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Abstract: As a consequence of the COVID-19 pandemic, the Spanish government declared a State of
Emergency, and domestic passenger ship traffic was restricted in Spanish ports. This manuscript
presents scenarios of emissions from domestic shipping traffic in the seas of the Strait of Gibraltar
(Spain) over three months of the COVID-19 pandemic. Emissions were estimated for only 90 days of
the pandemic, and two scenarios were studied: emissions while vessels were berthed at the Algeciras
Port and emissions as a consequence of the interruption of passenger ship transportation in the
Strait of Gibraltar. To this end, the authors’ own model was used, which has near zero uncertainties.
This model was used for the first time in this study and takes into account both meteorological and sea
condition parameters, as well as the efficiency of the propulsion system. The manuscript concentrates
on the emissions of greenhouse gases (GHGs), nitrogen oxides (NOx), sulphur oxides (SOx), carbon
dioxide (CO2), and particulate matter (PM) from six Ro-Pax ships that ceased to operate. The main
finding is that as a consequence of the pandemic, reductions of up to 12% were found in the Strait of
Gibraltar in all the pollutants and GHGs when taking into account all international traffic, while the
decrease in emissions from domestic traffic only reached 51%.

Keywords: shipping emissions; greenhouse gases; Strait of Gibraltar; COVID-19; SENEM model

1. Introduction

Based on the Order TMA /419/2020 of 18 May [1], starting at 00:00 on 17 March 2020, passengers
on board Ro-Pax passenger ships and ships providing the regular line service between the Spanish
peninsula and Ceuta were forbidden from disembarking. For this reason, all the Ro-Pax ferries from
Algeciras to Ceuta (Spain) and from Tarifa (Spain) to Tangier (Morocco) were stopped and berthed at
the port of Algeciras.
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The COVID-19 pandemic resulted in a decrease in maritime shipping activity due to the large
drop in the demand for cargo and oil. Many vessels were dry-docked or sailed at reduced speeds to
cut fuel consumption [2].

COVID-19 was first identified on 30 December 2019, and was declared a global pandemic by the
World Health Organization (WHO) on 11 March 2020 [3]. It resulted in drastic changes in energy use,
with expected impacts on the emissions of greenhouse gases (GHGs) and pollutants. The changes in
emissions associated with the lockdown were entirely due to reductions in the energy demand [4].

In this sense, pollution from ships is a significant contributor to global air pollution, which affects
not only the ports themselves, but also nearby coastlines, since it is also carried for long distances over
land and sea. The direct emissions from ships (known as precursor pollutants) are mainly comprised
of CO2, NOx, SOX, CO, and particulate matter (PM).

SOx and NOx emissions are known to exacerbate the secondary formation of fine particulate
matter, PM2.5 [5]. NOx emissions from diesel engines also contribute regionally to increasing ozone
(O3) levels. All of these compounds represent a major threat to human health. They are known to be
closely related to both mortality and morbidity in young children, and to the respiratory infections and
asthma that affect them [6]. For these reasons, pollutant-specific, location-specific, and source-specific
models of health impacts are important and must be considered in the design of policies for the control
of emissions, as demonstrated by Stefani et al. [7].

Based on inputs of meteorological data and source information like emission rates and stack
height, air quality models are designed to characterize primary pollutants that are emitted directly into
the atmosphere from anthropogenic sources (ships in this case). The problem is that air quality models
and ship emissions inventories present many uncertainties. The use of air quality models entails
significant sources of errors from inaccurate measurements, as is the case of PM2.5 in epidemiological
studies [8]. Thus, exposure assessment depends strongly on the accuracy of the emissions inventory
and on the outcomes of the air quality model where a chemical transport model is included [9].

Since there is not yet a clear agreement on the definition of the parameters to be used in the
different models, a ship’s emissions inventory is a highly debated issue. Ship Traffic, Energy and
Environment Model STEEM [10] and Ship Traffic Emission Assesment Model STEAM [11] are the most
widely used models. They use a ship’s identity, position, speed, and draught at a given time-stamp.
These data are employed, together with the ship’s technical specifications, to calculate time histories
(known as inventories) of estimated fuel consumption and emissions. All of these data can also be
obtained on board the vessel; they are compiled and reported daily in what is known as the ship’s
noon report.

Models were used in this study because, in the case of maritime transport, there are no systems
in place for monitoring and quantifying GHG and pollutant emissions in real time. However, in the
case of domestic Ro-Pax traffic (vessels that are used for freight vehicle transport alongside passenger
accommodation) around the Strait of Gibraltar (North of Morocco included), ships usually prepare
their noon reports every day, and the data from these are used to calculate emissions from ships
through the models mentioned above.

In inventories of this type, the most difficult factor for calculating emissions is determining the
power delivered by the main engine in real time. In the models used to date, this variable is measured
exclusively from the recorded speed of the ship. In this sense, the International Maritime Organization
IMO [12] proposed a new model, but it has not specified the procedure for the calculation of speed
loss coefficients.

In order to reduce the range of uncertainties, this study used the authors’ own model named the
Ship’s Energy Efficiency Model (SENEM) [13]. This model defines the procedure for the calculation of
speed loss coefficients.

Because the prime focus is to study the impacts of ship-based emissions on urban air quality and
human health in heavy-traffic regions, the objective of the study is to estimate the emissions from
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ships (CO2, NMVOC, CH2, N2O NOx, SOx, CO, and PM) as accurately as possible over 90 days of the
COVID-19 pandemic in waters around the Strait of Gibraltar.

The SENEM model will be presented in more detail in the next subsection.
Concentrations of emissions were found to be four- or five-fold higher on coastlines where

ships regularly pass by [14]. On a global scale, between 2007 and 2012, shipping accounted for
15%, 13%, and 2% of the respective annual emissions of NOx, SOx, and CO2 from anthropogenic
sources [15]. In the case of the Strait of Gibraltar, 1028 ton/km2/year of CO2, 25.46 ton/km2/year of
NOx, and 8.20 ton/km2/year of SOx were emitted in 2007 [16], while in 2017, the emissions reached
1330 ton/km2/year of CO2, 24 ton/km2/year of NOx, and 11.60 ton/km2/year of SOx [17].

The results from the inventories published to date seem to present a high range of uncertainty,
mainly because, as the next subsection shows, the calculation of the main engine load factor (LF) value
falls within this range of uncertainty. Moreover, in the case of the study of Ro-Pax vessels, the matter of
speed is even more complex. For this reason, this paper simulates a detailed analysis of vessel speeds
when approaching or exiting ports. Since it would be necessary to simulate data on a port-by-port
basis to be able to apply robust assumptions [18], the movements of six Ro-Pax ships were simulated.

Furthermore, the energy consumption and emissions produced by each ship’s operation phase
were simulated as real cases by a practical algorithm from each ship. These algorithms were used in
the estimation of the two most important parameters on voyages: fuel consumption and emissions.

A study was performed of the decrease in emissions resulting from the ships being stopped and
the emissions in ports while at berth during the pandemic (90 days). While the calculations of the
effects while ships are not sailing were simulated, the effects of ships at berth are real calculations.

This paper describes both the increase in emissions while vessels were berthed at Algeciras Port
during the COVID-19 pandemic and the estimated reduction in emissions as a consequence of these
six ships not sailing in waters around the Strait of Gibraltar between three Spanish ports (Algeciras,
Ceuta, and Tarifa) and Tangier for 90 days.

2. Materials and Methods

Four models were used for the simulation, which was performed through a detailed analysis
of on-board data for each situation and navigation mode. According to data from the Automatic
Identification System (AIS) in 2017, 82,490 ships (47,365 International Navigation) cruised the Strait
of Gibraltar (warships, fishing vessels, tugs, auxiliary boats, and dredgers were not included).
The 35,125 domestic voyages were for transporting passengers, cars, trucks, goods, etc. between the
Iberian Peninsula and the North of Africa; of these, 13,165 were fast ferries. In this study, 2700 were
analyzed because there was less traffic during the months of the lockdown that were studied (second
half of March, April, May, and first half of June).

Two primary emission sources are found on every ship: the main engine (ME), which is used for
ship propulsion, and the auxiliary engine (AE), which is for generating electricity on board. When a
ship is at berth, only the AE is running.

The emissions were evaluated using data (Table 1) from six fast ferries that did not sail in waters
around the Strait of Gibraltar for 90 days due to the pandemic.

The emissions were calculated (Equation (2)) by multiplying the energy delivered in kWh by the
emission factors (EF) in g/kWh for each pollutant in question: CO2, CO, NOx, SOx CH4, N2O, NMVOC,
and PM in this case.

While other models [11,19] for calculating a ship´s emissions only take into account the speed of
the ship, this study utilized the SENEM, a new model that takes into account the wind direction and
speed, wave direction and height, current influence, and waterjet efficiency—parameters that other
models do not consider.
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Table 1. Characteristics of the ships studied and power delivered by auxiliary engines (AEs) for
each mode.

Ship
Type/Rounds PreferenceME (kW) 1 Total AE (kW) Speed

(knots) 3
Length

(m)
Breadth

(m)
Draug.
(m) 4

Installed Crui. 2 Manv. 2 Hot. 2

A/270 28,800 4800 720 2160 1440 37 101 26.6 4.2

B/450 28,800 4800 720 2160 1440 42 92 26 4.26

C/540 14,800 3600 540 1620 1080 37 83 13 3.2

D/450 28,304 4600 690 2070 1380 35 86 26 3.8

E/540 17,600 4000 600 1800 1200 35 77.5 26 2.72

F/450 20,240 4200 630 1890 1260 35 96 14.6 2.19
1 ME Power 100% MCR, 2 engine load factor applied by Starcrest Vessel Boarding Program, 3 Max. speed ( Vre f erence),
4 Max. Draught ( tre f ).

2.1. Theory/Calculation

Equation (1) [20] shows the procedure for calculating emissions when the ship is sailing, where
the AE is also included.

Emissions(g) =
(D

v

)
[(ME ) ∗ EFME + (AE ) ∗ EFAE] (1)

where:

Emissions : Total emissions in grams for the pollutant of interest.
D (miles): Distance that the ship travels within the study area.
v (knots): Average speed of the ship.
Activity time (hours):

(
D
v

)
.

ME (kW): Maximum continuous rating (MCR) of the main engine.
LFME(fraction) : Load factor of the main engine as a fraction of the MCR.
SFOC: Specific fuel oil consumption in g/kWh.
AE (kW): Maximum continuous rating (MCR) of the auxiliary engine.
LFAE(%): Load factor of the auxiliary engine as a fraction of the MCR.
EFME (g/kWh): Emission factor for the main engine for the pollutant of interest (this varies by engine
type and fuel consumed rather than by activity mode).
EFAE( (g/kWh): Emission factor for the auxiliary engine for the pollutant of interest.

As the MCR is known for each engine [21], the most important factor is the calculation of the
load factor (LF). This is calculated according to Equation (2), and is necessary for calculating the main
engine power delivered in real time (transient power).

LF =
Ptransient
Pre f erence

(2)

where: Pre f erence and Ptransient are the power at 100% MCR and the instantaneous power for
calculation, respectively.

2.1.1. ME Transient Power

For calculating the ME transient power, two options can be applied:
The first is by applying the current STEEM and STEAM models [11,19], where the LF is defined as

being dependent only on the speed of the ships.
STEEM [19] uses Equations (2) and (3):

Ptransient = Pre f erence

(
Vtransient
Vre f erence

)3

(3)
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STEAM [11] uses Equation (4):

Ptransient = εp ∗ Pinstalled

(
Vtransient

Vre f erence + Vsa f ety

)3

(4)

The IMO [12] uses Equation (5):

Ptransient =
Pre f

(
ttransient

tre f

)( 2
3 )
(

Vtransient
Vre f

)3

ηw η f
(5)

where:Ptransient , Vtransient, and ttransient are, respectively, the instantaneous power, speed, and draught at
time t (all taken from Lloyd’s Register of Ships, IHSF); Pre f is the reference power at speed Vre f and
draught tre f ; ηw is the modification of the propulsion efficiency due to weather; and η f is the modification
of the propulsion efficiency due to fouling.

This uses the Admiralty formula, which assumes that power is related to displacement to the
power of 2/3.

If the ship is new, then η f = 1. If the ship is steaming at the reference draught (tre f ), then ttransient =

tre f . For ideal sea and wind conditions, then ηw = 1. In these cases only, Equation (5) = Equation (3).
The second option involves applying the SENEM model [13], as defined by Equation (6), where the

propulsion system efficiency, η j, was considered as a variable value, and wind direction, wind speed,
wave direction, and wave height were included. However, the influence of current was obviated by
conducting round voyages and averaging the results for opposite directions.

This model takes into account and quantifies all the variables related to air and sea meteorological
conditions, the state of maintenance of the hull and propeller, and the performance of the propulsion
system. All of these variables have a direct influence on the power delivered by the main engines.

Because this new model significantly reduces the uncertainties that currently limit confidence in
the emissions inventories of ships, its application is a novelty of this study (Equation (6)).

Ptransient =

Pre f

(
ttransient

tre f

)( 2
3 )
[(

Vtransient+∆Vwind and waves+∆V f ouling ±∆Vcurrent
Vre f

)n]
η j

(6)

where:

∆Vwind and waves = Speed loss due to wind and waves;
∆V f ouling = Speed loss due to fouling;
∆Vcurrent = Difference between speed on the surface and speed over the sea bottom;
η j = Efficiency of the propulsion system.

The study was performed in two directions, both taking and not taking into account the
meteorological conditions and influence of the propulsion system.

The SENEM model [13] uses the Kwon method to predict speed loss due to added resistance in
abnormal weather conditions (irregular waves and wind). This model was applied to the same ships
analyzed in this study in 2017, and a value of ηw = 0.95 was used for the worst weather conditions;
this is the same value used to simulate bad weather conditions in this study.

For medium-sized, medium-speed ships such as the Ro-Pax ships in this study, we used n = 3.5 [22].
The value of η j (propulsion system efficiency) can be calculated using 1 as a basic value, which

corresponds with the maximum efficiency value—usually 60%. From the curve obtained from the
supplier, the value of η j depends on the speed of the ship.

Thus, η j is the efficiency of the propulsion system (equation of the type y = a + bx2, where y is the
efficiency of the propulsion system and x is the speed of the ship).
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Because the same ships were studied as in the SENEM model used for validating the model, and a
value of η j = 0.85 was used for the worst conditions (mode of maneuvering near port), the same value
was used for this study.

In this method, the power will depend on η j and Vtransient
Vre f

, and therefore, Ptransient will have a
double dependence on the speed of the ship.

For this study, only the
(

ttransient
tre f

)( 2
3 )

parameter was taken as a constant value.

The weather impact parameter aims to quantify the additional power requirements of the engine
in realistic operating conditions. Based on other publications [23], a value of ηw = 0.95 was used to
simulate bad weather conditions.

The frictional resistance of the hull depends on the wetted area of the hull and on the specific
frictional resistance coefficient. Friction increases with fouling of the hull surface, e.g., due to the
growth of algae, sea grass, barnacles, and other matter. An average increase in total resistance of 9%
(constant over time) was applied for all ships [12]. Another study [24] showed that a daily consumption
increase of 10% was induced. In Equation (6), a value of η f = 0.98 was used.

Because all of the ships analyzed are propelled by a waterjet system, the effect of the propeller’s
fouling condition, defined in Equation (5), was not taken into account.

Finally, when all the efficiency parameters are defined, Equation (6) shows the global efficiency
(ηg) for the worst weather, hull, and performance propulsion system conditions:

ηg = 0.85 × 0.95 × 0.98 = 0.79

The fuel consumption and emissions were calculated as a product of the number of round
trips (2700 in this case), sailing time per round trip, engine size, engine load factor, and energy
consumption/emission factor.

2.1.2. AE Power

The auxiliary power demands vary depending on the mode of operation (i.e., cruising,
maneuvering, at berth).

Two ways were used to calculate the energy consumption and emissions for auxiliary engines.

Ships at Sea

When the ships are at sea, the power delivered by the AE depends on the type of ship and the
navigation mode. For the case of fast ferries, Table 1 shows the delivered power values for each mode;
the LF applied was obtained from the Starcrest Vessel Boarding Program [25].

Ships at Berth

In the case of ships moored at berth, the AE provides the energy they need for moving ramps
inside the hold, the refrigeration of containers of goods, air conditioning of the passages, and interior
lighting. In this case, energy was only required for interior lighting, and Equation (7) was used.

DE = BT × (Pdelivered,) × EF (7)

where:

DE: Daily emissions (g);
BT: Berthing time (24 h);
Pdelivered: Average power delivered by the AE for each ship (kW);
EF: Emission factor for the pollutant studied (g/kWh).

The emissions during the lockdown were calculated as the total emissions from six ships at berth
per day multiplied by ninety days using the bottom-up method according to Equation (5), taking into
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account that the six ships were berthed for 24 h every day for 90 days. Pdelivered is described in Table 2
as Power(kW).

Table 2. Total emissions by day and during the COVID-19 lockdown (90 days) of each pollutant from
the auxiliary engines (kg) of ships at berth in Algeciras Port.

Ship
Type

Power
(kW) CO2 CH4 N2O NMVOC CO SOX NOX PM

A
190 1 2959 0.036 0.132 0.042 0.061 10.48 47.65 1.6

1440 2 22,429 0.272 1 0.318 0.46 79.43 342.13 11.48

B
40 1 623 0.0075 0.027 0.009 0.0129 2.2 10 0.33

1440 2 22,428 0.27 0.972 0.324 0.46 79.2 360 11.88

C
42 1 654 0.008 0.029 0.0099 0.013 2.3 10.5 0.35

1080 2 16,808 0.2 0.745 0.254 0.33 59.11 269.8 9

D
45 1 701 0.0085 0.031 0.01 0.014 2.48 11.28 0.37

1380 2 21,493 0.26 0.95 0.30 0.429 76 346 11.34

E
42 1 654 0.008 0.029 0.0099 0.013 2.3 10.5 0.35

1200 2 18,704 0.228 0.83 0.283 0.37 65.8 300 10

F
40 1 623 0.0075 0.027 0.009 0.0129 2.2 10 0.33

1260 2 19,624 0.236 0.85 0.283 0.4 69.3 315 10.4

TOTAL Daily 1 6214 0.0755 0.275 1.84 2.52 21.96 99.93 3.33

TOTAL Daily 2 121,486 1.466 5.34 15 20.6 428.8 1932.9 64.1

TOTAL 1 559,260 6.80 24.75 166.30 227.32 1976.4 8993.70 299.7

TOTAL 2 10,933,740 131.9 480.6 1350 1854 38,592 173,961 5769
1 During the COVID-19 lockdown. 2 Normal conditions.

For the second case—ships operating in waters around the Strait of Gibraltar—the SENEM model
was applied through simulation.

2.2. Emission Factors

Finally, the total emissions (in g) of each pollutant of interest were obtained by multiplying the
energy consumption (kWh) by the EF. Table 3 shows the values for all types of fuel used in these kinds
of ships [26].

It is very important to take into account that while mass emissions tend to decrease as vessel
speeds and engine loads decrease, emission factors increase. Thus, the EF is not a constant value
because it depends on the main engine load factor; for ME load factors of less than 20%, Equation (8)
(Table 4) was applied [10]:

y = a × LF−x + b (8)

where:

y = emissions in g/kWh;
a = coefficient;
b = intercept;
x = exponent (negative).
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Table 3. Typical emission factors for a range of engines and fuel types (g/kWh) (Goldsworthy and
Galbally, 2011). While ships were at berth during the pandemic, only marine diesel oil (MDO) was used.

Engine Type Fuel Type EMISSION FACTORS (g/kWh)

CO2 CO SOx NOx PM10 PM2.5

MSD Main HFO 659.3 1.1 11.5 14 1.5 1.46

MSD AUX HFO 702.6 1.1 12.3 14.7 1.5 1.46

MSD AUX MDO 661.4 1.1 2.2 13.9 0.38 0.35

Table 4. Factors from Equation (6).

Pollutant Exponent Intercept (b) Coefficient (a)

PM 1.5 0.25 0.0059

NOx 1.5 10.45 0.1255

CO 1.0 0.15 0.8378

HC 1.5 0.39 0.0667

3. Results

The results were analyzed in two ways: ships at berth in the port of Algeciras and ships sailing
through the Strait of Gibraltar in a “no pandemic” case.

In the first case, Table 2 shows the total daily emissions over the 90 days of the COVID-19 pandemic
for all the pollutants studied, both while the ships were at berth in the port of Algeciras and under
normal conditions (no pandemic) by using the data of the power delivered based on LF values from
the Starcrest Vessel Boarding Program. The results for all the pollutants analyzed are based on the
emission factor values from Table 5 [27].

Table 5. Emission factors in units of g/kWh (marine diesel oil used).

CO2 CH4 N2O NMVOC CO SOX NOX PM

649 0.008 0.029 0.4 0.54 2.3 10.5 0.35

Figure 1 shows the actual power and energy delivered by the ME, which were obtained per round
trip in cruising mode, the mode of maneuvering near port, and the mode of maneuvering into the port,
respectively. Equation (5) was used.
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Figure 2 shows the energy consumed by the AE for all modes per round trip, taking into account
the average for each navigation mode, with data from on board and Table 1.
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Figure 2. Energy delivered from the AE (kWh) per ship, round trip, and mode.

Figure 3 shows the total energy consumption per round trip for both the ME and AE.
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Figure 4 shows the total energy consumption per round trip during the pandemic for heavy fuel
oil (HFO) and marine diesel oil (MDO), calculated using Equation (5).
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Table 6 shows the decrease in total emissions due to domestic shipping traffic not sailing around
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Table 6. Decrease in total emissions (tons) due to domestic shipping traffic not sailing around the
waters of the Strait of Gibraltar during the pandemic (90 days).

TYPE Fuel Type CO2 CO SOX NOX PM10 PM2.5

A

ME (HFO) 2492.5 4.2 43.5 52.9 5.7 5.5

AE (HFO) 200.78 0.3 3.5 4.2 0.4 0.4

AE (MDO) 128.9 0.2 0.4 2.7 0.1 0.1

B

ME (HFO) 4118.9 6.9 71.8 87.5 9.4 9.1

AE (HFO) 352.8 0.6 6.2 7.4 0.8 0.7

AE (MDO) 192.9 0.3 0.6 4.1 0.1 0.1

C

ME (HFO) 3416 5.7 59.6 72.5 7.8 7.6

AE (HFO) 317.6 0.5 5.6 6.6 0.7 0.7

AE (MDO) 212.2 0.4 0.7 4.5 0.1 0.1

D

ME (HFO) 3792.2 6.3 66.1 80.5 8.6 8.4

AE (HFO) 288 0.5 5 6 0.6 0.6

AE (MDO) 205.4 0.3 0.7 4.3 0.1 0.1
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Table 6. Cont.

TYPE Fuel Type CO2 CO SOX NOX PM10 PM2.5

E

ME (HFO) 4236.7 7.1 73.9 90 9.6 9.4

AE (HFO) 375.6 0.6 6.6 7.9 0.8 0.8

AE (MDO) 235.7 0.4 0.8 5 0.1 0.1

F

ME (HFO) 4085.4 6.8 71.3 86.8 9.3 9

AE (HFO) 284.8 0.4 5 6 0.6 0.6

AE (MDO) 187.5 0.4 0.6 3.9 0.1 0.1

TOTAL ME
TOTAL AE

TOTAL

18,349.5
6773.9
25,123.4

37
4.9

41.9

386.2
35.7

421.9

470.2
62.5

532.7

50.4
4.5

54.9

49
4.4

53.4
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weather, hull, and performance propulsion system conditions”.

Meanwhile, Table 7 shows the decrease in total emissions (tons) due to domestic shipping traffic
not sailing around the waters of the Strait of Gibraltar during the 90 days of the pandemic, taking into
account the worst weather, hull, and performance propulsion system conditions.

Table 7. Decrease in total emissions (tons) due to domestic shipping traffic not sailing around waters
of the Strait of Gibraltar during the pandemic (90 days), taking into account the worst weather, hull,
and performance propulsion system conditions.

TYPE CO2 CO SOX NOX PM10 PM2.5

TOTAL ME 23,227.2 46.83 488.86 595.1 63.79 62
TOTAL AE 6773.9 4.9 35.7 62.5 4.5 4.4
TOTAL 30,001 51.73 524.56 657.6 68.29 66.4
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Finally, Tables 8 and 9 compare the results of this study with others from the literature [16,17] for
domestic passenger traffic only.

Table 8. Decreases in total emissions found in two published studies [16,17] and this paper (tons).

Publications CO2 CO SOX NOX PM10

Moreno 90 days 237,786 325.25 2456.5 6231.5 2010.25

Nunes 90 days 285,950 81.31 614.12 1557.87 502.56

COVID-19 30,001 51.73 524.56 657.6 68.22

Table 9. Results from two published studies [16,17] and this paper in the case of one year of the pandemic.

Publications CO2 CO SOX NOX PM10

Moreno (2015) 951,145 1301 9826 24,926 8041

Nunes (2017) 1,143,800 1969.4 9976 20,640 2597.2

COVID-19 (Simulated 2020) 120,004 206.92 2098.24 2630.4 273.16

4. Discussion

This article presents the results of the study that the authors performed in the port of Algeciras
and the Strait of Gibraltar (Spain), which covered six Ro-Pax ferries propelled by waterjet systems
operating over the course of 90 days. The total emissions from the Ro-Pax ships over 90 days of the
COVID-19 pandemic were compared with those emitted under normal conditions.

The emission values from ships at sea decreased substantially during the COVID-19 pandemic.
We calculated decreases of 10% for CO2 compared with Nunes´ study [17] and 12% compared with
Moreno´s study [16], both of which were conducted before the COVID-19 pandemic. For the remaining
pollutants, the differences show similar values.

In the case of ships at berth, the differences are greater, with emissions up to 95% lower. This is
because when ships are at berth, there is no energy consumption due to the movement of ramps,
refrigeration of containers of goods, air conditioning of the passages, etc.; only interior lighting is used.

In the case of ships in all navigation modes, when the propulsion system efficiency, wind direction,
wind speed, wave direction, and wave height were considered as variable values, the values found
were up to 17% higher for most of the pollutants emitted compared with those under calm conditions.
The authors’ own model was applied for the first time in this study.

Taking into account all the international traffic around the Strait of Gibraltar, the results show
a 12% drop in the pollutants emitted by ships as a result of six ships being docked. Meanwhile,
considering all domestic traffic and not only passenger traffic, the decrease in emissions found was
51%.

A study from the European Maritime Safety Agency (EMSA) [28] showed a traffic density map
for all the ships, tankers, cargo vessels, and passenger ships in European waters in October 2019 and
October 2020. The main conclusion was that traffic in and around EU waters was not heavily affected,
apart from the decrease in the number of passenger ships.

5. Conclusions

This study showed that in the port of Algeciras, there was no increase in emissions even though
ships were continuously docked during the lockdown (90 days). This is because the energy required
by their auxiliary engines is very low when the ships are at berth in comparison with when they are in
an operating mode.

For the ships sailing in waters around the Strait of Gibraltar, the results obtained suggest that
domestic traffic through the Strait of Gibraltar has great importance for both energy consumption
by and emissions from maritime transport. As a result of only six Ro-Pax vessels being inactive,
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the emissions of some pollutants decreased by up to 12% when taking into consideration all the traffic
around the Strait of Gibraltar.
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