reference pressure is considered to open flow 

conditions and the lateral walls are free-slip surfaces. Fish surfaces are assumed to be non-slip 

boundaries, which move according to equations 2 and 3. Due to in ALM simulations there is no 

turbine surface, no-slip wall boundary condition has not to be imposed. 

Numerical mesh was created in OpenFOAM® using the tool snappyHexMesh. The mesh on fish 

surface was highly refined with multiple layers of prismatic elements, to properly simulate of the 

boundary layer gradients and to maintain the parameter y+ close to one, as required by the k – ω/SST 

turbulence model [10]. A mesh convergence study was carried out to guarantee that results do not 

depend on mesh discretization for fish swimming in undisturbed flow. For the turbine, a mesh 

convergence was realized in the work [6]. So, in the simulation combining rotor and fish, the element 

size was kept ensuring the mesh reliability and the number of elements is close to 4 million.  

The time-step used in simulations was 10−3 keeping the Courant number minor to the unit. For all 

simulations, free flow velocity was 0.7m/s and tail beat fish frequency 13 rad/s. The rotor kept the Tip 

speed ratio value was kept to nominal operating condition of the rotor (TSR=1.6), being free flow 

velocity 0.7m/s and rotational velocity 1.01 rpm. 

3. Results 

Fish wake structure is a relevant issue to understand the resultant propulsion force, evaluating the drag 

or thrust effect in the framework of the wake topology. In figure 3, dimensionless x-velocity 

component field and z-vorticity visualizations allow the comprehension of the fish wake swimming in 

undisturbed flow and its periodic vortex emission (like a reverse von Kármán vortices). In this 

situation, the fish is self-propelled and it moves backward flow experiencing a thrust force ( 0>Fx ). 

Tuna fish presents a jet flow downstream which boosts the fish propulsion, with a vortex sequence 

organized like positive vortex (counter clockwise - in red colour) above fish symmetry line and 

negative vortex (clockwise - in blue colour) below that. Time history, for both cases, fish swimming in 

undisturbed flow and behind the rotor, are presented in figure 4. In both simulations, free flow velocity 

and fish tail beat frequency are kept equals to understand the effect of the flow turbine on a fish.  

From figure 4, it is possible to see that signals begin to differ at time 7s. Around 8.8 s, the black signal 

corresponding to fish force swimming in the wake-flow achieve maximum values and then, it 

decreases remaining stable but without returning to the initial values.  

 

 

   

Figure 1. Tuna fish 3D geometry.  Figure 2. Numerical mesh. 
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From equation 3, mean force in x-direction is computed employing 4 periods, at 4s (not turbine 

interference) and 10s (last times simulated). Results achieving are N=Fx 0.63  and N=Fx 1.30 , 

 

  

Figure 3. Non-dimensional velocity and 

vorticity fields,  UU /  and  UωL /  for 

fish swimming in undisturbed flow. 

 Figure 4. Time history of x-direction forces to 

fish swimming without and with turbine. 

    

                                   (a)                                                                                    (b) 

Figure 5. Fish swimming in turbine wake at three different times. (a) Non-dimensional velocity 

 UU /  and (b) vorticity fields,  UωL / . 
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respectively. For all, fish experiences acceleration in opposite direction to the flow due to thrust-type 

force ( 0>Fx ) .  

From figure 5, we can be able to relates turbine wake evolution with time history in figure 4. Firstly, 

we verify that fish find the wake-flow at 7s. From that instant, fish swims at lower velocities and 

experiences higher forces due to tail beat frequency is kept constant. At instant 8.8 s, where maximum 

forces values were noted, a region of the fluid with even lower velocity reaches the fish. Last, at 

higher times, fish is swimming immersed in a permanent wake where force signal oscillates around a 

mean value.  In figure 5, when t=12s, fish wake appears shorter due to it is pushed by the flow of wake 

turbine but the wake maintains a reversal von Kármán vortex street configuration generating 

propulsive force. 

4. Conclusion 

Numerical simulations for tuna fish swimming in an undisturbed flow and an altered flow were 

presented in this work. The altered flow has the hydrokinetic turbine wake topology and it was 

induced through simulations by the simplified actuator line method. Results obtained from CFD study 

allow us to conclude that to both cases (with and without turbine), fish experiences thrust force 

appearing the wake like a reverse von Kármán vortex street generating a jet flow downstream which 

boots the fish propulsion.  But, fish swimming in the turbine wake (at the same tail beat frequency) 

presents a higher mean force due to the flow velocity is lower. Although, these results contribute to the 

understanding of fish swimming in altered flow. It should be necessary to compute the propulsive 

efficiency at the frequency equilibrium condition and to analyse the vortex effect to conclude fish 

performance behaviour. 
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