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Abstract: Interpretation of data from fire debris is considered as one of the most challenging steps in
fire investigation. Forensic analysts are tasked to identify the presence or absence of ignitable liquid
residues (ILRs) which may indicate whether a fire was started deliberately. So far, data analysis is sub-
jected to human interpretation following the American Society for Testing and Materials’ guidelines
(ASTM E1618) based on gas chromatography–mass spectrometry data. However, different factors
such as interfering pyrolysis compounds may hinder the interpretation of data. Some substrates
release compounds that are in the range of common ignitable liquids, which interferes with accurate
determination of ILRs. The aim of the current research is to investigate whether headspace–mass
spectroscopy electronic nose (HS-MS eNose) combined with pattern recognition can be used to
classify different ILRs from fire debris samples that contain a complex matrix (petroleum-based
substrates or synthetic fibers carpet) that can strongly interfere with their identification. Six different
substrates—four petroleum-derived substrates (vinyl, linoleum, polyester, and polyamide carpet),
as well as two different materials for comparison purposes (cotton and cork) were used to investigate
background interferences. Gasoline, diesel, ethanol, and charcoal starter with kerosene were used as
ignitable liquids. In addition, fire debris samples were taken after different elapsed times. A total
of 360 fire debris samples were analyzed. The obtained total ion mass spectrum was combined
with unsupervised exploratory techniques such as hierarchical cluster analysis (HCA) as well as
supervised linear discriminant analysis (LDA). The results from HCA show a strong tendency to
group the samples according to the ILs and substrate used, and LDA allowed for a full identification
and discrimination of every ILR regardless of the substrate.

Keywords: hierarchical cluster analysis; linear discriminant analysis; headspace–mass spectroscopy
electronic nose; fire debris; total ion mass spectrum; ignitable liquid residues; interferences

1. Introduction

Proper identification of ignitable liquid residues (ILRs) in fire debris is complex in
itself since the remaining samples after a fire contain substrate background compounds as
well as other products from combustion and pyrolysis processes. For this reason, one of the
challenges for forensic analysts consists of isolating ILR’s target compounds from either
background or pyrolysis compounds that may interfere with the analysis and obstruct
proper identification of the target compounds [1,2]. Therefore, a preconcentration step
prior to the analysis, which is normally based on gas chromatography–mass spectrometry
(GC-MS), is usually carried out. The most common method for the separation of ILRs
in fire debris samples is based on headspace analysis using activated carbon strips as
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sorbents, as described in the American Society for Testing and Materials (ASTM) E1412 [3].
Other alternatives for the preconcentration, also for headspace analysis of the samples,
include solid phase microextraction [4], statistic headspace adsorption with tenax [5] or
headspace sorptive extraction [6]. The analysis of the static or dynamic headspace without
any adsorbent has also been applied [7,8].

Once the analysis is performed, data interpretation is a complex endeavor that requires
specific skills, expert knowledge, and specific technology to be carried out. The gathered
data, and its analysis should be considered objectively, without any biased expectations,
nor any prejudices or preconceptions. According to the classification scheme provided
by the ASTM E1618-14 [9] there are eight classes of ignitable liquids (ILs). The ASTM
E1416 deals with the identification of ILRs in fire debris extracts by means of gas GC-
MS. The standard also describes three methods for data analysis and IL classification,
i.e., chromatographic pattern recognition, extracted ion profiling, and target compound
analysis. Chromatographic pattern recognition is performed by comparing chromatograms
to a reference database; extracted ion profiling is based on selected ions/group of ions
(m/z) to visualize distinctive patterns of specific IL classes; and target compound analysis
allows the identification of target compounds in ASTM gasoline and distillate classes.
Thanks to target compound chromatograms (TCC) analysts can visualize even really low
concentrations of ILRs. However, this method does not establish a threshold for the
presence of an ILR in a fire debris sample. Additionally, it does not establish ILRs’ intensity
limits required to determine their presence or absence [9]. Thresholds are individually set
and can be biased depending on the analyst [10]. According to a U.S. national study [11],
increased reliance on forensic sciences statistical methods is recommended. Over the past
30 years there has been a significant increase in applications of chemometric methods to
the analysis of ILs and fire debris. Apart from simple classification of ILS by ASTM classes
and small data sets, chemometrics have been applied to extensive data sets and create
thousand examples for training [12]. Despite the fact that the most of data came from
GC-MS, alternative analytical techniques such as Raman spectroscopy, headspace–mass
spectroscopy electronic nose (HS-MS) or others were also proven useful. Monfreda and
Gregori [13] investigated gasoline samples by solid-phase microextraction (SPME) and
GC-MS. By applying principal component analysis (PCA) as well as discriminant analysis
(DA) to a data matrix obtained by target compound chromatogram, they were able to
discriminate samples by brand. Pearson product moment correlation (PPMC) and PCA
were applied to total ion chromatogram (TIC) and extracted ion chromatograms (EICs)
of the chosen ions from diesel samples. Thirteen different diesel brands were clustered
based on common trait [14]. Mat-Desa et al., by employing PCA, hierarchical cluster
analysis (HCA), and a self-organizing feature map (SOFM) and artificial neural network
(ANN) to chromatographic data, successfully classified neat lighter fuels [15] and medium
petroleum distillate (MPD) products [16] (samples) and linked weathered samples (under
controlled conditions) with their unevaporated counterparts. Zorzetti et al. [17] by means
of GC × GC—FID (flame ionization detector) and by applying a variety of chemometric
models, such as partial least squares—discriminant analysis (PLS-DA), nonlinear PLS
(PolyPLS), and locally weighted regression (LWR) were able to predict how long a sample
had been exposed to evaporative weathering. Baerncopf et al. [18] applied PPMC and
PCA to simulated fire debris samples analyzed by HS-GC-MS. Six different ILs were used
together with nylon carpet as substrate. The results indicated that chemometric tools link
each ILR to its neat IL, even in the presence of matrix interferences. Sinkov et al. [19]
in 2014 used a chromatographic alignment strategy based on a ladder that consisted of
perdeuterated n-alkanes. By PLS-DA and soft independent modelling of class analogies
(SIMCA) applied to specific arson, a 100% of correct classification of samples based on
gasoline content was achieved. It has been previously reported [20] that projected difference
resolutions (PDRs) is a powerful chemometric tool to compare different analysis methods
in terms of pattern recognition.
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In 2008, Sigman et al. [21] pointed out that total ion spectrum (TIS) provides an
alternative approach to data analysis. TIS is identical to an average mass spectrum (MS)
that would cover the complete chromatographic range. In this sense, Waddell et al. [22]
stated, that one of the challenges of fire debris classification by different laboratories may lie
in the comparison of chromatographic data, specifically TICs. Waddell et al. [22–25] applied
various chemometric tools to the total ion spectrum (TIS) of the samples from the ignitable
liquids and reference collection database (https://ncfs.ucf.edu/databases/ilrc-2/) [26]
in order to achieve correct classification rates in fire debris analysis. A recent study
demonstrated the application of likelihood ratios and optimal decision thresholds based
on PLS-DA by using the TIS. In this study, the authors emphasized the connection between
quantified strength of the evidence and categorical decisions based on a defined operational
decision point on the ROC curve [27].

During recent years, several research groups have proposed some alternative method-
ologies. Aliaño-González et al. have used the ion mobility spectrum obtained from the
headspace for the identification of IL in fire debris [28]. In similar way, P. Calle et al. have
recently used the ion mobility spectrum in combination with linear discriminant analysis
(LDA) to characterize biodegraded ILs [29].

Headspace mass spectrometry electronic nose (HS-MS eNose) combined with chemo-
metric tools have also been successfully applied to fire debris analysis. This technique
runs the analysis using samples from the static headspace with a mass detector system,
but without any chromatographic separation. Thus, it presents several advantages when
compared to the two other methods previously discussed. It provides total ion mass spec-
trum (TIS) as an overall fingerprint of volatile profile. This is the same as in TIS, but it is
quick and does not require any solvent or adsorbent. HS-MS eNose employs a quadrupole
mass spectrometer in which each fragment ion (m/z ratio) of the detector acts as a “sensor”.
Ion abundance varies with the sensor signal [30]. Moreover, the “mass sensor” provides
chemical information from each sample. As above mentioned, multivariate statistical
analysis combined with HS-MS eNose [31–34] have been successfully applied in different
fields including fire debris analysis [7,8]. Ferreiro-González et al. have successfully applied
HS-MS eNose to thermal desorption of ILRs from carbon strips as an alternative to CS2
as solvent [35]. HS-MS eNose was also applied to discriminate different gasoline samples
as well as petroleum-based products in water samples [36,37]. In a previous study the
effect of weathering on neat gasoline [38] as well as the effect of fire suppression agents
on the interpretation of the results from fire debris analyses were assessed [39]. All of
these phenomena, as well as the use of interfering substrates, can alter typical chemical
fingerprints and, therefore, lead to a wrong interpretation of the data. For this reason,
the aim of this study is to develop a robust model for the identification of ILRs in fire
debris, even in the presence of complex matrices that may comprise similar products to
some typical ILs. Such matrices may contain products that are similar to ILs typically
used as fire accelerants. Therefore, petroleum-derived substrates such as vinyl, linoleum,
polyester, and polyamide carpet together with other matrices were used as the support
material, and gasoline, diesel, charcoal starter with kerosene, and ethanol (petroleum-based
products) as the IL to start the fire. TIS in combination with HCA and LDA was used for
discrimination purposes.

2. Materials and Methods
2.1. Fire Debris Preparation

Six different petroleum-derived substrates—four flooring materials: vinyl flooring
(43% ethylene and 57% chlorine), linoleum flooring (limestone, wood powder, and linseed
oil), polyester carpet (100% polyester), and polyamide carpet (100% polyamide), as well
as two different materials for comparison purposes (100% cotton sheet and natural cork)
were used in this study. Substrates were obtained from local stores in Cadiz, Spain.
Four different ILs were used for burning. Gasoline (95 Research Octane Number, lead-
free) was purchased from a gas station in Alcalá de Henares, Madrid (Spain). Diesel
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(cetane index > 45) was purchased from another gas station in Jerez de la Frontera, Spain.
Ethanol absolute (99.8%) from Panreac (Barcelona, Spain) and charcoal starter with kerosene
(naphtha (petroleum), hydrotreated heavy, kerosene,) were obtained from local stores.
Fire debris preparation followed the modified procedure Destructive Distillation Method
for Burning [40]. One piece of substrate (5 × 5 cm) was replaced by six small pieces
(1 × 4 cm) and placed on the bottom of a metal can. 0.5 mL of each ignitable liquid (IL)
was applied onto the substrates; respectively, gasoline, diesel, ethanol, and charcoal starter
were used. Subsequently, the can with a punched lit was placed on a propane torch.
When smoke started to visibly come out through the holes in the lid, the can was left for
two minutes on the burner. Then it was removed from the burner and let to cool down.
The punched lid was replaced by a solid lid when the can cooled down. Samples of the
fire debris were taken after 10 min, 1, 6, 12, 24, and 48 h. These times were selected since
in a real situation the fire debris samples are taken after the fire is extinguished and the
scene conditions are safe what it usually takes hours or even days. The fire debris samples
were labelled as follows: FD for fire debris (FD) and then V for vinyl, LIN for linoleum,
N for polyamide carpet, PO for polyester carpet, CS for cotton sheet, CO for cork and
finally, an indication of the elapsed time (0 h, 1 h–48 h). Ignitable liquids were identified as
follows: GAS for gasoline, DIE for diesel, ETH for ethanol and KER for charcoal starter
with kerosene. All the possible combinations of substrate and ILR were prepared. Then,
the burned samples were identified by their substrate code followed by a liquid code and
the elapsed sampling time. For instance: FD_V_1H for burned vinyl substrate without
IL when sampling was performed 1 h after the burning. FD_N_GAS_6H for burned
polyamide carpet with gasoline when sampling was performed 6 h after the burning. After
combustion, all of the samples were kept at a controlled room temperature (25 ◦C). After
sampling, the fire debris samples were placed directly into vials and analyzed by HS-MS
eNose. A total of 360 fire debris samples were obtained.

2.2. HS-MS eNose Spectra Acquisition

All of the fire samples were analyzed by an Alpha Moss electronic nose (Toulouse,
France) based on headspace (HS 100 static headspace autosampler) and mass spectrometer
(Kronos quadrupole mass spectrometer). The experimental conditions used for the analysis
(incubation temperature 115 ◦C and incubation time 10 min) were previously optimized
and described in another study [8]. In order to avoid cross-contamination, after each
injection, the gas syringe was flushed down with nitrogen and between fire debris samples
a blank was also analysed. Each analysis lasted 15 min.

Residual Gas Analysis software and Alpha Soft 7.01 software package (Alpha Moss,
Toulouse, France) was used for instrument control.

2.3. Data Analysis

Total ion mass spectra (TIS) in the range of 45–200 mass-to-charge ratios (m/z) from
fire debris samples were obtained and set into a data matrix Dmxn, where m is the number
of fire debris samples and n is the number of m/z intensities in the spectral range. Each m/z
intensity was considered as independent variables. All of the TIS were standardized by
assigning one unit to the maximum intensity.

Hierarchical cluster analysis and graphics were produced using R-Studio software
(RStudio Team (2020), Boston, MA, USA), and supervised linear discriminant analyses
were performed by means of IBM SPSS Statistics 22 software (Armonk, NY, USA).

For each LDA, stepwise method was chosen to select the most significant variables
(m/z). In addition, Wilke’ Lambda value was used as a criterion to introduce or eliminate
variables and the input F-value was 3.84 and the output F-value was 2.71.
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3. Results and Discussion
3.1. Exploratory Study

First, the tendency of the samples to cluster according to the presence/absence of
IL, the type of IL or substrate as well as the sampling time was checked. For this pur-
pose, the whole set of fire debris samples (n = 360) was analyzed by the headspace mass
spectrometry electronic nose (HS-MS eNose). The total ion mass spectrum (TIS) of each
sample was obtained and normalized by assigning one unit to its maximum intensity. First,
HCA (hierarchical cluster analysis) was carried out as exploratory technique. For this
analysis, Ward’s method with Manhattan distance were used. The results are shown in
a dendrogram (Figure 1). Since there are a high number of samples, the dendrogram is
displayed in a circular way and, a reduced data matrix corresponding to the mean values
of the replicas was used for an easier interpretation (D180×156).
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Figure 1. Dendrogram resulting from the hierarchical cluster analysis (HCA) analysis using average values of the replicas.
Ward´s method with Manhattan distances were used. Samples are colored according to the type of IL use for burning: DIE
(light green), GAS (dark green), KER (pink), and ETH (purple) and substrate burned without IL (dark blue).
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As can be seen, samples with the same type of ILs are very close together, as well
as the same substrates. Therefore, there is a strong trend of the samples to be classified
based on the ILs used and on the type of substrate. Regarding the samples burned with
KER and DIE, it is observed that these samples are included in different subclusters but
joined at a short distance giving rise to a larger cluster (cluster colored in blue). This is
most likely due to the similar chemical composition of both ILs. In fact, KER and DIE
belong to the same category according to ATSM [9]. At a higher distance, a separated
cluster (cluster colored in dark green) containing samples burned with ETH is joined to the
previous blue cluster. Only four samples burned with ETH are misclassified and included
in groups containing substrates burned without ILs. These “misclassified” samples were
taken 12–48 h after the burning, so the misclassification can be due to the high volatility
of ethanol. This is the only case in this study where the sampling time seems to influence
the clustering. Focusing on samples burned with gasoline most of them are included in
the same cluster (cluster colored in light green) except for five samples. It is remarkable
that these five misclassifications belong to the same substrate, CS (cotton sheet) and, that
these samples are included together with substrates burned without IL. This is maybe
due to the different porosity of CS in comparison to the other substrates. In addition,
cotton is a non-interfering substrate, so it produces very few signals in comparison to the
petroleum-derived substrates. It is also important to highlight, that the samples burned
with the same liquid tend to be classified within each cluster in different groups according
to the type of substrate.

Finally, the samples burned without ILs are included in different main clusters accord-
ing to the type of substrate. On the one hand, non-petroleum derived substrates (CO and
CS) are grouped in a main separated cluster divided into two clusters (clusters colored
in purple and in pink) far from the rest of the substrates. On the other hand, most of the
petroleum-derived substrate samples (cluster colored in red and in mustard) are grouped
in the same main cluster that include samples burned with IL. In particular, they are closer
to samples burned with gasoline. These results indicate that TIS from these substrates
have common signals with TIS from ILs and therefore, they could interfere with the correct
classification. Hence, it can be stated that there is a strong clustering trend depending on
both the type of IL and the substrate used. The strong influence of both, ILs and substrates
hide the influence of signal related to sampling time in most of the cases. Only, sampling
time seems to be influential in the case of samples burned with ethanol and samples after
12 or 48 h. Based on exploratory analysis, the sampling times evaluated in this work cannot
be considered an important factor for the identification of the ILs. Nevertheless, using all
the signals derived from the mass spectrum a full separation based on the type of ILs is not
possible using HCA. For this reason, a supervised technique such as linear discriminant
analysis (LDA) was used.

3.2. Detection of the Presence/Absence of ILR

Based on the high influence of the substrate showed by HCA, the next step was to
determine if any ignitable liquid (IL) had been used or not to start the fire regardless
the substrate. To do so, a chemometric method—supervised pattern recognition linear
discriminant analysis (LDA)—was applied to the whole dataset D360×156 in order to develop
an approach that was capable of detecting the presence of any ignitable liquid residue (ILR)
regardless neither of the substrate used nor of the sampling time. Then, two classes were
established a priori according to the presence/absence of ILR (ILR/no ILR), that would
allow to develop a robust model. For that purpose, the original dataset (n = 360 samples)
was divided in two datasets. In particular, 70% of the original dataset was randomly (but
guaranteeing representativeness of all groups) put aside (n = 254 samples) as a “training set”
to develop a model, while the remaining data (n = 106 samples) was used as “validation
set”. A stepwise method was performed with the LDA in order to search for those m/z
signals that were more relevant to discriminate the absence or presence of ILR in the burned
samples. One hundred percent of the samples were correctly classified in both the training
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set and as well as in the test set. Table 1 includes the coefficients of the resulting Fisher´s
linear discrimination functions.

Table 1. Fisher´s linear discrimination functions for fire debris samples burned with/without IL
obtained from the linear discriminant analysis (LDA).

Classification Function Coefficients

m/z
Fire Debris

m/z
Fire Debris

without IL with IL without IL with IL

45 25.549 139.818 104 –19.066 –276.990
46 11.554 79.221 105 –15.516 25.072
53 40.396 –180.484 114 2.931 –259.340
57 28.633 −2.003 136 –29.525 99.590
59 –36.423 –155.993 137 –5.907 250.730
60 –6.324 –284.772 141 13.245 –212.961
64 25.736 –331.332 142 –74.702 152.084
65 43.271 235.297 143 –34.091 271.643
71 –11.225 459.551 156 –11.293 210.897
72 45.816 –279.873 160 28.248 –252.297
77 24.696 109.341 169 –49.213 56.574
89 88.155 –265.753 181 9.034 337.532
91 0.834 73.420 193 49.974 –206.138
93 –65.970 –184.987 197 –53.574 259.863
97 –1.042 111.749 (Constant) –18.783 –78.320

Figure 2 displays the discriminant scores obtained from LDA for both sets of samples
(training and validation sets). The magnitude of the actual effect of predictors and outcome
was 0.954.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 13 
 

 

training set and as well as in the test set. Table 1 includes the coefficients of the resulting 
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Figure 2. Discriminant scores obtained by LDA for all the burned samples using headspace–mass
spectroscopy electronic nose (HS-MS) data (the red colour corresponds to samples with ignitable
liquid residues (ILR) and the grey colour without ILR); The dots represent the samples in the training
set and the circles represent the samples in the validation set.

According to the p-value of the model (p < 0.05), groups of predicted variables will
make predictions that are statistically significant in their accuracy, so the resulting model is
very stable and reliable. Within each group, a fairly homogenous grouping can be observed.
As it can be seen, the group of samples without ILR (represented in grey colour) is more
homogeneous. However, it can be seen how the group of samples with ILRs (represented
in red colour) are more widely distributed since the group is more heterogeneous probably
due to the type of IL used and the amount of ILR in the sample.

3.3. Discriminating the Different Types of ILRs

Therefore, after successfully determining the presence/absence of IL in fire debris
samples, the last step consisted of identifying specific ILRs in them. To do so, the samples
that had been burned without any IL were discarded for any further studies. A new
stepwise method including supervised LDA was then applied to a D288×156 data matrix.
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Seventy percent of the fire debris samples (n = 202) were randomly (but guaranteeing
representativeness of all groups) used to develop the model. In this case, four groups of
fire debris samples corresponding to each ignitable liquid were established a priori: GAS,
DIE, KER, and ETH. Three canonical discriminant functions were used to explain the result
of the analysis (Function 1, Function 2, and Function 3), with the following percentages
of variance: sequentially 86.7%, 11.1%, and 2.2%. LDA allowed for a full discrimination
(100% of the samples were correctly classified in both, training set, and the validation set)
thanks to a very stable prediction model (p < 0.05). The territorial map obtained from this
LDA is represented in Figure 3.
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Figure 3. Territorial map for the ILR samples (training set) obtained by LDA using HS-MS eNose
data (n = 202).

The territorial map plots give the location of cases based on their discriminant scores.
For GAS samples longer average distance among the samples than for to other samples
was found. ETH samples also show higher average distance than DIE or KER samples.
Fire debris samples that had been burned with these two ILs show short distances between
their centroids. Additionally, the KER group is the most homogeneous one, which means
that, regardless of the substrates or the sampling time, the results are similar to those
obtained for samples burned with DIE. Therefore, samples containing DIE or KER are quite
improbable to be mistaken for other ILRs.

The canonical discriminant functions enable full discrimination of ILRs from fire
debris samples. As can be seen gasoline samples are concentrated on the positive end
of function 1, consistent with the location of their group means (centroids). Whereas,
function 1 separates GAS samples, it does not allow to fully separate the remaining samples.
The function 2 provides full separation between samples burned with ETH, DIE, and KER.
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The standardized canonical discriminant function coefficients of the function 1 and 2 are
shown in Figure 4. As can be observed the highest positive values in function 1 are due to
the signals m/z 81, m/z 91, m/z 127, m/z 137, m/z 147, m/z 163, and m/z 186 while the
negative values are due to m/z 48, m/z 82, m/z 137, m/z 94, and m/z 187.
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Based on the related chemical compositions of diesel and the charcoal starter that
contains kerosene, the samples burned with one of these two ILs obtained very similar
negative values from both discriminant functions. The samples burned with ethanol are
located on the positive end of function 2 and the coefficients with higher positive influence
in these functions are m/z 45, m/z 137, and m/z 163. On the contrary, KER samples are
those that show highest negative values in function 2. m/z 72, m/z 94, and m/z 130 are the
signals with highest negative coefficients in this function. The samples can be discriminated
with regards to both functions.

Figure 5 represents the average values at the different m/z selected from LDA for each
ILR in a heat map plot. All the m/z values were normalized to the base peak at 100%. For a
better understanding, a cluster is displayed to group the samples and the variables. For this
cluster, Ward´s method with Manhattan distances was used. As Figure 5 shows, there is a
noticeable difference between groups of ILR samples. Samples burned with gasoline have
the highest intensity with m/z 91 and a high positive value from discriminant function 1.

According to the major ions in mass spectra of common ILs included in ASTM
E1618 [9]. m/z 91 is characteristic for C-2, C-3, and C-4 alkylbenzenes commonly abundant
in GAS samples. m/z 57 is related to alkanes, commonly present in heavier petroleum
distillates. For this reason, is the most important signal in terms of abundance in DIE and
KER samples, but also it is found at a lower level in GAS and ETH. m/z 69, m/z 70 together
with m/z 57 are compounds typically found in heavy petroleum distillates. Whilst m/z
69 is related to both cycloalkanes and alkenes, m/z 57 is associated to alkanes. As the
results suggest, m/z 81, m/z 82, and m/z 83 let us discriminate between DIE and KER. m/z
82 and m/z 83 are both related to n-alkylcyclohexanes. The samples burned with ethanol
present only one characteristic signal at m/z 45. This intensity is related to alcohols.
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4. Conclusions

HS-MS eNose combined with HCA and LDA was used to develop and validate a
robust method for the discrimination of different ILRs (gasoline, diesel, charcoal starter
with kerosene, and ethanol) in fire debris samples that contained interfering background
compounds (petroleum-based substrates). Additionally, samples were taken after different
sampling times in order to reproduce closer to actual fire investigation conditions. HCA
results showed a strong tendency of the fire debris samples to be grouped based on the
substrate used and the type of IL. This suggested that petroleum-derived substrates have
common signals with ILs, making it difficult to classify them correctly by unsupervised
technique. Nevertheless, by applying LDA on the TIS, a full discrimination of all the
samples with and without ILR was achieved regardless the substrate or the sampling
time. Based on these results, the proposed method allows the detection of ILR in fire
debris even when complex matrices are burned. An additional LDA allowed for the
complete discrimination between the four ILRs. However, samples burned with gasoline
or ethanol formed more heterogeneous groups, and therefore, sampling time or substrates
may affect the analyses of these ILRs. Although gasoline and ethanol ILRs were actually
discriminated, based on these results, careful analysis are to be carried out when these types
of substrates are found at the fire scene. In short, these results also demonstrate how static
headspace directly injected in a mass spectrometer without any chromatographic separation
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in combination with suitable chemometric tools can be used for the identification of fire
debris ILRs. Specifically, HS-MS eNose combined with LDA can be a solid help for forensic
analysts to interpret analyses’ results with a more rapid, systematic and, most important,
objective method.
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