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Abstract

In Information Retrieval evaluation, pooling is a well-known technique to extract a sample of documents
to be assessed for relevance. Given the pooled documents, a number of studies have proposed different prior-
itization methods to adjudicate documents for judgment. These methods follow different strategies to reduce
the assessment effort. However, there is no clear guidance on how many relevance judgments are required for
creating a reliable test collection. In this paper we investigate and further develop methods to determine when to
stop making relevance judgments. We propose a highly diversified set of stopping methods and provide a com-
prehensive analysis of the usefulness of the resulting test collections. Some of the stopping methods introduced
here combine innovative estimates of recall with time series models used in Financial Trading. Experimental
results on several representative collections show that some stopping methods can reduce up to 95% of the as-
sessment effort and still produce a robust test collection. We demonstrate that the reduced set of judgments can
be reliably employed to compare search systems using disparate effectiveness metrics such as Average Preci-
sion, NDCG, P@100 and Rank Biased Precision. With all these measures, the correlations found between full
pool rankings and reduced pool rankings is very high.

1 Introduction

In Information Retrieval (IR), there is a long tradition of assessing the effectiveness of IR systems with test collec-
tions and evaluation measures. Through building and sharing test collections, the IR community fosters meaningful
comparisons among retrieval engines. Shared test collections are pervasive in well-known evaluation campaigns,
such as TREC (Voorhees & Harman, 2005), or NTCIR (Kando, Sakai & Sanderson, 2016). Furthermore, re-
search teams sometimes need to build their own testbeds, e.g. to evaluate retrieval algorithms in specific domains
(Balog & Neumayer, 2013; Losada & Crestani, 2016). However, creating an IR test collection is expensive and
time-consuming.

Generating relevance assessments is a major bottleneck in building test collections. It is customary to engage
humans in this process and, thus, producing large amounts of judgments becomes burdensome. The pooling
method is a standard approach to extract a query-biased sample of documents. In this method, each query is sent
to different search systems, and the top ranked documents supplied by the systems are merged into a pool of
documents. The pooled documents become candidates to be judged for relevance. However, a key question still
remains: how many pooled documents should we judge for each query?

Full-pool evaluation procedures are demanding. For example, in the TREC5 adhoc task, the pools were formed
by union of the top 100 retrieved documents. On average, there were more than 2,500 pooled documents per query

1



and the overall judgment effort consisted of evaluating 133, 681 query-document pairs. Even with a large budget
at our disposal, judging deeply the pools does not make the most of our resources. Some queries have many
relevant documents, while other queries have very few relevant documents. Therefore, judging the entire pool for
all queries is a waste of resources. Some evaluation exercises opted for subset pooling methods. For example,
judging documents up to depth k (with a low k). Such subsetting approach reduces the judgment effort, but still
ignores the specifics of the queries. Although there has been a steady stream of papers in cost-effective evaluation
methods (Aslam, Pavlu & Savell, 2003; Carterette, Allan & Sitaraman, 2006; Moffat, Webber & Zobel, 2007;
Cormack & Lynam, 2007; Losada, Parapar & Barreiro, 2016), we claim that there has been little research on when
to stop making relevance assessments. Stopping is a practical problem in creating IR test collections, and we
provide here a comprehensive study on this topic.

Combining effective adjudication methods with smart stopping permits to reduce the number of judgments per
query. Following this strategy, evaluation exercises could spend the available budget on larger sets of queries. As a
matter of fact, there is a growing tendency to do fewer judgments per query (Sanderson & Zobel, 2005; Bodoff &
Li, 2007; Webber, Moffat & Zobel, 2008). Building test collections with more topics and less judgments per topic
has been also a priority in challenges like the Million Query TREC Track (Carterette, Pavlu, Kanoulas, Aslam &
Allan, 2008). However, existing methods often take arbitrary decisions to reduce the judgment effort. Our paper
provides systematic ways to reduce the effort required to create relevance judgments for each query.

The specific contributions of this paper are:

• To the best of our knowledge, this is the first study that works with a diversified set of performance metrics
and studies when to stop making relevance assessments. We provide a comprehensive analysis of different
stopping strategies, and propose ways to evaluate them.

• We define, implement and test a series of new methods for stopping the judgment process. This covers a
wide range of methods, including methods adapted from Time Series Analysis and Financial Trading.

• We propose an innovative form to estimate recall. This new estimate is employed here to support some
stopping methods, but it can also contribute in other areas beyond IR evaluation.

• The results clearly demonstrate that some stopping methods can substantially reduce the assessment effort
and still produce reliable test collections. As a matter of fact, the reduced set of judgments can be reliably
employed to compare search systems using recall-based and utility-based metrics.

2 Stopping Methods

Let us define the problem of stopping in building an IR test collection. For each query, we have multiple runs
(rankings of documents in decreasing order of estimated relevance). These runs are supplied by different search
systems. Let us consider a document adjudication method that takes the set of runs and iteratively extracts docu-
ments to be judged for relevance. We aim at reducing the costs associated to building test collections and, therefore,
we assume that the document adjudication method selects documents following some estimation of relevance (e.g.
top ranked documents go first). A stopping method is a mechanism that decides when to stop doing judgments. A
process with no stopping criterion would be equivalent to judging the entire set of retrieved documents.

2.1 Basic stopping methods

We distinguish two main classes of stopping methods. A fixed-length method stops when a given number of
judgments is reached:

• stop after n judgments: It consists of judging n documents, and stopping after the nth relevance assessment.

Variable-length stopping methods follow different strategies in making the stopping decision:
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• stop after judging x% of the pool: It consists of judging a given percentage of the pool. For each query,
the pool is the union of the top ranked documents supplied by the contributing runs.

• stop after n rels: A natural approach consists of stopping after finding a given number of relevant docu-
ments. However, this stopping method is questionable because the number of relevant documents per query
is known to have a large variance. We would produce many unnecessary judgments for queries with few
relevant documents, and we would miss many relevant documents for other queries.

• stop after n non rels: This method stops right after extracting the nth non-relevant document. So, a query
with many relevant documents will be deeply explored. However, this method is problematic for queries
with few relevant documents. We could stop with no relevant documents extracted.

• stop after n consecutive non rels: We only stop with a long sequence of non-relevant items. The occurrence
of n consecutive non-relevant documents might indicate that the pool has become exhausted of relevant
documents. This method keeps extracting documents from a pool that has supplied many non-relevant
documents, provided that non-relevant documents alternate with relevant documents.

Observe that stop after n rels, stop after n non rels and stop after n consecutive non rels might produce ex-
haustive judgments (when the respective stopping criterion is never met).

We also propose another class of stopping methods that implement different strategies to estimate our chances
of finding relevant documents in the upcoming assessments. All these methods need an estimate of the number of
relevant documents that we can find in the unjudged documents. First, we propose an innovative way to make this
estimation. Then, we present a number of stopping methods based on such predictions.

2.2 Predicting relevance in the unjudged set of documents

Zobel (Zobel, 1998) analyzed the depth of the rank used to form the pools and proposed a method for estimating
how many unjudged documents are relevant. Consider a set of runs, explored up to depth k. This depthk pool
identifies n relevant documents. Now, imagine that we increase the depth to k + 1. The depthk+1 pool contains
n relevant documents plus nk+1 new arrivals of relevant documents. Zobel made a global analysis (by averaging
over a set of queries) and concluded that a power law distribution provides a good estimate of the number of
new relevant documents found at each pool depth. He also suggested that it would be interesting to investigate
whether similar estimates can be obtained for individual queries. We took up this challenge and adapted Zobel’s
proposal in a number of ways. We do not work directly with the contributing runs, but iteratively examine the
pooled documents as provided by the adjudication method. As a consequence, the input to our stopping process
can be seen a ranked list of pooled documents. We will therefore study the relationship between the rank position
in this list and the (binary) relevance of the documents at each position. Zobel hypothesized that good predictions
could be made from an initial assessment of some documents from the top of the runs. We tested this proposal
and found that many assessments are needed to obtain a reliable fit. For example, a curve fitted to the first 10
judgments strongly overestimates the number of relevant documents at lower positions. The high proportion of
relevant documents at the initial positions makes predictions overly optimistic. The need of several dozens of
judgments to have reliable fits prevents the implementation of early stopping methods. We opted for a different
strategy based on training queries. Our innovative approach is explained in the next paragraphs.

2.2.1 Training stage

Given a set of training queries (Qtrain = {q1, . . . , qntq}), with full pool judgments, we study the pattern of
occurrence of relevant documents in the sequence of judgments. For each query we have a list of documents
ranked by decreasing estimated relevance (as provided by the document adjudication method), and we know the
relevance value (∈ {0, 1}) of each document in the list. The length of each ranked list equals the size of the pool
for the training query and, therefore, the lengths of the ntq rankings (l1, . . . , lntq ) are not the same.
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Figure 1: Fits obtained with two training queries. The X axis (rank) represents the rank positions and the Y axis
(rel) represents our chances of finding a relevant document at each rank position. The circles in the plot are the
relevant documents (rel=1) or non-relevant documents (rel=0) found in the ranking. The solid line is the fitted
curve estimated with linear regression.

For each training query (q ∈ Qtrain), we fit a curve from the relevant and non-relevant documents found at
the different rank positions. This curve represents the pattern of occurrence of relevant documents as we go down
in the ranked lists. More specifically, we use the following function:

rel = C · ps − 1 (1)

where p is the position in the ranked list, rel weights our chances of finding a relevant item at that position,
and C and s are parameters of the function1. Doing some maths:

log(rel + 1) = logC + s · log p (2)

Observe that rel can be equal to 0 and, thus, the subtraction of 1 in eq. 1 avoids here a log(0) term. With
linear regression we can straightforwardly obtain s and C, inject them into eq. 1, and produce our estimates of rel
for any position p. By sq and Cq we refer to the parameters of the function associated to query q. Figure 1 shows
two fits, one obtained with a query with few relevant documents and another one obtained with a query with many
relevant documents.

Given the fitted curves, we can estimate the average number of relevant documents in any part of a ranking
(e.g., from position i to position j, j ≥ i):

estimated rels(i, j)[q] =

j∑
p=i

(Cq · psq − 1) (3)

avg rel(i, j)[q] =
estimated rels(i, j)[q]

j − i+ 1
(4)

1Observe that rel does not follow a probability distribution (the proposed fitting does not constrain rel to be in [0, 1]).
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With a sufficient number of training queries we can extract a variety of patterns of relevance, and employ them
to make online predictions for test queries.

2.2.2 Test stage

Given a test query, the training queries’ fitted curves can be used to estimate what we can expect from the ranking
associated to the test query. The idea is to i) start judging documents from the pool of the test query, ii) estimate
the similarity between the pattern of relevance of the current test query and the pattern of relevance of each training
query, and iii) make a weighted estimation of relevance.

Prediction should be mainly guided by training queries with high resemblance to the test query. Imagine a test
query whose first 10 assessments identified 8 relevant documents. Our prediction for the upcoming assessments
should give more weight to training queries whose P@10 was about 0.8. First, we need a performance measure,
Perf@n, which computes the effectiveness of the ranking at a given position n. We consider two alternatives:

Perf@n[q] = P@n[q] (5)

Perf@n[q] =

∑
i∈pos rels P@i[q]

n
(6)

where pos rels is the set of positions of the relevant documents in the top n.
The first formula computes the precision at the given cutoff value and, therefore, ignores the positions of the top

n documents that are relevant. The second formula accumulates the precision scores at the relevant documents.
Observe that we do not divide this sum by the total number of relevant documents (that is, we do not compute
Average Precision) because we only know the total number of relevant documents for the training queries. In the
following, the labels P and avgP refer to the estimation variant shown in eqs 5 and 6, respectively.

Imagine that we have judged n documents from the ranking of a test query (testq) and we want to predict the
number of relevant documents in the remaining set of unjudged documents. Each training query can be used for
such prediction, but the queries whose performance is closer to testq’s performance should be given more weight.
To meet this aim, we define the following measure of closeness between queries:

closeness@n(qa, qb) = 1− |Perf@n[qa]− Perf@n[qb]| (7)

Next, we can make a weighted prediction of relevance for any range of positions {i..j} associated to unjudged
documents (such that n+ 1 ≤ i ≤ j):

predicted rel@n(i, j)[testq] =

∑
q∈Qtrain closeness@n(testq, q) · avg rel(i, j)[q]∑

q∈Qtrain closeness@n(testq, q)
(8)

And we can estimate the total number of relevant documents:

total rels@n[testq] = nrels so far@n[testq] + (ltestq − n) · predicted rel@n[testq](n+ 1, ltestq) (9)

where nrels so far@n[testq] (∈ {0, . . . , n}) is the number of documents judged as relevant among the top n
documents. This estimate can be used to estimate F at the current point n:

estimated F@n[testq] =
2 · P@n[testq] ·R@n[testq]
P@n[testq] +R@n[testq]

(10)

P@n[testq] =
nrels so far@n[testq]

n
(11)

R@n[testq] =
nrels so far@n[testq]

total rels@n[testq]
(12)
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Figure 2: Real F vs Estimated F in the test collections.

Observe that the F’s estimate has perfect knowledge on precision, and estimates recall based on predicting the
total number of relevant documents. Figure 2 plots this estimate for three TREC adhoc collections (TREC6-8,
whose estimates were done using TREC5 for training) and two Clinical Track collections (CT15-16, where CT14
was the training collection). The plots show that our procedure makes a good job at learning the shape of the
curves. In TREC6-8, we tend to slightly underestimate performance. In CT15-16, instead, we tend to overestimate
performance. We believe that this is due to the characteristics of training queries (relative to the test queries). This
suggests that we could further improve our estimates. For example, the current weighted average (eq. 8) takes
into account all training queries and, thus, it is dependent on the overall occurrence of relevant documents in the
training pools. A possible improvement could be to simply ignore all training queries that are dissimilar to the test
query (e.g. by doing the estimation based only on the closest queries). This is left for future work.

2.3 Stopping methods based on estimated F

Stopping the assessment process based on predicting F is judicious. Figure 3 provides evidence to support this
claim. It plots the (real) F against the number of judgments (averaged over the 50 queries)2. The graph also
plots the Kendall correlation between the official ranking of systems (full pool) and the ranking of systems built
with each subset of judgments (computed with Average Precision). In all collections, we achieve high levels of
correlation with few assessments, and the point with the highest F always has high correlation.

In practice, the real F is unknown, but the stopping decision can be guided by the estimate of F (eq. 10). We
propose several methods that iteratively update the estimate of F (based on the available judgments) and make the
stopping decision based on the evolution of the estimated F:

• stop if bearish crossover. After n judgments, we have a series of n values of estimated F (estimated F after
the 1st judgment, estimated F after the 2nd judgment, etc). We might want to keep assessing documents
as long as the overall direction of the series of estimated F is upward. In Time Series analysis, the moving
average (MA) model is a well-known method for modeling univariate time series (Cootner, 1962). An MA
analyzes data points by computing series of averages of different subsets of the full set of points. Imagine a
series of data points (e.g. temperature of a patient, collected at 1h intervals), and a fixed window size (e.g.
5h). The first element of the MA is the average of the initial 5 temperatures available. Then, the window is

2The judgments were ordered by Hedge, which is an online algorithm that is highly effective for prioritizing relevance judgments (see
section 3.1).
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Figure 3: Evolution of F with increasing number of judgments. The graph also plots the Kendall correlation
between the official ranking of systems and the ranking of systems built with the subqrel obtained at each possible
stop point.

shifted forward: the first temperature is excluded and the 6th temperature is included. The second element
of the MA is the average of this new window of 5 values. This shifting is repeated over the entire series of
values. The MA plot connects all these numbers, and it is effective at smoothing out short-term fluctuations
of the original data and highlighting long-term trends. In Economics, MA models are regularly employed to
track financial data (for example, stock prices). We propose a stopping method based on MA and inspired
by Financial Trading. As stock prices are moving up, the MA will be below the price, and when stock prices
are moving down the MA will be above the current price. A crossover is a signal used by many traders
to identify shifts in momentum. A basic type of crossover happens when the price of a stock moves from
one side of the MA and closes on the other. Traders track these movements to make decisions on entry/exit
strategies. A cross below MA –or bearish crossover– occurs when the stock price breaks below the MA
and is often interpreted as a sell signal (beginning of a downtrend, the stock should be sold). Conversely, a
buy signal, suggesting the beginning of an uptrend, is associated to a close above the MA from below (the
stock price breaks above the MA, bullish crossover). Figure 4 plots an example of a stock price and its MA
(smooth dashed line). The lines show several crossovers. In early September, we had a bearish crossover
because the stock price broke below the MA. In early November, we had a bullish crossover because the
stock price broke above the MA.

We are interested in tracking the estimated F and keep assessing documents as long as the curve of estimated
F is moving up. We iteratively construct a curve of estimated F, compute its MA, and stop the assessment
process when we detect the beginning of a downtrend (F crosses below its MA). This stopping method has
one parameter: the size of the window used to compute the MA (w). The pseudocode of the three algorithms
presented in this subsection is available at our institutional website 3.

• stop if no better expectations. The previous method estimates F with perfect knowledge on precision. For
example, after 5 judgments, we know the precision achieved so far, and we just need an estimate of the total

3http://tec.citius.usc.es/ir/code/jasist submission2017 stopping algs.pdf
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Figure 4: The plot shows the price of a stock (solid line) and the 50-day moving average (dashed line).

number of relevant documents in order to get an estimate of F@5. However, at any given position n, we can
estimate not only F@n, but also F@p (∀p > n). The estimation of F@p (∀p > n) needs to estimate both
P@p and R@p. We can predict the number of relevant documents in any range of positions and, therefore,
it is straightforward to use our predictions (see section 2.2) to estimate not only recall but also precision. A
natural stopping strategy is to terminate the assessment process at a point n whose estimated F@n is greater
than the estimated F@p,∀p > n (if we do not expect to improve F then why should we keep assessing
documents?). A nice feature of this method is that it only requires the training queries (it has no additional
parameters).

• stop if fall below max. This method stores the maximum estimated F achieved so far, and stops when the
current estimation of F is below a given proportion of the maximum. The intuition is that if we improve
over the maximum then we should keep doing judgments; but if the current estimated F substantially falls
below the maximum then we should stop. This method has a parameter, prop, which sets the proportion. For
example, if the maximum estimated F is 0.6 and the proportion is 0.9 then we would stop with an estimated
F below 0.54.

3 Experiments

The experiments described here are fully reproducible. The reader can download our code and instructions from
our institutional website4. This includes an implementation in R of all the stopping methods and the adjudication
strategy (Hedge).

4http://tec.citius.usc.es/ir/code/pooling stopping.html
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TREC5 TREC6 TREC7 TREC8 CT14 CT15 CT16
(train) (test) (test) (test) (train) (test) (test)

# queries 50 50 50 50 30 30 30
avg. pool size (# docs) 2692.3 1445.1 1611.1 1785.9 1264.9 1022.8 1256.9
min pool size (# docs) 1623 914 1025 1114 908 620 783
max pool size (# docs) 4472 1902 2585 3015 1669 1453 1710
avg % of relevant docs in the pool 4.1% 6.4% 5.8% 5.4% 9.2% 15.1% 14.8%
avg. # relevant docs in the pool 110.5 92.2 93.5 94.6 111.9 143.0 182.0

Table 1: Main statistics of the collections used for experimentation.

3.1 Test Collections

Table 1 presents the statistics of the collections used for experimentation. TRECs 5-8 are classical adhoc collec-
tions, while CTs 14-16 are newer collections developed under the TREC Clinical decision support Track (search
task in the medical domain). We obtained from TREC all the runs (ranked lists of documents for each topic) that
contributed to the pool. For each topic, we ordered the pooled documents following the Hedge algorithm, and
simulated the assessment process on a sequential basis5. First, the top ranked document (as selected by Hedge) is
assessed for relevance6. Next, Hedge re-ranks the remaining pooled documents and the process continues until the
stopping method resolves to stop.

A number of studies have proposed different prioritization methods to adjudicate pooled documents for judg-
ment (Cormack, Palmer & Clarke, 1998; Moffat et al., 2007; Carterette, 2007; Aslam, Pavlu & Yilmaz, 2006;
Losada et al., 2016). A recent comparison of subset pooling methods can be found in (Losada, Parapar & Barreiro,
2017). This comparative study concludes that the Hedge algorithm performs the best in building shallow judgment
sets. We therefore adopted Hedge as our reference method to adjudicate documents for judgment and focused
on evaluating the stopping methods discussed above. Hedge is an online learning method that maintains a set of
weights for the participating systems, ranks the pooled documents based on the system weights and document
positions, and reacts to the assessments by updating the system weights and re-ranking the remaining unjudged
documents. The update is governed by a learning rate parameter that determines how quickly the algorithm reacts
to new judgments7. A full description of the Hedge algorithm can be found in (Aslam et al., 2003) (see also
(Losada et al., 2017), Algorithm 4).

3.2 Evaluation Metrics

For each query, every stopping method determines a point where to stop doing relevance judgments. After applying
the stopping method on all queries, we obtain a set of relevance judgments that can be used for quality assessment.
Two main dimensions will be used for evaluation:

• Rank correlation measures. A standard way to measure the quality of subset pooling methods consists
of employing the official ranking of systems as the basis for comparison. More specifically, the method
ranks the runs submitted to TREC using the official judgments (full pool), and ranks the same runs using
a different set of judgments. An effectiveness metric is needed for producing the rankings of the runs.
The effectiveness metric plays here a key role. Evaluating stopping methods based on a single measure,
such as Average Precision, would give little clue as to what extent the subqrels are reusable to compare
systems using other effectiveness measures. There is a complex interplay between effectiveness metrics and
judgment pools. We therefore considered several effectiveness metrics and studied the implications of the

5In TRECs 5-8 the pool was the union of the top 100 documents retrieved by any run. In the CTs, the pool was formed from all
documents retrieved in ranks 1-20 by any run in union with a 20% sample of documents not retrieved in the first set that were retrieved in
ranks 21-100 by some run.

6Every time a relevance judgment is required we obtain it from the official TREC judgments.
7Following standard practice, this parameter was fixed to 0.1 in all our experiments.
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stopping methods for all of them. Following (Lu, Moffat & Culpepper, 2016), our study included two main
families of evaluation metrics: recall-based metrics, Average Precision (AP) and Normalized Discounted
Cumulative Gain (NDCG), and utility-based metrics, Precision at 100 and Rank Biased Precision (RBP)8.

High correlation means that the judgment sets ranked the runs similarly. Low correlation, instead, means
that each judgment set has ranked the runs differently and, thus, we cannot trust the subset pooling method.
Kendall’s τ has been commonly applied to compare these two rankings. Another rank correlation measure
that has been used in comparing rankings in IR is AP correlation (Yilmaz, Aslam & Robertson, 2008).
Unlike Kendall’s τ , AP correlation (τAP ) considers that discrepancies among those systems at high positions
in the rankings are more important than those among systems at low positions in the rankings. AP correlation
fits well with IR evaluation, where we are often concerned about identifying the best performing systems.
In our experimental report, we provide results for both correlation measures. A number of researchers have
considered that levels of correlation above 0.85 indicate that the rankings of runs, though not identical, are
highly similar (Voorhees, 2000, 2001). Such high correlation would permit to conclude that variations in
relevance judgments did not impact noticeably on the reliability of the test collection.

• Number of judgments required. We pursue stopping methods that are reliable and low cost (the fewer
judgments, the better). We therefore report the minimum, maximum and average number of judgments done
(over all queries).

For descriptive reasons, we will also report the F-score associated to the resulting qrels (averaged over all
queries). The most advantageous use of assessors’ time occurs when the assessors focus on relevant documents,
and the aim of the evaluation task is to identify as many relevant documents as possible. A natural way to evaluate
these two aspects of the assessment process consists of extracting the set of judgments done for each query and
compute a classic set-based measure of effectiveness, such as F1. Under this setting, precision is the fraction of
assessed documents that are relevant and, thus, it is a good estimator of how well we have used the assessors’ time.
Recall is the fraction of (pooled) relevant documents that have been assessed and, thus, it gives us an indication on
how well we have identified the existing relevant documents.

3.3 Results

The values of the parameters of the stopping methods were learned by optimizing F over the training collections
(TREC5 and CT14, respectively). These two collections were also used for learning the fits of the training queries
(see Fig. 1). These fits together with the performances of the training queries (Perf@n ∀n) were stored and
used for supporting recall predictions of test queries. Although this training stage requires a collection with full
pool judgments, a single training collection can be employed for supporting early stopping in many other similar
evaluation exercises.

The parameters learned with the training collection (and tuning grids) are reported in Table 2, and the test
results are shown in Tables 3 and 4. The fixed-length strategy (stop after n judgments) requires more judg-
ments than other competing methods and, furthermore, it leads to correlations below .85 in some collections
and metrics (CT16-RBP). Judging a given percentage of the pool is a low cost strategy (low average stopping
points) but it has many correlations below .85 (TREC6-AP, CT15-RBP, CT16-AP/RBP). Stop after n rels and
stop if no better expectations are costly strategies and they have some correlations below .85 (CT15-RBP, CT16-
AP/RBP). Stopping after finding n non-relevant documents, stop after n consecutive non rels and stop if fall -
below max have a moderate cost but they show correlations below .85 in CT15 and/or CT16. The most consistent
strategy is stop if bearish crossover (avgP). It is low cost and exhibits a solid behavior over all collections. For all
the metrics tested (AP, NDCG, P@100 and RBP), stop if bearish crossover (avgP) led to a subset of judgments
that ranked retrieval systems similarly to a full pool approach. Both τ and τAP show very high correlations for the

8NDCG was computed following the traditional setting incorporated in trec eval (log2 discounting factor and gain levels set to the
relevance levels available in the test collections). The RBP parameter was set to 0.8.
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Stopping Method Tuned Parameter (TREC5,CT14) Tuning Grid
stop after n judgments n = 103, 203 1, 2, . . . ,max pool size
stop after judging x% of the pool x = 4%, 15% 1%..10%, 15%, 20%
stop after n rels n = 60, 50 10..100 (steps of 10)
stop after n non rels n = 80, 80 10..100 (steps of 10)
stop after n consecutive non rels n = 15, 20 1..10, 15, 20, 50, 100
stop if bearish crossover (P) window size (MA) = 40, 70 10..100 (steps of 10)
stop if bearish crossover (avgP) window size (MA) = 30, 80 10..100 (steps of 10)
stop if no better expectations (P) - -
stop if no better expectations (avgP) - -
stop if fall below max (P) prop = 0.95, 0.93 0.90..0.99
stop if fall below max (avgP) prop = 0.93, 0.90 0.90..0.99

Table 2: Tuned parameters after optimization with the training collections (TREC5 and CT14).

two classes of effectiveness metrics. Although this method appears to be the most preferable choice, an important
outcome of these experiments is that there are a number of reasonable stopping methods whose resulting set of
judgments can be reliably used to compare search systems under different performance measures. Depending on
the available budget and other constraints, an experimenter can use our comparison to select her method of choice.

4 Discussion

Our evaluation provides a thorough understanding of when to stop doing relevance judgments. The results clearly
demonstrate that some stopping methods can substantially reduce the assessment effort, and the suitability of the
resulting relevance assessments as a tool for evaluating retrieval performance was not compromised.

With stop if bearish crossover (avgP), the average required effort is about 100 or 185 judgments per query (in
TREC and CT collections, respectively). This is a substantial reduction over a full-pool approach. In TREC6,
the average pool size is 1445.1 documents, and stop if bearish crossover (avgP) stops on average after 92.88
judgments. This means that only 6.4% of the pooled documents had to be assessed for relevance. In TREC7-8
and CT15-16, the percentages of pooled documents that are judged are 6.4%, 5.9%, 18%, and 15.1%, respectively.
Saving up to 93% of the judgments is really significant. These savings directly reduce the costs of creating the test
collection. The creators of test collections can spend these extra savings on building testbeds with a much larger
set of topics.
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TREC6
AP NDCG P@100 RBP

Stopping Method Stop pt.(Avg Min Max) F P R τ τAP τ τAP τ τAP τ τAP

after n judgments 103 103 103 .347 .37 .59 .88 .88 .94 .94 .88 .89 .90 .89
after judging x% of the pool 57.8 37 76 .348 .45 .49 .80 .81 .90 .91 .87 .87 .88 .87
after n rels 842.9 64 1894 .212 .28 .76 .96 .97 .96 .97 .89 .89 .90 .91
after n non rels 136.2 80 341 .381 .32 .67 .91 .90 .95 .96 .92 .94 .94 .95
after n consecutive non rels 128.2 15 652 .435 .36 .64 .86 .86 .92 .93 .93 .95 .94 .95
if bearish crossover (P) 107.9 41 341 .434 .38 .65 .89 .89 .94 .95 .92 .94 .93 .92
if bearish crossover (avgP) 92.9 31 328 .441 .41 .62 .87 .86 .93 .94 .91 .91 .92 .92
if no better expectations (P) 516.5 71 1629 .294 .37 .65 .90 .89 .94 .95 .88 .89 .90 .89
if no better expectations (avgP) 532.5 57 1651 .277 .37 .64 .89 .89 .94 .95 .87 .89 .89 .89
if fall below max (P) 132.9 23 611 .436 .35 .67 .88 .87 .93 .94 .93 .95 .95 .93
if fall below max (avgP) 131.3 8 628 .426 .34 .67 .88 .88 .93 .94 .94 .96 .94 .93

TREC7
AP NDCG P@100 RBP

Stopping Method Stop pt.(Avg Min Max) F P R τ τAP τ τAP τ τAP τ τAP

after n judgments 103 103 103 .405 .40 .59 .93 .93 .94 .96 .94 .94 .94 .94
after judging x% of the pool 64.5 41 103 .415 .50 .49 .89 .87 .93 .95 .93 .93 .91 .91
after n rels 858.2 70 2322 .244 .29 .74 .95 .95 .95 .96 .94 .94 .93 .93
after n non rels 136.9 83 270 .427 .35 .67 .94 .94 .94 .96 .96 .96 .95 .96
after n consecutive non rels 149.3 16 622 .488 .39 .67 .93 .92 .95 .96 .97 .97 .98 .98
if bearish crossover (P) 118.4 50 284 .479 .41 .65 .94 .93 .94 .96 .96 .96 .95 .96
if bearish crossover (avgP) 104.3 42 274 .490 .44 .63 .93 .93 .93 .95 .96 .96 .95 .95
if no better expectations (P) 384.9 72 1576 .363 .42 .62 .93 .93 .94 .95 .93 .94 .92 .93
if no better expectations (avgP) 391.6 58 1600 .345 .42 .60 .92 .92 .94 .95 .93 .94 .92 .93
if fall below max (P) 138.8 26 544 .468 .38 .66 .93 .94 .94 .96 .97 .97 .97 .97
if fall below max (avgP) 141.3 21 560 .468 .38 .66 .93 .92 .94 .96 .97 .97 .97 .97

TREC8
AP NDCG P@100 RBP

Stopping Method Stop pt.(Avg Min Max) F P R τ τAP τ τAP τ τAP τ τAP

after n judgments 103 103 103 .417 .42 .62 .95 .96 .91 .92 .94 .94 .96 .96
after judging x% of the pool 71.5 45 121 .445 .51 .56 .93 .94 .89 .91 .94 .94 .95 .96
after n rels 865.8 67 2562 .239 .30 .72 .95 .96 .93 .94 .94 .92 .97 .97
after n non rels 141.9 86 283 .446 .37 .71 .96 .97 .93 .93 .97 .97 .98 .98
after n consecutive non rels 127.4 15 428 .533 .45 .71 .96 .97 .92 .92 .98 .98 .97 .97
if bearish crossover (P) 120.7 43 382 .516 .44 .70 .96 .97 .92 .92 .98 .98 .98 .98
if bearish crossover (avgP) 105.6 34 330 .530 .48 .68 .95 .96 .92 .92 .96 .96 .96 .96
if no better expectations (P) 394.5 70 1603 .351 .43 .60 .93 .95 .91 .92 .94 .93 .95 .95
if no better expectations (avgP) 400.9 61 1626 .340 .43 .59 .93 .95 .91 .92 .94 .92 .94 .95
if fall below max (P) 133.5 28 432 .496 .41 .71 .96 .97 .93 .93 .98 .98 .98 .97
if fall below max (avgP) 137.5 27 450 .501 .41 .71 .95 .97 .92 .92 .98 .98 .98 .98

Table 3: Test Results. The columns τ and τAP report the Kendall τ correlation and AP correlation between
the official ranking of systems (computed with the full pools) and the ranking of systems computed with the
corresponding subqrels. These correlations are computed for each performance measure (AP, NDCG, P@100 and
RBP).
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CT15
AP NDCG P@100 RBP

Stopping Method Stop pt.(Avg Min Max) F P R τ τAP τ τAP τ τAP τ τAP

after n judgments 203 203 203 .333 .32 .49 .91 .92 .90 .92 .90 .91 .88 .87
after judging x% of the pool 153.4 93 218 .325 .37 .41 .89 .90 .88 .89 .89 .90 .84 .84
after n rels 479.9 50 1453 .251 .38 .59 .86 .87 .87 .88 .87 .88 .82 .83
after n non rels 151.1 81 465 .352 .34 .41 .87 .88 .85 .87 .89 .89 .88 .88
after n consecutive non rels 236.6 20 1092 .345 .28 .47 .84 .84 .84 .85 .92 .92 .90 .89
if bearish crossover (P) 167.6 71 408 .366 .35 .44 .89 .91 .86 .87 .90 .91 .88 .87
if bearish crossover (avgP) 184.4 86 416 .372 .34 .47 .91 .92 .90 .91 .91 .92 .90 .89
if no better expectations (P) 302.1 73 1244 .269 .38 .48 .86 .88 .86 .87 .86 .88 .83 .83
if no better expectations (avgP) 303.5 63 1260 .262 .39 .47 .85 .87 .85 .86 .86 .87 .82 .82
if fall below max (P) 180.2 13 663 .355 .32 .43 .83 .83 .85 .86 .91 .91 .90 .91
if fall below max (avgP) 198.9 15 826 .349 .30 .45 .83 .84 .85 .85 .91 .91 .91 .91

CT16
AP NDCG P@100 RBP

Stopping Method Stop pt.(Avg Min Max) F P R τ τAP τ τAP τ τAP τ τAP

after n judgments 203 203 203 .271 .29 .37 .87 .85 .89 .89 .89 .89 .81 .82
after judging x% of the pool 188.5 117 256 .266 .29 .34 .86 .84 .89 .89 .89 .89 .80 .80
after n rels 447.0 54 1428 .217 .31 .49 .84 .84 .90 .90 .87 .87 .81 .82
after n non rels 144.6 81 447 .281 .31 .29 .84 .83 .87 .87 .89 .89 .81 .79
after n consecutive non rels 293.9 20 1461 .279 .23 .38 .75 .77 .86 .87 .92 .91 .83 .84
if bearish crossover (P) 185.3 72 460 .302 .31 .35 .85 .84 .88 .88 .90 .89 .85 .85
if bearish crossover (avgP) 190.6 85 460 .302 .31 .36 .86 .85 .88 .88 .90 .89 .85 .85
if no better expectations (P) 294.3 74 1182 .215 .33 .38 .82 .81 .88 .88 .87 .87 .76 .77
if no better expectations (avgP) 287.1 60 1186 .203 .33 .36 .79 .79 .87 .86 .85 .86 .74 .75
if fall below max (P) 192.4 13 1238 .261 .26 .30 .66 .67 .82 .81 .89 .89 .82 .81
if fall below max (avgP) 207.4 16 1238 .268 .26 .32 .69 .70 .81 .82 .91 .88 .83 .82

Table 4: Test Results. The columns τ and τAP report the Kendall τ correlation and AP correlation between
the official ranking of systems (computed with the full pools) and the ranking of systems computed with the
corresponding subqrels. These correlations are computed for each performance measure (AP, NDCG, P@100 and
RBP).

The premise of these stopping methods is that pooled documents are ordered by predicted relevance. A poten-
tial criticism is that this ordering of documents might impact on the assessments. However, this type of ordering
of assessments has been adopted by some evaluation campaigns. For example, NTCIR sorts the pooled documents
primarily by the number of the systems that returned the document (Sakai & Lin, 2010). As argued by Sakai and
colleagues (Sakai et al., 2008), there is no evidence that ordering the assessments by predicted relevance really
biases them and affects results. Ordering the assessments by predicted relevance makes it easier for the human as-
sessors to make judgments more consistently and efficiently than when relevant documents are spread across a list
of judgments (Sakai et al., 2008). Aslam (Aslam et al., 2006) also argued that more judging effort should be placed
on documents that are likely relevant. Similar conclusions were drawn by Zobel (Zobel, 1998). Although there is
still room for debate, we believe that a relevance-based ordering of the assessments should not be an obstacle in
practice.

Another potential criticism about this assessment process is that Hedge, the method used for adjudicating
documents for judgment, is dynamic. Dynamic methods select a document from the pool, send the document for
judgment, and the outcome of the assessment affects the decision on the next pick. The next relevance assessment
cannot start until the previous assessment has finished. Although such serialization complicates the assessment
exercise, the benefits of Hedge far outweight its disadvantages. Hedge requires much fewer total judgments than
other static (non-adaptive) methods. For a given query, the judgments required by static methods can be done in
parallel. However, static approaches require at least ten times more judgment effort than Hedge in order to achieve
high levels of correlation with respect to a full pool approach (Losada et al., 2017). Carterette and colleagues
(Carterette, 2007) also argued for dynamic methods and proposed stopping rules and document orderings that
adapt to distributions of relevance (as they are discovered through judging).

A natural question is whether a test collection built from these stopping procedures may be able to evalu-
ate systems that did not participate in the creation of the test collection. Following (Büttcher, Clarke, Yeung &
Soboroff, 2007), we tested reusability by analysing the ranks achieved by runs under leave-one-group-out (LOGO)
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AP NDCG P@100 RBP
TREC6 0.174 -0.217 -0.087 -0.478
TREC7 -0.393 -0.440 -0.417 -0.405
TREC8 0.014 -0.085 -0.070 0.000
CT15 0.225 0.314 -0.137 0.196
CT16 -0.757 -0.470 0.026 -0.322

Table 5: Reusability of the relevance judgments produced by stop if bearish crossover (avgP). The table reports
the average difference in the rank position of a system (position of the system using the subqrels with all systems
- position of the system using the subqrels with the system’s group removed).

experiments. For each run that contributed documents to the pools we simulated how removing all runs submitted
by the same group would affect its ranking. For each run, we repeated the following procedure over all queries: i)
those documents contributed only by runs from the same team are removed from the pool, ii) the remaining pooled
documents are ordered by the Hedge algorithm (using only the runs associated to other teams), iii) the prioritisa-
tion of pooled documents induced by Hedge is given to the stopping method, which produces a set of judgments,
iv) we ranked all systems (including the runs removed) with the LOGO qrels and with the qrels produced by the
stopping method with no system removed9, and v) by comparing the position of the runs in these two rankings we
can understand the effect that the stopping procedure had on systems whose group did not have the opportunity to
contribute to the pool. Table 5 reports the results of this experiment. On average, removing the run’s group leads to
negligible changes of positions in the ranking (all averages below 1 position). In some cases, the non-contributing
runs tend to be favored (for example, TREC6-AP). This may seem counterintuitive but observe that this is not a
full pool evaluation procedure and, therefore, the fact that a team inserts some unique documents into the set of
candidate documents does not guarantee that these unique documents are actually assessed for relevance (the stop-
ping procedure might stop earlier). In any case, the effect on runs from non-contributing teams is unnoticeable,
suggesting that the test collection can be reused reliably. Observe also that the absolute position differences are
lower than those reported in previous studies (Büttcher et al., 2007). By judging a selected set of top retrieved
candidates, we avoid a deep exploration of the contributing runs. Such shallow strategy appears to be good at
avoiding biases towards specific runs or teams.

5 Related Work

Zobel (Zobel, 1998) suggested that variable-length pools could be a cost-effective way to build retrieval collections,
and outlined a method to predict the overall number of relevant documents at different pool depths. As argued in
Section 2, some stopping methods proposed here are evolutions over Zobel’s proposal. Our prediction approach
works with training queries because the original approach suggested by Zobel leads to unreliable estimates for
individual queries.

Other authors have proposed sampling methods to extract a small set of judgments from the pool. For example,
Aslam and colleagues (Aslam et al., 2006) experimented with a method that produces a reduced set of judgments.
They showed that you could sample as little as 4% of the pools and still produce accurate results. The main goal
was to efficiently and accurately estimate standard measures of retrieval performance, such as AP. Their work is
theoretically appealing, but every performance measure leads to a different sampling distribution. Furthermore,
Aslam et al. did not investigate on how to determine the ideal number of judgments. They simply experimented
with two main configurations for determining the size of the judgment set (one of them led to an average of 29
judgments/query, and the other produced an average of 200 judgments/query). Carterette also contributed to this
area with a number of low-cost and robust evaluation strategies (Carterette., 2008). In (Carterette et al., 2006),
he and his colleagues proposed the Minimal Test Collection (MTC) method, which can be used to rank retrieval
systems with a minimal number of judgments. MTC is oriented to rank systems with AP. Given a set of judged

9This experiment was done with the stop if bearish crossover (avgP) method, whose resulting qrels have been shown to have high
correlation with respect to full pool judgments.
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documents and a set of unjudged documents, MTC defines a stopping condition based on how AP would change
if unjudged documents were judged relevant. This stopping condition was further developed into a probabilistic
stopping criterion. Our study focuses on stopping methods that work with past assessments and/or estimates
of relevance in the upcoming assessments; and stopping is not governed by how well we can estimate a single
performance metric, such as AP. We have been specifically concerned with when to stop and we showed that the
methods lead to robust relevance assessments for recall-based and utility-based effectiveness metrics. However, in
the future we will study how to apply the lessons learned by these teams to our research.

Cormack (Cormack et al., 1998) studied the efficient construction of IR test collections and proposed a method
to prioritize relevant assessments. The approach, called MoveToFront, consisted on focusing assessor effort onto
those contributing runs richer in relevant documents. Although Cormack’s study was not concerned with when
to stop, it showed that you could assess 10% of the pooled documents and still produce robust qrels. We did
not employ MoveToFront as our reference method to prioritize relevance assessments because MoveToFront was
shown to be inferior to Hedge in a recent study that compared many document adjudication strategies (Losada et
al., 2017).

Our paper is also related to the problem of finding an optimal point to stop reading a ranked list (Arampatzis,
Kamps & Robertson, 2009). Arampatzis et al. developed methods to select the cut-off value that optimizes a
given effectiveness metric. They casted the problem as a score distributional threshold optimization problem.
Other teams have applied score distributions to feedback tasks (Parapar, Presedo-Quindimil & Barreiro, 2014).
Threshold optimization was also examined for threshold calibration in information filtering (Zhai, Jansen & Evans,
2000). These threshold-based models could be also employed for implementing methods to stop making relevance
assessments. However, query–document retrieval scores would be required. This limits the applicability of such an
approach. The stopping methods proposed in our paper do not need scores and, thus, they can be applied to a wider
variety of cases. In any case, the use of score distributions to support IR evaluation requires further investigation.
A recent exploration on this topic (Losada, Parapar & Barreiro, 2018) showed that, if scores are available, score
distribution models can effectively prioritize relevance judgments.

Cormack and Grossman (Cormack & Grossman, 2016) were interested in total recall in technology-assisted
reviews. They presented stopping methods oriented to estimate when nearly all relevant documents have been
identified (e.g., based on detecting a knee on the recall versus rank curve). Although these methods afford a
good balance between high recall and low effort, we think that they are not well suited for our current purposes.
Building an effective test collection does not necessarily require to identify all relevant documents. The main
goal is to obtain a set of relevance assessments that are reliable to rank search systems (the fewer, the better). As
shown in our experiments, effective stopping methods skip many judgments (i.e. we miss many documents that are
potentially relevant) but still produce robust qrels. In any case, we will further investigate whether these high-recall
stopping methods can be adapted for building IR test collections.

6 Conclusions

In this paper we have proposed and compared a number of methods to determine when to stop doing relevance
judgments. We defined and implemented several methods that follow different intuitions to set a stopping point.
These stopping methods are guided by the past judgments or by estimates of relevance in the upcoming judgments.
We also proposed an innovative way to estimate recall, based on training queries, and we employed this estimate to
plot a curve of F versus rank. Tracking this curve with indicators derived from financial trading led to very effective
stopping methods. Some of them only required to judge 5 − 7% of the pooled documents, and the resulting qrels
ranked retrieval systems in a very accurate way. Furthermore, the new approach to estimate recall and to track the
curve of estimated F is potentially useful in other areas beyond IR evaluation.
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