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Abstract

This paper presents a study of the impact that several widely used threshold voltage (VT) extraction methods have on semi-

conductor device variability studies. The second derivative (SD), linear extrapolation (LE) and third derivative (TD) extraction

techniques have been compared to the standard method used in variability, the constant current criteria (CC). To estimate the in-

fluence of these methods on the results, an ensemble of 10.7 nm gate length Si FinFETs affected by RD variability have been

simulated. We have shown that variability estimators like the σVT , 〈VT 〉 and the VT shift, are heavily affected by the selected

extraction methodology, with up to 30% differences in the standard deviation. We have demonstrated that being aware of which

VT extraction technique has been used in a variability analysis is crucial to properly interpret the results as they may be heavily

method-dependent.
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1. Introduction

Threshold voltage is one of the key parameters of a transis-

tor’s operation [1]. Therefore, it is crucial to obtain a precise

and accurate VT value to correctly characterize a device perfor-

mance.5

Across previously published work many methodologies to

obtain VT appear, from the traditional band-bending condition

[2] to other vastly used techniques like the second derivative

method (SD) [1], constant current criteria (CC) [3], linear ex-

trapolation (LE) [4] and third derivative (TD) [1], that have10

been applied to different devices, such as MOSFETs [1], non-

crystaline TFETs [5] or juntionless transistors [6].

Multigate devices are the preferred architecture beyond the

32 nm technology node [7, 8] because of their superior gate

control in comparison with the conventional MOSFET [8]. How-15

ever, non-planar FETs also suffer from fabrication defects [3]

and operation degradation [9] due to variability issues, which

become serious limiting factors as the devices are continued

to be scaled down. Sources of statistical variability, such as

random dopants (RD) [10], line-edge roughness (LER)[11] and20

metal grain granularity (MGG) [3] can play an immense role

in device performance as they are one of the main factors con-

straining supply voltage, causing power dissipation [3]. There-

fore, detailed investigation on these devices’ operation and vari-

ability effects is crucial to aid both industry and academia to25

overcome these challenges.

Generally, when performing variability studies, the param-

eters that characterize the VT statistical distribution (e.g. stan-

dard deviation, mean value) are used as the main criteria to

assess the impact of a variability source on the device’s per-30

formance in the sub-threshold region [3]. However, a ques-

tion that may arise is how independent the statistical results

are from the selected VT extraction method. For this reason,

in this work we present a complete comparison of four com-
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monly used extraction techniques (SD, CC, LE and TD), with35

the aim of establishing the impact that VT extraction methods

have on statistical variability studies. These extraction tech-

niques have been implemented in our simulation toolbox, com-

pared in terms of computational cost and robustness and, tested,

by applying them to a RD affected state-of-the-art 10.7 nm gate40

length Si FinFET that has been scaled down from an experi-

mental device [12].

The paper is structured as follows: Section 2 contains a

thorough scheme of the simulated device, dimensions and mod-

els used. Section 3 explains the different implemented VT ex-45

traction methods.In Section 4 the gate voltage discretization

step and its effect on the figure of merit (FoM) obtained values

is studied. Next, a comparative study between the extraction

methods and its effect on variability is discussed and finally, in

Section 5 a complete overview of the results will be presented.50

2. Device characterization and simulator description

The device architecture studied in this work is a 10.7 nm

gate length Si FinFET (see schematics in Figure 1). This is

a state-of-the-art device characterized from experimental data

[13] [14] and later scaled following the ITRS guidelines [15].55

The device dimensions are, 10.7 nm gate length (LG), 10.7 nm

source and drain lengths (LS/D), 5.8 nm channel width (WCH),

15 nm channel height (HCH) and 0.62 effective oxide thick-

ness (EOT). Other important modeling parameters are the car-

rier concentrations in the different regions: a p-type uniformly60

doped to 1 × 1015 cm−3 channel and a n-type Gaussian doping

in the source/drain, with a peak value of 1 × 1020 cm−3 and a

lateral straggle σ = 3.45 nm. The effective perimeter of the

channel is 35.8 nm.

This device has been studied using our 3D in-house built,65

finite element, quantum corrected (density gradient), drift diffu-

sion (DD) simulator [16]. Several fitting parameters have been

adjusted in order to obtain the DD curves used in the work, and

this has been done through a meticulous calibration against sim-

ulation data from Non-Equilibrium Green’s Function (NEGF)70

[17], in the subthreshold region, and quantum corrected Monte

Figure 1: Schematics of the 10.7 nm gate length Si FinFET with a rectangular

shape channel [3].

Figure 2: DD simulated transfer characteristics for the 10.7 nm gate length Si

FinFET calibrated against both MC and NEGF simulations at VD,lin = 0.05 V.

Carlo (MC)[18], in the on-region, as shown in Figure 2. Some

of the main fitting parameters are, the saturation velocity (vsat),

coming from the Caughney and Tomas model [19], and the per-

pendicular critical electric field (ECN) [20] that mimic the be-75

havior of the curve in the on-region. Also for the subthreshold

region the DG electron mass in the transport (mx) and perpen-

dicular directions (my,mz) are calibrated to emulate source-to-

drain tunneling and quantum confinement effects as seen in [11]

and a perfect match has been achieved for the subthreshold and80

threshold regions. Note that all IV curves shown in this work

are normalized by the channel effective perimeter, resulting in

current per unit of length and have been simulated at a low drain

bias of 50 mV.
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Figure 3: Second derivative (SD) method implementation (blue dashed line) for

the FinFET device. The red dotted line indicates the position of VT.

3. Threshold voltage extraction methodologies85

In this section, we present four popular extraction metho-

dologies found in the literature, a straightforward constant cur-

rent, a geometrical linear extrapolation and two transconductance-

based methods like the second and third derivatives.

3.1. Second Derivative (SD)90

The second derivative method, also called transconductance

change method, is one of the most popular used methods [4].

It evaluates VT at the VG value where the derivative of the

transconductance (gm = dID/dVG) is maximum. In Figure 3,

the IV curve for the device is plotted along with the VT ex-95

tracted value where the red dotted line crosses the x-axis and

the second derivative curve with the blue dashed line. A draw-

back of this method is its sensitivity to noise and error, as it acts

as a high pass filter on the measured data [1]. One way of solv-

ing it, is to apply smoothing techniques or numerical fitting [1].100

3.2. Constant Current (CC)

Traditionally the constant current method has been the pre-

ferred technique used to obtain the threshold voltage value in

variability studies [1] [3] [21] due to its simplicity and speed.

This method determines VT at a critical user-defined value of105

the drain current (IDcc) where the transition point from linear to

Figure 4: Constant current (CC) criteria applied to the FinFET device with a

value of IDcc = 34.6 µA/µm (blue dashed line).

saturation regime happens [4]. A general criteria is to consider

IDcc = We f f /LG × I0, being We f f = 2×HCH + WCH the effective

perimeter of the Si channel [22], and I0 a constant current level

[23] defined by the user depending on the studied device. A110

graphical depiction of this method can be seen in Fig. 4.

3.3. Linear Extrapolation (LE)

The linear extrapolation method is another widely used tech-

nique based on the quadratic law [4]. Ortiz et al. state that,

using this method VT is obtained as the gate voltage axis inter-115

cept of the tangent of the IV characteristics at its maximum first

derivative (slope) point [1] (see Figure 5).

3.4. Third Derivative (TD)

The third derivative method consists on choosing the VT

where the third derivative of the current (d3ID/dV3
G) has a max-120

imum (see Figure 6). This extraction method disagrees with the

SD method inherently as the values extracted from the maxi-

mums and minimums of the function always fall to the sides

of the ones obtained with the SD method. Beside this, suc-

cessive differentiation amplifies the noise, hence increasing the125

inestability, making it less reliable. To reduce this induced error

fitting and smoothing techniques can be applied.

3



Figure 5: Linear Extrapolation (LE) method showing the extrapolated line (blue

dashed line) intersecting with the x-axis at VT (red dotted line).

4. Impact of the threshold voltage extraction method on

variability studies

The previously described VT extraction methods are depen-130

dent on the gate voltage step size used to obtain the IV curve.

Initially, using a fine step of 1 mV as reference, we have com-

pared the VT values calculated for several coarser step sizes in

order to assess the trade-off between the computational expense

and the threshold voltage accuracy. Table 1 shows the total sim-135

ulation time and the yielded VT values as a function of the gate

bias step size and the extraction method. It is evident that the

computational cost increases when the gate voltage step size

decreases. As shown in this table, in the SD, CC and LE meth-

ods, when using a step size of up to 0.05 V there is no loss of140

accuracy in the VT value, while allowing us to reduce the simu-

lation time 24 times. When the step size is further increased to

0.07 V, only the CC method is able to maintain an acceptable

extraction value. Note that, the TD method is clearly unstable

as soon as the step size is increased from 1 mV (as previously145

explained in subsection 3.4).

Next, a complete study to estimate the influence that the VT

extraction method has on variability results is performed. A set

of 300 devices affected by discrete RDs have been simulated

for the 10.7 gate length FinFET. The n-type dopants were gen-150

erated using a rejection technique from the continuous doping

Figure 6: Third derivative (TD) method (blue dashed line) plot showing the

extracted VT at the VG point where the third derivative is maximum (red dotted

line).

distribution and spread in the S/D regions via an atomistic grid

defined by the positions of the atoms [24]. A graphical repre-

sentation of a randomly chosen RD profile can be seen in Fig-

ure 7, displaying the electron concentration in a cross sectional155

view of the channel in the transport direction.

Two figures of merit (FoM) that characterize the RD in-

duced variability, VT and ION, are analyzed to compare the in-

fluence of the extraction methods on the results. Note that ION is

also extraction-dependent, as it has been defined as the current160

at VT + VD,sat, being VD,sat = 0.70 V. For each FoM the follow-

ing parameters have been analyzed: the ideal case where the

device has a continuous doping distribution in the S/D regions

(FoMideal), and the distribution mean value (〈FoM〉), standard

deviation (σFoM), skewness (γ(FoM)) and kurtosis (κ(FoM)).165

Before analyzing the variability results, we want to test the

robustness of the different methods when extracting an ensem-

ble of VT and ION values. For that, we have compared the stan-

dard deviations and mean values of the distributions obtained

from several sets of simulations performed with different gate170

voltages step sizes (ranging from 0.01 V to 0.05 V). The gate

voltage intervals do not affect either σION or the mean values

of VT and ION for the 4 analyzed extracted methods. However,

when the step size is increased from 0.01 V to 0.05 V there is a
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Table 1: Threshold voltage VT [V] results for the simulated Si FinFET at

VD = 0.05 V for the different gate voltage step sizes [V]. These values have

been extracted for the various implemented methods and the IV simulation time

for each step size is indicated.

Step Size SD CC LE TD Time

[V] [V] [V] [V] [V] [hours]

0.001 0.273 0.272 0.244 0.219 48

0.005 0.273 0.272 0.244 0.222 13

0.01 0.273 0.272 0.244 0.222 6

0.05 0.273 0.272 0.244 0.218 2

0.07 0.281 0.271 0.248 0.216 1.3

slight change (around 5%) in σVT for the SD and TD methods,175

whereas the CC and LE methods remain unaffected.

For the above mentioned reason, in Table 2 we only present

the different extracted parameters for a 0.01 V simulation step

size. Results show that the difference in σVT as a function of

the extraction method can be up to 3.2 mV , which amounts to180

a dramatical 30% increase in the variability. The largest σVT

variability is observed for the CC method.

Another meaningful parameter that can be extracted from

the statistical distribution is the RD induced threshold voltage

shift, ∆VT = VT,ideal − 〈VT 〉[V], that is also dependent on the185

extraction method utilized (see values in Table 2). ∆VT ranges

between −13 mV for the CC method (a value as large as σVT )

and −4 mV for the LE. Note that, if instead of CC or TD, the

selected method is LE or SD, the voltage shift would be unno-

ticed, changing the interpretation of the variability results. In190

case of σION, the obtained values are very close, with differ-

ences lower than 1 µA/µm (less than 3% of the total variability

in the on-region) between the extraction methods. ∆ION val-

ues are also similar among the four extraction methods (around

58 µA/µm). Note that for FinFET devices, ∆ION and ∆VT have195

opposite signs. For ION, the extracted results are practically

independent of the method and the same conclusions will be

Figure 7: 3D cross sectional view of the 10.7 nm gate length Si FinFET affected

by random dopant fluctuations showing the electron concentration throughout

the channel of the device.

drawn in variability studies, unlike what we have previously

shown for VT.

Figure 8 (top) shows the scatter plots of the threshold volt-200

age extracted with the implemented techniques versus the val-

ues for the SD method (VT SD). The correlation coefficient

(R) is also included for comparison. The same study has been

done for ION in Figure 8 (bottom). Note that, the VT values

between SD, LE and TD extraction methods are highly corre-205

lated, whereas that is not the case for the CC technique. This

is due to the fact that the CC method is based on a fixed cur-

rent criterion, whereas the remaining techniques try to capture

the change in the curvature of the IV characteristics. With re-

gards to the ION, all extraction methods are highly correlated210

due to the behaviour of the IV curves in the on-region, rein-

forcing the sense of independence of this FoM with the applied

extraction method. To better understand these different correla-

tion values, Fig. 9 shows for the simulated IV curves the VT and

ION extracted values. It can be clearly seen in this figure how215

the different extraction techniques follow different distributions

on the IV curves. VT excursion is happening in a part of the

curve where the behaviour is exponential (subthreshold region)

whereas ION changes are quadratic (saturation).

Figure 10 shows an example of three IV curves that have220

the same VT value when using the CC criteria. Note that these
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Figure 8: (Top) Correlation between the different VT extraction methods. This

correlation is measured through the correlation coefficient (R) for each method

against VT SD.(Bottom) Correlation between the different obtained ION results

with each extraction method. This correlation is measured through the correla-

tion coefficient (R) for each method against ION SD.

curves have significantly different ION, IOFF and sub-threshold

slope values. This is a inherent property of a method based on

a arbitrary criteria fixed by the user, which can be problematic

when dealing with sources of variability with a greater excur-225

sion like MGG [3].

Another characteristic parameter that has been studied is the

skewness (γ) of the distribution which provides a measure of its

symmetry. In our case, all the skewness values are negative for

VT (see Table 1), meaning that the left tails of these distribu-230

tions are longer, showing a noticeable asymmetry, particularly

in the distributions from the SD, LE and TD methods. On the

other hand, the ION distributions are right-skewed and their γ

values are very close for the four analyzed extraction methods.

We have also calculated the excess kurtosis (κ) that accounts235

for how heavy or light-tailed a distribution is when compared

Figure 9: Ensemble of 300 simulated IV curves affected by different RD fluc-

tuations, and the extracted values for both VT and ION. The four implemented

extraction methodologies are applied to the curves resulting in the different dis-

played VT values.

Figure 10: Example of several simulated IV curves affected by RD variabil-

ity with exactly the same VT obtained using the CC method. The curves are

represented in logarithmic scale and the blue lines represent the CC criteria.
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Table 2: VT and ION results extracted from the simulated IV curves affected by RD variability indicating: the ideal uniformly doped device (FoMideal), the

distribution mean value (〈FoM〉), standard deviation (σFoM), FoM shift (∆FoM = FoMideal − 〈FoM〉), skewness (γ(FoM)) and kurtosis (κ(FoM)). These results

have been extracted with the four implemented methods at a gate voltage step size of 0.01 V and VD = 0.05 V.

VT,ideal σVT 〈VT 〉 ∆VT γ(VT) κ(VT) ION,ideal σION 〈ION〉 ∆ION γ(ION) κ(ION)

Method [V] [mV] [V] [V] [µA/µm] [µA/µm] [µA/µm] [µA/µm]

SD 0.273 10.7 0.277 −0.004 −0.91 −1.97 399 29.5 339 60 0.144 −2.95

CC 0.272 13.6 0.285 −0.013 −0.36 −2.54 398 28.7 340 58 0.143 −2.96

LE 0.244 10.7 0.248 −0.004 −0.80 −2.13 393 29.1 335 58 0.147 −2.94

TD 0.218 10.9 0.226 −0.008 −1.01 −1.76 388 28.9 331 57 0.144 −2.94

to a normal distribution (κ = 0). From Table 2, both in case of

VT and ION all κ values are negative, indicating that the distri-

butions are heavily-tailed. For VT, the κ values are dispersed

for the different extraction methods, the TD method is the one240

whose tails resemble the most to those of a normal Gaussian

distribution. In the ION, the κ values are close to −3 in all stud-

ied cases.

The results presented in this section have proved that the VT

extraction method may seriously impact, not only the obtained245

VT values, but also the conclusions achieved in variability stud-

ies. For this reason, the VT extraction method presents itself as

an additional parameter that needs to be considered when com-

paring variability studies for semiconductor device simulation.

5. Conclusions250

In this work we investigated the impact of the threshold

voltage extraction methods on semiconductor device variability

studies. In order to do so, four commonly used methods have

been analyzed: second derivative (SD), constant current criteria

(CC), linear extrapolation (LE) and third derivative (TD). Also255

these methods were compared in terms of computational cost

and robustness.

As a proof of concept we have tested the influence of these

VT extraction methods on 10.7 nm gate length Si FinFETs af-

fected by RD variability. We have shown that the TD method is260

more sensitive than its counterparts to the value of the voltage

step size, leading to inconsistencies in the extracted VT values.

Reliability estimators like σVT , 〈VT 〉 and ∆VT become af-

fected by the selected extraction methodology, with up to a 30%

difference in the standard deviation. The difference in ∆VT265

among the methods can be quite dramatic, with a −13 mV shift

for the CC method (a value as large as σVT ) and of only −4 mV

for LE. For ION a completely different tendency has been ob-

served as all the implemented methods yield almost the same

results, with less than a 3% difference in σION and a constant270

∆ION .

While SD, LE and TD methods produce highly correlated

VT values, the CC method can produce inconsistent results as it

may fail to capture changes in the slope introduced by variabil-

ity effects. As a final study, a complete analysis on the FoM dis-275

tributions has been performed, comparing their symmetry and

tails for all the implemented extraction methods. It has been

demonstrated that these distribution properties are also highly

dependent on the extraction methods for VT, while for ION the

values are almost identical.280

Finally, even though we cannot clearly establish which method

is the most physically accurate, we have proved that to properly

compare variability studies it is critical to employ the same ex-

traction method as the calculated results are heavily influenced

by the extraction methodology.285
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