SC R Ciiflus

CAMPUS RVIDA

NCI

UNIVERSIDADE
DE SANTIAGO / Centro Singular de Investigacion

DE COMPOSTELA

en Tecnoloxias Intelixentes

Extended Anisotropic Diffusion Profiles in GPU for
Hyperspectral Imagery

Alvaro Accién, Francisco Argiiello and Dora B. Heras

Version: accepted article

How to cite:

Alvaro Accién, Francisco Argiiello and Dora B. Heras (2019) Extended Anisotropic Diffusion Profiles in
GPU for Hyperspectral Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 12 (12), 4964 - 4976.

Doi: 10.1109/JSTARS.2019.2939857

Copyright information:

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.



https://ieeexplore.ieee.org/document/8856261

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 1

Extended Anisotropic Diffusion Profiles in GPU for
Hyperspectral Imagery

Alvaro Accibn, Francisco Argiiello, and Dora B. Heras

Abstract—Morphological profiles are a common approach for
extracting spatial information from remote sensing hyperspectral
images by extracting structural features. Other profiles can
be built based on different approaches such as, for example,
differential morphological profiles, or attribute profiles. Another
technique used for characterizing spatial information on the
images at different scales is based on computing profiles based on
edge-preserving filters such as anisotropic diffusion filters. Their
main advantage is that they preserve the distinctive morpholog-
ical features of the images at the cost of an iterative calculation.
In this paper, the high computational cost associated to the
construction of Anisotropic Diffusion Profiles (ADPs) is highly
reduced. In particular, we propose a low cost computational
approach for computing ADPs on Nvidia GPUs as well as a
detailed characterization of the method, comparing it in terms of
accuracy and structural similarity to other existing alternatives.

Index Terms—Hyperspectral, anisotropic diffusion profile,
nonlinear diffusion, remote sensing, CUDA.

I. INTRODUCTION

YPERSPECTRAL imagery for remote sensing is show-

ing widespread adoption in fields such as agriculture
[1] or ecological science to study, for example, biodiversity
[2] or land cover changes [3]. Advances in sensor technology
and lower costs for image acquisition are yielding an ever
increasing range of applications, higher resolution (e.g. spec-
tral, spatial and temporal) images and more diverse acquisition
conditions [4]. Hyperspectral images are computationally ex-
pensive to process due to the high volume of data they contain
and the complex processing tasks that they involve, becoming
good candidates for the leveraging of parallel computing
platforms, GPUs in particular [5, 6].

Mathematical morphology [7] is one of the most common
techniques used to extract spatial-spectral information from
hyperspectral images such as, for example, the size, orien-
tation, and contrast of the spatial structures present in the
image. A Morphological Profile (MP) [7] is built by sequen-
tially applying opening and closing transformations with a
Structuring Element (SE) of increasing size over the bands
of the image [8]. The combination of several MPs [7] in a
single dataset for subsequent analysis steps is called Extended
Morphological Profile (EMP) [9]. Other different methods for
extracting spatial information were subsequently derived from
the basic MP. For example, Differential Morphological Profiles
(DMPs) [7] are an extension of MPs constructed by computing

The authors are with the Centro Singular de Investigacion en Tec-
noloxias da Informacién (CiTIUS), Universidade de Santiago de Com-
postela, Spain. (E-mail: alvaro.accion.montes@usc.es, dora.blanco@usc.es,
francisco.arguello@usc.es)

the difference between two MPs for contiguous sizes of the
SE, i.e., for different scales. Attribute Profiles (APs) [10] are
also a generalization of MPs [7] and overcome some of their
shortcomings. The introduction of multiple different attributes
via Attribute Filters (AFs) for the characterization of the image
allows for a more accurate modeling of the scene compared
to traditional MPs [7]. Extinction Profiles (EPs) [11] make
use of Extinction Filters (EFs) [11] to create a fully automatic
method using regional extrema of attributes. EPs [11] were
shown to provide better classification results than APs [10].

As the number of components obtained by the application of
profiles is high, they are applied, in the case of hyperspectral
images, not to the original image but to a dimensionally
reduced image obtained after the application of Feature Ex-
traction (FE) techniques. These techniques usually exploit
the spectral information of the image while maintaining or
even increasing the separability of the different classes in the
images. This is the case of Principal Component Analysis
(PCA) [12], Independent Component Analysis (ICA) [13] or
Singular Spectrum Analysis (SSA) [14].

The diffusion equation is one of the possibilities to build
a linear scale space [15] from an image. A scale-space is
an image representation at a continuum of scales, embedding
gradually simplified versions of the image, provided that it
fulfills certain requirements [16]. Multiple examples of the
application of scale space regularization have been applied to
remote sensing [17]. In the case of nonlinear diffusion, good
results have been obtained for the classification of multivalued
and hyperspectral images [18], [19].

Anisotropic diffusion can also be used to enhance multi-
spectral images increasing their signal-to-noise ratio [20] and,
in particular, it can be used for the generation of extended
profiles for classification [21]. The application of nonlinear
diffusion filtering has shown great promise [22] compared to
traditional linear filtering due to its ability to preserve the
distinctive morphological features of the images such as edges
or even enhance them.

Until recent times, the schemes used to implement nonlinear
diffusion were characterized by their high computational cost.
Weickert et al. [23], [24] introduced efficient schemes for
nonlinear diffusion filtering using Additive Operator Splitting
(AOS), that allows the application of nonlinear filtering in
a very efficient and reasonably accurate way. Later on, the
schemes were further improved with the addition of Fast
Explicit Diffusion (FED) schemes [25]. These are computa-
tionally more efficient, while providing higher precision than
the existing AOS schemes.

Graphics Processing Units (GPUs) are high performance



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 2

Diffusion

—_—

Principal
components
WxHxN

Hyperspectral
image
WxHxB

ADP(

SVM

EADP(X)
Extended Anisotropic Diffusion Profile
W x HXx (N x(C+1))

Anisotropic Diffusion Profiles

Fig. 1: Proposed scheme for the classification of hyperspectral images on GPU based on the extraction of spatial information

using diffusion profiles.

computing platforms that can be used to efficiently compute
multiple algorithms for hyperspectral image processing in real
or near real time [26], [27], [28], [29]. The availability of
commodity GPUs capable of performing compute heavy tasks
allows for previously server-grade performance to be achieved
in an inexpensive manner.

In this paper, we propose a new approach for the effi-
cient extraction of spectral-spatial information on GPU for
hyperspectral imagery by computing Extended Anisotropic
Diffusion Profiles (EADPs). It is based on the application
of nonlinear diffusion filtering and built by the concatenation
of different Anisotropic Diffusion Profiles (ADPs). In turn,
each ADP is generated by applying several instances of non-
linear diffusion filtering to a band of the image. The main
contributions are:

1) A method for the construction of an Extended
Anisotropic Profile (EADP) is proposed. It is computed
by using non-linear diffusion based on FED, due to
its low computational cost and suitability for parallel
computing.

2) The low number of components of the profile required
by the method allows for a fast and efficient subsequent
classification process.

3) The efficient GPU implementation of the proposed
method exploits the features of the CUDA 6.1 archi-
tecture, and it is suitable for execution on commodity
GPUs.

4) A detailed characterization of the method based on ex-
haustively varying the algorithm parameters is presented,
as well as a comparison to different profiles for spectral-
spatial information extraction proposed in the literature.

The paper is organized into six sections. Section II presents
a brief introduction to the concepts of nonlinear diffusion and
the FED scheme used to implement it. Section III introduces
the steps involved in the computation of the ADPs. Section
IV discusses the characteristics of the CUDA implementation.

The experimental results for the evaluation of the classification
performance are presented in Section V. Finally, Section VI
summarizes the main conclusions.

II. NONLINEAR DIFFUSION FILTERING

The physical concept of diffusion can be thought of as the
process that reduces the differences in concentration of a sub-
stance L without changing its mass. The classical formulation
for the diffusion equation is as follows:

% =div(c(z,y,t) - VL). (1)

In the equation above, div represents the divergence oper-
ator; V, the gradient operator and c, called the conductivity
function, is a function that controls the diffusion and adapts it
to the image structure. Perona and Malik [30] proposed a vari-
able and adaptive c that reduces smoothing across boundaries
and is chosen as a function of the gradient magnitude,

c(z,y,t) = g(|VLy(z,y,1)]), (2)

where L, represents the original image after being smoothed
by the Gaussian kernel of mean O and variance 2. The ¢
variable represents time, but it can also be thought of as a
scale value that controls the level of detail of the resulting
image, with larger values leading to simpler representations.

Nonlinear diffusion filtering, also called non-homogeneous
diffusion, is a process that applies nonlinear diffusion equa-
tions to the pixel values in an image. Applied to the field of
image processing, it tries to balance the concentration of gray
value across the elements of an image.

There are several approaches to the calculation of the
diffusion coefficients. Perona and Malik [30] described two
different formulations for the conductivity function, shown in
Egs. (3) and (4), while Weickert [31] proposed a conductivity



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 3

for which intraregional smoothing is used instead of interre-
gional blurring, shown in Eq. (5):

VL,|?
glzeXP(_ k2| )7 (3)
1
92 = — w2 “)
1 + |vk£/a|2

1 if [VLy?2=0 )
g3 = .

1= exp (2585 ) i VL[ > 0.

The parameter k, also called contrast parameter serves as
a threshold enabling backwards diffusion. Higher & values
generally imply low contrast edges will be smoothed out.

A. Fast Explicit Diffusion

Fast Explicit Diffusion or FED is an efficient numerical
scheme used to solve parabolic and elliptic partial differential
equations.

FED exploits the fact that the Gaussian kernel can be ap-
proximated by any symmetric 1-D kernel with the weights of
the coefficients wjy, fulfilling the conditions wy = w_g,Vk €
{1,...,n} and >} _, w, = 1.

In matrix notation, the FED cycle can be defined as:

Ut =T+7A0L)L, j=0,...,n—1, (6)

where L71! is the solution to the diffusion problem defined
by Eq. (2) at a given step and A is the conductivity matrix
computed from c [15].

The FED parameters can be expressed as,

Tmaa:
L R— 7
J CYAPTES R
2cos?(m 4n+2)

I A .
T TN T T M |

where 7; is the step size of the j-th iteration resulting from
the factorization of the box filter, 7,,4, is the maximal step
size that does not violate the stability condition of the explicit
scheme and 7" is the global process time. Since 7,4, is known,
it is possible to obtain the number of steps n using Eq. (8). For
large values of n, the resulting 7; can be significantly larger
than the stability condition [32].

FED works by performing M cycles composed of n explicit
diffusion steps. In each step, a varying 7; is used [32]. M
controls the quality of the approximation, with higher values
leading to approximations with a lower error at the expense of
higher complexity due to the limitation imposed in the growth
of 7 g

III. EXTENDED DIFFUSION PROFILE

In this section we describe the algorithm for the generation
of the EADP and determine its computational complexity. Due
to the large number of highly correlated bands in hyperspectral
images, FE methods are required to reduce computational
requirements and obtain a lower number of highly significant
feature points. In this case FE by PCA is performed.

A. Diffusion Profiles

As shown in Fig. 1, the ADPs are generated after applying
several different instances of nonlinear diffusion filtering to
every principal component extracted from the original image.
Each ADP will have C'+1 components where C' is the number
of instances of diffusion applied, producing as a result images
with decreasing levels of detail. The resulting EADP will
have N x (C + 1) components, where N is the number of
principal components retained. An example of the graphical
result obtained after calculating the EADP for the IndianP
image for seven principal components can be seen in Fig. 2.
Note that, as the number of instances of diffusion increases,
the degree of smoothness in each area of the image also
increases. As a consequence the noise is also reduced and
the homogeneity of pixels in the area is increased. In more
detail, the classification steps are the following:

1) PCA computation: PCA was used over the original hy-
perspectral cube in order to extract the most relevant principal
components. The steps of the PCA computation are described
in Algorithm 1.

Starting with the original hyperspectral image (I), the data
are centered band by band. A PCA is later applied pixel
wise for the pixel values in all bands of the feature-scaled
hyperspectral cube. The covariance matrix is then obtained by
multiplying the original matrix by its transpose, resulting in
a matrix of dimensions B x B (line 3). The matrix is then
fed to a SVD function in order to obtain the eigenvectors of
the image (line 4), that will be finally used to calculate the
principal components (line 5). The output of this step is a
reduced matrix X, which will then be used for the generation
of the EADP.

2) EADP computation: Once the principal components of
the image are obtained, C' instances of the nonlinear diffusion
algorithm will be applied to each principal component X;
using different process times 7;. This strategy will generate
components with decaying levels of detail and thus containing
different spatial information. The first component of the profile
is always the principal component that was used to generate
it. Denoting the diffusion process as Diff (X, T;), an ADP for
the principal component X; is defined as:

ADP(X;) = {X;,Diff(X;,T1),...,Diff (X;,T.)} (9)

The algorithm in this paper uses a FED scheme in order
to obtain the highest possible efficiency in the resolution of
the difussion equations, as it is described in Algorithm 2. Two
stages are required: the computation of the diffusivity matrix
and the computation of the FED process.

The first step in the computation of the diffusivity matrix
begins with the application of Gaussian filtering of variance
o? to a principal component X; (line 4). This smooths the
original image prior to the computation of the derivatives.
The Scharr function is then applied to the resulting image
both vertically and horizontally to obtain the derivatives (line
5). The derivatives are then used to compute the contrast
parameter if none has been specified (line 6). In this case, the
selected value was 0.7, as described in [33]. Once the previous



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 4

d

'-l‘&k‘&
n;‘-;..

;:-;gu-am
ek e

ADP(X;)

Fig. 2: EADP for IndianP. The images represent, for each ADP(X

;) with C = 5 and from left to right, the i-th principal

component followed by the five components resulting from diffusion filtering.

steps are complete, the diffusivity matrix can be obtained by
applying Eq. (4) (line 7).

The second stage, that corresponds to the FED computation,
starts with the initialization of the required internal parameters
based on process time 7" and the number of cycles n provided;
the number of inner steps is derived from the process time
and number of cycles (line 10). The time steps 7; are then
computed (line 11). After this, the state of the FED algorithm

is iteratively updated (lines 13-15) and the cycle for the current
state is then applied. After all the cycles of the FED process
described in Eq. (6) finish, the resulting image will be a
component for one of the ADPs being computed.

The EADP is the set of all the ADPs resulting from the
application of the diffusion process:

EADP(X) = {ADP(X)),..,ADP(Xy)}  (10)



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 5

Algorithm 1 Pseudocode for the PCA computation

Input:
I: Hypespectral image.
Output:
X: PCA-reduced image (of N components)

Image centering phase
1: Obtain the sum of all pixels in each band of I
2: Center pixels of I obtaining Icep

PCA phase
Calculate the covariance matrix Icep, - IZ;H
Calculate the matrix of eigenvectors V

X <+ Ieen -V

of centered image

Algorithm 2 Pseudocode for the EADP computation

Input:
X: PCA-reduced image (of N components)
o2: Variance of the Gaussian filter.

{T4,..., T} list of process times.
Output:
EADP(X): EADP of image X.
1: EADP « 0
2: for i=1— N do
3: ADP; «+ 0
Computation of diffusivity matrix
4: Apply Gaussian filtering to X;, obtaining X;
5: Apply Scharr to X; -, obtaining VX
6: Obtain the contrast parameter k
7 Compute the diffusivity matrix A(VX; )
Comoputation of FED process
8 X% Xx;
9: for c=1— C do
10: Compute the number of FED inner steps n using T
11: Compute the step sizes 7;
12: Apply FED cycles and obtain X"
13: ADPien, +— X©™ U ADP;
14: end for
15: EADP < ADPccn U EADP
16: end for

B. Analysis of computational complexity

The generation of the ADPs requires the application of the
diffusion algorithm to the input image resulting from the FE
by PCA carried out in a previous step. Most of the complexity,
thus, comes from the diffusion process itself, and is heavily
dependent on the selected approach.

PCA is applied on the previously centered input data, using
the SVD approach. The complexity for the application of the
PCA to the input image is the combination of the complexities
for each one of the steps: O(W HB) for data centering and
O(WHB?) for the computation of the covariance matrix.
SVD requires O(B?) operations, and the multiplication to get
the components is again O(W H B?). So, the final complexity
is O(B% + WHB?).

For the FED scheme, the computational complexity is
related to the cycle time for the approximation of a Gaus-
sian filter using box filters, namely, to the selected process
time 7" and the dimensions of the image. The complexity is
O(WHNC logT).

The memory requirements of the algorithm depend only on
the dimensions of the hyperspectral image being processed and
the number of components after the feature reduction step. The
memory usage remains constant during the complete execution
and requires 4 buffers. The amount of memory required is
approximately 4W HN words.

IV. GPU IMPLEMENTATION

This section discusses the specific details of the proposed
CUDA GPU implementation for the creation of the EADP,
along with the optimization techniques applied. The pseu-
docode for some of the more relevant functions and kernels is
included for reference. Next to each line, a comment with one
of the following: REG, exclusively register operations; SM,
shared memory operations or GM, global memory operations,
will indicate what resources the computation relies on.

CUDA is a parallel computing architecture and program-
ming model developed by NVIDIA that allows the execution
of relatively simple functions, called kernels, inside a GPU.
The following is a list of the optimization techniques used to
improve the performance of the CUDA code:

1) Minimization of memory allocations and deallocations.

2) Minimization of memory usage by performing some
computations in place.

3) Data packing in order to reuse memory elements over
multiple operations.

4) Vectorial instructions to maximize instruction paral-
lelism and optimize memory accesses.

5) Reduction operations using warp-level primitives to
avoid shared memory latency.

6) Use of shared memory atomics vs global memory ones
due to specific hardware support since Maxwell.

7) Use of pinned memory for data transfers between CPU
and GPU [34].

8) Use of high performance cuBLAS, cuSOLVER and
cuSPARSE libraries wherever possible.

All the kernels were profiled using the NVIDIA Visual
Profiler in order to analyze the performance and identify
potential bottlenecks. The tool can also help to detect potential
optimization spots based on their impact on the computation
times. The optimization strategies were geared towards the
high impact kernels.

A. PCA computation

Algorithm 3 Pseudocode for the PCA computation in CUDA

Input:
I: Hyperspectral image stored in global memory.
B: Number of bands in hyperspectral image I.
Output:
X: PCA-reduced image (of N components) stored in global memory

Image centering phase

1: Sumsy << reduce_sum > (I, B) > REG + GM

2: Icen << center > (I, Sumsy) > SM + GM
PCA phase

3: S < gemm > (Ieen, I15,,) > SM + GM

4: V<< gesvd > (8S) > SM + GM

5: X +< gemm > (Icen, V) > SM + GM

The PCA computation process using CUDA is described in
Algorithm 3. The implementation takes advantage of optimiza-
tion 8 described in the previous subsection wherever possible
in order to speed up the algorithm. The image pre-processing
phase is implemented using a combination of two different
CUDA kernels, one to compute the sums of all pixels in each



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 6

band and then a second one to use the previous result in order
to center them.

The initial loading of data in memory is performed asyn-
chronously and in parallel to the sum operation on each
band and to the centering. In order to accomplish this, the
image is divided into groups of consecutive bands that will be
processed (loaded and then centered) using a CUDA stream.
The < reduce_sum > kernel (line 1 of the pseudocode)
computes the reduction operation. CUDA optimizations 4 and
5 are applied to this kernel. The centering kernel (line 2) will
then center the elements in the bands.

The covariance matrix S is obtained by a matrix mul-
tiplication using the cuBLAS gemm function (line 3). The
SVD decomposition is performed using the cuSOLVER gesvd
function in order to obtain V' (line 4). Lastly, we use gemm
again to calculate X (line 5).

B. Diffusion computation

Algorithm 4 Pseudocode for EADP computation in CUDA

Input:
X ;: PCA component, ¢ = 1..N.
o2: Variance of the Gaussian filter.
{Ty,...,T.}: list of process times.
Output:
EADP(X): EADP of image X.

1: EADP « 0
2: for i=1l - N do

Computation of diffusivity matrix

4: X o + < apply_row_conv >(X;, G, (X)) > SM + GM
5: X, o + < apply_col_conv >(X; »,Gs(X;)) > SM + GM
6: VX, o + <scharr >(X; ) > SM + GM
7. max < < reduce_max >(X; o) > REG + GM
8: histo «— < create_histogram >(VX; ,, maz) > SM + GM
9: k <+ get_bin(histo, 0.7)
10: A(VX; ,) + < pm2_coefficients >(VX; 5, k) > GM
Computation of FED process
1: X« X;
12: for c=1—C do
13: 7; — fed_tau_by_process_time(T.)
14: X0 ¢ xo71
15: for j=1—n do )
16: AXE9 + < fed_nld_step >(X 771, A(VXi,0))
_ _ "> SM + GM
17: XetHIt o < fed_nld_update >(X 57, AXS7) > GM
18: end for
19: ADP, « X" U ADP,
20: end for
21: EADP + ADP. UEADP
22: end for

The diffusion computation follows the pseudocode shown in
Algorithm 2. The computation of the diffusivity matrix begins
with the initial load of a principal component X; into GPU
memory. After the component is loaded, two convolutions
with a Gaussian kernel are performed in order to smooth the
original image (lines 4-5 in the pseudocode). Each convolution
is performed by a kernel specifically designed to exploit the
memory locality depending on the direction of the operation.
Afterwards, the kernel computing the derivatives of the image
obtains VX , (line 6). The previous three kernels benefit
from optimization strategy number 3. After that, the maximum
value of the smoothed image, G,(X;), is obtained with a
reduction kernel (line 7), which applies optimizations 4 and

5. The maximum is used in the creation of an histogram. A
new kernel will take VX, and compute a histogram with
the distances between the vertical and horizontal derivatives
(line 8), atomically storing them in shared memory and then
atomically adding them to the histogram in global memory
(optimization strategy 6). The contrast parameter is calculated
using CPU code (line 9), due to the low computational com-
plexity of the task. Lastly, the diffusivity matrix is computed
applying Eq. (4) to every pixel of the image (line 10).

The initial calculation of the number of steps and 7; are
executed on the CPU (line 13). The diffusion process in
the GPU implementation performs the update of X +ltl
iteratively within a kernel, using optimization number 3 (lines
16-17).

Algorithm 5 shows the kernel used for the computation of
the Scharr derivatives in CUDA. The first step in the kernel
is to compute the indices for the elements of the image (lines
1-2). Additionally, in order to be able to apply the kernel to
the full image, the size of the image is increased by repeating
two pixels in each dimension (lines 3-4). The required pixels
are copied from global memory into shared memory for latter
use (line 5). The values of b used in the Scharr convolution are
copied to variables ensuring the use of registers (lines 8-11).
Lastly, the horizontal and vertical derivatives are computed
and stored in global memory (lines 12-13).

Algorithm 5 Pseudocode for the scharr kernel in CUDA

Input:
I: Image in global memory

Output:
scharr(I,): Derivative of I in the x direction
scharr(I,): Derivative of I in the y direction

1: idz < bid.x * bdim.x + tid.x > REG
2: idy  bid.y * bdim.y + tid.y > REG
3: zp + (ide == 070 : (idz >= Lwidth?L.width — 1 : ide — 1)) > REG
4: yp + (idy == 070 : (idy >= Lheight?L.height — 1 : idy — 1)) > REG
5: btidz.y * (bdimz.x + 2) + tidz.x] « I[yp * Lpitch + xp] > SM
6: __syncthreads()
7: bidz + (tidz.y + 1) * (bdim.z + 2) + (tide.x + 1) > REG
8: ul = b[bidz — bdim.x — 1]; > REG + SM
9: ur = b[bide — bdim.x + 1]; > REG + SM
10: 1l = blbidz + bdim.x — 1]; > REG + SM
11: Ir = blbidz + bdim.x + 1]; > REG + SM
12: scharr(I,)[idy*L.pitch+idz] < 3= (Ir —ll+ur—ul)+10* (b[bidz+
1] — blbidx — 1]) > SM + GM
13: scharr(I,)[idy«Lpitch+idx] < 3% (Ir+1l —ur —ul)+10x (b[bidx+

BW] — bbide — BW)) > SM + GM

V. PERFORMANCE EVALUATION

This section describes the experimental setup and the re-
sults. First of all, the CUDA implementation is evaluated
in terms of execution time comparing it to a OpenMP im-
plementation. To illustrate the effectiveness of the proposed
approach, we include a brief characterization of the EADPs
in terms of classification accuracy, structural similarity and
image simplification. Finally, a comparison to other common
techniques based on spatial-spectral information extraction
from the literature is performed.

Three hyperspectral datasets were used to evaluate the
algorithm proposed in this paper:

1) Houston University (Houston): The aerial view of Hous-

ton University was obtained by the CASI sensor. The



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 7

(b) ©

Fig. 3: Hyperspectral images commonly used for testing in remote sensing: (a) Houston, (b) IndianP, (c) PaviaU.

image has a spatial resolution of 2.5 meters/pixel and it
covers a spectral range from 380 to 1050 nm. The size of
the image is 1905 x 349 pixels and 144 spectral bands.
The reference information contains fifteen classes.

2) Indian Pines (IndianP): The mixed vegetation area of
IndianP was obtained by NASA’s AVIRIS sensor over
the Indian Pines test site in North-western Indiana. The
spatial resolution is 20 meters/pixel and it covers a
spectral range from 400 to 2500 nm. IndianP dataset
consists of 145 x 145 pixels and 220 spectral bands. The
ground truth available is divided into sixteen classes.

3) Pavia University (PaviaU): acquired by the ROSIS-03
sensor over the city of Pavia, Italy. Its spatial resolution
is 2.6 meters/pixel and covers the spectral range from
430 to 860 nm. PaviaU consists of 610 x 340 pixels
and 103 spectral bands. The ground truth contains nine
classes.

Figs. 3 and 4 show the false color composite images and
reference data images corresponding to each of the datasets.
For the reference data, pixels of the same class are depicted
with the same color, as shown in Table I where the number of
non-overlapping train and test samples used for classification
are shown [3].

The experiments were carried out on a PC with a 6-core
Intel i5 8400 CPU at 2.80 GHz and 32 GB of RAM, and
a NVIDIA GeForce GTX 1060 with 6 GB. All experiments
ran under Ubuntu Linux 16.04 64-bits and were compiled
with GCC version 7.4.0, OpenMP 4.0 and CUDA toolkit

(b)
Fig. 4: Reference data for the test images: (a) Houston, (b) IndianP, (c) PaviaU.

10.0. The code was built with the -O3 flag and the additional
CUDA flags -arch=sm_61 —cudart=static —use_fast_math —
expt-relaxed-constexpr were used when applicable. Table II
shows the technical specifications for the CPU and GPU used
in the experiments.

A. Parameter selection

The classification process was performed using a SVM clas-
sifier and, more precisely, the LIBSVM [35] implementation.
SVM classifiers have been found to provide similar results to
other commonly used, non-parametric classifiers such as RF
and can handle scenarios with a low number of training sam-
ples [36]. SVM is also presented as a standard non-contextual
classifier for remote sensing classification [37]. The hyperpa-
rameters v and C' were selected by a 5-fold cross-validation
[38] for each dataset via accuracy maximization with values
in the range C' = [2°,23 ..., 215] ~ = [23 21 ... 215].

The classification accuracy was evaluated in terms of the the
standard measures: Overall Accuracy (OA), Average Accuracy
(AA) and Kappa coefficient (). All the accuracy results are
obtained as the average of 100 experiments.

In the experiments performed over the three datasets, special
attention was paid to the optimal selection of parameters
depending on the image. The number of principal components
for each image was fixed to seven considering the trade-
off between computational cost and classification accuracy
obtained.



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

TABLE I: Houston, IndianP, and PaviaU datasets. Color codes for the classes and numbers of train and test sets [3].

Houston IndianP PaviaU
Classes Train Test Classes Train Test Classes Train Test
Grass Healthy 198 1053 Alfalfa 15 31 Asphalt 548 6083
Grass Stressed 190 1064 Corn-notill 50 1365 Meadows 540 18109
3. Grass Synthetic 192 505 Corn-mintill 50 767 Gravel 392 1707
B | Tree 188 1056 || Corn 50 177 || Trees 524 2540
5. Soil 186 1056 Grass/pasture 50 426 Metal 265 1080
G | Water 182 143 Grass-trees 50 673 || Bare soil 532 4497
7. Residential 196 1072 Grass-pasture-mowed 15 11 Bitumen 375 955
83| Commercial 191 1053 || Hay-windrowed 50 430 || Bricks 514 3168
9. Road 193 1059 Oats 15 5 Shadows 231 716
10. Highway 191 1036 Soybean-notill 50 915
| Railway 181 1054 || Soybean-mintill 50 2386
12. Parking Lot 1 192 1041 Soybean-clean 50 525
8I | Parking Lot 2 184 285 Wheat 50 158
14. Tennis Court 181 247 Woods 50 1209
I | Running Track 187 473 || Bld-Grass-Trees 50 321
16. Stone-Steel 50 41
TABLE II: Hardware specifications of the test system ’  Houston - -- IndianP - PaviaU
Hardware Intel Core 15 8400 | GeForce GTX 1060 —
Compute Units 6 cores 10 MPs <
Compute Width | 256-bit (AVX2) 32 work-items o 1F TS Y R T e
Concurrency 1 thread/core 4 warps/MP > W
Core clock (MHz) | 2800 1506 2 + 0.95 - =
RAM (GB) 32 6 5 09 | e
L1 (KB) 384 48 3 0.9 ) :
L2 (KB) 1536 1536 < Y
L3 (KB) 9216 - Z 08l ameemtTN ] 0851 4 ’ .
GFLOPS (peak) 268.8 4375 § LT ‘ ‘ L ‘ ‘ ‘
Bandwidth (GB/s) | 41.6 192.2 o) 0 5 10 0 20 40 60
# components ADP ts

The adequate number of components in an ADP depends
on the process time values applied to the diffusion process. In
order to simplify this parameter selection, the different process
times used in each component were obtained by summing a
fixed value or time step ¢s to the process time of the previous
component. Process times were thus obtained according to
T, =ts xiwithi=0,...,C.

The left plot in Fig. 5 shows the observed OA after
modifying the number of components for a fixed process time
step for the three images. As it can be seen, the accuracy keeps
increasing as the number of components does. The greater C,
the higher the expected accuracy due to the addition of new
components providing more granulometry levels. The higher
number of components comes at a cost, however, causing the
size of the feature vector to grow substantially and leading to
a much more resource intensive classification process.

The right plot in Fig. 5 shows how the accuracy evolves as
the time step ts value increases (and thus the process time 1)
for a given ADP;, while the other parameters remain constant.
In general, the observed OA results show that the time step ts
value is positively correlated with the accuracy resulting from
the classification process. In contrast to the increase in the
number of components, the increase in the step size provides
additional accuracy without modifying the size of the profile,
and therefore, without additional cost in the classification step.

The final results indicate that optimal or nearly optimal
parameters can be selected by default and applied to all the
datasets. In the generation of the profiles, the parameters

Fig. 5: OA values varying C, with ts=2 (left) and varying ts,
with a fixed C= 8 (right).

N =7,C=8,0=1andts = 65 were used as a compromise
between accuracy and number of components of the extended
profile. The total ADP size is thus, 9 and the total EADP
size is 63. These are the default values for all the experiments
performed, unless otherwise stated.

B. CUDA performance comparison

In order to compare the performance of the GPU im-
plementation to a high performance baseline, an OpenMP
implementation of the algorithm aimed at scaling efficiently
in modern multicore systems was developed. This subsection
briefly describes the stages of the proposed method and
provides time measurements from both the OpenMP CPU
and CUDA GPU implementations for each one of them. The
times shown correspond to the average of 20 repetitions per
experiment.

Fig. 6 shows the scaling of the OpenMP implementation
as the number of cores in the test system being used for the
execution is increased. The obtained results are not linear due
to some of the stages of the algorithm being memory bound
or becoming memory bound as the amount of cores increases.

Table III displays a performance comparison between the
CPU and the GPU implementations for all the datasets. The
diffusion process is broken down into stages and the total



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 9

TABLE III: Average OpenMP CPU and CUDA GPU computation times (in milliseconds) broken down by stage (see Algorithm
4 for the lines corresponding to each stage that are between parenthesis in the table) for each scene during the generation of

an EADP of 63 components.

Stage (lines) Houston IndianP PaviaU
& CPU GPU  Speedup CPU GPU  Speedup CPU GPU  Speedup
Setup 0.003 0.42 0.006x | 0.001 0.022 0.0257x | 0.001 0.141 0.007 x
Gaussian (4-5) 3.46 0.23 14.79x 0.54 0.05 11.82% 0.98 0.10 9.56x
Scharr (6) 5.01 0.16 31.30x 0.13 0.02 6.93 % 1.59 0.06 26.16 x
Contrast (7-9) 61.45 0.34 178.30x 1.59 0.07 22.40x 17.29 0.17  103.53x
Diffusivity (10) 0.65 0.14 4.58% 0.01 0.02 0.34x 0.25 0.05 4.72x
FED 1 (13) 0.006  0.002 0.34x 0.003 0.01 0.53x 0.006 0.01 0.61x
FED (15-18) 69.32  16.35 8.51x 7.76 0.71 10.86x | 29.12 5.33 5.46 %
Cleanup 0.11 0.41 0.22x | 0.001 0.02 0.06x | 0.002 0.142 0.01x
Total 208.69  17.99 11.60x 10.02 0.91 10.99x | 49.24 6.01 8.19%x
0.3 I T
2.5 * e
o . - -
_g 2 [ _ D) 02 [ /) n % 11
7 el
8 g - 8 10 |- |
& 15) . o1 1 &
1 ‘ ‘ L 0l ! ! L 9 L ! ! L
9 1 6 0 5 10 15 0 5 10 15
# cores Image size (relative) Image size (relative)

Fig. 6: Speedup for the OpenMP implementation for the
Houston dataset image as the number of cores used in the
execution increases.

aggregated time (in milliseconds) for all iterations in each
stage is displayed, as well as the speedup of the CUDA code
over the OpenMP one. Results are shown for the case of
extracting 7 principal components and generating an EADP
of 63 components.

The Setup and Cleanup stages in Table III correspond to
the initial loading of the principal component into device
memory and the transfer of the diffused image to host memory
respectively. The other stages reference the corresponding lines
in Algorithm 4 next to the name.

The highest speedups can be observed in the Scharr and
Contrast stages with up to 31.30x and 178.30x the perfor-
mance of the OpenMP implementation. The massive paral-
lelism of the GPUs together with the use of memory atomic
operations provide high speedups during the execution of the
Contrast stage. The more flexible memory access patterns in
GPU aided by the use of shared memory, allow achieving
a very significant performance gain for the execution of the
< scharr > kernel (shown in Algorithm 5).

It is worth noting that most of the computation time of the
GPU implementation is spent during the Setup and Cleanup
steps, where the data is being moved between the device
and the host. The performance of the implementation is,
thus, heavily penalized by transfers between host and device
memories.

The CUDA implementation outperforms the CPU one by
nearly an order of magnitude. Fig. 7 shows, on the left, the
scaling of the computation time for the CUDA implementation
being almost perfectly linear with regards to the image size;
on the right, the speedup factor of the CUDA code over the

Fig. 7: Computation time and speedup of the proposed CUDA
implementation for the Houston dataset as image size in-
creases. The base size in the horizontal axis corresponds to
the original size of the Houston dataset.

OpenMP implementation displaying a small negative corre-
lation with image size. The negative correlation is mostly
related to the FED stage, with the OpenMP implementation
showing better scalability than the CUDA one. The speedups
achieved for all the datasets are comparable, with PaviaU
lagging slightly behind. The differences in performance are
attributed to the aspect ratio of the images, among other
factors.

It is worth noting that, due to the requirements of the FED
algorithm, the operations have to be performed in double
precision arithmetic, which is severely limited in consumer
grade NVIDIA GPUs: double precision performance is 1/32th
of its single precision counterpart whereas in professional
grade GPUs the performance is the expected 1/2.

Table IV shows the GPU occupancies broken down by
kernel, with both the theoretical and the observed values.
Occupancies were obtained using the NVIDIA Profiling Tool
and represent the weighted average of the executions for each
kernel. We can see that all the occupancy values for the kernels
involved in the diffusion process stay at reasonable levels:
two kernels achieve occupancies of only ~ 0.7. In the case
of < create_histogram >, the reason is, partially, due to
the high number of collisions in the atomic functions that
update the counter for the histogram bins, yielding a very low
efficiency in memory operations and also the high number of
registers in use per execution of the kernel. There are two
other kernels, < apply_row_conv > and < scharr >, with
occupancy limitations due to the number of blocks that can be
concurrently executed in the GPU. Most of the kernels have no



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

TABLE IV: Occupancies broken down by kernel for the Houston scene for the execution of the diffusion algorithm during the

generation of an EADP of 63 components.

Kernel (lines) # Theoretical Achieved Threads Registers SM per Limiter
’ Occupancy ~ Occupancy | per block  per thread  Block (KiB)

apply_row_conv (4) 56 0.94 0.76 164 32 1.28 | Max Warps or Max Blocks per Multiprocessor
apply_col_conv (5) 56 1 0.93 256 32 11 None

scharr (6) 56 0.94 0.78 612 22 9.56 | Max Warps or Max Blocks per Multiprocessor
reduce_max (7) 56 1 0.84 1024 32 0 | None

create_histogram (8) 56 0.75 0.74 512 35 2 | Registers per Multiprocessor

pm2_coefficients (10) 56 1 0.83 256 24 0 | None

fed_nld_step (16) 3178 1 0.83 512 25 7.97 | None

fed_nld_update (17) 3178 1 0.80 512 10 0 | None

TABLE V: Efficiency metrics broken down by kernel for the Houston scene for the execution of the diffusion algorithm during

the generation of an EADP of 63 components.

Kernel (lines) 4 Glob. load  Glob. store Shared Warp Exec.  Non-predicated Warp
Efficiency Efficiency | Efficiency Efficiency Exec. Efficiency

apply_row_conv (4) 56 0.64 1 0.95 0.93 0.82
apply_col_conv (5) 56 0.72 1 0.97 0.97 0.86
scharr (6) 56 0.78 0.94 0.92 0.94 0.92
reduce_max (7) 56 0.88 n/a n/a 0.74 0.72
create_histogram (8) 56 1 n/a 0.09 0.97 0.94
pm2_coefficients (10) 56 1 1 n/a 1 0.97
fed_nld_step (16) 3178 0.78 0.95 0.92 0.95 0.94
fed_nld_update (17) 3178 1 1 n/a 0.98 0.95

TABLE VI: FLOPS and bandwidth usage of CUDA implementation.

Kernel (lines) GFLOPS DP  Relative to peak | Bandwidth (GBps)  Relative to peak
apply_row_conv (4) 20.94 0.15 81.25 0.42
apply_col_conv (5) 6.95 0.05 96.42 0.50
scharr (6) 59.98 0.44 82.23 0.43
reduce_max (7) 0 0 46.61 0.24
create_histogram (8) 24.43 0.18 81.23 0.42
pm2_coefficients (10) 66.06 0.48 114.04 0.59
fed_nld_step (16) 85.24 0.62 65.37 0.34
fed_nld_update (17) 6.37 0.05 142.35 0.74

limiting factors and achieve successful performances of over
0.8. Even though high occupancy does not guarantee a better
performance [34], a low occupancy level can show potential
bottlenecks that may be limiting the performance of a kernel.

Table V shows the execution efficiency metrics broken down
by kernel, as reported by NVIDIA’s nvprof tool. It can be
observed that all the metrics for the kernels remain at good or
reasonable values in most cases. The efficiency in the access
to shared memory (Shared Efficiency in the table) for the <
create_histogram > Kkernel is the lowest. The reason is that
many writes that are not split evenly across the shared memory
banks are issued, producing a high number of conflicts in the
bank accesses.

Table VI shows the number of GFLOPS, GFLOPS rela-
tive to the theoretical peak, combined read/write bandwidth
usage and combined read/write bandwidth usage relative to
the theoretical peak. We would like to note that the kernels
involved in the computation of the FED process, even when
achieving high memory efficiency and utilization, may yield
significantly lower performance than the theoretical peak. The
reason behind this behavior lies in the existence of other
integer and single precision arithmetic operations, as well
as flow control instructions that are part of the logic of

these kernels (the so called instruction mix). The kernels
that exhibit performance closer to the theoretical peaks are
< fed_nld_step > and < fed_nld_update > for the
GFLOPS and bandwidth metrics, respectively. In the former
case, the kernel achieves the highest GFLOPS value due to the
high ratio of double precision arithmetic operations to other
executed instructions. In the latter, the bandwidth measured
is the highest as a result of the simplicity of the arithmetic
involved in the kernel execution compared to the amount of
memory accesses performed.

C. Image simplification and structural Similarity

In this section we carry out a brief study of the image
simplification and the structural similarity between the original
feature reduced image and the resulting profile after applying
the proposed algorithm. The metrics employed for this purpose
are briefly described in the next lines:

1) Simplification Ratio (SR): SR is a metric computed as
the ratio between the number of flat zones of a trans-
formed image (a component of the profile, for example)
and the number of flat zones of the original image
from which it was computed. The number of flat zones
corresponds to the number of connected components in



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 11

SR --- SSIM
06— N 06— _

© 047 S \ RN

E

<

~ 02|

ADP;

Component

Fig. 8: Average SR and SSIM values per ADP; (left) and per
component (right) for IndianP after the generation of an EADP
with ts=5.

an image obtained after applying a binary thresholding
using Otsu’s method [39]. SR ranges from O to 1 and
higher values imply a higher similarity between the
images.

2) Structural Similarity Index Metric (SSIM): SSIM is
a metric that aims to detect the changes in spatial
structures between two images [40]. SSIM is calculated
based on the pixel by pixel difference between both
images and provides a decimal value in the range from
-1 to 1, where 1 means two identical images or sets of
data.

Both, SR and SSIM, are calculated using the following
formula:

. c

Fi= & i (11)
if we compute the average per ADP or

P = N L1 Tig (12)

if we compute the average value per component. The value
;5 1s defined as:

7i,j = reg(ADP; ;) /reg(PCA(X;)) (13)

for the SR denoting reg(X;) the number of flat regions for
the image X; and

ri; = SSIM(ADP, ;, PCA(X)) (14)

for SSIM, respectively.

The experimental results obtained for the IndianP dataset
are shown in Fig. 8. The graph on the left shows the values
of the indexes calculated between each component of an ADP
an the principal component from with the ADP is built, i.e., is
calculated over a row of Figure 2 for each ADP and averaged
as shown in Equation 11. We can observe that for all the
ADP; profiles a high rate of simplification (less than 50%
of the initial number of regions remain) and a relatively low
similarity are obtained. The graph on the right side of the
figure shows the averaged values per column of Figure 2, as
defined in Equation 12. The main observation is that both,
SR and SSIM values, decrease as we advance through the

TABLE VII: Comparison of the proposed EADP algorithm to
other approaches based on morphological profiles in terms of

classification accuracy [3].

Dataset  Method OA AA K
EADP 98.82 98.82 98.72
EMP 80.01 8278 78.34
Houston EAP, 79.50 8247 77.70
EEP, 80.32 83.36  78.66
EMAP 78.92 8223 77.21
EMEP 80.83 83.64 79.20
EADP 9245 9527 91.34
EMP 91.99 95.04 90.85
IndianP EAP, 91.38 9354 90.15
EEP, 92.99 9558 91.99
EMAP 91.65 95.15 90.46
EMEP 93.70  96.00 92.79
EADP 99.61 99.66 99.47
EMP 91.82 9354 89.12
PaviaU EAP, 90.33 9347 87.71
EEP, 9482  96.17 93.32
EMAP 93.52 94.82 91.65
EMEP 9546  96.57 94.07

components of the profile, which is the expected behavior
as T increases in each diffusion step. Since the diffusion
process alters the concentration of grey values in the pixels, the
morphological details are progressively removed as the well-
defined contours present in the original scene are smoothed.
This causes a higher number of connected components in the
image, thus reducing the number of flat zones.

SSIM is calculated between images at the pixel level, so
the sensitivity towards changes is high. Whereas a diffusion
process may not affect the number of flat areas in an image if,
for example, the original image has a low number of flat zones,
the only way for a SSIM index to be equal for both images is
that both images are the same. In general, any diffusion process
will cause the SSIM index value to monotonically decrease.

D. Classification accuracy

To evaluate the quality of EADPs, a comparison to five
different algorithms that are widely used in the field for spatial-
spectral information extraction was performed.

Table VII compares the classification accuracy in terms of
OA, AA and k to five different approaches in the literature.
The results shown in the table are extracted from [3] except
for EADP, the approach presented in this paper. The methods
considered calculate different kinds of profiles. In the case
of EMP [41], the morphological features of the image are ex-
tracted by performing morphological transformations (opening
and closings) using SEs of different sizes. In the case of EAP,
[42] the profile is built by applying different AFs over a single
attribute, in this case area. For the case of EEP, [11] AFs are
replaced by EFs. The case of EAPs but considering multiples
attributes to build the same profile is called EMAP [42] in the
table. Finally, EMEP [43] applies several EFs over multiple
attributes. The results show that the proposed profile, denoted
as EADP in the figure, improves the classification accuracy
results for all the images except for the case of IndianP, for
which the result is similar to the one obtained by the other
methods. IndianP is the image with the most regular spatial



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 12

structures in the image, that are easily extracted by performing
morphological transformations.

VI. CONCLUSION

In this paper, a computationally efficient GPU algorithm for
the generation of Anisotropic Diffusion Profiles (ADPs) based
on Fast Explicit Diffusion (FED) is proposed. The first step is a
feature extraction process by computing Principal Component
Analysis (PCA). The profiles are then computed by applying
multiple instances of nonlinear diffusion to the bands of
a hyperspectral image, which are subsequently stacked to
generate an Extended Anisotropic Diffusion Profile (EADP).
The characterization of these profiles based on analyzing
the parameters involved in the diffusion filtering is also de-
scribed. The proposed CUDA GPU implementation achieves
a performance up to 11.60x higher than the OpenMP refer-
ence implementation for the Houston dataset considering an
EADP of 63 components. The classification accuracy obtained
achieves values higher than the standard techniques for spatial
information extraction in the literature, with values of up to
99.61% for the Pavia University dataset.

Several future research lines that would benefit from the
current proposal have also been considered. A multi-GPU
implementation of the EADPs that will further decrease the
computational time is planned. The GPU algorithm proposed
in this paper is also applicable as part of the HSI-KAZE [44]
registration algorithm for hyperspectral images. In HSI-KAZE,
nonlinear diffusion filtering replaces Gaussian filters in the
creation of the scale space. The computational efficiency of
the resulting registration algorithm will also benefit from the
aforementioned multi-GPU implementation.

SUPPLEMENTAL DATA

The underlying research materials for this paper can be
accessed at https://wiki.citius.usc.es/hiperespectral:eadp_gpu.

ACKNOWLEDGMENT

This work was supported in part by the Conselleria de
Educacién, Universidade e Formacién Profesional [grant num-
bers GRC2014/008, ED431C 2018/19, and ED431G/08] and
Ministerio de Economia y Empresa, Government of Spain
[grant number TIN2016-76373-P]. All are co—funded by the
European Regional Development Fund (ERDF).

BIBLIOGRAPHY

[1] Y. Lanthier, A. Bannari, D. Haboudane, J. R. Miller,
and N. Tremblay, “Hyperspectral data segmentation and
classification in precision agriculture: A multi-scale anal-
ysis,” in IGARSS 2008-2008 IEEE International Geo-
science and Remote Sensing Symposium, vol. 2. 1EEE,
2008, pp. 1I-585.

[2] F. Wagner, A. Sanchez, Y. Tarabalka, R. Lotte, M. Fer-
reira, M. Aidar, M. Gloor, O. Phillips, and L. Aragdo,
“Using convolutional network to identify tree species
related to forest disturbance in a neotropical forest with
very high resolution multispectral images,” in AGU Fall
Meeting Abstracts, 2018.

[3] P. Ghamisi, E. Maggiori, S. Li, R. Souza, Y. Tarabalka,
G. Moser, A. De Giorgi, L. Fang, Y. Chen, M. Chi et al.,
“Frontiers in spectral-spatial classification of hyperspec-
tral images,” IEEE Geoscience and Remote Sensing Mag-
azine, 2018.

[4] G. A. Shaw, “Spectral imaging for remote sensing,’
Lincoln Laboratory Journal, vol. 14, no. 1, pp. 3-28,
2003.

[5] A. Plaza, Q. Du, Y.-L. Chang, and R. L. King, “High
performance computing for hyperspectral remote sens-
ing,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 4, no. 3, pp. 528—
544, 2011.

[6] Y. Ma, L. Chen, P. Liu, and K. Lu, “Parallel programing
templates for remote sensing image processing on GPU
architectures: design and implementation,” Computing,
vol. 98, no. 1-2, pp. 7-33, 2016.

[7] M. Pesaresi and J. A. Benediktsson, “A new approach
for the morphological segmentation of high-resolution
satellite imagery,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 39, no. 2, pp. 309-320, 2001.

[8] M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R.
Sveinsson, “Spectral and spatial classification of hyper-
spectral data using SVMs and morphological profiles,”
IEEE Transactions on Geoscience and Remote Sensing,
vol. 46, no. 11, pp. 3804-3814, 2008.

[9] J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson,
“Classification of hyperspectral data from urban areas
based on extended morphological profiles,” IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 43,
no. 3, pp. 480491, 2005.

[10] M. Dalla Mura, J. A. Benediktsson, B. Waske, and
L. Bruzzone, “Morphological attribute profiles for the
analysis of very high resolution images,” IEEE Transac-
tions on Geoscience and Remote Sensing, vol. 48, no. 10,
pp- 3747-3762, 2010.

P. Ghamisi, R. Souza, J. A. Benediktsson, X. X. Zhu,
L. Rittner, and R. A. Lotufo, “Extinction profiles for the
classification of remote sensing data,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 54, no. 10, pp.
5631-5645, 2016.

G. Licciardi, P. R. Marpu, J. Chanussot, and J. A.
Benediktsson, “Linear versus nonlinear PCA for the
classification of hyperspectral data based on the extended
morphological profiles,” IEEE Geoscience and Remote
Sensing Letters, vol. 9, no. 3, pp. 447451, 2012.

A. Villa, J. A. Benediktsson, J. Chanussot, and C. Jut-
ten, “Hyperspectral image classification with independent
component discriminant analysis,” IEEE transactions on
Geoscience and remote sensing, vol. 49, no. 12, pp.
4865-4876, 2011.

[14] J. Zabalza, J. Ren, Z. Wang, S. Marshall, and J. Wang,
“Singular spectrum analysis for effective feature extrac-
tion in hyperspectral imaging,” IEEE Geoscience and
Remote Sensing Letters, vol. 11, no. 11, pp. 18861890,
2014.

P. E. Alcantarilla, A. Bartoli, and A. J. Davison, “KAZE
features,” in European Conference on Computer Vision.

[13]



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 13

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Springer, 2012, pp. 214-227.

J. Weickert, Anisotropic diffusion in image processing.
Teubner Stuttgart, 1998, vol. 1.

L. M. Bruce and J. Li, “Wavelets for computationally
efficient hyperspectral derivative analysis,” IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 39,
no. 7, pp. 1540-1546, 2001.

J. M. Duarte-Carvajalino, P. E. Castillo, and M. Velez-
Reyes, “Comparative study of semi-implicit schemes
for nonlinear diffusion in hyperspectral imagery,” IEEE
Transactions on Image Processing, vol. 16, no. 5, pp.
1303-1314, 2007.

S. Velasco-Forero and V. Manian, “Improving hyper-
spectral image classification using spatial preprocessing,”
IEEE Geoscience and Remote Sensing Letters, vol. 6,
no. 2, pp. 297-301, 2009.

S. Acton and J. Landis, “Multi-spectral anisotropic diffu-
sion,” International Journal of Remote Sensing, vol. 18,
no. 13, pp. 2877-2886, 1997.

F. Mirzapour and H. Ghassemian, “Hyperspectral image
classification using profiles based on partial differential
equations,” in Electrical Engineering (ICEE), 2015 23rd
Iranian Conference on. 1EEE, 2015, pp. 288-292.

Y. Wang, R. Niu, and X. Yu, “Anisotropic diffusion
for hyperspectral imagery enhancement,” IEEE Sensors
Journal, vol. 10, no. 3, pp. 469-477, 2010.

J. Weickert, “Theoretical foundations of anisotropic dif-
fusion in image processing,” in Theoretical Foundations
of Computer Vision. Springer, 1996, pp. 221-236.

J. Weickert, B. T. H. Romeny, and M. A. Viergever,
“Efficient and reliable schemes for nonlinear diffusion fil-
tering,” IEEE Transactions on Image Processing, vol. 7,
no. 3, pp. 398410, 1998.

S. Grewenig, J. Weickert, and A. Bruhn, “From box filter-
ing to fast explicit diffusion,” in Joint Pattern Recognition
Symposium.  Springer, 2010, pp. 533-542.

A. Ordéiiez, F. Argtiello, and D. B. Heras, “GPU accel-
erated FFT-based registration of hyperspectral scenes,”
IEEE Journal of Selected Topics in Applied Earth Obser-
vations and Remote Sensing, vol. 10, no. 11, pp. 4869—
4878, 2017.

S. Bernabe, S. Sanchez, A. Plaza, S. Loépez, J. A.
Benediktsson, and R. Sarmiento, “Hyperspectral unmix-
ing on GPUs and multi-core processors: A comparison,”
IEEE Journal of Selected Topics in Applied Earth Ob-
servations and Remote Sensing, vol. 6, no. 3, pp. 1386—
1398, 2013.

A. S. Garea, D. B. Heras, and F. Argiiello, “GPU classi-
fication of remote-sensing images using kernel elm and
extended morphological profiles,” International journal
of remote sensing, vol. 37, no. 24, pp. 5918-5935, 2016.
E. Martel, R. Lazcano, J. Lopez, D. Madronal, R. Sal-
vador, S. Lépez, E. Juarez, R. Guerra, C. Sanz, and
R. Sarmiento, “Implementation of the principal compo-
nent analysis onto high-performance computer facilities
for hyperspectral dimensionality reduction: Results and
comparisons,” Remote Sensing, vol. 10, no. 6, p. 864,
2018.

[30]

[42]

P. Perona and J. Malik, “Scale-space and edge detection
using anisotropic diffusion,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 12, no. 7,
pp. 629-639, 1990.

J. Weickert, “Efficient image segmentation using partial
differential equations and morphology,” Pattern Recog-
nition, vol. 34, no. 9, pp. 1813-1824, 2001.

P. Gwosdek, S. Grewenig, A. Bruhn, and J. Weick-
ert, “Theoretical foundations of gaussian convolution
by extended box filtering,” in International Conference
on Scale Space and Variational Methods in Computer
Vision. Springer, 2011, pp. 447-458.

J. M. Duarte-Carvajalino, G. Sapiro, M. Vélez-Reyes,
and P. E. Castillo, “Multiscale representation and seg-
mentation of hyperspectral imagery using geometric par-
tial differential equations and algebraic multigrid meth-
ods,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 46, no. 8, pp. 2418-2434, 2008.

N. Corporation. (2018) CUDA C best practices
guide. [Online]. Available: https://docs.nvidia.com/cuda/
pdf/CUDA_C_Best_Practices_Guide.pdf

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for sup-
port vector machines,” ACM Transactions on Intelligent
Systems and Technology, vol. 2, pp. 27:1-27:27, 2011,
software available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm.

P. Ghamisi, J. Plaza, Y. Chen, J. Li, and A. J. Plaza,
“Advanced spectral classifiers for hyperspectral images:
A review,” IEEE Geoscience and Remote Sensing Mag-
azine, vol. 5, no. 1, pp. 8-32, 2017.

P. Ghamisi, E. Maggiori, S. Li, R. Souza, Y. Tarablaka,
G. Moser, A. De Giorgi, L. Fang, Y. Chen, M. Chi ef al.,
“New frontiers in spectral-spatial hyperspectral image
classification: The latest advances based on mathematical
morphology, markov random fields, segmentation, sparse
representation, and deep learning,” IEEE Geoscience and
Remote Sensing Magazine, vol. 6, no. 3, pp. 10-43, 2018.
H. Trevor, T. Robert, and F. JH, “The elements of sta-
tistical learning: data mining, inference, and prediction,”
2009.

N. Otsu, “A threshold selection method from gray-level
histograms,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 9, no. 1, pp. 62-66, 1979.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simon-
celli, “Image quality assessment: from error visibility
to structural similarity,” IEEE Transactions on Image
Processing, vol. 13, no. 4, pp. 600-612, 2004.

M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanus-
sot, and J. C. Tilton, “Advances in spectral-spatial clas-
sification of hyperspectral images,” Proceedings of the
IEEE, vol. 101, no. 3, pp. 652-675, 2013.

P. Ghamisi, M. Dalla Mura, and J. A. Benediktsson, “A
survey on spectral—spatial classification techniques based
on attribute profiles,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 53, no. 5, pp. 2335-2353, 2015.
P. Ghamisi, R. Souza, J. A. Benediktsson, L. Rittner,
R. Lotufo, and X. X. Zhu, “Hyperspectral data classi-
fication using extended extinction profiles,” IEEE Geo-



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 14

science and Remote Sensing Letters, vol. 13, no. 11, pp. Alvaro Accién received the B.S. in Computer Sci-
1641-1645. 2016. ence and the M.S. in Big Data Technologies from the

1 £ . A T: University of Santiago de Compostela, Santiago de
[44] A. Ordéinez, F. Arguello, a'nd D. B. Heras, “Alignment Compostela, Spain, in 2014 and 2017, respectively,
of hyperspectral images using KAZE features,” Remote

where he is currently working towards the Ph.D.
Sensing, vol. 10, no. 5, p. 756, 2018. degree as an assistant researcher of Centro Singu-

lar de Investigacion en Tecnoloxias da Informacién
(CiTIUS). His main research interests include image
analysis and processing.

Dora B. Heras (M’17) received the M.S. degree
in physics in 1994 and the Ph.D. degree in 2000
from the University of Santiago, Santiago, Spain.
She is currently an Associate Professor with the
Department of Electronics and Computer Engineer-
ing, University of Santiago. Her research interests
include parallel and distributed computing, software
optimization techniques for emerging architectures
and image processing especially focused on remote
sensing images and she has published extensively on
these topics. Dr. Heras has been a member of several
relevant international conference committees and she is currently a member of
the Steering Committee of the Euro-Par Conference in charge of Workshops
as well as a Referee for several journals on image processing and remote
sensing.

Francisco Argiiello received the B.S. and Ph.D.
degrees in physics from the University of Santiago,
Santiago, Spain, in 1988 and 1992, respectively. He
is currently an Associate Professor with the De-
partment of Electronic and Computer Engineering,
University of Santiago. His current research inter-
ests include signal and image processing, computer
graphics, parallel and distributed computing, and
quantum computing




	Extended Anisotropic Diffusion Profiles in GPU for Hyperspectral Imagery
	Extended_Anisotropic_Diffusion_Profiles_in_GPU_for_Hyperspectral_Imagery_DoraHeras

