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Regulamento de Estudos de Doutoramento da USC, e que como directores desta non incorre

nas causas de abstención establecidas na Lei 40/2015.

En Santiago de Compostela, 16 de outubro de 2020

Asdo. Manuel Mucientes Molina
Director da tese

Asdo. Vı́ctor M. Brea Sánchez
Director da tese





A Ramón Bosquet,
de quien nunca habrı́a tenido tiempo de aprender lo suficiente.





Those who have a ’why’ to live, can bear
with almost any ’how’.

Friedrich Nietzsche





Agradecementos
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Resumo

A detección de obxectos é un dos principais campos de investigación da visión por computa-
dor. Ésta defı́nese como a identificación e encadre de todos os obxectos presentes nunha
imaxe ou nun fotograma de vı́deo. A detección de obxectos lévase a cabo en dúas etapas: (i) a
localización do obxecto, onde se determina mediante unha caixa (bounding box) o máis axus-
tada posible que determina a posición exacta do obxecto dentro da imaxe; e (ii) a clasificación
do obxecto, onde ao obxecto ası́gnaselle unha categorı́a especı́fica. A detección de obxec-
tos é esencial para multitude de aplicacións, como a detección e recoñecementos faciais, a
recuperación de imaxes, a seguridade, a vı́deovixilancia, o control de tráfico, os vehı́culo
autónomos, os procesos de verificación de identidade, a detección de anomalı́as en imaxes
médicas ou a inspección de maquinaria e infraestruturas. Ademáis, a detección de obxectos
irrompeu con forza nunha ampla gama de industrias, con casos de uso que van dende a seguri-
dade persoal ata a produtividade no lugar de traballo. Hoxe en dı́a seguen existindo impor-
tantes desafı́os no campo do recoñecemento de obxectos, onde as posibilidades son infinitas
cando se trata de aplicacións futuras que esixen un entendemento autónomo dos obxectos da
contorna.

Nas aplicacións descritas existen obxectos de tamaños moi pequenos, case indistinguibles,
pero cuxa identificación e detección é de gran importancia para as aplicacións. Algúns dos
exemplos onde a importancia de identificar estes obxectos é destacable son: os sistemas dos
vehı́culos automatizados ou as aplicacións como sense and avoid en vehı́culos aéreos non
tripulados (UAVs, Unmanned Aerial Vehicles), que requiren a detección dun obxecto canto
antes; a análise de imaxes por satélite, onde a práctica totalidade dos obxectos teñen un tamaño
de só uns poucos pı́xeles; a inspección de infraestruturas onde, por razóns de seguridade,
tense que informar da máis mı́nima imperfección; as imaxes médicas, nas que se ten que
identificar a menor anomalı́a; a vixilancia de tráfico, que require detectar todos os obxectos,
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independentemente da súa distancia; ou a vı́deovixilancia, onde non se pode pasar por alto
ningún obxecto. Con todo, é inevitable que canto máis pequenos sexan os obxectos, máis
complexa sexa a súa detección. Isto pódese ver nos resultados obtidos sobre as bases de datos
de detección de obxectos máis populares, como é MS COCO.

Durante varias décadas, o interese da comunidade cientı́fica na detección de obxectos
estivo activo, pero non foi ata o no último decenio cando se acadaron os resultados máis
destacables. Uns resultados obtidos, principalmente, grazas ao auxe das redes neuronais con-
volucionais (CNNs ou ConvNets, Convolutional Neural Networks) como extractores de ca-
racterı́sticas automaticamente adaptables, a mellora dos algoritmos de aprendizaxe profunda,
e a transferencia da aprendizaxe a novos ámbitos. Os algoritmos tradicionais de detección de
obxectos baseábanse principalmente en caracterı́sticas deseñadas a man mediante diferentes
algoritmos, e en clasificadores de aprendizaxe automática. Normalmente, estaban compostos
de tres etapas: propostas de rexións prometedoras, extracción de caracterı́sticas e clasificador.
Os métodos de proposta de rexións prometedoras máis populares eran os baseados en xanelas
deslizantes, computacionalmente ineficientes e pouco precisas para diferentes escalas. Máis
tarde, desenvolvéronse métodos máis sofisticados para mellorar o rendemento, como a busca
selectiva, que xera propostas de rexións fusionando pı́xeles próximos semellantes. A etapa de
extracción de caracterı́sticas estaba dominada por descriptores de caracterı́sticas diferentes se-
gundo o ámbito, como SIFT para puntos caracterı́sticos, HOG para orientacións do gradiente
ou Harris para a detección de esquinas. Por último, cada rexión clasifı́case nunha categorı́a
mediante un modelo de aprendizaxe supervisada como son as máquinas de soporte vectorial
(SVM) ou os perceptróns multicapa (MLP). Adicionalmente, co fin de mellorar a precisión da
detección, era común o uso de técnicas para procesar as caracterı́sticas base, como a análise de
compoñentes principais (PCA), métodos de agrupación (clustering) ou as bolsas de palabras
(BoW, Bag-of-Words).

O punto de inflexión produciuse en 2012, cando Krizhevsky et al. definiron AlexNet,
unha rede neuronal convolucional para a clasificación de imaxes que é capaz de aprender de
forma automática as caracterı́sticas das 1.000 categorı́as presentes no desafı́o ImageNet, me-
llorando, con moito, os algoritmos baseados nos enfoques tradicionais. É certo, con todo,
que as técnicas de aprendizaxe profunda aplicadas ás imaxes baseadas nas redes neuronais
convolucionais foron propostas a finais dos anos 80 por Yan LeCun (LeNet-5), amosando o
seu potencial no recoñecemento de dı́xitos manuscritos (base de datos MNIST). Aı́nda que as
arquitecturas AlexNet e LeNet-5 baseábanse nos mesmos operadores —convolucións, ope-
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radores de reducción (pooling) e funcións de activación—, o seu rexurdimento foi impul-
sado pola mellora computacional das GPUs que, xunto coa aparición de grandes bases de
datos, fixeron posible o deseño e o adestramento de redes neuronais cada vez máis profundas.
As técnicas de extracción de caracterı́sticas baseadas en aprendizaxe profunda conduciron a
notables avances na área de procesamento de imaxes. A aprendizaxe profunda mellora no-
tablemente a extracción de caracterı́sticas, facéndoa unha técnica clara e intuitiva, capaz de
automatizar a adaptación a diferentes dominios cuxo deseño manual anteriormente requirı́a
anos de investigación.

A primeira CNN que adaptou os avances na clasificación de imaxes á detección de ob-
xectos foi Overfeat, lanzada un ano máis tarde que AlexNet, onde unha xanela deslizante a
múltiples escalas envı́a rexións a unha CNN que as clasifica. Ademáis de demostrar que as
CNNs eran eficientes para a detección de obxectos, tamén melloraron o acerto en clasificación
de imaxes. Pouco máis tarde, apareceu R-CNN (Regions with CNN features) que apuntarı́a
cara unha liña de investigación que prevalece actualmente. Os autores propuxeron un modelo
que utiliza a busca selectiva como selector de rexións, a CNN como extractora de caracte-
rı́sticas, e un clasificador e un regresor que procesarı́an cada unha das rexións. Aı́nda que
as CNNs como extractores de caracterı́sticas ou backbones, en inglés, superaban considera-
blemente os métodos deseñados a man, seguı́an sendo computacionalmente ineficientes para
a detección de obxectos, xa que o proceso debı́a repetirse para cada rexión da imaxe. Para
abordar o problema apareceu Fast R-CNN, onde as rexións prometedoras son esta vez proce-
sadas directamente sobre un mapa de caracterı́sticas (feature map) profundo. Entón, a CNN
como extractora de caracterı́sticas é aplicada a toda a imaxe e unha nova capa denominada
RoI pooling, en inglés, selecciona as zonas do mapa de caracterı́sticas profundo asociadas a
cada rexión, mapeando a saı́da en vectores do mesmo tamaño para que poidan ser introduci-
dos en capas totalmente conectadas (fully connected layers) para a súa final clasificación e
regresión. Neste punto, unicamente a etapa de proposta de rexións prometedoras non se leva
a cabo mediante un enfoque de aprendizaxe profunda, minguando o rendemento do conxunto.
A solución a esta cuestión dividiu, a partir dese momento, á comunidade cientı́fica en dúas
estratexias principais: detectores baseados en rexións en dúas etapas (two-stage region-based

detectors) e detectores que predı́n directamente as rexións a partir dos mapas de caracterı́sticas
(one-shot detectors).

• Detectores baseados en rexións: este enfoque baséase nunha rede de propostas de
rexións prometedoras (RPN, Region Proposal Network) que utiliza mapas de caracterı́s-
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ticas profundas adestrados para aprender a xerar posibles rexións de interese e envialas,
nunha segunda etapa, á clasificación de obxectos e á regresión de rexións. Esta RPN foi
proposta por Ren et al. en Faster R-CNN como unha evolución natural de Fast R-CNN.

• Detectores nunha etapa: este enfoque obtén as rexións prometedoras directamente
dos mapas de caracterı́sticas, en lugar de ter unha rede independente. Este deseño foi
proposto en primeiro lugar por Redmon et al. coa rede neuronal YOLO. Este enfoque
concreto divide a imaxe nunha cuadrı́cula e a cada unha das celas dalle unha proba-
bilidade de existencia dun obxecto xunto coas correspondentes coordenadas da rexión.
Outra interesante proposta é SSD, que actúa de forma similar a YOLO pero utiliza
múltiples escalas por cada unha das celas para mellorar a predición.

Posteriormente, realizáronse multitude de melloras en cada un dos enfoques. Un dos
avances máis significativos no campo da detección de obxectos é a rede FPN (Feature Pyramid

Network). FPN é unha arquitectura deseñada para detectar obxectos de diferentes tamaños,
aproveitando as diferentes escalas dos mapas de caracterı́sticas. FPN componse de dúas di-
reccións de execución: unha de abaixo cara arriba e outra de arriba cara abaixo. A execución
de abaixo cara arriba é a dirección convencional para a extracción de caracterı́sticas. A medida
que subimos, a resolución espacial diminúe e as caracterı́sticas identificadas son máis com-
plexas, é dicir, o valor semántico de cada capa aumenta. O camiño de arriba a abaixo permite
construı́r capas de maior resolución pero dotadas dunha maior semántica. A estes mapas de
caracterı́sticas de diferente resolución, engádeselles unha RPN a cada nivel permitindo iden-
tificar e localizar obxectos a diferentes escalas. A FPN está relacionada coa SSD no sentido
de que a SSD tamén propón rexións a diferentes escalas de mapas de caracterı́sticas pero, a
diferenza da FPN, sen as caracterı́sticas de alto nivel obtidas mediante a vı́a descendente. Sen
elas, os mapas de caracterı́sticas de menor profundidade na SSD conteñen só caracterı́sticas
de baixo nivel que non son eficaces para a detección de obxectos, prexudicando a detección
de obxectos pequenos. A arquitectura FPN foi adoptada por outras solucións como RetinaNet
para detectar obxectos nunha soa etapa, eliminado as RPNs e colocando dúas subredes, unha
de clasificación e outra de regresión. Os detectores de CNN baseados en rexións como a
rede FPN demostraron ser máis exitosos cando o tempo de cálculo non é esencial, destacando
aı́nda máis cando se detectan obxectos pequenos.

Aı́nda que os actuais detectores de obxectos da CNN proporcionan unha gran precisión
nunha ampla gama de escalas, a eficiencia da detección de obxectos pequenos é considera-
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blemente inferior á detección de obxectos máis grandes, o que abre camiño a unha maior
mellora. Os principais problemas da detección de obxectos pequenos son dous: (i) as ar-
quitecturas actuais reducen a resolución a medida que aprenden caracterı́sticas en capas de
máis alto nivel, o cal é contraproducente cando o obxecto é pequeno, posto que as súas ca-
racterı́sticas poden perderse nese proceso, e (ii) as bases de datos máis populares como MS
COCO ou ImageNet centran a súa atención en tamaños de obxecto superiores. Cabe destacar
que nos últimos anos a detección de obxectos pequenos experimentou un progreso significa-
tivo seguindo o camiño que propuxo FPN, ao demostrar que é necesario utilizar ao mesmo
tempo mapas de caracterı́sticas de alto valor semántico e gran resolución. Moitos autores
propoñen diferentes formas de combinar capas con diferentes resolucións e crear un único ou
varios bloques convolucionais con información de caracterı́sticas de alto e baixo nivel, como
son HyperNet, SDP (Scale-Dependent Pooling) ou ION (Inside-Outside Net). Outro exemplo
é MDFN, unha CNN nunha soa etapa que propón explotar unicamente as capas profundas
pero introducindo módulos Inception con filtros a múltiples escalas para mellorar tanto a in-
formación semántica como a contextual. Neste traballo demóstrase como o contexto é moi
relevante para a detección de obxectos pequenos. En referencia á escaseza de bases de datos
con obxectos pequenos, ésta foise paliando nos últimos anos grazas a imaxes gravadas con
UAVs sobre amplas áreas cunha considerable cantidade de obxectos pequenos, destacando
UAVDT e VisDrone.

Actualmente, é moi común atoparse con bases de datos en vı́deo ou aplicacións que re-
quiren procesamento de vı́deo. Os enfoques definidos anteriormente son capaces de localizar
os obxectos fotograma a fotograma, pero non son capaces de aproveitar a coherencia temporal
entre obxectos, útil para mellorar o rendemento final. Ademáis, os vı́deos expoñen proble-
mas adicionais que dan lugar a clasificacións inestables como, por exemplo, desenfoque de
movemento, oclusións do obxecto ou cambios abruptos do punto de vista da cámara. Por con-
seguinte, traballos recentes dirixiron a súa atención á detección de obxectos en vı́deo. Este
aumento de interese produciuse, principalmente, dende a chegada do desafı́o ImageNet-VID
en 2015, seguida por outras bases de datos en vı́deo como UA-DETRAC, YouTubeObjects,
ou os xa mencionados UAVDT e VisDrone.

As técnicas de aprendizaxe profunda que implican a información de varios fotogramas
para mellorar a detección dun obxecto no momento actual dan lugar ás denominadas CNNs
espazo-temporais. Un problema directamente relacionado coa detección de obxectos en vı́deo,
e do que se nutriu nos seus comezos, é o campo de recoñecemento de accións, onde as pro-
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postas baseadas en dous fluxos de entrada (two-streams) se converteron no enfoque estándar.
Nestas solucións, ás caracterı́sticas profundas usuais nas CNNs que traballan con imaxes
engádeselles un novo fluxo de caracterı́sticas que definen o movemento con respecto aos
fotogramas veciños. Como resultado do seu éxito, este método adaptouse á detección de
obxectos en vı́deo para identificar correspondencias entre obxectos a través do tempo. Por
exemplo, tanto na rede FGFA (Flow-Guided Feature Aggregation) como en MANet (Motion-

Aware Network), as correspondencias temporais baséanse na información dun fluxo óptico.
Outro enfoque interesante para incrementar a precisión final é a mellora das deteccións ac-
tuais mediante unha análise das puntuacións obtidas nos obxectos de fotogramas veciños. O
método de asociación de obxectos durante varios fotogramas denomı́nase object linking, e o
resultado da asociación de cada obxecto coñécese como tubelet. Neste caso, para a asociación
de deteccións é común a utilización de solape, fluxo óptico ou operadores de correlación, e a
obtención dos tubelets mediante algoritmos de tracking ou algoritmos para atopar as secuen-
cias máis probables —por exemplo, o algoritmo de Viterbi.

Doutra banda, o adestramento dun modelo de aprendizaxe profunda significa, a grandes
liñas, axustar os seus parámetros para que sexa capaz de asignar a unha entrada algunha
saı́da, por exemplo, asignar a unha imaxe unha categorı́a. As CNNs de última xeración adoi-
tan ter millóns de parámetros para poder recoñecer a ampla variabilidade que existente dentro
dunha categorı́a. O problema é que, para adestrar tal cantidade de parámetros, requı́rese unha
cantidade proporcional de exemplos. En xeral, canto maior sexa a variabilidade do adestra-
mento, mellor será o rendemento final. Por conseguinte, nun escenario no que o número de
instancias dos obxectos é reducido, é interesante considerar unha solución para aumentar o
número de instancias sen ter que realizar a custosa tarefa de anotar os datos manualmente.
Esta técnica coñécese como aumento de datos, do inglés, data augmentation. O seu obxectivo
é incrementar o número e a diversidade dos datos de adestramento sen engadir novos datos
como tal, senón engadindo exemplos existentes lixeiramente modificados ou creando exem-
plos sintéticos baseados en datos existentes. No caso da detección de obxectos, existen dous
tipos principais: modificacións básicas de imaxes ou xeración de datos artificiais.

As modificacións básicas de imaxes son lixeiras alteracións dos datos existentes e, ao ser
pouco custosas, son moi comúns á hora de adestrar un modelo de aprendizaxe profunda. Estas
funcións básicas van dende cambios de escala, translación ou rotación das imaxes ata o recorte
de segmentos da imaxe, a imaxe espello (mirroring) ou o modificacións na gama de cores.

A xeración de datos artificiais comprende enfoques máis sofisticados que teñen por ob-
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xecto aprender caracterı́sticas relevantes dos datos de adestramento co fin de xerar novas
instancias sintéticas. Un enfoque sinxelo é o de copiar e pegar instancias de obxectos en
novos lugares para aumentar a variabilidade do contexto. Para que o obxecto sexa consistente
coa contorna, AdaResampling, por exemplo, calcula un mapa de contexto, e logo recorta e
reescala o obxecto de interese para colocalo de acordo co fondo. Con todo, demostrouse que
as funcións de re-escalado introducen artefactos que están lonxe das caracterı́sticas dos datos
reais e, por tanto, son ineficientes para axudar a xeneralizar o modelo.

Os recentes avances na xeración de datos artificiais baséanse no principio da aprendizaxe
antagónica. A aprendizaxe antagónica é unha metodoloxı́a que trata de adestrar un modelo
para atopar posibles escenarios nos que un modelo adestrado errarı́a. Unha vez que se coñecen
os casos en que fracasarı́a, é posible engadilos ao modelo para facelo máis robusto. Explo-
rando estes principios, Goodfellow et al. marcaron un novo fito en 2014 coa formulación das
populares redes xenerativas antagónicas (GANs, Generative Adversarial Networks). Estes
enfoques constan de dous compoñentes: un xerador e un discriminador. Iterativamente, o
xerador produce datos falsos e o discriminador trata de distinguir entre as imaxes reais e as
falsas, e unha función de custo antagónica empuxa ao xerador para producir exemplos cada
vez máis próximos aos reais. Esta idea foi aplicada para o ámbito da clasificación de imaxes
mediante as denominadas DCGAN (Deep Convolutional Generative Adversarial Network).

Dende ese momento houbo unha gran cantidade de traballos que demostraron, e seguen
demostrando, o potencial das GAN en multitude de ámbitos. Por poñer algúns exemplos:
xeráronse datos artificiais para a base de datos MNIST que permitiron aumentar a precisión do
modelo; DAGAN (Data Augmentation GAN) é capaz de aprender unha gran familia de trans-
formacións para producir exemplos artificiais usando un codificador-decodificador (encoder-

decoder); DeLiGAN logra xerar imaxes para varias modalidades diferentes en escenarios de
reducido número de datos de adestramento; ou as xa famosas CycleGAN, compostas por dúas
GAN cunha función de custo que outorga consistencia de ciclo e permite transferir o estilo
dunha conxunto de datos a outro —por exemplo, o cambio de verán a inverno ou as condicións
meteorolóxicas nun vı́deo.

Tendo en conta este contexto, o obxectivo principal desta tese é abordar os inconvenientes
da detección de obxectos pequenos mediante a definición de modelos capaces de mellorar
o rendemento non só os obxectos pequenos —inferiores a 32 × 32 pı́xeles, como define
MS COCO—, senón tamén os obxectos extremadamente pequenos. Cualitativamente, re-
ferı́monos a obxectos extremadamente pequenos como aqueles que, se non fóra polo con-
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texto circundante, apenas serı́amos capaces de asignalos a unha categorı́a. Cuantitativamente,
extremadamente pequeno refı́rese a tamaños inferiores a 16 × 16 pı́xeles. En particular,
preténdense deseñar arquitecturas baseadas en aprendizaxe profunda centradas en localizar
obxectos pequenos, e de definir sistemas para abordar o escaso número de instancias obxec-
tos pequenos nas bases de datos máis populares. Para acadalo, propuxéronse os seguintes
obxectivos especı́ficos:

1. Detección de obxectos pequenos en imaxes. Deseño dunha arquitectura de apren-
dizaxe profunda para detección de obxectos capaz de traballar con mapas de caracterı́s-
ticas de alta resolución e alto valor semántico ao mesmo tempo sen aumentar o custo
computacional. Ademáis, componse unha nova base de datos centrada en obxectos ex-
tremadamente pequenos para complementar a validación dos modelos propostos sen
nesgo de tamaño.

2. Detección de obxectos pequenos en vı́deos. Definición dunha arquitectura espazo-
temporal baseada no deseño anterior. A nova arquitectura debe aproveitar a coherencia
temporal dos vı́deos para obxectos pequenos e mellora con ela as decisións de detección
final.

3. Xeración de datos artificiais para a detección de obxectos pequenos. Deseño dun
algoritmo de xeración automática de imaxes artificiais para incrementar o número de
instancias de obxectos pequenos nunha base de datos dada. O sistema ten que ser capaz
de xerar obxectos cuxas caracterı́sticas axuden ao proceso de adestramento, mellorando
a precisión do modelo obtido. Ademáis, as novas instancias deben dispoñerse de forma
coherente na imaxe.

Nesta memoria detállanse as contribucións do traballo desenvolvido e os resultados máis
relevantes da experimentación.

En concreto, o Capı́tulo 2 presenta STDnet, unha arquitectura baseada en redes neuronais
convolucionais para a detección de obxectos pequenos, que é capaz de traballar con mapas
de caracterı́sticas de alta resolución e gran semántica nas capas máis profundas da rede, sen
aumentar o custo computacional. STDnet basea o seu éxito nunha nova rede de rexións con
contexto (RCN, Region Context Network), un módulo situado nas primeiras etapas da rede
que está adestrado para seleccionar as zonas máis prometedoras da imaxe, é dicir, aquelas
que conteñen idealmente un obxecto xunto co seu contexto. A este módulo engádeselle unha
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capa de agrupación de rexións (RCL, RoI Collection Layer) que encapsula estas rexións nun
único mapa de caracterı́sticas. A partir deste punto, a rede unicamente procesa as zonas se-
leccionadas e, por tanto, os novos mapas de caracterı́sticas poden manter unha alta resolución
e maior velocidade durante toda a execución sen sobrecargar a memoria. Ademáis, faise
unha proposta básica sobre un enfoque espazo-temporal (STDnet-bST) que se estenderá no
Capı́tulo 3. Finalmente, xérase unha base de datos de detección de obxectos pequenos (USC-
GRAD-STDdb), unha nova base de datos de vı́deo para a detección de pequenos obxectos
para validar os modelos propostos. USC-GRAD-STDdb contén 115 segmentos de vı́deo en
alta resolución con máis de 56.000 obxectos anotados de tamaños comprendidos entre 4 × 4
e 16 × 16 pı́xeles.

O Capı́tulo 3 describe STDnet-ST, unha CNN espazo-temporal baseada en STDnet e
STDnet-bST para a detección de obxectos pequenos de vı́deo. STDnet-ST presenta dúas eta-
pas: unha primeira etapa que correlaciona as rexións máis prometedoras de dous fotogramas
consecutivos para buscar coincidencias, e un método de asociación de rexións que compón
tubelets de alta calidade. Concretamente, STDnet-ST consiste en dúas ramas de STDnet
unidas por un operador de correlación que traballa coas rexións propostas polas RCNs. Por
iso, a pesar de que os obxectos pequenos teñen poucas caracterı́sticas distintivas, o contexto
dentro das rexións fai posible que o operador de correlación poida recoñecer os obxectos en
dous instantes temporais. A probabilidade de correlación denota o nivel de similitude por
par de rexións e permite facer coincidir os obxectos aproveitando a coherencia temporal do
vı́deo. STDnet-ST presenta tamén un método de asociación de rexións baseado no algoritmo
de Viterbi que utiliza as probabilidades de correlación para vincular as deteccións de ambos os
fotogramas. Por último, a nosa proposta inclúe un algoritmo de supresión de tubelets (tubelet

suppression) que detecta as asociacións menos rendibles xerando novos nodos e conseguindo,
con iso, unicamente tubelets de gran calidade ao detectar aqueles que probablemente non
teñen boas deteccións. A toma de decisión final utiliza a variabilidade de probabilidades
dentro de cada tubelet.

No Capı́tulo 4 detállase un sistema para a xeración artificial de obxectos pequenos en vı́deo
(data augmentation) que poboa, de forma automática, unha base de datos cun número maior
de instancias de obxectos sintéticos pequenos de alta calidade. O compoñente principal é unha
nova arquitectura baseada nas GANs (DS-GAN) adestrada para producir novos obxectos pe-
quenos sintéticos utilizando a información de obxectos máis grandes. O xerador ten unha
arquitectura de codificador-decodificador (encoder-decoder), onde a dimensión de entrada é
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maior que a de saı́da, co fin de xerar un pequeno obxecto sintético a partir dun obxecto real
máis grande xunto cun vector de ruı́do. Estes obxectos sintéticos pequenos achéganse cada
vez máis aos obxectos pequenos reais, xa que o xerador trata de enganar a un discriminador
adestrado para diferenciar os pequenos obxectos sintéticos dos reais mediante a introdución
de artefactos provenientes destes obxectos. Un vez xerados os obxectos pequenos artificiais, o
sistema combina arquitecturas de segmentación de obxectos, fluxo óptico, inpainting e blend-

ing para integralos en posicións coherentes dentro dos fotogramas do vı́deo. Concretamente,
as técnicas de segmentación de obxectos empréganse para eliminar o contexto que rodea ao
obxecto artificial. O fluxo óptico localı́za posicións coherentes dentro da imaxe. As técnicas
de inpainting empréganse para eliminar calquera obxecto dentro da posición seleccionada. Fi-
nalmente, as técnicas de blending melloran a adecuación espacial e de cor para que o obxecto
se axuste ao novo fondo da forma máis natural posible.

A tese remata co Capı́tulo 5, onde se resumen as conclusións da investigación realizada,
ademáis de discutir posibles liñas de traballo futuro que poderı́an permitir mellorar os resul-
tados acadados.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Object detection is one of the main topics in computer vision. It refers to correctly identifying
and labeling all objects present in an image or video frame, and it consists of two steps: (i)
object localization, in which a bounding box or enclosing region is determined as tight as
possible to locate the exact position of the object in the image; and (ii) object classification, in
which the located object is labeled to a specific category. Object detection is required for sev-
eral practical applications like face detection and facial recognition, image retrieval, security,
surveillance, traffic monitoring, self-driving cars, identity verification, medical imaging or
machine and infrastructure inspection. Besides, object detection is breaking into a wide range
of industries, with use cases ranging from personal security to productivity in the workplace.
Today, significant challenges remain in the field of object recognition and the possibilities are
endless when it comes to future applications that demand an automatic understanding of the
objects in an environment.

Within each of the applications outlined above, there are instances of objects that are
displayed in small, almost indistinguishable sizes, but whose understanding and detection is
of great importance in several applications. To mention some specific examples: automated
vehicle systems or applications such as sense and avoid in unmanned aerial vehicles (UAVs)
need to detect an object as far as possible; satellite image analysis, where almost all objects
are only a few pixels in size; infrastructure inspection, where for safety reasons the slightest
imperfection has to be detected; medical imaging, where the slightest anomaly has to be
identified; traffic monitoring, which requires to detect all the objects, no matter how far they
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Figure 1.1: Annotated small objects in real-world images.

are; or surveillance, where objects of interest cannot be missed. Inevitably, however, the
smaller the objects the lower the accuracy of the detection. This can be seen in popular object
detection contests like MS COCO [90]. Figure 1.1 illustrates the challenge of small object
detection in three different scenarios from the dataset created in this PhD Thesis. This is
addressed in this PhD Thesis through three axes: (i) small object detection in static images;
(ii) small object detection in video; and (iii) data augmentation for small object detection.

1.1.1 Image Object Detection

The scientific community’s interest in image object detection has been active for several
decades, but in the last one important results have been achieved, mainly thanks to the rise of
deep convolutional neural networks (CNNs or ConvNets) as adaptive feature extractors and
transfer learning as a method of transmission of prior knowledge. Traditional object detec-
tion algorithms mainly relied on handcrafted features, reached through feature engineering,
and machine learning classifiers [33, 95, 126]. They based their operation on three differ-
ent stages: region proposals, feature extraction, and region classifier (Figure 1.2). Region
proposal methods were traditionally based on sliding windows [17, 21], which were com-
putationally inefficient and less precise in a variety of scales. Later on, more sophisticated
methods were developed to improve performance, such as selective search [125], which gen-
erates region proposals by merging similar pixels into regions. The feature extraction step
was dominated by different handcrafted feature detectors such as SIFT for interesting points,
HOG for gradient orientations or Harris for corner detection [21, 89]. Finally, each region was
classified into a category by a supervised learning model like a support vector machine (SVM)
or a multilayer perceptron (MLP) [65]. In order to improve the detection accuracy, different
techniques have been used to process the features, like Principal Component Analysis (PCA),
k-means or Bag-of-Words (BoW) [22].
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Figure 1.2: Block diagram of the object detection workflow: traditional object detectors (top)
and CNN-based object detectors (bottom).

The breakthrough point was achieved in 2012 when Krizhevsky et al. defined AlexNet
[72], a convolutional neural network for image classification capable of learning automatically
the features of the 1,000 categories present in the ImageNet benchmark [110] and improving,
by far, the algorithms based on traditional approaches. It is true, however, that deep learning
techniques applied to images, based on convolutional neural networks, were proposed in the
late 80s by Yan LeCun [73] where they proved their potential in the recognition of handwritten
digits (MNIST dataset). Although the AlexNet and LeNet-5 [74] architectures were based on
the same operators —convolutions, pooling and activation functions—, the resurgence of neu-
ral networks was also driven by the computational optimization of GPUs and the emergence
of big data and dataset repositories, which made possible the design and training of deeper
neural networks [30, 80, 110]. The deep learning-based techniques for feature extraction led
to remarkable advances in the area of image processing. Automatic feature learning is a clear
and intuitive technique able to automatize the adaptation to different domains whose manual
design, previously required years of research.

The first deep neural network for object detection was Overfeat [112], released one year
later than AlexNet, where a multi-scale sliding window approach feeds a CNN that showed
the obvious, that the CNNs were efficient also for object detection, and that they improved
image classification too. They were soon followed by R-CNN: regions with CNN features
[40] that pointed out a line of research that is currently prevalent. The authors proposed a
model that uses selective search [125] and each region was fed into a CNN, which produced
a high dimensional feature vector. This vector was then used for the final classification and

3



BRAIS BOSQUET MERA

bounding box regression. Although CNNs as feature extractors or backbones considerably
outperformed handcrafted methods, they were still computationally inefficient for object de-
tection as the feature extraction step had to be repeated for each region of the image. To
solve this issue, Fast R-CNN [39] generates the region proposals with selective search, just as
R-CNN, but those regions are processed directly on a deep feature map applied to the entire
input image. A novel Region of Interest (RoI) pooling selects the features related to each re-
gion and creates pooled same-size feature vectors that are fed into a fully connected network
for classification and regression. At this point, only the region proposal stage was not con-
ducted through a deep learning approach, reducing computational performance. The solution
to incorporate the regions to the network divided, from this moment on, the computer vision
community in two strategies: region-based detectors (two-shot or two-stage) and detectors
that directly predict boxes from feature maps (one-shot or one-stage).

• Region-based detectors: this approach is based on a Region Proposal Network (RPN)
to generate regions of interest using deep feature maps in the first stage and send the re-
gion proposals down the pipeline for object classification and bounding-box regression
in the second stage. This RPN was proposed by Ren et al. [106] with Faster R-CNN as
a natural evolution of Fast R-CNN.

• One-shot detectors: this approach treats “object detection as a single regression prob-

lem, straight from image pixels to bounding box coordinates and class probabilities”
[102], instead of a classification problem relying on region proposals. This design was
firstly proposed by Redmon et al. [102] with the YOLO network that divides the image
into a grid, where each cell predicted a confidence score of an object being present with
the corresponding bounding box coordinates. Another network that predicts classes and
bounding boxes at once is the Single Shot Detector (SSD) [83], which is comparable to
YOLO but uses multiple aspect ratios per grid cell and different feature map scales to
improve prediction.

Subsequently, a large number of innovations have been made in each of the above ap-
proaches [37, 46, 103]. One that brought a significant advance in the object detection field
was the Feature Pyramid Network (FPN) [78]. FPN is a backbone designed for detecting
objects in different scales by taking advantage of the different feature map scales, or pyramid
of feature maps. FPN composes of a bottom-up and a top-down pathway. The bottom-up
pathway is the usual convolutional network for feature extraction. As we go up, the spatial
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resolution decreases. With more high-level structures detected, the semantic value for each
layer increases. The top-down pathway permits to construct higher resolution layers from a
semantic rich layer. With those semantic rich feature maps at different scales, an RPN is added
to each pyramid level to capture objects at different scales. FPN is related to SSD in that SSD
also proposes regions at different feature map scales but, unlike FPN, without the high-level
features gathered by the top-down pathway. Without them, the shallower feature maps in SSD
contain only low-level features that are not effective for accurate object detection, thus harm-
ing small object detection. The same FPN-based architecture was adopted by RetinaNet [79]
that removes the RPNs and adds two subnetworks —class subnet and bounding box subnet—
to detect objects in one-stage. The main improvement is obtained through a novel loss func-
tion (Focal Loss) to address the class imbalance in one-shot detectors. Region-based CNN
detectors have proven to be more successful when computation time is not essential, being
even more prominent when referring to small objects.

As stated before, current CNN object detectors provide high accuracy at a wide range of
scales. Nevertheless, small object detection accuracy lags behind that of larger objects [82],
which opens the way for more improvement. The problems of detecting such small objects
are twofold: (i) deep CNNs architectures commonly reduce the input resolution to understand
high-level features, which is counterproductive when the object is so small that it may be lost
along the way, and (ii) the most popular image datasets such as MS COCO [80] or ImageNet
[72] focus their attention on larger objects.

Even though, over the last years, the scope of small object detection has witnessed sig-
nificant progress since FPN demonstrated that it is required to exploit semantic rich and
coarse feature maps at the same time to properly detect small objects. In [139], authors pro-
pose a scale-dependent pooling along with layer-wise cascade rejection classifiers in several
branches for the different object sizes. Then, if an object proposal has a height lower than 64
pixels, the regions are processed by a scale-dependent pooling with more resolution than if
they were larger objects. References [4], [71] or [45] combine layers with different resolutions
to create a single convolutional block that gathers the information from upper layers into the
bottom ones. Another approach is MDFN [85], a one-shot CNN that proposes only to exploit
high-layers and, at the same time, improves the small and occluded object detection. This is
done by introducing inception modules with multi-scale filters to enhance both the semantic
and contextual information. Here it is shown that context is quite relevant for detecting small
objects.

5
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The objective of this PhD Thesis is to address the drawbacks in small object detection
by designing a novel deep learning architecture focused on small object detection able to
work with high resolution feature maps and high semantic value at the same time, without
increasing the computational cost. Particularly, the architecture must be able to detect not
only small objects —under 32× 32 as defined in MS COCO—, but also extremely small
objects. Qualitatively, we refer to extremely small as those objects without definitive visual
cues to assign them to a category, if it were not for the surrounding context (Figure 1.1).
Quantitatively, extremely small refers to sizes under 16× 16 pixels. The lack of specific
datasets with small objects has been partially addressed with the rise of UAVs with built-in
cameras to record wide areas in the wild with small objects and good quality such as UAVDT
[27] and VisDrone2019-VID [153]. Still, as the amount of small objects in public datasets
is reduced, it will be mandatory to generate a new dataset to validate the proposed model
without size bias.

1.1.2 Video Object Detection

Video object detection aims to detect objects of different categories in video sequences. Ba-
sically, video object detection is a conventional image object detection where the images to
be processed are each one of the video frames. However, video frames present some singular
characteristics. On the one hand, temporal coherence is a useful cue to improve performance.
On the other hand, they bring additional challenges that lead to unstable classifications for
the same object across the video, e.g., motion blur, video defocus, long time partially or fully
occlusion or severe camera view changes. Therefore, some research initiatives have been
directed towards video object detection through the exploitation of temporal features.

Video object detection has also had a recent upturn, to the detriment of the popular static
image benchmarks that dominated the object detection field (ImageNet [110] or MS COCO
[80]). The advent of ImageNet video object detection challenge (ImageNet-VID) [110] fol-
lowed by other video datasets like UA-DETRAC [132], YouTubeObjects [61] or those already
mentioned UAVDT [27] and VisDrone2019-VID [153], set a new course in object detection.

Deep learning-based techniques that involve the information of several frames to improve
the detection of an object at the current moment gives rise to the so-called spatio-temporal
CNNs [14]. A related problem to video object detection is the action recognition field, in
which the two-stream networks have become the standard approach [41, 97, 115]. In these
solutions, the standard features computed by a CNN are augmented with another stream of
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features propagated from neighboring frames. As a result of its success, this feature propa-
gation method has also been adapted to video object detection for finding correspondences
between objects across time. In Flow-Guided Feature Aggregation (FGFA) [154], feature
correspondences are found based on optical flow information. Wang et al. [129] propose
Motion-Aware Network (MANet), which also bases the search of correspondences on optical
flow. Alternatively, in [135], authors introduce a Spatial-Temporal Memory Module (STMM)
that uses deep feature maps from several frames and the previous memory state to adjust the
current spatio-temporal memory. Bertasius et al. [6] define a Spatio-Temporal Sampling Net-
work (STSN) based on deformable convolutions to establish feature correspondences across
the video.

There is another interesting approach that aims to improve the overall accuracy by mod-
ifying the detections and their scores in the current frame according to detection’s scores in
neighboring frames. The method of associating objects during several frames is commonly
called object linking, and the result of the association of each object is known as a tubelet.
The approach in [63] performs video object detection in the current frame and tracks the
objects through neighboring frames based on the mean optical flow vector within boxes. Sim-
ilarly, the approach in [62] links objects into long tubelets using a tracking algorithm and then
adopts a classifier to aggregate the detection scores in the tubelets. The solution addressed
in [32] inserts a correlation operator between two input frames to extract motion information
of the objects across time. The correlation operates over the entire feature maps at differ-
ent scales and estimates local feature similarity for various offsets between the two frames.
Then, they link the detected objects into tubelets and re-weight the detections’ scores within
them. Correlating whole feature maps implies that, as an object becomes smaller, their move-
ment represents a considerably smaller influence, even though the correlation acts on several
scales. Another alternative for video object detection introduced in [121] proposes a modified
RPN called Cuboid Proposal Network (CPN) for detecting objects in multiple input frames.
The cuboid proposals are regressed and classified to create short tubelets. Consecutive short
tubelets are merged into long tubelets by a linking algorithm that takes the best detection for
each overlapping frame between two tubelets. Finally, Cores et al. [19] describe a tempo-
ral pooling operator that summarizes RoI pooled features linked through object tubelets to
feed a spatio-temporal double head that takes advantage of both spatial and spatio-temporal
information.

Given the direction towards the computer vision field is heading to, with both the release
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of video datasets and applications that increasingly demand video processing such as face
detection, surveillance, self-driving cars or UAVs, the architecture designed during this PhD
Thesis must be able to take advantage, when possible, of the temporal information to improve
the final accuracy.

1.1.3 Data Augmentation

Training a deep learning model really means to tune its parameters so it is able to map an
input into some output —e.g., an image into a category. State-of-the-art CNNs typically have
millions of parameters in order to be able to recognise the wide variability that can exist
within a category —e.g., type included into each category, translation, viewpoint, size or
illumination. The problem is that, for training such a number of parameters, it is required a
proportional amount of examples. In general, the greater the training variability the better the
final performance, as the model becomes more generalized.

Therefore, in a scenario where the number of instances of the objects is reduced, it is
crucial to consider a solution to increase the number of instances without having to perform
the costly task of manually annotating data. This technique is known as data augmentation.
The goal of data augmentation is to increase the number and diversity of the training data
without adding new data, but by adding existing slightly modified examples or by creating
synthetic examples based on existing data. For object detection, there are two main types of
data augmentation: basic image manipulations and generative synthetic approaches.

Basic image manipulations are slight alterations to the existing data, so most of the deep
learning designs usually combine many of them. For example, scale, translation, and rotation
[18, 111, 127] or cropping, image mirroring and color processing [72] are very common for
object recognition. For object detection, image mirroring and object-centric cropping are the
most widely used [83, 116].

Generative synthetic approaches comprise more sophisticated models that aim to learn
features from the training data to generate new synthetic instances. A straightforward ap-
proach is the copy-paste of object instances in new places to increase context variability. This
is done in [69] by cropping small objects and randomly pasting them in the image. The weak
point of this approach is that the object may not be consistent with the background. To deal
with this, Chen et al. [15] design AdaResampling, a method that first understands the back-
ground by computing a context map, and then crops and re-scales the target object to be placed
in accordance with the background. The issue here is more difficult to grasp, but [113] and
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Figure 1.3: Generative Adversarial Network (GAN) overview. The generator attempts to
create examples close to those in the real dataset to fool the discriminator. The discriminator
tries to distinguish between real and generated examples.

[10] have proven that re-scaling functions introduce artefacts that are far from real-world data
features and are, therefore, inefficient in helping to generalize the model.

Recent advances in data augmentation are based on the principle of adversarial learning.
Adversarial learning is a methodology that tries to find possible scenarios where a trained
model would fail through the training of another model with contrasting objectives. Once the
instances where it would fail are known, it is possible to add them to the model to increase
its robustness. In [130], authors train an adversarial network in parallel with Fast-RCNN
to generate examples that would lead the detector to misdetection, so that the model will
adapt itself to learn to classify these adversarial examples. Exploring the adversarial learning
principles, Goodfellow et al. [42] first formulated the popular generative adversarial networks
(GANs). GANs comprise two networks: the generator and the discriminator. Iteratively, the
generator produces fake data and the discriminator tries to distinguish between real and fake
images, and an adversarial loss pushes the generator to produce examples more and more
closer to real ones (Figure 1.3). That idea was applied for image classification tasks in Deep
Convolutional GANs (DCGAN) by Radford et al. [101].

Mirza and Osindero [86] extended the definition with a conditional input to generate syn-
thetic images on MNIST dataset [75] along with their label. DAGAN (Data Augmentation
GAN) [1] learns a large family of transformations to produce synthetic examples using a
encoder-decoder as generator. The generator takes an input image, adds noise when it is en-
coded and, finally, decodes it. Reference [44] introduces DeLiGAN, a GAN-based framework
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that manages to generate images for a number of different modalities in low data scenarios.
The key idea is that, instead of sampling directly from a simple latent distribution, authors
reparameterize it using a mixture of Gaussian model. Finally, another interesting idea for data
augmentation with GANs is CycleGAN [152], where authors propose two GANs with cycle
consistency loss for style transfer from one setting to another –e.g., change from summer to
winter or the weather conditions in a video.

Considering all the aforementioned work, data augmentation approaches become even
more important when dealing with instances of objects where the number of training examples
is reduced. Small object detection, as has been mentioned, falls short of a high number of
instances within the most popular datasets, so data augmentation techniques are an interesting
field to study. For this reason, in addition to releasing a small object dataset, this PhD Thesis
presents an approach based on generative adversarial networks to augment the number small
objects in existing popular datasets.

1.2 Objectives

The main goal of this PhD Thesis is to explore deep learning techniques with the objective of
achieving state-of-the-art results on small object detection. Particularly, the aim is to design
novel CNN architectures focused on finding small objects as well as to define systems to
overcome the scarce number of small objects in public datasets. To achieve this, the following
objectives have been pursued:

O1. A convolutional neural network for small object detection in images

The proposed convolutional neural network (CNN) architecture must be able to process
the image information with a low resolution loss in order to keep most of the small
objects features and thus identify the small objects in the image. A naive increase in the
feature map dimension would dramatically increase computational costs, making the
proposal infeasible. The hypothesis is that focusing only on some regions of the image
would allow to keep high resolution feature maps in deep layers. This would overcome
state-of-the-art architectures, which have a high stride, harming them for the detection
of small objects. Furthermore, a new video database with small objects will be created
to validate the proposals. In order to generalize the results, the database must contain
various categories in different real-world environments.

10
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O2. A spatio-temporal architecture for small object detection in video

The spatio-temporal CNN has to exploit the temporal coherence of the objects in videos
to improve the object detection performance. This requires processing several frames
simultaneously and using the information from the intermediate feature maps to as-
sociate the final detections and create temporal object tubelets. Once a new level of
temporal abstraction is achieved for each object, it is possible to enhance the object
detection in future frames based on previous positions and scores and, thus, to improve
the overall performance.

O3. A data augmentation approach for generating synthetic small objects

The data augmentation approach will increase the number of instances of small objects
in a given dataset. Therefore, the system must be able to automatically generate objects
that do not exist in the dataset and place them coherently into the image —e.g., a ground
object cannot appear in the sky. Moreover, the features of the generated synthetic small
objects must help the training process, improving the obtained model precision.

1.3 Contributions

The research developed in this thesis has led to the following contributions:

C1. The design of Small Target Detection network (STDnet), a deep learning architec-
ture for small object detection able to work with high resolution feature maps in the
deepest layers without increasing the computational cost.

C1.1 STDnet relies its success on the novel Region Context Network (RCN), a module
trained to select regions centered on an object together with its context, and the
RoI Collection Layer (RCL) for integrating those disjoint regions. So that, the
RCN points out the most promising regions of the image at early stages, and the
RCL merges them into a single feature map. Then, from this point onwards, the
network only has to process the selected regions and, therefore, the new feature
maps can keep a high resolution with a lower memory overhead and a higher
frame rate.

C1.2 The release of the Small Target Detection database (USC-GRAD-STDdb), a new
video database for small object detection for validating STDnet and future pro-
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posals. It comprises 115 video segments and more than 56,000 annotated objects
with sizes between 4 × 4 and 16 × 16 pixels.

C2. STDnet-ST, A STDnet spatio-temporal enhancement for video object detection that
correlates the most promising regions of two consecutive frames and creates high qual-
ity object tubelets.

C2.1 STDnet-ST consists of two STDnet branches bounded together by a correla-
tion operator working with the RCN. The correlation is performed over the most
promising regions of both images resulting in a correlation score per pair. Al-
though small objects have few distinguishing features, the context within the RCN
regions makes possible for the correlation operator to be able to recognize objects
in two temporal instants. The correlation score denotes the level of similarity per
pair and allows to match objects by exploiting the video temporal coherence.

C2.2 The high quality object tubelets along the video are achieved by a new correlation-
based tubelet linking. First, it uses the correlation scores to link the detections
throughout the frames and uses the confidence variability of the tubelet to make
the final decision. Then, a tubelet suppression algorithm avoids unprofitable
tubelets by adding dummy nodes to the Viterbi algorithm based on the information
coming from promising RCN regions without detections.

C3. A full pipeline for small object data augmentation in video that automatically popu-
lates an input dataset with high quality synthetic small objects.

C3.1 The main component is a novel Down-Sampling Generative Adversarial Network
(DS-GAN) architecture trained to produce new synthetic small objects using the
information of larger objects and incorporating artefacts coming from real-world
small objects. The generator has a encoder-decoder architecture where the input
dimension is larger than the output to generate a synthetic small object starting
from a larger real object along with a noise vector. These synthetic small ob-
jects are increasingly close to real small objects as the generator tries to fool a
discriminator trained to differentiate synthetic small objects from real ones.

C3.2 The pipeline combines and adapts state-of-the-art approaches in object segmenta-
tion, object inpainting and object blending to integrate the synthetic small objects
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generated by the DS-GAN in coherent positions within the video frames. Object
segmentation techniques are used to remove the context around the objects gen-
erated by the DS-GAN so that they can be inserted properly into the new frame.
The selected position within the image must first be cleaned by object inpainting if
there is a real object overlapped. Finally, object blending is performed to enhance
the spatial and color consistencies to make the object fit the new background and
look as natural as possible.

Publications

All the contributions detailed above are included in the following publications, which com-
prise the scientific output of the research developed during the development of this thesis:

Journals

• B. Bosquet, M. Mucientes, and V. M. Brea. STDnet: Exploiting high resolution feature
maps for small object detection. Engineering Applications of Artificial Intelligence,
Vol. 91, No. 103615, 2020.
Impact factor: 4.201 (JCR 2019).
Journal ranked Q1 in JCR 2019.
Category: COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE (33/136).
Thesis contribution: C1.

• B. Bosquet, M. Mucientes, and V. M. Brea. STDnet-ST: Spatio-Temporal ConvNet for
Small Object Detection. Article submitted to Pattern Recognition in March 2020 and
currently under second round review.
Impact factor: 7.196 (JCR 2019).
Journal ranked Q1 in JCR 2019.
Category: COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE (12/136).
Thesis contribution: C2.

• B. Bosquet, L. Seidenari, V. M. Brea, M. Mucientes, and A. Del Bimbo. Data augmen-
tation for small object detection through a downsampling GAN. Article submitted to
IEEE Transactions on Image Processing in October 2020 and currently under review.
Impact factor: 9.340 (JCR 2019).
Journal ranked Q1 in JCR 2019.
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Category: COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE (8/136).
Thesis contribution: C3.

• M. Fernández-Sanjurjo, B. Bosquet, M. Mucientes, and V. M. Brea. Real-time visual
detection and tracking system for traffic monitoring. Engineering Applications of Arti-
ficial Intelligence, Vol. 85, pp. 410-420, 2019.
Impact factor: 4.201 (JCR 2019).
Journal ranked Q1 in JCR 2019.
Category: COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE (33/136).

Conferences

• B. Bosquet, M. Mucientes, and V. M. Brea. STDnet: A ConvNet for Small Target
Detection. In Proceedings of the 29th British Machine Vision Conference (BMVC), p.
253, Newcastle upon Tyne (UK), 2018.
Conference Ranking (GGS Rating): A, Class 2.
Thesis contribution: C1.

• B. Bosquet, M. Mucientes, and V. M. Brea. Correlation-based ConvNet for Small
Object Detection in Videos. In Proceedings of the 25th International Conference on

Pattern Recognition (ICPR), Milan (Italy), 2021.
Conference Ranking (GGS Rating): A-, Class 2.
Thesis contribution: C2.

Others

• EPO Patent: B. Bosquet, M. Mucientes, V. Brea, A computer-implemented method and
system for detecting small objects on an image using convolutional neural networks.
(Under review)

1.4 Dissertation structure

This dissertation is divided into five chapters. Chapters 2, 3 and 4 contain a detailed descrip-
tion of the contributions and experimental results, and Chapter 5 present the conclusions of
this research. More concretely, the document structure is as follows:

14



Chapter 1. Introduction

• First, Chapter 2 introduces STDnet, a novel CNN architecture for small object detec-
tion, along with a public video dataset with small targets in real-life scenarios, over-
coming the drawbacks of current datasets. STDnet includes a novel Region Context
Network (RCN) that selects the most promising regions of the image and discards the
remainder, and an RoI Collection Layer (RCL) that encapsulates these regions in a
unique and reduced feature map. Thanks to these two techniques, the algorithm is able
to remove overhead by not processing a large part of the image from that point onwards,
allowing to work with high resolution and high semantic feature maps. Additionally,
a spatio-temporal baseline network (STDnet-bST) is proposed, which will be further
extended in Chapter 3. Finally, USC-GRAD-STDdb, a video dataset with more than
56,000 extremely small objects in complex scenarios in the wild, is released.

• Chapter 3 enhances STDnet and STDnet-bST by describing STDnet-ST, a novel spatio-
temporal convolutional neural network that exploits temporal information for video
small object detection. STDnet-ST simultaneously generates the detections of the cur-
rent frame, together with the correlations between the current and previous frames. The
correlation is performed in a natural way over the most promising regions of the image.
Finally, STDnet-ST presents a novel tubelet linking able to increase the confidence of
the detections most likely to be true positives within high quality tubelets, and decrease
the confidence of those most likely to be false positives within unprofitable tubelets,
thereby, improving the overall performance.

• Chapter 4 details a full pipeline for small object data augmentation. The pipeline takes
a video dataset as input and returns the same dataset but with new synthetic objects.
This is done by converting the visual features of real larger objects —which can be
found in many datasets in a large number— into high quality synthetic small objects
and, also, by placing them in adequate positions in an existing image. To do so, the
pipeline comprises three main steps: (i) generation of small objects from large ones
through DS-GAN, a generative adversarial network; (ii) search of an adequate position
within the image through optical flow; (iii) small object integration via inpainting and
blending techniques.

• Finally, in Chapter 5 the conclusions of the research developed in this thesis are summa-
rized. Moreover, this chapter discusses future lines of work that might allow to improve
the results.

15





CHAPTER 2

STDNET: EXPLOITING HIGH RESOLUTION

FEATURE MAPS FOR SMALL OBJECT

DETECTION

In this chapter we introduce our convolutional neural network approach for small object de-
tection (STDnet). The motivation behind it comes from the fact that accuracy of small object
detection with convolutional neural networks (ConvNets) lags behind that of larger objects.
This is in part caused by the lack of specific architectures and datasets with a sufficiently large
number of small objects. The work in this chapter aims at these two issues.

First, this chapter introduces STDnet for small object detection that we defined as those
under 16 × 16 pixels. One of the main challenges of the design is the requirement to achieve
high-resolution maps in deep layers so that objects, no matter how small, will be represented
strongly throughout the execution. This is built on a novel early visual attention mechanism,
called Region Context Network (RCN), to choose the most promising regions, while discard-
ing the rest of the input image. Processing only specific areas allows STDnet to keep high
resolution feature maps in deeper layers, providing low memory overhead and higher frame
rates. Second, we also present USC-GRAD-STDdb, a video dataset with more than 56,000
annotated small objects in challenging scenarios.

The contents of this chapter are extracted from the following publications:
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B. Bosquet, M. Mucientes, and V. M. Brea. STDnet: A ConvNet for Small Target De-
tection. In Proceedings of the 29th British Machine Vision Conference (BMVC), p. 253,
Newcastle upon Tyne (UK), 2018.

B. Bosquet, M. Mucientes, and V. M. Brea. STDnet: Exploiting high resolution feature
maps for small object detection. Engineering Applications of Artificial Intelligence, Vol.
91, No. 103615, 2020.

2.1 Introduction

In the last years, solutions to visual object detection have experienced a fast evolution. This
evolution goes from primary approaches based on machine learning [33, 95, 126] to deep
learning techniques [47, 83, 103, 106], boosted by publicly available datasets with millions of
annotated images [30, 80, 110].

Generic image and/or video datasets have become valuable benchmarks to assess the qual-
ity and advance of object detectors. Nevertheless, datasets for more specific scenarios or ap-
plications are also a need. This situation might lead to new state-of-the-art object detectors,
sometimes cutting across different topics. As an example, a timely trend is to apply ideas
from the visual object tracking field [34, 94] to exploit temporal features in video through
spatio-temporal networks [14, 98].

In this line, applications like sense and avoid on board of unmanned aerial vehicles (UAVs)
or video surveillance over wide areas demand early detections of objects to act quickly. This
means to detect as far —and therefore small— an object as possible. Recent convolutional
neural networks (ConvNets) object detectors, like the work in [78], provide high accuracy
over a wide range of scales, from less than 32×32 pixels up to the image size. Qualitatively,
we refer to small as those objects without definitive visual cues to assign them to a category.
Quantitatively, small refers to sizes under 16×16 pixels. Figure 2.1a shows examples of this
kind of objects where it can be seen that had it not been by the context around the foreground
object, it would not be possible for a person to sort them out in a given category. Despite
the existence of solutions focused on small objects, the most remarkable ones have been
validated in face detection datasets [2, 52, 147, 148], but none of them have been tested in
generic datasets such as MS COCO small objects subset (<32×32 area) [80].
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(a) Small objects as defined in this chapter, i.e., un-
der 16 × 16 pixels.

(b) Smallest objects available retrieved from public
datasets.

Figure 2.1: Examples of 48 × 48 image patches from different databases with small objects.

When it refers to the scope of small targets, as those below 16 × 16 pixels as defined in
this chapter, the available set of datasets presents several drawbacks as shown in Figure 2.1b.
The top row shows small objects extracted from the FlickrLogos dataset presented in [60].
As apparent, this is a very specific image dataset. Also, their size exceeds that of 16 × 16
pixels, and it is possible to assign them to a given category. The middle row displays small
objects from the image dataset introduced in [142]. Again, this dataset is very specific and
the small objects like faces are actually part of a whole person —which although in the case
of faces are of interest by themselves, this is not the general case. Finally, the last row shows
samples from a video dataset addressed in [109]. These are monochrome and low quality
videos, which, although relevant, are not the trend with the advent of ever better quality color
image sensors. Another dataset with very specific small objects is [64].

As [82] point out, detecting small objects stands out as one of the key challenges in object
detection. The main obstacle presented by state-of-the-art ConvNets is found at the region
proposal level, which is inefficient when proposing valid regions for such small objects. This
is given by the fact that the proposal generation of regions is applied on a very low resolu-
tion feature map, where the characteristics of small objects get too small to be detectable.
One straightforward solution could be to modify a state-of-the-art ConvNet, disabling some
backbone’s downsampling to keep larger feature map resolutions. This, however, leads to
large memory requirements, easily beyond the capacity of current high performance GPUs,
and possibly to slower solutions. Another approach is to apply a region proposal generator
directly in early stages of the network. However, this leads to the problem that the semantic
information does not suffice to locate and classify the small objects appropriately.

This chapter introduces STDnet, a novel ConvNet architecture for small object detection,
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along with a public video dataset with small targets in real-life scenarios, overcoming the
drawbacks of current datasets aforementioned above. STDnet takes advantage of the follow-
ing hypothesis: being such small objects almost visually unrecognizable, they have simple
characteristics that can be learned by the neural network at early stages, where the semantic
information is low but enough to select zones of interest containing small objects. To imple-
ment this hypothesis, an early high resolution feature map feeds a novel promising regions
extractor called Region Context Network (RCN), which does not have to delimit the objects
perfectly, but larger regions —promising areas— which contain them. This set of disordered
regions is encapsulated in a unique and reduced feature map by RoI Collection Layer (RCL).
Thanks to these two techniques, the algorithm is able to remove overhead by not processing a
large part of the image from that point onwards, allowing to work with high resolution feature
maps. Finally, a common region proposal method takes the feature map of disordered regions
as input to obtain the final bounding boxes. The STDnet approach allows to consume less
memory than its counterparts for higher resolution of the last feature map.

The main contributions of our proposal are:

1. STDnet, a new ConvNet for small object detection able to work with high resolution
feature maps in deepest layers. STDnet relies on two novel components, RCN and
RCL, which work together to select the most promising areas of the image, generating
a new single filtered feature map with them. Therefore, the filtered feature maps can
keep a high resolution but with a lower memory overhead and a higher frame rate.

2. As STDnet has a final region proposal method that works with anchor boxes, we pro-
pose to automatically select the number and sizes of these anchors through a novel
algorithm based on k-means. Our proposal differs from [103] in that our algorithm
selects not only the sizes of the anchors, but also their number, making the anchors
selection fully automatic.

3. A new video database, USC-GRAD-STDdb, for small object detection to cover the in-
dicated dataset gap. USC-GRAD-STDdb presents more than 56,000 annotated objects
of sizes between 4 × 4 and 16 × 16 (e.g., Figure 2.2). USC-GRAD-STDdb comprises
115 video segments (>25,000 frames) over the three principal landscapes: air, sea and
land.

4. A spatio-temporal evolution/version of STDnet, called STDnet-bST, to exploit video
information of USC-GRAD-STDdb.
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Figure 2.2: USC-GRAD-STDdb examples. Ground truth objects are enclosed in red boxes
(best seen in color).

5. To bring STDnet closer to real on-board systems we have mapped both STDnet and
STDnet-bST onto the embedded GPU Jetson TX2 through a series of computational
optimizations.

2.2 Related Work

Modern object detectors are based on ConvNets [43, 54]. One-shot and two-stage solutions
are the two main configurations of ConvNets adopted today. The former has two principal
baselines, namely, SSD [83] and YOLO [103], which feature an excellent performance in
computational cost and accuracy trade-off. As a drawback, both of them are outperformed
by the two-stage approach when it refers to small objects [54, 82]. There are three main
reasons for this: (1) the generation of the bounding boxes takes place in deep layers with low
spatial resolution, which misses the opportunity of locating small objects —e.g., SSD and
YOLO apply a downsampling of 8× and 32×, respectively, to the original image to locate the
smallest objects; (2) the use of a fixed sampling grid that works worse when objects are too
close to each other or are too small and (3) the lower accuracy, at all scales, mostly produced
by the great class imbalance between foreground objects and background proposals as these
detectors evaluate ≈ 104 candidate regions per image [79]. It is worth noting that the last
drawback can be partially addressed by solutions such as hard negative mining [83] or max-
out background label [148], and that RetinaNet [79] outperforms these solutions with a novel
cost function. All the above and our own experiments have made our research focus on the
two-stage solution.

The two-stage approach was popularized by R-CNN [40]. Its extension Faster-R-CNN
[106] has become a milestone with the introduction of the Region Proposal Network (RPN).
This approach, also known as region based object detectors, uses the RPN to generate a set of
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candidate object locations based on anchor boxes, which are predefined regions of different
sizes and aspect ratios to cope with multiple scales. At a second stage, the backbone’s upper
layers are applied to classify the candidate locations into object of interest or background,
besides refining the bounding box.

Sharing the same problem as one-shot detectors, the off-the-shelf Faster-R-CNN is not
adequate for small object detection due to the fact that the global effective stride (GES) —
downscaling of the input image with respect to the feature map that is the input to the region
proposal method— is 16, which means that a 16×16 object is represented by just one pixel
in that feature map. In addition, the anchor boxes are predefined manually and they were not
conceived to handle such small objects. To tackle small objects, a finer GES is required. This
leads to a very large memory overhead, making the implementation impossible for current
GPUs1.

In [20], authors propose an additional functionality to Faster-RCNN called Region-based
Fully Convolutional Network (R-FCN). R-FCN exploits the different parts of a given object
using position-sensitive maps. R-FCN generates k× k× (C + 1) feature maps —k× k ob-
ject parts for C object categories plus background— instead of only one in the second stage
detection. Additionally, R-FCN is fully convolutional, so it avoids the fully connected layers
overhead. Still, this interesting improvement does not fix the GES problem and cannot be used
to detect small objects, as their objects parts are very small, and as such indistinguishable in
the input images.

The capability of dealing with objects of different sizes, and specially small ones, in
Faster-R-CNN and R-FCN is limited due to low resolution feature maps and the few scales
produced with the anchors as we outlined above. Hence, more recent ConvNets for object
detection tackle scale invariance and small object detection with more elaborated solutions.

[139] propose a scale-dependent pooling along with layer-wise cascade rejection classi-
fiers in several branches for the different object sizes. Then, if an object proposal has a height
lower than 64 pixels, the regions are processed by a scale-dependent pooling with more reso-
lution than if they were larger objects. Still, this proposal does not meet our needs for objects
under 16 × 16 pixels.

In [77], authors focus on learning to transfer the information of small objects to similar
large objects, what they call super-resolved objects. For this purpose they introduce a Per-
ceptual Generative Adversarial Network for small object detection. The performance of this

1For reference, we use the NVIDIA Tesla P40 which has 24GB of memory.

22



Chapter 2. STDnet: Exploiting high resolution feature maps for small object detection

approach has been tested on the Tsinghua-Tencent 100k dataset [155], considering small ob-
jects those smaller than 32 × 32, and on the Caltech benchmark [24], with pedestrians over
50 pixels tall, so it does not suffice for objects under 16 × 16 pixels.

[29] propose a Faster-R-CNN based approach for small objects. Authors validate the
proposal in the FlickrLogos dataset [107] similar to the examples presented in Figure 2.1b
(first row). The solution presents three levels of RPN which make use of feature maps with
different resolution. To match different levels, high-level feature maps are upscaled through
bilinear interpolation and then summed with the lower-level maps. Finally, classification and
bounding box regression receive as inputs the combination of them. Similarly, in [12] several
RPNs are proposed with the shallowest RPN working with the smallest objects. In the exper-
imental evaluation the smallest object size ranges from 25 to 50 pixels of height, which does
not suffice our needs.

An effective solution to detect objects in different scales, approached by [4], [71] or [45],
is to combine layers with different resolutions throughout the ConvNet by creating a single
convolutional block that gathers the information from upper layers into the bottom ones. A
similar solution is adopted in [147] for face detection. This way, highly semantic information
in wide receptive fields provided by the upper layers is combined with the low semantic infor-
mation in narrow receptive fields. This combination is usually generated by skip connections,
which discard some layers to connect more distanced ones. A single region proposal method
takes this convolutional block as input to detect different scale objects.

Regarding the specific field of face detection, many advances have been made with out-
standing results. In this line, [148] propose a modified SSD architecture which anticipates the
object proposal to GES = 4, among other improvements. [2] employ a generative adversarial
network (GAN) to improve the resolution of blurry small faces. Finally, [52] study the crucial
influence of context in detecting small objects while proposing a model that uses specific scale
templates to detect faces of different sizes —including very small ones.

Joining information from several convolutional layers and using several RPNs at different
scales, [78] introduce Feature Pyramid Network (FPN). FPN builds a neural network that joins
several levels of convolutional blocks through lateral connections. In each level junction, an
RPN adapted naturally to a different object scale is applied. The FPN architecture features
several RPNs at different GESs. The shallower convolution block —which is fed by the
shallower combined feature map, with a GES = 4— is the RPN that detects the small objects,
obtaining outstanding results. Since its release, the proposal has become a milestone, being
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currently adopted as baseline for the researches that lead the top entries of the MS COCO
challenge [90].

Applying the improvements provided by FPN, RetinaNet [79] sheds light on how to im-
prove performance metrics in the single-shot approach, including small objects. The work
in [79] implements a simple FPN-based architecture that removes the RPNs and adds two
subnetworks —class subnet and bbox subnet— to detect objects in one-stage. The main
improvement is obtained through a novel loss function (Focal Loss) to address the class im-
balance problem in single-shot detectors, leading to very promising results. The accuracy that
reaches the proposal is similar to those obtained by the two-stage FPN, even in MS COCO
small object scale (<32×32 area).

This chapter focuses on small targets, i.e., under 16×16 pixels. Such small object targets
make us different from the previous approaches: our sizes are significantly smaller than those
of the above solutions and the categories we are dealing with are large objects –car, person,
boat, etc.— but they are located at such a great distance that most of them do not feature
definitive visual cues to classify them into a category (Figure 2.1a), making the object detec-
tion more difficult. Based on the knowledge from the aforementioned research, our STDnet
architecture generates candidate object locations proceeding over the deepest layers, which
exploits their semantic information, but keeping high feature map resolution —GES = 4—
which allows to deal with small targets successfully with a reasonable memory overhead.

2.3 STDnet architecture

STDnet is an unified neural network approach proposed to detect small objects under 16× 16
pixels. To address this, STDnet invests time in selecting promising zones at shallower layers
to discard the rest of the input image and, thus, improving the overall computing performance.
This allows to keep high resolution feature maps in these layers, especially favorable to detect
small objects.

Figure 2.3 shows an overview of STDnet. It comprises five stages: early convolutions,
Region Context Network (RCN), late convolutions, Region Proposal Network (RPN), and the
classifier. Thereby, STDnet is presented as a Faster-R-CNN-based approach which employs
ResNet-50 as a backbone —a good trade-off between accuracy, speed and GPU memory
[47]. ResNet is represented as early convolutions that comprise the shallowest layers and late
covolutions that encompass the deepest ones. The backbone can be any of the most widely
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Figure 2.3: STDnet architecture. The RCN is placed after early convolutions to select only
promising areas from the input image. Those zones are concatenated by the RCL so that the
late convolutions act on the new feature map in a conventional way.

state-of-the-art solutions found in the literature —e.g., ResNet [47], DenseNet [53], VGG
[116], etc.

Like most state-of-the-art ConvNets methods, STDnet begins to learn simple features from
the objects of interest in shallower convolutional layers, named here as early convolutions.
Unlike other methods, just after the shallower convolutions, STDnet applies a novel detector
of promising areas over the shallower feature map, RCN, to select regions that most likely
contain small objects. Then, top scored regions are gathered in a single feature map by RCL
for the deeper convolutional layers —late convolutions— to act as usual on the disjoint ar-
eas. There is a caveat, so that the convolutions between the different areas do not affect each
other, RCL introduces a null 1px size padding —since ResNet applies convolution filters no
greater than 3 × 3. This padding must be reset to 0-padding after each convolution higher
than 1 × 1. In the late convolutions stage, the memory saved by ruling out not promising
areas can be used to keep the feature map in high resolution at the same time that the semantic
information is increasing. STDnet applies a single RPN that takes as input the fourth convo-
lutional block (C4), which contains the most promising areas provided by the RCN but with
richer semantic information. The RPN proposes as output the locations of the objects more
precisely, performing bounding box regression and classification as object and background
inside those RCN promising areas. These regions are further refined in a final classifier. This
architecture differs from cascaded region proposal approaches [137, 150] in that the entire
image information is not used during the whole computation, rather a new synthetic feature
map is constructed only with the areas of the image that the RCN considers to be the most
important.
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Figure 2.4: Region Context Network (RCN) architecture.

As a summary, the key methods of the designed architecture, RCN and RCL, allow to
focus all efforts on promising areas, not having to pay attention to areas without relevant
information. This allows to increase the resolution of the deeper layers and, even so, reduce
the use of memory and increase the frame rate. STDnet does not increase the GES to more
than 4 during the whole network, while the semantic information grows. Both, high resolution
and high semantic information are crucial to detect small objects.

2.3.1 Region Context Network (RCN)

The Region Context Network (RCN) is a fully convolutional network that scans a shallow
convolution map in order to detect fixed-size areas where there is most likely an object. The
RCN architecture is shown in Figure 2.4. RCN selects the most likely candidate regions with
one or more small objects together with their context. As at this stage the goal is not to get
accurate object localization, the output regions’ size will be the same for all of them and
neither a box regression approach, nor a set of anchors with different scales and aspect ratios
are needed.

RCN consists of a first 3× 3 convolutional layer over the input layer to map it into an
intermediate 128-d layer with ReLU [91] following. This layer feeds a 1× 1 convolutional
2-d layer to classify regions as foreground (fg), i.e., region with small objects inside, or back-
ground (bg), i.e., region without objects. RCN processes the region as a sliding-window on
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the feature map. The output are the scores associated with the different zones of the input
image.

During the training phase, the bounding box ground truths must be grown proportionally
in all directions until they reach the defined size to verify easily that the region under study
represents a positive or a negative candidate. Then, as ground truths and regions have the
same size, the overlap (measured by the intersection-over-union (IoU) ratio) between them
is representative and can be calculated to assign each region a positive label, if IoU>0.8, or
negative, if IoU<0.3. The objectness score of the candidate regions in RCN is minimized
through:

LRCN({pi}) =
1

Ncls
∑

i
Lcls(pi, p∗i )︸ ︷︷ ︸

fg/bg classifier

, (2.1)

where pi is the predicted probability of the i-th region being foreground in an RCN mini-
batch, and p∗i is the adapted ground-truth label. The term 1

Ncls
normalizes the equation and it

refers to the size of the RCN’s mini-batch. Lcls is a cross-entropy loss over regions with or
without objects (fg/bg).

RoI Collection Layer (RCL)

The promising regions generated by RCN cannot be processed separately due to the overhead
that it entails and the need to modify the remaining backbone stages –late convolutions. In-
stead, a novel layer is implemented where RCN ends up, the so-called RoI Collection Layer
(RCL) (Figure 2.4). RCL layer takes as input the feature map generated by the last early con-
volution and the top scored proposals from RCN to return a single filtered feature map with
the same information as that of the input feature map, but only for the set of selected regions.
These regions will be concatenated in the new feature map in a disorderly way. Successive
convolutions with filters greater than 1× 1 will affect the neighboring regions’ outputs. To
solve this problem, RCL adds an inter region 0-padding —shown by gaps between regions in
Figure 2.4.

With this configuration, the dimensions of the feature map output are obtained as follows:

RCLoutput size = (rwn+ pd(n−1))︸ ︷︷ ︸
width

× rh︸︷︷︸
height

, (2.2)

where n is the number of regions from RCN, rw and rh are the dimensions of the regions in
the RCL input feature map and pd is the size of the 0-padding between regions. For example,
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(a) input image

(b) Region Context Network input

(c) RoI Collection Layer output

Figure 2.5: An example of the feature maps involved in the RCN.

a 1280×720 input image has an RCL input feature map of 320×180, and the output RCL
generates a 649×12 feature map: 50 regions of size 48×48 at the input image —12×12 at the
RCL input feature map for GES = 4— with 1px 0-padding in the example; i.e., a reduction of
7.4× of GPU memory usage —86.5% saved memory.

Figure 2.5 shows some examples of input and output feature maps of the RCN: Figure
2.5(a) original input image and the most promising regions proposed by the RCN; Figure
2.5(b) four of the input feature maps to the RCN and the most promising regions; and Figure
2.5(c) some feature maps composed by the RCL with the most promising regions, where each
row represents a different channel. Each of the feature maps in Figure 2.5(b) generates a
row in Figure 2.5(c). Each row in Figure 2.5(c) represents a feature map with the promising
regions separated by 0-padding.
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2.3.2 Region Proposal Network (RPN)

The Region Proposal Network (RPN) used in this chapter is a modification from the one
presented in Faster R-CNN [106] to deal with the feature map composed by RCL, i.e., the
RPN input contains unsorted regions. In the original RPN, the anchors were processed linearly
since the coordinates of its input feature map correspond with those of the input image but
scaled. With the unpromising areas removed, this correspondence no longer exists and the
correlation is not straightforward. RPN must take as input, besides the last feature map, the
top scored promising regions information from the RCN to generate the anchors relative to
those regions. Finally, the output of the bounding box regression is transformed to the input
image coordinates.

Automatic anchors initialization by k-means

The approaches that rely on RPNs define the number of anchors and their sizes heuristically.
In our proposal, both the number and the size of the anchors are learned through k-means.
The k-means anchor learning procedure is implemented as a preprocessing stage of STDnet.
k-means is applied to the training set of ground truth boxes’ height and width. In order to
obtain the number of kernels, which will be the number of anchors, we perform an iterative
k-means with an increasing number of kernels until the maximum inter-kernels IoU exceeds
a certain threshold. We have set this threshold to 0.5, which is the value used in well-known
repositories, as PASCAL VOC [30] or MS COCO [80], to check if a detection is positive or
negative with respect to a ground truth. This approach can be adopted by any other object
detection network with anchors, e.g., Faster-R-CNN, regardless the target size of the objects.

A similar contribution was defined in [103] where a k-means algorithm selects the an-
chors’ size according to the dataset, but where the selection of the number of anchors is
done manually, visualizing the best trade-off between the number of anchors and the aver-
age intersection of these with the dataset objects. Our approach makes the anchors selection
completely automatic.

2.3.3 Implementation Details

In this chapter, we adopt the approximate joint training [106] to train STDnet. To implement
this end-to-end training, the ResNet-50 layers are shared with the two modules, RCN and
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RPN, so that all learnable layers can be trained by backpropagation and stochastic gradient
descent [73].

To train the RCN module, a mini-batch is obtained from a single input image by randomly
selecting foreground and background regions. The mini-batch used within the RCN is 64
examples trying to maintain whenever possible a ratio of 1:1 of positive and negative labels.
In order to eliminate overlapping regions from those proposed by the RCN, we apply an
aggressive non-maximum suppression with a low threshold (0.3) over the 2,000 best proposals
before the RCL, resulting in a low number of scattered regions —around 200 on average. At
test, we let pass through the RCN those regions with confidence higher than 0.3, up to a
maximum of 50 regions. The RCN promising regions’ fixed-size was obtained estimating the
effective receptive field (ERF) which, in practice, follows a Gaussian distribution [84], so half
of the theoretical receptive field of the convolutions between RCN and RPN was selected as
ERF. The fact that RCN and RCL modules do not alter the global batch size, makes the rest
of the training identical to other two-stage networks like Faster-R-CNN. The initialization of
anchors by k-means does not affect training either, since it is performed once for each new
dataset and previously to STDnet training.

RCN and RCL can be theoretically integrated in any object detection framework based
on ConvNets, either one-stage or two-stage approach. The main modification in addition
to the new modules is to adapt the corresponding region proposal method to work with un-
sorted regions. In this chapter, we have implemented STDnet over Faster-R-CNN. The hyper-
parameters for training and testing STDnet are the same as those used in Faster-R-CNN. The
RPN module in STDnet is placed between convolutional layers C4 and C5 as it is done in
[47] for Faster-R-CNN. Finally, at test, we apply a box-voting scheme after non-maximum
suppression [38]. Our implementation uses the framework Caffe [58].

2.4 STDnet with spatio-temporal features (STDnet-bST)

STDnet detects objects using only the information coming from the current frame. Nev-
ertheless, exploiting the information of a set of consecutive frames might help to improve
detection, specially in those cases where the confidence of a detection is low. ConvNets that
make detections based on a set of frames are called spatio-temporal networks [14], in contrast
to conventional ConvNets —also referred to as spatial ConvNets.

STDnet with spatio-temporal features for small target detection, namely, STDnet-bST,
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Figure 2.6: Tubelet, in yellow, generated by STDnet-bST through the Viterbi algorithm ap-
plied to the spatial detections from STDnet.

consists of two modules: (i) STDnet as a spatial detector, which provides a set of detections
for the current frame; and (ii) the temporal module, which combines the detections of a set of
frames and generates the final set of detections for the current frame.

The spatial module of the STDnet-bST, i.e., STDnet, feeds the temporal module with the
set of detections of the current frame. The temporal module generates the data association
among detections across the last τ frames through the Viterbi algorithm [41] based on the
scores for all the spatio-temporal detections at the current frame, and building up what is
known as tubelet. Figure 2.6 shows the composition of a single tubelet over τ different frames
given a set of detections in each one. The final spatio-temporal score in STDnet-bST is esti-
mated with an approach similar to [98], but computing the Viterbi algorithm at a tubelet-level

object detection instead of at a video-level action detection.

The temporary score si j
t or temporal confidence between two detections di

t−1 and d j
t in

two consecutive frames t and t−1 is given by:

si j
t = pi

t−1 + p j
t +λ · IoU(di

t−1,d
j
t ) (2.3)

where p j
t is the confidence returned by STDnet for d j

t , IoU is the overlap measured as the
intersection over union between di

t−1 and d j
t , and λ weighs the relevance between confidences

and overlap for the final temporary score si j
t .

After calculating the score si j
t for all the combinations of detections throughout the τ

frames, the Viterbi algorithm is applied to obtain the most probable sequences of detections,
i.e., tubelets (V ), with size τ . he Viterbi algorithm maximizes the conditional probability of
the tubelets —each one represents an object seen at different time instants— given a set of
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Figure 2.7: Statistics by object category and size in the USC-GRAD-STDdb database.

detections over time. The most likely tubelet (v̂) is given by:

v̂ = argmax
v∈V

τ

∑
t=2

si(v) j(v)
t (2.4)

where i(v) and j (v) are the detections at t−1 and t for a given tubelet v ∈V .

The final confidence (pi(v̂)
τ ) for a detection i(v) at τ belonging to tubelet v̂ will be given by

the set of detections that formed the sequence v̂, or pi
τ if di

τ does not belong to a tubelet. We
have experimented with several options as the mean, maximum or median of the detections’
score to compute pi(v̂)

τ , being the mean the most accurate one:

pi(v̂)
τ =

1
τ

τ

∑
t=1

pi(v̂)
t (2.5)

2.5 Experiments

In this section, we release our Small Target Detection database (USC-GRAD-STDdb), and
we conduct extensive experiments for our approach and previous state-of-the-art works. We
also assess STDnet on the 80 category Microsoft COCO 2017 detection dataset [80]. Finally,
a series of computational optimizations are made over STDnet and STDnet-bST to map them
into an embedded GPU.
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Area [16,36] (36,64] (64,100] (100,144] (144,196] (196,256] [16,256]

# objs 6,074 12,513 12,759 10,056 8,497 6,303 56,202

% db 10,8% 22,3% 22,7% 17,9% 15,1% 11,2% 100%

Table 2.1: Statistics of the number of objects in the USC-GRAD-STDdb database according
to their size.

2.5.1 The Small Target Detection database (USC-GRAD-STDdb)

The Small Target Detection database (USC-GRAD-STDdb)2 is a set of annotated video seg-
ments retrieved from YouTube. USC-GRAD-STDdb comprises 115 video segments with
more than 25,000 annotated frames of HD 720p resolution (≈ 1280×720) with small objects
of interest from 16 (≈ 4× 4) to 256 (≈ 16× 16) as pixel area. Figure 2.1a and Figure 2.2
show some samples of USC-GRAD-STDdb. The length of the videos changes from 150 up
to 500 frames. The total number of labeled small objects is over 56,000.

Figure 2.7 shows a histogram of the number of objects in each category and their pixel
area (see Table 2.1 for more details). Although USC-GRAD-STDdb has been generated by
identifying the different categories of objects through human intervention, for the experiments
carried out below, a single category of object will be used, so that the output of the STDnet is
either object or background. As there are many potential small object candidates, we restrict
to those targets that can potentially move, even though they can be still in a given frame or
set of frames. The videos in USC-GRAD-STDdb comprise the three main landscapes with
five object categories, namely: air (drone, bird), 57 videos with 12,139 frames; sea (boat), 28
videos with 7,099 frames; and land (vehicle, person), 30 videos with 6,619 frames.

In the following experiments, 80% of the videos of USC-GRAD-STDdb were used for
training (92 videos), while the remaining 20% were used for testing (23 videos), keeping as
much a similar ratio as possible for the three different landscapes, object sizes and categories.

2.5.2 Evaluation Metrics

USC-GRAD-STDdb has been evaluated with four different metrics for all networks under
study:

2USC-GRAD-STDdb is publicly available under request.
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• The Average Precision (AP@.5) gives the percentage of objects correctly detected, i.e.,
the objects for which there is at least 50% of IoU between the detected and the ground-
truth bounding boxes, averaged over categories [30].

• AP@[.5,.95], which is the average AP when the percentage of IoU goes from 50% to 95%
in 5% steps, as reported in MS COCO [80].

• The average number of false positives per image (FPPI) when recall = 0.5, and the
Recall for FPPI = 1 [109]. The Recall measures the ratio of true object detections to the
total number of objects in the dataset for a given confidence threshold. In this case, for
the confidence threshold that obtains exactly FPPI = 1.

Additionally, in the case of MS COCO, we report the COCO-style metrics, i.e., AP@.5,
AP@[.5,.95], AR@.5 and AR@[.5,.95].

All the above metrics are calculated on the basis of precision (P) and recall (R), whose
definitions are:

P =
T P

T P+FP

R =
T P

T P+FN
,

(2.6)

where T P stands for true positives, FP for false positives and FN for false negatives for a
given IoU threshold. Then, with the output detections ranked by confidence, each one is
assigned to a label (TP, FP or FN), generating a set of precision-recall points —they can be
represented in a precision-recall curve as Figure 2.8(left).The Average Precision (AP) is given
by finding the area under the precision-recall curve for each category and averaged over all
categories. The Average Recall (AR) is the maximum recall value obtained for each category
and averaged over all categories.

2.5.3 Results on USC-GRAD-STDdb

Table 2.2 through Table 2.5 show the experimental results on USC-GRAD-STDdb with the
spatial network, i.e., STDnet. Our approach is compared to the state-of-the-art Faster-R-CNN
[106], FPN [78] and RetinaNet [79] networks. FPN is the base of the top 3 entries of 2018
COCO object detection challenge [90]. We report all metrics described above as well as the
GPU memory and frame rate during testing. The global effective stride (GES) refers to the
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Method Anchors AP@.5 AP@[.5,.95]Scales Aspect ratios # anchors
Faster-R-CNN[106] 1282, 2562, 5122 1:1, 2:1, 1:2 9 19.3 5.2
Faster-R-CNN[106] 82, 162, 322 1:1, 2:1, 1:2 9 21.7 5.4
Faster-R-CNN[106] 42, 82, 162 1:1, 2:1, 1:2 9 20.3 5.4

Faster-R-CNN[106]+k 8×7, 14×10, 10×16, 21×9 4 25.5 6.4

Table 2.2: Performance of different RPN anchor scales compared to k-means on USC-
GRAD-STDdb.

RCNregion size
STDnet-C2 STDnet-C3

RecallRCN AP@.5 RecallRCN AP@.5
32×32 91.8 54.5 93.9 57.4
48×48 95.2 56.5 96.6 57.0
64×64 95.4 55.8 96.6 56.2

Table 2.3: STDnet performance obtained by varying the size of the RCN output regions.

downscaling of the input image with respect to the feature map in the convolutional layer
before the shallower RPN —C4 for Faster-R-CNN and C2 for FPN. Regarding RetinaNet,
the original paper indicates that they do not use the high resolution feature map C2 to locate
objects for computational reasons, but the experiments on the USC-GRAD-STDdb report that
starting at C3, where GES = 8, the performance is very poor since the objects are too small.
Therefore, a configuration more similar to that of FPN to locate objects has been selected.

Table 2.2 compares the performance of Faster-R-CNN with its original GES (16) for dif-
ferent values of the anchors of the RPN. The first row corresponds with the configuration for
the Pascal VOC [106]; the anchors of the second and third rows have been adapted manu-
ally to the new database, USC-GRAD-STDdb; finally, the last row uses the anchors selected
by our proposal based on k-means. The k-means learning for USC-GRAD-STDdb results in
just 4 defined anchors. All the evaluation metrics with heuristic anchors are below those met
with our proposal based on k-means. From these results, in the experiments that follow, the
baseline Faster-R-CNN will take as anchors those defined through our k-means proposal.

Table 2.3 studies the sizes of the regions in the RCN to assess that the estimation of the
ERF is half of the theoretical receptive field. For STDnet-C2, as from C2 to C4 there are ten
3× 3 convolutions with nonlinear activations in addition to the 3× 3 RPN convolution, the
theoretical receptive field is 23× 23 between these blocks of convolutions. For STDnet-C3,
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Figure 2.8: Precision-recall (left) and recall-FPPI (right) curves. The numbers inside the
brackets indicate the global effective stride (GES).

Method GES AP@.5 AP@[.5,.95] Recall FPPI fps Mem.(GB)
Faster-R-CNN[106]+k 16 25.5 6.4 35.78 3.35 2.9 7.9
Faster-R-CNN[106]+k 8 44.0 14.4 50.73 0.95 2.6 10.8
Faster-R-CNN[106]+k 4 — — — — — >24.0train

FPN[78] 4 49.2 16.6 57.28 0.48 7.6* 2.8*
FPN 4 50.8 16.3 63.02 0.29 3.0 6.9

FPN+k 4 50.7 16.8 59.14 0.31 3.5 6.9
RetinaNet[79] 4 47.6 16.2 57.87 0.47 6.5* 3.1*

STDnet-C2 4 56.5 17.9 64.03 0.32 4.8 7.2
STDnet-C3 4 57.4 20.0 65.49 0.22 3.7 10.6

Table 2.4: Evaluation metrics of Faster-R-CNN, FPN, RetinaNet and STDnet on USC-
GRAD-STDdb. +k indicates that the anchors were defined by the k-means algorithm. The
computational entries denoted by “*” run on Caffe2 framework, so the comparison with Caffe
implementations is not fair in terms of fps and memory consumption.

the theoretical receptive field is 15× 15 between C3 and C4. Thus, regions of 48× 48 —
≈ 12× 12 with GES 4— and 32× 32 —≈ 8× 8 with GES 4— will be used, respectively.
Results support this hypothesis. Larger regions pass more true objects, increasing the recall
of RCN (RecallRCN), but with a lower AP because also more background is passed through.
The key idea is that these regions should be as small as possible to preserve memory but, also,
they have to contain the largest objects defined as small targets, and exploit the ERF of late
convolutions between RCN and RPN.

Table 2.4 and Figure 2.8 compare the performance of Faster-R-CNN, FPN, RetinaNet and
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STDnet on USC-GRAD-STDdb. It also shows the effect of placing the RCN in STDnet after
the second or third convolutional blocks, namely, STDnet-C2 and STDnet-C3, respectively.
The deeper the RCN, the better the evaluation metrics, but at the cost of more memory usage
and less frame rate.

For Faster-R-CNN, as expected, finer effective strides lead to better metrics. GES = 4 in
the baseline Faster-R-CNN exceeds the size of our GPU memory at training. The STDnet al-
lows to work with lower GES, outperforming Faster-R-CNN in AP@.5 —57.4% vs. 44.0%—
and AP@[.5,.95] —20.0% vs. 14.4%. STDnet also improves the FPPI 4.3× and the speed rate
1.4×.

When it comes to the FPN, the performance of two different implementations have been
reported on USC-GRAD-STDdb. FPN [78] runs on Caffe2, in the same repository as Reti-
naNet3, and they take advantage of its speed performance and memory optimization improve-
ments. FPN (Caffe) is programmed in Caffe framework, starting from the Faster-R-CNN
official code4 —just like STDnet. FPN in Caffe and Caffe2 provide similar results in AP, as
seen in Table 2.4.

The architecture of FPN presents RPNs at different scales —with the first one at the
C2 level with GES = 4—, which leads to higher performance than Faster-R-CNN, reach-
ing 50.8%@.5 and 16.3%@[.5,.95]. Nonetheless, the upsampling performed from the deepest
convolutions causes a lower performance compared to STDnet, which reaches 57.4%@.5 and
20.0%@[.5,.95]. Moreover, the FPPI is 1.3× better for STDnet, which is also 1.2× faster.
During the experimentation, we tested two configurations for the combination of FPN and
k-means: (i) the same anchors at each RPN; and (ii) the set of anchors distributed among
the different RPNs. The best results for FPN+k (shown in Table 2.4) were obtained with the
second option. Comparing FPN and FPN+k, the performance of FPN+k for AP@.5 is slightly
worse than FPN, because the first RPN in FPN already has a set of anchors suitable for small
objects. Nevertheless, for AP@[.5,.95], FPN+k improves FPN by a 0.5%, which indicates that
the k-means algorithm helps to generate better bounding boxes.

RetinaNet works with GES = 4 as FPN, and it obtains competitive results using a one-
stage approach. Nevertheless, the need to place the shallowest set of anchors in C2 lowers
both the accuracy and the computational performance [79].

Finally, Table 2.5 shows the results for different object sizes of small targets as defined

3https://github.com/facebookresearch/Detectron
4https://github.com/rbgirshick/py-faster-rcnn
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APIoU Method [16,36] (36,64] (64,100] (100,144] (144,196] (196,256]

@.5
FPN 22,74 48,70 65,48 71,24 61,22 65,12

STDnet-C3 27,14 53,50 61,33 76,88 69,83 76,06

@[.5,.95]
FPN 6,48 11,89 21,69 23,75 22,19 20,60

STDnet-C3 7,79 14,17 20,93 26,37 29,41 31,06

Table 2.5: STDnet and FPN performances for different object sizes (area in pixels) of the
USC-GRAD-STDdb database.

Figure 2.9: Viterbi algorithm runtimes and the average precision obtained for different values
of τ in the USC-GRAD-STDdb training set.

in Section 2.5.1. As expected, the smaller the size of the objects, the lower the performance.
STDnet outperforms FPN in 5 out of the 6 object sizes for both AP@.5 and AP@[.5,.95] met-
rics. We highlight that STDnet is over 20% in AP@[.5,.95] for most of the object segments.
AP@[.5,.95] is a very meaningful metric as it encompasses AP as IoU reaches perfection.

As addressed in Section 2.4, STDnet-bST includes temporal features through tubelets
built up with the Viterbi algorithm. To determine the STDnet-bST hyperparameters, we used
the USC-GRAD-STDdb training set. The impact of the number of frames (τ) is analyzed in
Figure 2.9 which shows a comparison between the time needed to process the temporal stage
for each frame and the AP for different number of frames. τ = 4 presents a good trade-off
between computation time and accuracy.

To sum up the achieved performance, Table 2.6 shows a comparison between STDnet and
STDnet-bST. As seen, STDnet-bST outperforms STDnet in all metrics. The processing time
is practically identical, reaching 3.7 fps, since the overhead added by the temporal module to
the STDnet is negligible.
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Method AP@.5 AP@[.5,.95] Recall FPPI
STDnet 57.4 20.0 65.49 0.22

STDnet-bST 59.7 20.6 66.81 0.20

Table 2.6: Performance of STDnet-bST compared to STDnet over USC-GRAD-STDdb
database.

Method APxs
@.5 APxs

@[.5,.95] ARxs
@.5 ARxs

@[.5,.95]
Faster-R-CNN 5.0 1.5 22.0 7.6

FPN 11.8 4.8 36.7 15.9
RetinaNet 9.1 4.5 33.0 16.2

STDnet-C3 11.4 5.5 36.0 17.3

Table 2.7: Evaluation metrics of Faster-R-CNN, FPN, RetinaNet and STDnet on the ex-
trasmall objects of MS COCO val 2017 subset, i.e., objects under 256 pixels of area.

2.5.4 Results on MS COCO 2017

MS COCO [80] is a popular image dataset for object detection with 108,556 small objects
defined as those objects with an area of less than 32× 32 pixels. We have defined a new scale
subset —extrasmall (APxs)— within the category small objects of COCO to include small
targets as defined in this chapter, i.e., those enclosed in bounding boxes with less or equal
than 256 pixels of area —not the segmentation area as in the original annotations. As we have
defined our own subset, we cannot evaluate the results with the official COCO test-dev 2017.
Instead, we train with COCO train 2017 and evaluate with the popularly extended COCO val
2017 (5k) [4]. Considering this, the total amount data used is: 62,658 of 236,574 objects from
COCO train 2017 and 2,562 of 10,000 objects from COCO val 2017.

There are a few minor changes that should be made in STDnet for this dataset. The images
are re-scaled such that their shortest side is 600 as in the baseline Faster R-CNN [106]. Also,
the RCN output regions have a size of 64×64 due to both the re-scaling and the extremely
elongated nature of some categories —such as book, or skateboard. To conclude, we work
with a mini-batch size of 128 regions to train RCN.

Table 2.7 shows the performance comparison between our approach, its baseline Faster-
R-CNN, FPN and RetinaNet. Here, we report the MS COCO evaluation metrics APxs and
ARxs for the extrasmall subset. In the same way as in the USC-GRAD-STDdb, the STDnet
obtains much better results than its baseline Faster-R-CNN, improving AP@.5 by more than
2× and AP@[.5,.95] by 3×, while surpassing by 14.0% and 9.0% in AR@.5 and AR@[.5,.95],
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respectively. Comparing STDnet with the state-of-the-art FPN, it is observed how the de-
tections provided by STDnet suit better to the ground truth, yielding 0.7% (AP@[.5,.95]) and
1.4% (AR@[.5,.95]) higher than FPN detections. This metric is considered the most impor-
tant —primary challenge metric— by MS COCO [80] because it encompasses AP adding
information on how it behaves as the IoU reaches perfection. Finally, as expected, RetinaNet
obtains lower performance than FPN and STDnet due to the same reasons mentioned for the
dataset USC-GRAD-STDdb. In addition, the MS COCO presents objects very close to each
other, which causes a disadvantage for the one-stage approaches.

It should be noted that the object detection MS COCO dataset, despite being the most
complete and used repository in the field, features some issues when we refer to extremely
small objects, which affects performance metrics.

The first issue is the lack of annotations when a large number of objects of the same class
are grouped. Some of these occurrences are solved with the iscrowd label in the annotation,
but in some others this label does not exist or, if it does, it is incorrect. Some examples are
displayed on Figure 2.10a, where COCO annotations are shown.

The second issue is the existence of parts of large objects labeled as small objects with
an extrasmall size for being largely occluded. Some of these examples are shown in Figure
2.10b. This poses a challenge for any detection algorithm. Nevertheless, our approach suffers
more from this issue than FPN since STDnet features a receptive field considerably smaller
than that of the FPN, as the size of the feature maps do not change in STDnet after passing
through the RCN.

2.5.5 Execution on Embedded GPUs

Embedded GPUs are oriented to on-board platforms and, as such, they feature a limited com-
puting capacity when compared to their GPU desktop counterpart. Therefore, it is necessary
to reduce memory consumption and to improve computation time to migrate STDnet and
STDnet-bST to embedded GPUs. The optimization carried out in this work is based on the
unification of the contiguous blocks of convolution and batch normalization methods at test
stage [51].

The description of this merger method uses the Caffe’s notation [58]. The batch normal-
ization step from [56] also included a per-channel learned bias and scaling factor so, in Caffe’s
implementation, it is splitted into two layers named batch normalization and scale layers with
the following parameters.

40



Chapter 2. STDnet: Exploiting high resolution feature maps for small object detection

(a) Images with non-labeled objects or incorrect labels where only the category of interest is marked.

(b) Images with objects parts with extrasmall size where only the category of interest with extrasmall
size is marked.

Figure 2.10: Some examples of controversial small labels on MS COCO val 2017. Normal
objects are colored green and iscrowd objects are colored red (best seen in color).
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• Convolution layer: convolutional weights (cw) and convolutional bias (cb).

• Batch Normalization layer: global mean (bnmean), global variance (bnvar) and moving
average factor (bnnorm).

• Scale layer: scaling factor (sw) and per-channel bias (sb).

Considering the above notation, the three layers —convolution, batch normalization and
scale— can be unified at test stage without altering the final result as follows:

1. A β vector is computed as a multiplier factor for the convolutional data:

β =
sw√
bnvar

bnnorm+ε

(2.7)

where ε is a small value added to the variance estimate to avoid division by zero.

2. The convolutional weights cw and bias cb trained can be updated as:

cw(i) = β (i)cw(i)

cb = βcb +

(
sb−β

bnmean

bnnorm

) (2.8)

3. The batch normalization and scale layers can be bypassed by resetting their parameters
as default, which is the same as removing those layers.

Table 2.8 shows the performance of the optimizations on HD 720p images for the two
versions of STDnet implemented, with the RCN layer after the two and three convolution
blocks of the network (STDnet-C2 and STDnet-C3, respectively). These metrics have been
measured on a high-performance cluster GPU. The memory is reduced by 61.4% for the
STDnet-C2 version and by 65.5% for STDnet-C3, in addition to improving the computation
time by 52.2% for STDnet-C2 and 40.9% for STDnet-C3.

The NVIDIA Jetson TX2 [35] has been selected as an embedded and portable device to
perform the tests. This architecture has a middle-low graphic card (NVIDIA Pascal with 256
cores) and a limited memory of 8GB shared between the CPU and the GPU. The performance
on this device has been evaluated both for HD 720p images —the originals of the USC-
GRAD-STDdb database— and VGA images. In the case of VGA images, to perform the
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Method STDnet-C2 STDnet-C3
mem. (GB) fps mem. (GB) fps

STDnet 7.22 4.80 10.61 3.73
STDnet opt. 4.29 5.75 5.95 4.59

Table 2.8: Comparison of STDnet and the optimized version of STDnet in memory consump-
tion and computation time (fps).

Method VGA HD 720p
mem. (GB) fps mem. (GB) fps

STDnet-C2 4.76 1.41 5.19 0.77
STDnet-C3 4.84 1.23 5.98 0.59

Table 2.9: Performance in memory consumption and computation time, shown in frames per
second (fps), over the Jetson TX2 architecture for VGA and HD 720p images.

tests, segments of size 640×480 were selected from videos in the database that contained
some small objects. The computational performance results on Jetson TX2 are shown in
Table 2.9. As seen, the memory used differs slightly from that of a cluster GPU due to their
different memory management procedures.

2.6 Conclusions

We have introduced STDnet, a region-proposal-based ConvNet to detect small targets under
16× 16 pixels. The key of STDnet is an additional visual attention mechanism that we call
RCN that chooses the most likely candidate regions with one or more small objects and their
context. RCN allows for finer effective strides that lead to greater precision while saving
memory usage and increasing frame rate. We have also included an automatic definition of
the anchors with k-means that improves the classical heuristic approach.

In addition, we have released a new video dataset, USC-GRAD-STDdb, with more than
56,000 annotated small objects in complex backgrounds with clutter. STDnet obtains the best
results on USC-GRAD-STDdb with a 57.4% AP@.5 and 20.0% AP@[.5,.95], clearly outper-
forming its counterparts. STDnet-bST even improves these results without adding overhead,
from 57.4% AP@.5 to 59.7% AP@.5. Furthermore, we have tested our approach with the ex-

trasmall objects that exist in MS COCO, where the overall performance of STDnet is very
competitive.
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Finally, we have deployed STDnet and STDnet-bST on an embedded GPU, the Jetson
TX2. For that, we have implemented a number of optimizations that allow to run both Con-
vNets on Jetson TX2 by reducing the consumed memory by 59% and increasing the fps by
20%.
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CHAPTER 3

STDNET-ST: SPATIO-TEMPORAL

CONVNET FOR SMALL OBJECT

DETECTION

In Chapter 2 we detailed STDnet for small object detection in images. In this chapter we
explore the potential of the temporal features in video datasets to improve small object de-
tection. The temporal coherence of the same object in previous frames can contribute to
optimize the detection accuracy in the current frame. Specifically, this chapter introduces
STDnet-ST, an end-to-end spatio-temporal convolutional neural network for small object de-
tection in video. This approach improves the overall small object detection accuracy by using
the spatial information in STDnet operating alongside temporal video information. For this
purpose, STDnet-ST correlates pairs of the top-ranked RCN regions with the highest like-
lihood of containing small objects to find similarity and to be able to associate them. This
additional level of abstraction, allows to link the small objects over time, generating tubelets.
Furthermore, we propose a procedure to dismiss unprofitable object links in order to provide
only high quality tubelets.

The contents of this chapter are extracted from the following publications:

B. Bosquet, M. Mucientes, and V. M. Brea. Correlation-based ConvNet for Small Object
Detection in Videos. In Proceedings of the 25th International Conference on Pattern

Recognition (ICPR), Milan (Italy), 2021.
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B. Bosquet, M. Mucientes, and V. M. Brea. STDnet-ST: Spatio-Temporal ConvNet for
Small Object Detection. Article submitted to Pattern Recognition in March 2020 and
currently under second round review.

3.1 Introduction

Over the last years, the scope of object detection has witnessed significant progress [43].
Most of the state-of-the-art methods share a similar two-stage structure adopting the Faster
R-CNN [106] approach, where a deep convolutional neural network (ConvNet) backbone is
firstly applied to generate a set of feature maps over the whole input image followed by a
detection-specific network [20, 47, 79] that provides the detection results from the feature
maps.

Small object detection, typically defined as objects with a size below 32 × 32 pixels in
widely adopted image datasets as MS COCO [80], is progressively gaining more interest in
the scientific community [2, 9, 147]. This permits to tackle practical applications as sense
and avoid on board of Unmanned Aerial Vehicles (UAVs), or video surveillance tasks where
early actions are required. Small object detection accuracy lags behind that of larger objects
[82], which opens the way for more improvement. This is in part due to the lack of specific
architectures and datasets, with the exception of face detection, where objects are usually of
small size, which makes up a field of interest by itself [2, 149].

The lack of specific datasets with small objects has been partially addressed with the rise
of UAVs with built-in cameras to record wide areas in the wild with small objects and decent
quality. In particular, UAVDT [27], VisDrone2019-VID [153] and, especially, USC-GRAD-
STDdb [9] are video datasets with a large percentage of small objects.

Video object detection has had a recent upturn with the advent of ImageNet video object
detection challenge (VID) [110], leading to spatio-temporal ConvNets [14]. These networks
have been tried to exploit the richer information from several frames when compared to static
images. Linking the same objects across video to form sequences, or tubelets, to improve
the classification score has proved to be the most efficient technique [32, 62, 121] among the
different ways to tackle this issue [16, 23, 63, 154].

This chapter addresses small object detection with STDnet-ST, a novel spatio-temporal
convolutional neural network aimed at video small object detection. STDnet-ST is built on
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τ − 2 τ − 1 τ

Correlation-based
tubelet linking

(τ − 1, τ − 2) (τ, τ − 1)
STDnet-ST

ConvNet
STDnet-ST

ConvNet

Correlation-based
tubelet linking

+
Tubelet suppression

Figure 3.1: STDnet-ST has two components: STDnet-ST ConvNet and STDnet-ST tubelet
linking. STDnet-ST ConvNet performs small object detection and correlation over two con-
secutive frames. STDnet-ST tubelet linking creates tubelets in two stages: first, the correlation-
based tubelet linking creates tubelets (orange) across the last τ frames; then, tubelet suppres-
sion, generates additional nodes (�) to avoid unprofitable tubelets (red) while providing high
quality ones (green).

STDnet [9]. STDnet is a fully convolutional neural network which provides the most likely ar-
eas of the image with small objects. Once the most promising areas with objects are selected,
the rest of the image is dismissed, allowing to keep high level of detail in those selected areas
without affecting the computational performance. In this chapter, we define small objects as
any potentially moving object of less than 16 × 16 pixels without definitive visual cues to
assign them to a category, following our previous work [9].

The main contributions of this work are (Figure 3.1):

• STDnet-ST, a spatio-temporal neural network built on STDnet for small object detec-
tion that operates with two input frames simultaneously. Both inputs are integrated
together through a correlation module at shallower layers and a final tubelet linking.

– The spatio-temporal ConvNet simultaneously generates the detections of the cur-
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rent frame, together with the correlations between the current and previous frames.
The correlation is performed in a natural way over the most promising regions of
the image, i.e., regions provided by the shallowest layers of our network with a
high likelihood of having objects.

– The tubelet linking is based on the Viterbi algorithm, but we include three novel-
ties. First, it uses the correlations generated by the ConvNet to link the objects of
the tubelet. Second, it scores the associations between the objects, taking into ac-
count the confidence variability of the tubelet, which is an indicator of the tubelet
confidence. Third, the tubelet suppression algorithm avoids unprofitable tubelets.
This is achieved by inserting additional nodes to each frame in the Viterbi algo-
rithm based on the information coming from promising areas without detections.
All these contributions allow STDnet-ST to increase the confidence of the detec-
tions most likely to be true positives within high quality tubelets and decrease the
confidence of those most likely to be false positives within unprofitable tubelets.

• STDnet-ST achieves state-of-the-art results for small object detection on the publicly
available datasets USC-GRAD-STDdb, UAVDT and VisDrone2019-VID, over the ex-
tremely small object subset XS (≤ 256 px), defined in [9].

3.2 Related Work

The image object detection scope has followed two parallel trends: region proposal based de-
tectors (two-stages), according to the milestone set by Faster R-CNN [106], and detectors that
directly predict boxes from feature maps (one-shot or one-stage), with SSD [83] and YOLO
[103] as pioneers. A large number of outstanding improvements have been derived from these
architectures, being the two-stage Feature Pyramid Network (FPN) [78] noteworthy since it
remains as the baseline of the leading solutions in the COCO object detection challenge1.

The trend in small image object detection is to work on data from as fine a feature map
as possible, where small objects still have distinctive features. In this line, FPN’s success in
the small object subset of MS COCO is mainly based on merging feature maps at different
scales with a Region Proposal Network (RPN) per scale [106]. Here, the coarsest RPN makes
use of a shallow feature map with stride 4, preserving fine details. In contrast, architectures
like Faster R-CNN present stride 16 as a starting point to seek for objects, which might not

1http://cocodataset.org/#detection-leaderboard (Accessed: 2020-02-10)
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suffice for a good accuracy in small object detection. Following the same idea, RetinaNet
[79] is an FPN-based architecture that removes RPNs and adds two subnetworks —class sub-
net and bounding box subnet— to detect objects in one-stage, including small objects. The
main improvement is obtained through a novel loss function (Focal Loss) to address the class
imbalance in one-shot detectors. Recently, [145] studies how to optimize the feature map
multi-scale integration by using gates to extract only useful semantic information, resulting
in a more effective feature map for object detection.

Similarly, our previous approach, STDnet [9], is a ConvNet for image object detection
able to keep a low stride of 4 from shallow layers. The key point is the retrieval of the top-
ranked regions with more likelihood of containing small objects from shallow layers of the
network. This allows to dismiss the remaining part of the input image without affecting the
final accuracy while keeping a reasonable computing time.

As another approach, MDFN [85] is a recent one-shot ConvNet that proposes only to
exploit high-layers and, at the same time, improve the small and occluded object detection.
This is done by introducing inception modules with multi-scale filters to enhance both the
semantic and contextual information. Here, as in STDnet, it is shown that context is quite
relevant for detecting small objects.

Another promising research direction is based on boosting the scarce features of small
objects using super-resolution (SR) techniques. On the one hand, this can be achieved by
increasing the resolution of the whole input image [52], but it affects the computing time
considerably. On the other hand, this can be handled by focusing only on the areas where
there are small objects and applying there SR techniques. As an example, Noh et al. [93]
propose a SR feature generator based on a GAN that learns to augment the features under the
guidance of a SR feature discriminator.

Concerning the refinement of the final bounding box, there are solutions built on exist-
ing two-stage architectures that add additional headers to the existing one. These additional
headers can be composed of the last convolution blocks [9, 47] or of fully-connected layers
[20, 78, 106]. Finally, a classifier assigns a category and a bounding-box regressor applies a
final regression for each proposal. In this line, various studies have attempted to improve the
quality of the final header. Gidaris and Komodakis [38] replicate the regressor stage to refine
the bounding-box iteratively. In [146], they combine various classifiers trained with the inte-
gral loss. Similar ideas are exploited in [13] to build Cascade R-CNN, improving two-stages
detectors by applying consecutive headers trained with different proposals so that each one is
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fed by the previous.

In [128], to also address the inaccurate localization, they propose a hierarchical objectness
network (HON) that refines the candidate proposals by what they call stripe objectness, which
computes the in-out objectness and border objectness, instead of regressing the coordinates.
With a similar purpose, Tao et al. [122] introduce a Focused Attention (FA) mechanism along
with a class aware RPN (CARPN) which uses a new strategy for anchor generation that covers
all scales but with fewer anchors to considerably reduce false positive proposals.

Video object detection has been widely studied for the last few years [32, 62, 121]. Several
methods have been re-adapted from successful architectures in action detection [41, 97, 115].
Two-stream ConvNets are spatio-temporal networks that have achieved remarkable results
[115]. The two-stream method has been studied by [97], where a Faster R-CNN has two
RPNs operating over two streams of spatial and motion information from stacking optical
flow over several frames.

Concerning video object detection, the solution addressed in [32] builds on R-FCN [20]
with a correlation operator inserted between two input frames to extract motion information
of the objects across time. The correlation operates over the entire feature maps at different
scales and estimates local feature similarity for various offsets between the two frames. Then,
they link the detected objects into tubelets and reweight the detections’ scores within them.
Correlating whole feature maps implies that, as an object becomes smaller, their movement
represents a considerably smaller influence, even though the correlation acts on several scales.

The approach in [63] performs video object detection in the current frame and tracks the
objects through neighboring frames in order to modify their original detections for higher
accuracy. The linking among detections in different frames is based on the mean optical flow
vector within boxes. Similarly, the approach in [62] links objects into long tubelets using a
tracking algorithm and then adopts a classifier to aggregate the detection scores in the tubelets.

Another alternative for video object detection introduced in [121] proposes a modified
RPN called Cuboid Proposal Network (CPN) for detecting objects in multiple input frames.
The cuboid proposals are regressed and classified to create short tubelets. Consecutive short
tubelets are merged into long tubelets by a linking algorithm that takes the best detection for
each overlapping frame between two tubelets.

In Flow-Guided Feature Aggregation (FGFA) [154], authors aggregate spatial features
over time based on feature correspondences computed by optical flow to improve detections.
Deng et al. present Relation Distillation Networks (RDN) [23], which aggregate and prop-
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agate object relation using the region proposals of current and neighboring frames to en-
hance the features of each object proposal, and thus capturing the core features of a given
object across a video. In [16], authors introduce Memory Enhanced Global-local Aggregation
(MEGA), a spatio-temporal ConvNet that relies on a novel Long Range Memory (LRM) mod-
ule to efficiently aggregate global and local information from key frames. MEGA achieves
state-of-the-art result (85.4% mAP) on ImageNet VID dataset [110].

The spatio-temporal ConvNet for video object detection we present in this chapter, STDnet-
ST, is built on our previous network, STDnet [9], which aimed at image object detection.
STDnet-ST works on two consecutive frames. The retrieval of a fixed number of the top-
ranked regions with more likelihood of containing small objects by the underlying STD-
net eases the spatio-temporal procedure of STDnet-ST. In fact, as a difference with previ-
ous correlation-based solutions like [32], which runs correlation on the whole feature maps,
STDnet-ST correlates pairs of regions with a high likelihood of having objects inside. This
is a key point for small object detection, as the influence of the objects in the correlations
calculated for the whole feature maps decreases with the size of the objects themselves —
correlation values are mostly due to the background. Estimating the correlation for specific
regions of the image allows to obtain correlation values influenced by the objects. This, in
turn, permits to process only high quality tubelets by linking the objects inside such regions,
which increases accuracy.

3.3 STDnet-ST Architecture

STDnet-ST is a spatio-temporal convolutional neural network for the detection of small ob-
jects in video, i.e., objects smaller than 16 × 16 as defined in this chapter. STDnet-ST has
two components:

• The spatio-temporal convolutional neural network, which takes as inputs the current
( ft ) and previous ( ft−1) frames, and returns the set of detections (Dt ), their confidences
(Pt ), and the correlations (Sec. 3.3.1) among the detections at t and t−1 (Ct ). These
correlations will be used to associate the detections of both time instants.

• The STDnet-ST tubelet linking, which is based on the Viterbi algorithm, and includes
the correlation-based tubelet linking and the tubelet suppression procedure.
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Figure 3.2: STDnet-ST ConvNet architecture. Each branch performs RCN+RCL to obtain
the most promising regions (RCN regions) that are further refined into detections by the RPN
and a classifier. Simultaneously, the two sets of RCN regions feed a correlation module that
associates the correlation values to the final detections.

– The correlation-based tubelet linking (Sec. 3.3.2), that links the detections ob-
tained at different time instants (t = 1, . . . ,τ), generating the optimal tubelets along
time for each of the objects. The final goal of tubelet linking is to update the scores
of the detections at time τ using the previous τ − 1 detections, according to the
confidence of the whole tubelet (Sec. 3.3.2). A key element of the tubelet link-
ing is the correlation provided by the spatio-temporal ConvNet, which evaluates
the likelihood of the association of two detections. Also, the scores are updated
taking into account the confidence variability of the tubelet, which indicates the
confidence of the whole tubelet.

– The tubelet suppression algorithm, that filters the tubelets obtained by the correlation-
based tubelet linking, eliminating those that contain incorrect data associations
(Sec. 3.3.2).

3.3.1 Spatio-temporal ConvNet

Figure 3.2 shows the architecture of STDnet-ST, which consists of two sibling branches to-
gether with a correlation operation among selected regions. Each of the branches is based on
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the STDnet architecture [9], which is focused on the detection of small objects in images, i.e.,
it does not take into account temporal information.

The ability of STDnet to detect small objects is due to the high resolution of the deeper
feature maps of the ConvNet. This high resolution of the last feature maps is possible because
STDnet provides the most promising regions of the image in the early stages, thus focusing
only on those regions that most likely contain small objects. The main components of STDnet
are the following —for a more detailed description refer to [9]:

• Early convolutions. In the shallower convolutional layers, STDnet learns simple fea-
tures from the objects of interest.

• Region Context Network (RCN). Just after the shallower convolutions, STDnet applies
a novel detector of promising areas over the last feature map to select those regions that
most likely contain small objects. Then, the mt top scored regions Rt = {r1

t , . . . ,r
mt
t }

are gathered in a single feature map by the RoI Collection Layer (RCL). There are two
main differences between RCN+RCL and a typical RPN (Region Proposal Network):
(i) RCN returns always regions of a fixed size that contain at least an object centering
in it, while RPN returns bounding boxes of objects; (ii) RCL generates a new synthetic
feature map, meaning that two neighboring pixels in the feature map that belong to two
different regions are not neighboring pixels in the original image.

• In the late convolutions stage, the feature maps have a high resolution due to the mem-
ory saved by ruling out non promising areas. As the output of the RCL is a feature map
with disjoint areas, all convolutions are designed to keep the features of each region
separated from each other through padding.

• STDnet has a single RPN that takes as input the fourth convolutional block (conv4),
which contains the most promising areas provided by the RCN but with richer semantic
information.

• The last stage of STDnet refines the outputs of the RPN, generating the final bounding
boxes and classifications of the objects.

STDnet-ST works with two consecutive video frames, t and t−1. Both branches —based
on STDnet— share the same weights throughout the execution. Each of the branches gener-
ates a set of detections (Dt ) and their corresponding confidences (Pt ). As seen in Figure 3.2,
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the two branches are connected through the correlation module. The correlation assesses the
degree of matching between a pair of RCN regions at t and t − 1, in order to link the final
detections provided by the RPN thereafter. The hypothesis on which it relies is that each
RCN region specializes in detecting a single object centered in it, allowing a straightforward
extension over two detections. The correlation module consists of the two region composed
feature maps generated by RCL for each branch, a correlation operator, an average pooling
and a final RoI linking operation. The operation of the correlation module is as follows:

1. First, it calculates the correlation for each pair of RCN regions < ri
t−1,r

j
t >, where

ri
t−1 ∈ Rt−1, r j

t ∈ Rt , i = 1, . . . ,mt−1, and j = 1, . . . ,mt . The output is a correlated
feature map with the same width and height as the input regions, and where each pixel
is obtained as the dot product of the pixels placed at that position in both regions —
the depth of the correlated feature map is a single channel, due to the dot product.
The correlation operator will produce a feature map with mt−1×mt regions, each one
representing the correlation between two of the RCN regions.

2. Then, an average pooling is applied to summarize each of the regions of the correlated
feature map in a single value associated to each pair of RCN regions, generating mt−1×
mt correlation scores.

3. Finally, the correlation scores of each pair of RCN regions are associated to the final
detections by the RoI linking operation. The RoI linking operation takes as input the
final detections (Dt ) —generated by the RPN and further refined by the classifier— for
each STDnet-ST branch, as well as the correlation scores, and outputs the correlation
scores but associated to each pair of final detections, generating the matrix Ct . Ct has a
size of nt−1× nt , where nt−1 and nt are respectively the number of detections at times
t − 1 (Dt−1) and t (Dt ). Those correlation scores not included in Ct —not all RCN
regions have an associated final detection— are kept as they are involved in the tubelet
suppression algorithm (Sec. 3.3.2).

3.3.2 STDnet-ST tubelet linking

The object linking across a sequence of frames to build tubelets is a popular approach to com-
bine the temporal information. The final goal of this stage is to increase the confidence of
those detections that have a high likelihood of being true positives and to reduce the confi-
dence of those detections with a low likelihood of being true positives.
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First, we describe a baseline tubelet linking approach based on the spatial overlap be-
tween boxes in neighboring frames without considering the motion information. Then, we
present the STDnet-ST tubelet linking with its two components: (i) the correlation-based
tubelet linking (Sec. 3.3.2), which is based on the correlation scores generated by the Conv-
Net (Sec. 3.3.1); and (ii) the tubelet suppression procedure (Sec. 3.3.2) that removes those
unlikely tubelets retrieved from the correlation-based tubelet linking.

Baseline tubelet linking

The baseline tubelet linking is based on [97], although they apply it to action detection in
video, while we use it for spatio-temporal object detection. Given a set of τ frames, first, the
tubelet linking calculates the set of scores between pairs of detections in two consecutive time
instants (St ). Then, it applies the Viterbi algorithm [41] to find the most likely sequences,
i.e., tubelets (V ), for all detections in the τ frames. Finally, it recalculates the score of each
detection in τ (P̂τ ) given the tubelet it belongs to.

The first step of tubelet linking calculates the score matrix St = {s11
t , . . . ,snt−1nt

t }, where
si j

t is the score between two equal category detections di
t−1 and d j

t in two consecutive frames,
and is given by:

si j
t = pi

t−1 + p j
t +λ · IoU(di

t−1,d
j
t ) (3.1)

where p j
t is the confidence returned by STDnet-ST for the j-th detection at frame t, IoU is

the overlap —measured as the intersection over union— between two detections, and λ is a
parameter that balances the importance between the confidences returned by the ConvNet and
the IoU. Thus, si j

t estimates the likelihood that the i-th detection at frame t− 1 and the j-th
detection at frame t are both true positive detections and come from the same object.

Next, the Viterbi algorithm is applied to obtain the most probable sequences of detections.
This algorithm maximizes the conditional probability of the tubelets —each one represents an
object seen at different time instants— given a set of detections D = {D1, . . . ,Dτ} and their
corresponding scores S = {S2, . . . ,Sτ} over time of the same category. Given the whole set
of possible tubelets V , the tubelet with the highest likelihood is:

v̂ = argmax
v∈V

τ

∑
t=2

si(v) j(v)
t (3.2)

where i(v) and j (v) are the detections at times t−1 and t for a given tubelet v ∈ V .
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Once the optimal tubelet v̂ is found, those detections within v̂ are removed from D and
S , and the process (Equation 3.2) is repeated iteratively to obtain the set of optimal tubelets
V̂ . Finally, the new confidences for the detections of the last frame τ within each tubelet v̂ are
updated as:

pi(v̂)
τ =

1
τ

τ

∑
t=1

pi(v̂)
t (3.3)

where pi(v̂)
t is the confidence of the detection at time t belonging to tubelet v̂. Thus, the

confidence of the detections at the last frame are updated with the average confidences of
their corresponding tubelets. In this way, tubelet linking increases the confidences of those
detections with a low confidence in the last frame, but with a strong track record in previous
time instants, which indicates that the detection is a true positive. This process also helps to
reduce the confidence of the detections that belong to a tubelet with a weak track record, as
this is often supposed to be a false positive. The tubelet linking algorithm is repeated for each
category of the dataset.

Correlation-based tubelet linking

Associating the detections in two consecutive frames through IoU might work fine in some
scenarios but, in general, it is a very weak feature for object linking. Some scenarios where
IoU might generate wrong associations are: small objects that barely overlap between consec-
utive frames, fast motions of the object and/or the camera, many objects with partial overlaps
among them, and videos with a low frame rate or skipping frames.

The proposed correlation-based tubelet linking addresses the preceding points by intro-
ducing the correlation score as the feature for data association. In this way, STDnet-ST can
associate small objects regardless of their mutual distance in consecutive frames. Also, it is
possible to avoid the association of objects with very different features, but placed in the same
position in consecutive frames.

Correlation-based tubelet linking modifies Equation 3.1 by replacing the spatial overlap
(IoU) with the correlation score to compute the score matrix St . Each element of St is
calculated as:

si j
t = pi

t−1 + p j
t +λ · ci j

t (3.4)

where ci j
t is the correlation obtained by the STDnet-ST ConvNet for the i-th detection at time

56



Chapter 3. STDnet-ST: Spatio-Temporal ConvNet for Small Object Detection

t−1 and the j-th detection at time t, defined as:

ci j
t = ρ(rk(i)

t−1,r
l( j)
t ) (3.5)

where ρ represents the correlation module function, and rk(i)
t−1 and rl( j)

t are the RCN regions
at t− 1 and t associated to detections di

t−1 and d j
t . So that, l( j) and k(i) are the RoI linking

outputs that associate each RCN region rk
t−1 and rl

t with their corresponding detections di
t−1

and d j
t .

The second novelty is the modification of Equation 3.3 as follows:

pi(v̂)
τ =

maxτ
t=1 pi(v̂)

t if σ({pi(v̂)
t }τ

t=1)≤ κ

1
τ ∑

τ
t=1 pi(v̂)

t otherwise
(3.6)

where σ is the standard deviation of the confidences of the tubelet v̂, and κ is a threshold.
Our hypothesis is that when the confidence variability in a tubelet is small, the last detection
might be a true positive and the confidence of that detection can be updated to the maximum
confidence of the tubelet. On the other hand, when the variability is high, the confidence is
updated with the average confidence, like in the baseline tubelet linking, as the likelihood of
being a true positive is lower.

Tubelet suppression procedure

The main downside of the original Viterbi algorithm is that it generates all possible tubelets
V̂ , even though they are unlikely given their scores. A typical example is a tubelet created
with false and true positive detections, only because there is no other possible data association.
This causes a decrease in the global accuracy, as discussed in Section 3.4. STDnet-ST tubelet
linking manages this situation by defining a tubelet suppression algorithm based on adding
dummy detection nodes. Thus, the Viterbi algorithm might build a tubelet using one or more
dummy nodes, and these tubelets will be later deleted.

These dummy nodes can be generated owing to the two-level detection —i.e., RCN re-
gions and final detections—, which provides a higher level of abstraction from the RCN re-
gions that do not generate a final detection, but whose correlation score is useful. The tubelet
suppression algorithm generates dummy nodes so that: (i) false positives at t are associated to
a dummy node rather than to a true positive at t−1 or, (ii) true positives at t are associated to
a dummy node rather than to a false positive at t−1. The first case happens when the dummy
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Figure 3.3: An example of the optimal solution provided by the Viterbi algorithm with the
tubelet suppression procedure. Nodes with a green border correspond to true positive detec-
tions, and those in red with false positive detections. The solution produces a valid tubelet for
d1

τ and d2
τ (orange and blue) and a non-valid tubelet for d3

τ (purple).

node has a high correlation with a false positive, e.g., both RCN regions have a similar back-
ground. The second case happens when the dummy node has a high correlation with a true
positive, e.g., when the RCN region includes an object that was not finally detected. Hence,
the gain in the first case is given by the fact that the false positive at t is not associated to true
positives and, thus the false positive confidence is not increased. The gain in the second case
is given by the fact that the true positive at t is not associated to false positives that decrease
its confidence.

Figure 3.3 shows an example of how the Viterbi algorithm works with tubelet suppression.
Each node represents a detection di

t or a dummy node (⊗). Detections of the same frame
are in the same column. Those nodes at different time instants filled with the same color
represent the generated tubelets. Solid lines represent the correlation scores (ci j

t ) between
pairs of detections (Equation 3.5), and dashed lines represent conections between detections
and dummy nodes. The tubelet suppression procedure will remove the optimal tubelet V̂3 as
it links the false positive d3

τ−1 with the dummy node in fτ−2 due to the existence of an RCN
region ri

τ−2 with a higher correlation score than any other detection in τ − 2. Ideally, this
indicates that there is a false positive that is detected by the ConvNet at some frames (τ − 1
and τ), and filtered out in others (τ − 2). If the tubelet linking process does not consider
tubelet suppression, the Viterbi algorithm would generate a tubelet including d2

τ−2, d3
τ−1 and
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d3
τ and, therefore, would probably increase the confidence of d3

τ , which is a false positive.

Algorithm 1 shows the STDnet-ST tubelet linking algorithm, including the correlation-
based tubelet linking and the tubelet suppression procedure. Given the set of detections (D)
from time t = 1 to t = τ , their confidences (P), and the set of score matrices (S ) —si j

t

(Equation 3.4) is the i j element of matrix St , calculated from the i-th detection at time t−
1 and the j-th detection at time t—, the algorithm returns the updated confidences (P̂τ )
associated to the detections at time τ . First, we initialize P̂τ with the confidences generated
by the ConvNet (line 1). Then, we add a dummy node (line 3) to the detection set at time t —
with original size nt— as well as one column (line 5) and one row (line 6) to the score matrix
at time t —with original size nt−1× nt . In the added column we store the scores between
a dummy node and all detections at t − 1, while in the added row are the scores between a
dummy node and the detections at t.

The scores associated with dummy nodes are based on Equation 4 and Equation 5, but
where one of the two RCN regions involved in Equation 5 is a free RCN region —RCN region
without detection— (lines 8 and 11). The free RCN regions are those that have been discarded
by the ConvNet because the likelihood of containing an object is low. In particular, for each
of the detections at t − 1, the free RCN region from t that will be selected to compute the
correlation score is the one with the maximum correlation score. The same for the detections
at t and the free RCN regions from t−1. So that, the correlation (line 8) for a given detection
di

t−1 within an RCN region r j(i)
t−1 is the maximum correlation between r j(i)

t−1 and the whole set
of free RCN regions at t (rk

t ). Then, new scores (lines 9 and 12) are calculated as in Equation
4, where pi

t−1 and p j
t both come from the real detection di

t−1, i.e, pi
t−1 = p j

t .

Next, the Viterbi algorithm is applied with the set of detections and the new set of score
matrices (line 14), while every Dt , from t = 1 to t = τ , still has detections provided by the
STDnet-ST ConvNet —not just dummy nodes— (line 13). Then, for each generated tubelet
by the Viterbi algorithm, the corresponding detections are deleted from the set of detections
(line 18), and the corresponding row and column is also deleted from the score matrices (lines
20 and 22). A detection at time t contributes to the score matrices St and St+1 —Figure 3.3.
Finally, if the tubelet is valid, i.e., it does not contain dummy nodes, the confidences of the
detections at time τ that are in the set of tubelets are updated following Equation 3.6 (line 26).
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Algorithm 1: STDnet-ST tubelet linking

Input : D = {Dt = {d1
t , . . . ,d

nt
t } | t = 1, . . . ,τ}

Input : P = {Pt = {p1
t , . . . , pnt

t } | t = 1, . . . ,τ}
Input : S = {St = {s11

t , . . . ,snt−1nt
t } | t = 1, . . . ,τ}

Output: P̂τ

1 P̂τ ←Pτ

2 for t = 1, . . . ,τ do
3 Dt ←Dt ∪d∅

t
4 if t > 1 then
5 St ←St : d∅?

t−1
6 St ←St : d?∅

t
7 for i = 1, . . . ,nt−1 do
8 ci,nt+1

t = maxk ρ(r j(i)
t−1,r

k
t ) | rk

t 6→ dl
t ∀ l = 1, . . . ,nt

9 si,nt+1
t = pi

t−1 + pi
t−1 +λ · ci,nt+1

t

10 for i = 1, . . . ,nt do
11 cnt−1+1,i

t = maxk ρ(rk
t−1,r

j(i)
t ) | rk

t−1 6→ dl
t−1 ∀ l = 1, . . . ,nt−1

12 snt−1+1,i
t = pi

t + pi
t +λ · cnt+1,i

t

13 while {d1
t 6= d∅

t ∀ t = 1, . . . ,τ} do
14 v̂← Viterbi(D ,S )
15 isvalid← True
16 for t = 1, . . . ,τ do
17 if di(v̂)

t 6= d∅
t then

18 Dt ←Dt \di(v̂)
t

19 if t > 1 then
20 St ← deleteColumn(St , i(v̂))

21 if t < τ then
22 St+1← deleteRow(St+1, i(v̂))

23 else
24 isvalid← False

25 if isvalid then
26 p̂i(v̂)

τ = updateConfidence(P, v̂) [Equation 3.6]

27 done
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Figure 3.4: Structure of a ResNet block for STDnet: (a) using the original 0-padding imple-
mentation and (b) with the 0-padding implementation proposed in this chapter.

3.3.3 Spatial STDnet enhancement

This section describes the improvements made over the original version of STDnet [9]: a
new 0-padding operation between regions, and the replacement of the classical header with a
cascaded header.

Rethinking the 0-padding operation

The first improvement concerns the structure of the convolution blocks after obtaining the
promising regions by the Region Context Network (RCN) and the RoI Collection Layer
(RCL). In the original STDnet, the RCL encompasses the different regions proposed by the
RCN and adds a 0-padding between them so that the convolution kernels larger than 1×1 do
not share information from adjacent regions.

Figure 3.4(a) shows how the 0-padding was restored before and after each convolution.
However, although the convolution operations were not affected with this structure, 0-padding
restoration did have an effect on batch normalization and harmed training. For instance, if
there are 50 RCN regions with a size of 8×8 and 1px 0-padding between every pair, the overall
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Figure 3.5: Performance of the cascaded header over a rough proposal towards a true positive
detection.

size of each channel will be 449×8 = 3592px2, where 49×8 = 392px are 0’s. Thus, all those
0’s —which are more than the 10% of the pixels in the feature map— were influencing the
learning of the network. In addition, 1×1 convolution operations had to perform unnecessary
operations on that 0-padding.

To solve this problem, a built-in operator has been implemented that inserts and removes
the 0-padding before and after each convolution greater than 1×1. The new structure is rep-
resented in Figure 3.4(b).

Cascaded header

The original STDnet header [9] (classifier + bounding box regression) has been replaced by
three consecutive headers that interatively improve small objects detection. This implementa-
tion is based on the research carried out by [13], where several twin headers are trained with
progressively more restrictive overlap thresholds.

2449×8 is the shape of a feature map channel composed of 50 regions arranged horizontally with 1px padding
between each pair: width = (50×8) + (1×49); height = 8;
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The idea is to improve in successive headers object detections that have a minimum over-
lap with the true object until reaching the threshold defined to be considered true positive.
Therefore, this will improve not only the final accuracy, but also the final recall (Figure 3.5).
A common problem in small object detection are double detections: for large objects, non
maximum suppression eliminates those double detections but, for small objects, the overlap
is very small. The cascaded header will help to eliminate these false positives, as bounding
boxes will be more accurate.

Differently from the implementation in [13], where the cascade is applied directly on
the feature map prior to RPN, the additional headers that make up the cascade approach in
STDnet-ST take the information from the same feature map, but with disjoint regions. The
cascaded headers have to compute the target bounding box using the predecessor header, and
have to retrieve the spatial information of the regions relative to the input image from the
Region Context Network (RCN).

3.4 Experiments

3.4.1 Evaluation metrics

We assess the performance of our approach and previous work with the metrics reported in
MS COCO [80]. Such metrics are the Average Precision (AP@.5), which gives the average
precision of those objects detected with at least 50% IoU between the detected and the ground-
truth bounding boxes, and AP@[.5,.95], which is the average AP when the IoU goes from 50%
to 95% in 5% steps. In the default COCO metrics, the results are shown for three different
subsets: small (APs), objects smaller than 1,024 pixels area; medium (APm), objects between
1,024 and 9,216 pixels area, and large (APl), objects larger than 9,216 pixels area. In this
chapter we define a new scale subset following COCO style, extremely small (APxs), to include
small targets as defined in this chapter, i.e., those enclosed in bounding boxes with less or
equal than 256 pixels area. The XS subset is defined in order to evaluate the performance for
extremely small objects.

3.4.2 Datasets

We conduct extensive experiments on three publicly accessible datasets: USC-GRAD-STDdb
[9], UAVDT [27] and VisDrone2019-VID [153].
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• USC-GRAD-STDdb [9]. It comprises 115 video segments with more than 25,000
annotated frames. The resolution of the video is HD 720p (1,280 × 720). There are
more than 56,000 objects, with most of them ranging from 16 (≈ 4× 4) up to 256
(≈ 16× 16) as pixel area, i.e., small objects as defined in this chapter. The videos in
USC-GRAD-STDdb comprise three main landscapes —air, sea and land— with five
object categories, namely: air (drone, bird), 57 videos with 12,139 frames; sea (boat),
28 videos with 7,099 frames; and land (vehicle, person), 30 videos with 6,619 frames.
Nevertheless, the evaluation will be carried out as a single category. The test subset
holds 11,337 objects, where almost 90% of them (10,136 objects) correspond to the
extremely small subset.

• UAVDT [27]. It contains 23,829 frames of training data and 16,580 images of test
data of ≈ 1,024 × 540 resolution. The videos are recorded with an UAV platform over
different urban areas. The ground truth targets are vehicles labeled as car, bus and truck,
but evaluated as a single category. UAVDT comprises a total of 375,884 test objects,
where 76,215 are considered within the extremely small subset (20.3%).

• VisDrone2019-VID [153]. The VisDrone2019-VID challenge provides a total of 96
HD/Full HD video sequences, including 56 sequences for training (24,201 frames in
total), 7 sequences for validation (2,819 frames in total) and 17 sequences for develop-
ment testing (test-dev) (6,635 frames in total). There is also a blind test (test-challenge)
subset that comprises 16 videos, but the evaluation system does not report the met-
rics for the extra small subset, so these data will be dismissed and the results will be
reported only for the test-dev subset. The dataset is mainly focused on people and ve-
hicles, where ten diffent categories of interest are labeled: pedestrian, person, car, van,
bus, truck, motor, bicycle, awning-tricycle, and tricycle. The 17 sequences for testing
hold 310,228 test objects, where 27,027 (8.7%) are considered extra small.

3.4.3 Implementation Details

We implemented STDnet-ST based on STDnet [9]. Faster R-CNN [106] with Feature Pyramid
Network (FPN) [78] is adopted as the baseline detection network for small object detection.
We have also compared our proposal with the state-of-the-art spatio-temporal approaches:
FGFA [154], RDN [23] and MEGA [16]3, with the anchors’ size best suited for small objects

3https://github.com/Scalsol/mega.pytorch
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as defined in [9]. These three approaches achieve state-of-the-art results in ImageNet VID
dataset [110].

Training phase. The input size of STDnet-ST is determined by the resolution of the video
under study, namely, 1,280× 720 pixels in USC-GRAD-STDdb, 1,024× 540 in UAVDT and
1,920× 1,080 in VisDrone2019-VID. For USC-GRAD-STDdb, as most of the objects belong
to the XS size, i.e., below 256 pixels area, RCN regions of size 32 × 32 suffice to enclose all
objects. In these cases the STDnet-ST training phase is continuous during 40k iterations with
two step decay. For UAVDT and VisDrone2019-VID, with objects with more varying sizes,
including those larger than the XS category, i.e., below 256 pixels area, the training process
requires pre-training. Thus, first, we run a pre-training phase with Faster R-CNN during 20k
iterations to address all object sizes followed by a fine-tuning with STDnet-ST for other 20k
iterations with two step decay. In order to retrieve all objects with more diverse aspect ratios,
we set the RCN region size to 48 × 48 pixels. Also, as reported in [9], for both datasets,
RCN between conv3 and conv4 and the initialization of anchors by k-means lead to the best
performance metrics. Finally, when training the model, we set the base learning rate to 0.0025,
a momentum of 0.9, and parameter decay of 0.0001 on weights and biases.

Test phase. The input size and the RCN region size are the same as those of the training
phase. The maximum number of RCN regions is set to 100. The spatio-temporal hyperparam-
eters τ , κ and λ are set to 4, 0.02 and 1.0, respectively, derived by experimental studies over
a validation subset from the USC-GRAD-STDdb training set. We also apply a box-voting
scheme after non-maximum suppression [38].

In addition, there are some differences between the original STDnet [9] and the STDnet
used as base of STDnet-ST for this chapter: (1) STDnet-ST has been implemented in Caffe2;
(2) the RoI pooling dimension is reduced from 7×7 to 4×4 when the cascaded header is ap-
plied to keep constant the computational cost; (3) the last ResNet convolutional block (conv5)
is replicated to fine-tune each header during the training phase; and (4) all possible positive
RCN regions are passed through the network instead of limiting their number, in order to
perform well in datasets with many objects of interest per image.

3.4.4 Results on USC-GRAD-STDdb

Table 3.1 and Table 3.2 show experimental results on USC-GRAD-STDdb [9]. Our approach
is compared to the state-of-the-art FPN [78], as it proved to be the most competitive method
for the present dataset [9], and FPN with cascaded header (Cascade-FPN [13]), for fair com-
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Table 3.1: Ablation study on USC-GRAD-STDdb for the different tubelet linking components
of STDnet-ST++. Results without correlation features are implemented directly over one
branch of STDnet-ST++ —i.e., the first three rows—, and those that use them represent the
different versions of STDnet-ST++ —i.e., the last four rows. The first row refers to STDnet
as it is defined in [9] with the enhancements proposed in Section 3.3.3, i.e., STDnet++.

Baseline
linking

Confidence
variability

Correlation
linking

Tubelet
suppression

AP@[.5,.95]
xs AP@.5

xs

— 18.9 59.1
X 20.1 61.4
X X 20.3 61.8

X 20.4 61.6
X X 20.6 62.0

X X 20.9 62.6
X X X 21.4 63.4

parisons. From here on, the names of the different versions of STDnet are as follows: STDnet
refers to the original ConvNet; STDnet++, refers to STDnet with the enhancements detailed
in Section 3.3.3; STDnet-ST and STDnet-ST++ refer to the spatio-temporal architectures de-
fined in Section 3.3.1 and Section 3.3.2 adopting STDnet and STDnet++ as base network,
respectively. Finally, as the baseline tubelet linking and the confidence variability methods
are independent of the architecture, we have also tested the performance of FPN and Cas-
cade-FPN with these components —referred as FPN-t and Cascade-FPN-t.

Table 3.1 studies the influence of the different components defined in this chapter to ex-
ploit the temporal information from a video dataset. Baseline linking refers to the baseline
method to generate tubelets defined in Section 3.3.2; Confidence variability refers to the mod-
ification of the confidences of the detections based on the confidences of the tubelets due
to their variability, as addressed in Equation 3.6; Correlation linking means the correlation-
based tubelet linking as addressed in Section 3.3.2; and Tubelet suppression concerns the
tubelet suppression procedure presented in Section 3.3.2.

As it can be observed, the use of temporal information leads to higher performance.
STDnet-ST++ outperforms STDnet++ from 18.9% to 21.4% for AP@[.5,.95]

xs and from 59.1%
to 63.4% for AP@.5

xs . In this ablation study, it is also possible to determine the contribution
of each of the components to the performance of STDnet. The correlation-based linking, to-
gether with the confidence variability contribute to increase 0.5% AP@[.5,.95]

xs and 0.6% AP@.5
xs
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Table 3.2: Evaluation metrics for different methods on USC-GRAD-STDdb database. -t indi-
cates the use of baseline tubelet linking and confidence variability to compute the final score
of each tubelet.

Method AP@[.5,.95]
xs AP@.5

xs

FGFA [154] 5.3 20.4
RDN [23] 14.1 46.3
MEGA [16] 15.1 46.8
FPN [78] 17.3 54.5
Cascade-FPN [13] 17.4 55.9
FPN-t 18.7 57.2
Cascade-FPN-t 19.1 58.9
STDnet [9] 18.3 57.8
STDnet++ 18.9 59.1
STDnet-ST 20.1 62.1
STDnet-ST++ 21.4 63.4

—Table 3.1, rows 2 and 5. Also, the tubelet suppression procedure adds a gain of 0.8%
AP@[.5,.95]

xs and 1.4% AP@.5
xs over the previous result —Table 3.1, rows 5 and 7.

Two conclusions can be drawn from Table 3.1. First, the importance of the correlation
obtained by the ConvNet of STDnet-ST. The correlation-based tubelet linking is capable of
improving the IoU-based baseline tubelet linking by comparing the early features of the ob-
jects and their context; and more importantly, it allows to build the tubelet suppression pro-
cedure with a higher level of abstraction that cannot be found by associating detections by
spatial overlap. Second, the importance of the confidence variability when combined with the
tubelet suppression procedure, as some of the tubelets that were composed by false negatives
are discarded and, therefore, the confidence variability is more reliable.

Table 3.2 provides a comparison in terms of accuracy between the state-of-the-art FGFA,
RDN, MEGA, FPN, Cascade-FPN, and our architectures STDnet-ST and STDnet-ST++.
STDnet-ST++ outperforms FPN by 4.1% AP@[.5,.95]

xs and 8.9% AP@.5
xs and Cascade-FPN by

4.0% AP@[.5,.95]
xs and 7.5% AP@.5

xs . FPN with spatio-temporal information improves its base-
line by 1.4% AP@[.5,.95]

xs and 2.7% AP@.5
xs . Even so, the results of the spatio-temporal FPN and

Cascade-FPN remain below STDnet-ST and STDnet-ST++. When compared to the spatio-
temporal approaches FGFA, RDN and MEGA, STDnet-ST++ outperforms them by at least
6.3% AP@[.5,.95]

xs and 16.6% AP@.5
xs . This is mainly due to the fact that both the RPN placed in
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Figure 3.6: Precision-Recall curves and AP@.5
xs of the most relevant approaches in Table 3.2

for USC-GRAD-STDdb.

deep layers and the association methods used in these approaches have a high performance on
large objects but a lower impact when dealing with extremely small objects. With respect to
the original version of STDnet, STDnet-ST++ improves the result by a 3.1% AP@[.5,.95]

xs and a
5.6% AP@.5

xs . The most relevant results are shown in Figure 3.6 using Precision-Recall curves.

3.4.5 Results on UAVDT

The experimental results on the UAVDT dataset [27] are shown in Table 3.3. The first four
rows are computed using the bounding box results provided in [27], and directly adapted to
the MS COCO results format [80].

Results confirm that the spatial STDnet performs better than the rest of the state-of-the-art
spatial approaches. Moreover, it can be seen how the enhancements introduced for STDnet
(STDnet++) improve AP@[.5,.95]

xs by 0.6% and AP@.5
xs by 2.9% higher than any other spatial

approach. AP@[.5,.95] is considered the primary challenge metric by MS COCO [80], because
it encompasses AP adding information on how it behaves as the IoU reaches perfection. It

68



Chapter 3. STDnet-ST: Spatio-Temporal ConvNet for Small Object Detection

Table 3.3: Evaluation metrics on the extremely small subset of UAVDT dataset, i.e., objects
under 16 × 16 pixels.

Method AP@[.5,.95]
xs AP@.5

xs

Faster R-CNN [27] 6.6 26.0
R-FCN [27] 9.2 32.5
RON [27] 3.7 19.7
SSD [27] 6.0 23.5
FGFA [154] 5.8 19.0
RDN [23] 9.0 27.6
MEGA [16] 9.8 28.8
FPN [78] 11.8 29.7
FPN-t 12.0 30.3
Cascade-FPN [13] 12.0 30.5
Cascade-FPN-t 12.3 31.2
STDnet [9] 12.5 35.1
STDnet++ 12.6 35.4
STDnet-ST 13.1 36.0
STDnet-ST++ 13.3 36.4

is also noteworthy that STDnet outperforms FPN-t and Cascade-FPN-t, which exploit spatio-
temporal information.

As expected, our spatio-temporal proposal, STDnet-ST++, accomplishes better perfor-
mance with respect to its spatial version, achieving state-of-the-art results in the UAVDT
dataset for the extremely small subset. STDnet-ST++ overcomes spatio-temporal Cascade-
FPN (Cascade-FPN-t) by 1.0% AP@[.5,.95]

xs and 5.2% AP@.5
xs , and also R-FCN by 4.1% AP@[.5,.95]

xs

and 3.9% AP@.5
xs . Figure 3.7 shows the Precision-Recall curves.

3.4.6 Results on VisDrone2019-VID

The experimental results on the Visdrone2019-VID dataset [153] are shown in Table 3.4. In
first place, it is confirmed that the STDnet based approaches outperform their counterparts.
In second place, STDnet++ improves STDnet by 0.1% AP@[.5,.95]

xs and by 0.6% AP@.5
xs . Fi-

nally, regarding the spatio-temporal approaches, STDnet-ST++ boosts 0.2% AP@[.5,.95]
xs and

0.4% AP@.5
xs its baseline, while improving 1.2% AP@[.5,.95]

xs and 2.0% AP@.5
xs compared to the

best FPN-based approach. Examples of detections with STDnet-ST++ on the three datasets
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Figure 3.7: Precision-Recall curves and AP@.5
xs of the most relevant approaches in Table 3.3

for UAVDT.

reported in this chapter are shown in Figure 3.8.

3.5 Conclusion and future work

We have introduced STDnet-ST, a spatio-temporal ConvNet to detect small targets in video.
STDnet-ST is composed of two branches, and it binds the detections of two input frames by a
correlation module to create spatio-temporal small object tubelets. Those tubelets are refined
at the tubelet linking stage, which applies the Viterbi algorithm to the detections based on
correlation linking, and implements a tubelet suppression procedure that allows STDnet-ST
to dismiss unprofitable tubelets while preserving only high quality ones.

Furthermore, certain components of the STDnet structure [9] have been reformulated,
leading to the definition of STDnet++ and STDnet-ST++. Enhancements have been made to
0-padding operation, for improving the network learning, and a cascaded header, to obtain
better performance by turning false positives with low overlap into true positives.
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Figure 3.8: Some object detection results of STDnet-ST++ for USC-GRAD-STDdb (top),
UAVDT (middle) and VisDrone2019-VID (bottom) test sets. A confidence threshold of 0.6
was used to display these images. For each image, green boxes are true positives, red boxes
false positives and blue boxes false negatives. The yellow rectangles are ignored regions.
Only objects that belong to the XS size are displayed.
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Table 3.4: Evaluation metrics on the extremely small subset of VisDrone2019-VID dataset,
i.e., objects under 16 × 16 pixels.

Method AP@[.5,.95]
xs AP@.5

xs

FGFA [154] 2.5 11.0
RDN [23] 3.8 17.1
MEGA [16] 4.0 17.2
FPN [78] 6.2 19.9
Cascade-FPN [13] 6.1 20.2
FPN-t 6.3 20.2
Cascade-FPN-t 6.2 20.4
STDnet [9] 7.2 21.4
STDnet++ 7.3 22.0
STDnet-ST 7.5 21.9
STDnet-ST++ 7.5 22.4

In order to validate the proposed architecture, we have conducted experiments over three
publicly available datasets with a large number of small objects: USC-GRAD-STDdb [9],
UAVDT [27] and VisDrone2019-VID [153]. STDnet-ST++ achieves state-of-the-art results in
all these datasets for extremely small objects, clearly outperforming its counterparts by 2.3%
AP@[.5,.95]

xs on USC-GRAD-STDdb, by 1.0% AP@[.5,.95]
xs on UAVDT and by 1.2% AP@[.5,.95]

xs

on VisDrone2019-VID.

Results show how the three main characteristics of STDnet-ST are key to achieve small
object detection: (i) the use of high resolution feature maps throughout the architecture allows
to locate the objects and adjust their bounding boxes; (ii) performing correlation over RCN
regions allows to correctly associate objects in two consecutive frames, therefore, improving
the detection precision; (iii) the correlation-based tubelet linking together with tubelet sup-
pression procedure provide high quality tubelets to increase the final accuracy. The tubelet
suppression procedure is possible due to the RCN regions, that provide a limited number of
areas without objects where to look for possible correlations with false positive detections,
therefore avoiding their linking with true positive detections.

As future work, we plan to address the limited number of small objects present in cur-
rent datasets. Considering that manual object annotation is extremely time-consuming and
that tracking-based annotation is far from being perfect, we will work on the definition of a
pipeline to generate synthetic small objects from larger ones. Specifically, the recent advances
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in Generative Adversarial Networks (GANs) seem to be a promising route both for the gen-
eration of synthetic objects close to real ones and for suitable placement in different contexts.
Super-resolution GANs are attractive in the former task, and inpainting and blending GANs
for the latter one.
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CHAPTER 4

DATA AUGMENTATION FOR SMALL OBJECT

DETECTION THROUGH A DOWNSAMPLING

GAN

In Chapters 2 and 3 we introduced the approach for small object detection in images and
videos. In this chapter we explore a different way to improve the detection accuracy for small
objects: adding synthetic examples that boost the precision. This approach is even more useful
when the number of examples is reduced, as it happens for small objects under 32×32 pixels
in many datasets. Although we have released the Small Target Detection database (USC-
GRAD-STDdb), the effort involved in annotating a large amount of data makes it unfeasible
as a long-term methodology. The advent of the generative adversarial networks (GANs) opens
up a new data augmentation possibility for training architectures without the costly task of
annotating huge datasets for small objects.

In this chapter, we propose a full pipeline for data augmentation for small object detection
which combines techniques of adversarial training, object segmentation, image inpainting and
image blending to achieve high quality synthetic data. The main component of our pipeline is
DS-GAN, a novel GAN-based architecture that generates realistic small objects from larger
ones. In addition to the synthetic data generation, the pipeline combines object segmentation,
object inpainting and object blending to find a proper place into the new image —a place not
overlapped with other objects and with a suitable context—, and to adapt the object to the new
background —i.e., without abrupt edges and with color consistencies.
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The contents of this chapter are extracted from the following publication:

B. Bosquet, L. Seidenari, V. M. Brea, M. Mucientes, and A. Del Bimbo. Data augmenta-
tion for small object detection through a downsampling GAN. Article submitted to IEEE
Transactions on Image Processing in October 2020 and currently under review.

4.1 Introduction

Object detection is a fundamental technique within computer vision, as identifying objects
in images or videos is mandatory for image understanding and it is used in many real word
applications, including self-driving cars, unmanned aerial vehicles (UAVs), satellite image
analysis, or anomaly detection in medical images. The accuracy of detectors has experienced
a lot of progress year on year since the release of large training datasets and, more importantly,
since the continuous improvement of convolutional neural netwoks (CNNs) architectures [39,
40, 47, 46, 106], which goes along with the ever increasing computing power of Graphic
Processing Units (GPUs).

In this line, small object detection stands out as a field of its own with increasing interest
[2, 8, 69]. This is mainly because many downstream tasks demand early detections of objects
to act quickly: self-driving cars or applications like sense and avoid on UAVs need to detect
as far an object as possible or satellite image analysis, where almost all objects are just a
few pixels in size. That is, all the previous applications require objects to be identified as
soon as possible, i.e, when they are barely visible in the images. Recent CNN-based object
detectors, like the work in [78], provide high accuracy over a wide range of scales, from less
than 32×32 pixels up to the image size. Despite these improvements, existing solutions often
underperform with small objects [82, 90].

The problems of detecting such small objects are twofold: (i) in deep CNNs architectures
commonly the deeper the feature map, the lower the resolution, which is counterproductive
when the object is so small that it may be lost along the way, and (ii) the most popular datasets
such as MS COCO [80] or ImageNet [110] focus their attention on larger objects. While to
deal with the first problem new solutions are being proposed year by year [2, 9, 78, 147], the
second is being tackled mostly with the tedious task of generating new datasets [8, 27, 153].

We have noticed some reasons that call for a superior number of small objects in public
datasets to train a small object detector. First, the relatively fewer images that contain small
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Figure 4.1: We describe a pipeline for small object data augmentation that is able to populate
an original frame (left) with new generated small objects (right). New objects are highlighted
with red bounding boxes.

objects will potentially bias any detection model to focus more on medium and large objects.
In addition, the scarce features in small objects hinder the model generalization, lacking a
great deal of variability. Finally, the smaller the object the more places it can appear, increas-
ing the object background diversity and, thus, demanding more context variability at training.

Moreover, pieces of evidence [156] have shown that good data augmentation can boost
deep models to achieve state-of-the-art performance without changing the network architec-
ture. Although data augmentation has shown to significantly improve image classification, its
potential has not been thoroughly investigated for object detection. So, given the additional
cost for annotating images for object detection, data augmentation may play an essential role
in boosting performance of generic object detection.

The advent of the generative adversarial networks (GANs) [42] has led to a new approach
in the field of data augmentation. This kind of models are trained in an adversarial man-
ner, where one network (the generator) tries to cheat another network (the discriminator) by
generating new images. Through an iterative process, the generator will attempt to provide
examples that are increasingly similar to those in the real world.

Data augmentation for object detection presents two major challenges: (i) the generation
of new objects and (ii) the integration of those objects to adapt them to the new scenarios. The
former is mostly tackled by reusing already existing objects in different positions [69] or by
adjusting their scale by re-scaling functions [15]. However, it has been proven that common
re-scaling functions cause artefacts that significantly distort the re-scaled object if compared
to real-world objects [10, 113]. The latter could be approached by object segmentation meth-
ods [46] to clear the original background and then insert the objects into plausible positions
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while tuning for color consistencies. In the case of small objects, there is the added issue that
the performance of the segmentation methods decreases dramatically. In addition, many pop-
ular datasets [9, 27, 153] do not contain segmentation ground truth to train the segmentation
models properly.

For all these reasons, in this chapter we will propose a full pipeline for small object data
augmentation. The pipeline takes a video dataset as input and returns the same dataset but
with new synthetic small objects (Figure 4.1) —without looking for a temporal consistency
between them. The hypothesis is that, starting from the visual features of larger objects —
which can be found in many datasets in a large number—, high quality synthetic small objects
can be generated and placed into an existing image. To do so, the pipeline has the following
stages: (i) generate small objects from large ones through a GAN; (ii) seek a logical position
within the image through optical flow; (iii) integrate small object via inpainting and blending
techniques. The main contributions described in this chapter are:

• A full pipeline for small object data augmentation which is able to automatically gen-
erate small objects using larger ones and place them into an existing background in a
congruent fashion.

• DS-GAN, a generative adversarial network architecture that converts large size objects
into high quality small objects.

• An extensive experimentation on the public video dataset UAVDT [27], where the base
results of state-of-the-art approaches are improved.

4.2 Related Work

The small object data augmentation approach we present in this chapter is based on several
computer vision tasks. The execution flow starts with a generative adversarial network (GAN)
that generates synthetic small objects from larger ones. This process can be considered as the
opposite problem to the well-known image super-resolution techniques. Then, a segmentation
network obtains the pixels of the input object and this mask is adapted to the new generated
small object. In parallel, the new position in the image is obtained using optical flow tech-
niques. The synthetic object may or may not replace an existing small object in the image. If
so, the real one is removed from the scenario by inpainting techniques. Finally, the object is
placed into the selected position and tuned by image blending to fit the new background.
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Small object detection. Small object detection refers to improving the detection of those
objects with small size and poor visual features, typically defined as the detection of objects
with a size below 32 × 32 pixels [80]. Small object detection is closely related to the im-
pressive results in object detection via CNN-based architectures [78, 79], but with particular
variations as discussed in Chapters 2 and 3. The actual trend for common object detection is
to go deeper to recognise more complex semantics [47], but small objects, that do not contain
detailed visual features, may be lost in the deep network. More sophisticated architectures
such as the Feature Pyramid Network (FPN) [78] or the Region Context Network (RCN) [8]
partially alleviates this problem.

Furthermore, another restriction is the fact that popular datasets have focused their atten-
tion on larger objects, and small objects are underrepresented [80, 110]. To some extent, this
restriction has been reduced by the advent of video datasets recorded by UAVs with built-
in cameras over wide areas in the wild with small objects and decent quality. In particular,
UAVDT [27], VisDrone2019-VID [153] and, especially, USC-GRAD-STDdb [8] are video
datasets with a large percentage of small objects.

In spite of efforts to design new architectures or the release of more training data, small
object detection accuracy lags behind that of larger objects [82], which opens the way for
more improvement in both areas.

Data augmentation. Data augmentation strategies are widely used for training vision
models to minimize the bias between the training and the testing subsets, i.e., leading to more
generalized models. There are two main types of data augmentation: basic image manip-
ulations and generative synthetic approaches. Basic image manipulations encompass those
methods that add some distortions to a real image by geometric transformations, color space
transformations, noise injection or random erasing. Generative synthetic comprises more
sophisticated approaches that aim to learn possible characteristics from the training data to
create similar synthetic instances.

Basic manipulations are simple operations, so deep learning designs usually combine
many of them. In object recognition the geometric transformation of scale, translation, and
rotation [18, 111, 127] as well as cropping, image mirroring and color processing [72] are
very standardized. For object detection, image mirroring and object-centric cropping are the
most widely used [83, 116]. The random erasing [151] technique aims to improve the robust-
ness of the model to partially occluded samples by randomly adding occlusion, which also
reduces the risk of over-fitting.
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One straightforward solution to generate synthetic objects is studied by Kisantal et al.

[69], which aims to augment the number of small object instances by copy-pasting them. They
firstly use segmentation masks to crop small objects, and then randomly paste the cropped
small objects in the image. The problem of this approach is twofold: (i) the features of the ob-
ject remain the same and (ii) the position and scale of the object may not fit the context —e.g.,
a car in the sky. The second issue is addressed in [15] by an adaptive augmentation strat-
egy called AdaResampling that logically augments the instances. AdaResampling generates a
prior context map using a segmentation CNN and then places the objects in accordance with
the scale and position. Yet, [10, 113] show that the object features produced by conventional
resizing functions are far from real-world object features.

Another solution is to learn the space of possible augmentations with adversarial training.
Adversarial learning attempts to fool models through malicious input or adversarial attacking
through two —or more— networks with contrasting objectives. These samples are usually
generated by looking for the minimum possible noise injection needed to cause a misclassif-
cation [88]. So that, these samples could be added to the training set to improve weak spots
in the learned decision boundary. Going beyond in random erasing, in [130], they train an
adversarial network in parallel with the detector Fast-RCNN to generate examples with oc-
clusions and deformations that would lead the detector to misclassification. The Fast-RCNN
will adapt itself to learn to classify these adversarial examples and be, in turn, more robust
invariant to occlusions and deformations.

The above principles of adversarial training have led to the popular generative adversarial
networks (GANs) firstly presented by Goodfellow et al. [42]. The model consists of two
networks that are trained in an adversarial process where, iteratively, one network (the gener-
ator) generates fake images and the other network (the discriminator) discriminates between
real and fake images. So that, here, the adversarial loss forces the generated images to be, in
principle, indistinguishable from real ones. Then, Radford et al. [101] applied the Goodfel-
low idea for generating images with the Deep Convolutional GANs (DCGAN). GANs were
first introduced to address the problem of generating realistic images but, due to their great
potential, they have gained great popularity in the computer vision community and differ-
ent variations of GANs were recently proposed for image synthesis [57, 104, 152], image
super-resolution [76], image inpainting [144], or image blending [134], among others.

Image super-resolution. Image super-resolution comprises the task of estimating a high
resolution (HR) image from its low-resolution (LR) counterpart. The techniques to achieve
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the final image can use a series of consecutive frames of a video or a single image. Multiple
image-based (or classical) solutions are mostly reconstruction-based algorithms that try to
address aliasing artefacts by simulating the image formation model [7, 31]. These models
are highly dependent on the motion estimation between the LR images, so they are more
unstable in real-world applications [92]. Henceforth, we will describe only single image
super-resolution (SISR) approaches.

Before the emergence of convolutional neural networks, SISR techniques ranged from
simple prediction-based methods (bilinear, bicubic, nearest neighbor...), which yield solu-
tions with overly smooth textures, going through methods that attempt to address these short-
comings by exploiting different priors. In [138], they group these solutions into edge-based
[36, 117], statistical [67, 136], patch-based [49, 140], or sparse dictionary methods [141].

With the remarkable CNN success, all efforts were turned in this direction. Within this
scope, Dong et al. [25, 26] used bicubic interpolation to upscale an input image and feed
a three layer deep fully convolutional network to achieve state-of-the-art SR performance.
Kim et al. [66] achieved high performance by using a deeply-recursive convolutional network
(DRCN) that allows for long-range pixel dependencies while keeping a low number of param-
eters. Another approach [123] proposed a CNN with skip connections where the feature maps
of each layer are propagated into all subsequent layers to combine the low- and high-level
features, enhancing the reconstruction performance.

The definition of a perceptual loss [59], instead of low-level pixel-wise error measures,
represented a significant improvement. The perceptual loss function applies an L2 loss over
calculated feature maps using another pre-trained CNN —such as VGG— to increase the
perceptual similarity, which leads to recover visually more convincing HR images. More re-
cently, GANs boosted even more the image super-resolution results. An impressive work was
done in [76] where they proposed SRGAN, a GAN trained using the perceptual loss in cooper-
ation with the adversarial loss to infer photo-realistic natural images for 4× upscaling factors.
Based on the previous study, Wang et al. [131] released Enhanced SRGAN (ESRGAN) by
improving the network architecture, the adversarial loss and the perceptual loss.

In spite of the progress obtained with GANs, to train these networks it is necessary to have
pairs of low resolution (LR) and high resolution (HR) images. Most of the approaches use
bilinear interpolation to obtain the LR images, which is shown in [10, 113], but they cannot
produce good results for real-world low-resolution images. To address this, Bulat et al. [10]
defined two consecutive GANs where the first GAN learns to degrade high resolution (HR)
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images to low resolution (LR), images and the second GAN uses these LR images to learn the
standard image super-resolution.

Image Inpainting. Image inpainting is a conservation process where damaged, deterio-
rated, or missing parts are filled in to present a complete image. Existing works for image
inpainting can be mainly divided into two groups. Until the CNNs breakthrough, this prob-
lem was dealt with diffusion or patch-based methods with low-level features. Currently, most
of the methods attempt to solve it by a learning-based approach using convolutional neural
networks to predict pixels for the missing regions.

The first group of approaches often uses patch similarity algorithms to propagate infor-
mation from background regions to holes [5, 28]. This method was optimized by Wexler et

al. [133], and Simakov et al. [114] proposed a global patch similarity-based scheme to better
capture and summarize non-stationary visual data. This dense computation of patch similar-
ity is a very expensive operation, so these techniques were later accelerated by a randomized
patch search algorithm called PatchMatch [3].

The obvious limitation with these approaches is that the synthesized texture only comes
from the input image or video. Therefore, learning-based algorithms have now superseded
patch-based methods as they are able to learn adaptive image features for different semantics.
Initially, CNN-based image inpainting approaches were limited to very small and thin masks
[70, 105]. In the same way as in image super-resolution, the establishment of the GANs has
lead to better inpainting results, as the discriminator forces the generator to fill with coherent
data within the dataset. Specifically, Pathak et al. [96] introduced a Context Encoder (CE)
trained with both L2 pixel-wise reconstruction loss and generative adversarial loss as the
objective function to complete large center regions of fixed size. In [55], they extended the
previous work by introducing both global and local discriminators as adversarial losses, and
a fully convolutional network to handle arbitrary resolutions and multiple holes.

More recently, Yu et al. [143] propose a novel contextual attention layer to borrow fea-
tures from distant spatial locations during training to improve the final performance. In [81],
they propose partial convolutions to address the deficiency of standard convolutions when
dealing with free-form holes. Based on the two preceding analyses, Yu et al. [144] released a
generative image inpainting system using gated convolutions as a learnable dynamic feature
selection mechanism for each channel at each spatial location across all layers.

Image blending. Image blending refers to paste a foreground region from a source image
into the target background at a specified location, where the goal is to improve the spatial and
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color consistencies to make the composite image look as natural as possible. The default way
of doing this task is to directly copy pixels from the source image and paste them onto the
target image, but this would generate obvious artefacts because of the abrupt intensity change
in the compositing boundaries.

Alpha blending [100] is a simple and fast process that overlays a foreground image with
transparency over a background image. Even though the results are better than copy and paste,
it blurs the fine details when there are some registration errors between the source and target
images and produces the ghost effect when the alpha window is not optimal. Burt and Adelson
[11] introduced Laplacian pyramid, a multiresolution representation of the images of interest.
The source images are decomposed into a set of band-pass filtered component images, then
joined within each resolution band independently and, finally, adding up the different levels.
So that, when coarse features occur near borders, these are blended gradually over a relatively
large distance without blurring or otherwise degrading finer image details in the neighborhood
of the border.

Alternatively, the most popular image blending technique aims to inform gradient domain
smoothness [99, 119, 120], which enables a smooth transition and reduces the color/illumination
differences between foreground and background. In [99], they firstly produce a gradient vec-
tor field based on the gradients of the composite image, and then recover the blended image
from this gradient vector field by addressing a Poisson equation. Such methods are good at
generating high-resolution results with rich details and textures but the generated images tend
to be unrealistic, as they contain various kinds of artefacts.

A recent approach GP-GAN [134] has leveraged the closed-form solution of the Gaussian-
Poison equation by training a GAN to produce photo-realistic blending results. However, this
approach relies on supervised training, which requires paired data of a source image, a target
image, and the corresponding well-blended image as ground-truth, so the generalization is
difficult.

4.3 Small object data augmentation

Figure 4.2 shows the architecture of the pipeline for data augmentation for small object detec-
tion designed in this PhD Thesis. The purpose of this architecture is to increase the number
of small objects in a video dataset. Our system consists of two procedures: the small object

generation, which involves object downsampling and object segmentation, and the small ob-
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Figure 4.2: The proposed pipeline for data augmentation for small object detection. It takes a
video dataset and produces the same frames but populated with synthetic small objects. The
system comprises two main steps: small object generation and integration. This is repeated
for each position/HR object pair.

ject integration into the image, which involves position selection, object inpainting and object
blending.

Through these components the system is able to generate synthetic low resolution (SLR)
objects from real high resolution (HR) objects; these SLR objects will have similar features
to real low resolution objects (LR). Then, they are inserted in plausible positions within the
image without looking for a temporal consistency between frames. The following are the
steps performed by the pipeline applied to an input video dataset (Figure 4.2):

• The small object generation procedure produces SLR objects and their corresponding
masks from HR objects.

1. The object downsampling generates an SLR object from an HR object with its
context.

2. The object segmentation calculates the input HR object segmentation mask and
transforms it to fit the SLR object.

• The small object integration procedure selects the optimal positions for the SLR object
and inserts it into the image.
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1. The position selector selects the possible positions where some real low resolu-
tion (LR) objects exist —or existed in previous or successive frames— and opti-
mizes the position and SLR object matching by comparing the direction and shape
of both LR and HR objects through optical flow and overlap.

2. The object inpainting deletes the objects that will be replaced.

3. The object blending makes a copy-paste of each SLR object in the matched po-
sition and performs a blending operation to alleviate the abrupt boundary change
and color intensity on the scene.

The final result provided by our system is a new dataset created with the same video
images but populated with an increased number of SLR objects that replace the fixed number
of LR objects.

4.3.1 Small object generation

Downsampling GAN (DS-GAN)

A straightforward solution for obtaining SLR objects from large objects is the use of a re-
scaling function such as the well-known bilinear interpolation or nearest neighbor. However,
as indicated in Section 4.2 and proved in the experimentation (Section 4.4), the use of this kind
of function introduces artefacts that produce objects with a very different features statistical
distribution, which make them useless for data augmentation. Thus, to generate useful SLR
objects from a learning perspective for object detection, a more elaborated system is required.
For this task, a Downsampling GAN (DS-GAN) has been designed. DS-GAN is a generative
adversarial network that learns to correctly degrade HR objects into SLR objects to increase
the training set for object detection.

In this downsampling problem the aim is to estimate an SLR object from an input HR
object with a downsampling factor r. The problem to solve is an unpaired problem where
HR objects do not have a corresponding LR pair, but the network would have to learn the
features of the whole LR subset while keeping similar visual appearance of the original HR
object. For an image with C color channels, HR has size W ×H×C while both LR and SLR
are described by W

r ×
H
r ×C. So, for training the proposed GAN, two different image sets are

required: (i) the HR subset composed of real large objects (HR objects) and (ii) the LR subset

composed of real small objects (LR objects). Both the LR and HR subsets can be taken from
the same dataset or from any additional one if more samples are needed.
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Figure 4.3: Downsampling Generative Adversarial Network (DS-GAN) architecture. The
generator is trained with HR objects to synthesize small objects. A discriminator between real
and fake small objects forces the generator to produce synthetic objects that are increasingly
similar to real-world small objects.

Our DS-GAN architecture is shown in Figure 4.3. It is based on the High-to-Low part of
the GAN presented in [10]. The generator network (G) takes as input an HR image concate-
nated with a noise vector (z) and produces an SLR image 4× smaller than the input (r = 4).
For example, a 128× 128 object will lead to a 32× 32 object. The noise vector is randomly
sampled from a normal distribution and it is attached to the input image to model the fact
that the HR image will be affected by multiple types of LR noise. This allows to produce nu-
merous SLR objects from a single HR object. Following the methodology of [42] we further
define a discriminator network (D) which we optimize in an alternating manner along with
the generator (G).

The generator is an encoder-decoder network —see Figure 4.3— composed of six groups
of residual blocks [47]. Each group has two same-dimension residual blocks with pre-activation
and batch normalization as defined in [48]. To achieve a 4× downscaling, four 2× down-
sample steps performed by pooling layers are placed at the end of each of the first four groups
and two 2× up-sample steps performed by deconvolution layers at the end of each of the last
two groups.

The discriminator —see Figure 4.3— follows the same residual block structure (without
batch normalization) followed by a fully connected layer and a sigmoid function. The dis-
criminator is composed of six residual blocks with two 2× down-sample steps performed
by pooling layers at the end of the last two blocks. The details of the composition of both
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architectures are better shown in Figure 4.3.
With this architecture, our goal is to train G to generate a synthetic low resolution sample

(SLR) conditioned on a HR sample. To achieve this, the objective function chosen for the
adversarial loss is the hinge loss [87]:

lD
adv = E

s∼PLR
[min(0,1−D(s))]+ E

ŝ∼PG
[min(0,1+D(ŝ))], (4.1)

where PLR is the LR subset distribution and PG is the generator distribution to be learned
through the alternative optimization. PG is defined by ŝ = G(b,z) | b ∈ PHR, where PHR is
the HR subset. The general idea behind this formulation is that it allows to train G with the
goal of fooling D, that is trained to distinguish SLR from LR images. With this approach our
generator can learn to create SLR solutions that are highly similar to real LR images, and thus
difficult to classify by D.

Correspondingly, we train G by optimizing a loss function L , which is defined as:

L = lpixel +λ lG
adv, (4.2)

where lG
adv is the adversarial loss, lpixel is the L2 pixel loss, and λ is a parameter that balances

the weight of both components.
The adversarial loss lG

adv is defined based on the probabilities of the discriminator as:

lG
adv =− E

b∼PHR
[D(G(b,z))], (4.3)

where PHR is the HR subset and z is the noise vector. The adversarial loss is computed in
an unpaired way, using the LR subset to make the SLR objects to be contaminated with real-
world artefacts.

The lpixel minimizes the L2 distance between the input HR and the output SLR:

lpixel =
r2

WH

W
r

∑
i=1

H
r

∑
j=1

(AvgPooling(b)i, j−G(b,z)i, j) | b ∈ PHR, (4.4)

where W and H denote the input HR size, r is the downsampling factor and AvgPooling is
an average pooling function that maps the HR input to the output G(b,z) resolution. The
lpixel is computed in a paired way between the SLR object and the HR object downsampled to
the output SLR resolution using an average pooling layer. This component aims to keep the
appearance of the synthetic objects similar to the original HR objects.
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Figure 4.4: HR object segmentation using the Mask R-CNN framework [46] (right), and DS-
GAN outputs for different noise vectors (zi) with the masks fitted to the SLR objects (left).

In addition, to solve the stabilization of the discriminator training we normalize its weights
by the spectral normalization technique [87].

Object Segmentation

The approach chosen for object segmentation is to adapt the Mask R-CNN framework [46]
trained on the public dataset MS COCO to obtain the mask from HR objects (Figure 4.4). As
the segmentation results for small objects have a poor performance [90], we propose to get
the mask from the large objects and fit it to the small objects. This adaptation is done just by
resizing by factor r. This is possible because the pixel loss (Equation 4.4) forces the generator
to keep the visual object appearance, i.e., pose, orientation, size, etc. Figure 4.4 shows the
masks adaptability from HR to SLR objects.

Adding this process solves three issues: (i) the pipeline does not limit its performance to
the existence of objects with a mask ground truth, which is missing in many popular datasets
[9, 27, 153] as the annotation is very costly; (ii) the small object segmentation is optimized,
as the performance of segmentation methods declines dramatically for small objects [90]; and
(iii) there is no need to use the SLR objects to generate the segmentation mask —SLR objects
do not contain enough context to get a proper mask (Figure 4.4).

4.3.2 Small object integration
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Figure 4.5: Motion angle estimation using optical flow for two frames ft (right) and ft+1 (left).
First, the feature points are computed using FAST (red dots). Second, ft+1 is stabilized with ft
by perspective transformation to remove camera motion. Then, the feature points are matched
between frames (colored lines). Finally, the motion lines are summarized into a motion vector
for each object (colored arrows).

Position selector

The selection of a position within the image is a key issue when performing data augmentation
for object detection. If this position is randomly selected, the new context surrounding the
objects could be counterproductive, i.e., background mismatch may lead the model to generate
more false-positive bounding boxes. The reason is that the detector learns on not only the
object features but also the context features, using the background prior knowledge to assist
itself [15].

In order to sample a suitable position according to the image background, three premises
must be fulfilled: (i) to have a plausible background —e.g., a car must be placed into the
road—; (ii) the orientation has to fit the scene —e.g., a car’s orientation has to match the di-
rection of the road—; and (iii) the scale has to be according to the vanishing point of the frame
—p.e. small objects cannot be placed in the foreground. Therefore, to cover these require-
ments, our proposed position procedure is also based on three techniques: spatial memory of
the objects to obtain a plausible background, optical flow to match orientations, and overlap
to match scales. As pointed out above, no temporal consistency for objects between frames is
demanded; they only need to have spatial significance within the frame.

The spatial memory of the objects aims to collect plausible positions where to place an
SLR object in the current frame. This method is based on selecting in the current frame the
LR object position in previous and subsequent frames. These positions can be taken as valid
as long as there is no object in the current frame.
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Optical flow and overlap aim to pair each candidate position with the SLR object that most
closely resembles the orientation and size. We exploit optical flow to compute the apparent
motion of objects within two frames (Figure 4.5): (i) we detect FAST keypoints [108]; (ii)
stabilize camera motion by perspective transformation; (iii) link feature points between ft−1

and ft within each bounding box by optical flow; (iv) compute the motion angle for each
object in ft by averaging all its points into a motion vector. The overlap between two objects
is computed via Intersection over Union (IoU).

Given the motion angle and the dimensions associated to the HR and LR objects, each
possible position gets this information from the LR object from which it has given rise and
each SLR object from its original HR object. Then, each position and SLR object pairing will
be given by maximizing the overlap and motion angle similarity between them.

Algorithm 2 shows the position selector method for each video:

• Input: The algorithm takes as input the total set of objects in the dataset (GT) within
each frame f at time t ( ft ) —which includes the LR and HR subsets—, the total set
of SLR objects obtained by the DS-GAN generator G from HR objects and the search
range τ .

• Ouput: The algorithm returns the association (A) of an SLR object (ŝi) for each empty
space (e j) —ŝi can be linked to more than one e j.

• Spatial memory (lines 4-17): Given frame f at time t, the possible empty spots (Et )
to place an SLR object (ŝi) will be those where an LR object (s j) existed in the frames
from ft−τ to ft+τ (line 4) —st

i is always valid (line 6). For each frame ft ′ of the interval
( ft−τ , ft+τ ) the algorithm checks if the LRt ′ objects overlap with any of the objects of
the current frame (GT t ) or with any space already selected (Et ) (lines 9-15). Otherwise,
st ′

i is added as new empty spot to Et (line 17). Thus, each possible empty spot et
j

corresponds to a position of an LR object (st ′
i ).

The value of τ will be influenced by the video dataset and, more specifically, by the
camera motion. The more the camera moves, the less the value of τ will be to avoid
background mismatch. If the camera motion is too quick, the positions of the objects
in previous or subsequent frames may correspond to an erroneous position in the image
–e.g., a car on a sidewalk.
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Algorithm 2: Position selector
Input : GT = {GT t = {gt

1, . . . ,g
t
nt} ∀ t = 1, . . . ,T}

Input : LR = {LRt = {st
1, . . . ,s

t
mt} ∀ t = 1, . . . ,T} | LR ∈ GT

Input : HR = {b1, . . . ,bl} | HR ∈ GT
Input : SLR = {ŝ1, . . . , ŝl} | ŝi = G(bi,z) ∀ i = 1, . . . , l
Input : Search range τ

Output: A= {At = {(et
i, ŝk(i)) . . .(et

n, ŝk(n))} ∀ t = 1, . . . ,T, et
i ∈ Et}

1 A← /0
2 for t = 1, . . . ,T do
3 Et ← /0
4 for t ′ = max(0, t− τ), . . . ,min(T, t + τ) do
5 if t = t ′ then
6 Et ← Et ∪ st

i

7 else
8 for i = 1, . . . ,mt ′ do
9 valid spot = 1

10 for j = 1, . . . ,nt do
11 if IoU(st ′

i ,g
t
j)> 0 then

12 valid spot = 0

13 for j = 1, . . . ,size(Et) do
14 if IoU(st ′

i ,e
t
j)> 0 then

15 valid spot = 0

16 if valid spot = 1 then
17 Et ← Et ∪ st ′

i

18 for i = 1, . . . ,size(Et) do
19 maxv = max j = 0
20 α t

i = OpticalFlow(et
i)

21 for j = 1, . . . , l do
22 α j = OpticalFlow(b j)
23 ∆i, j = 1−normalize(|α t

i −α j|)
24 ioui, j = IoU(et

i, ŝ j)
25 if ∆i, j + ioui, j > maxv then
26 maxv = ∆i, j + ioui, j
27 max j = j

28 At ← At ∪ (et
i, ŝmax j)

29 A← A∪At
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• Object association (lines 18-28): The best ŝi is calculated for each of the empty spots
et

j by maximizing the motion direction and overlap.

– Optical flow: For each ground truth LR and HR objects in the video dataset,
an angle (α) associated with its motion vector is pre-calculated through opti-
cal flow (Figure 4.5) —lines (20 and 22). As in the segmentation step, the ŝi

motion vector can be derived from its original HR object bi (OpticalFlow(ŝi) =

OpticalFlow(bi)). Considering the SLR and the LR subsets, motion similarity (∆)
associated with each pair ŝi, s j is given by:

∆i, j = 1−normalized|OpticalFlow(bi)−OpticalFlow(s j)| (4.5)

– Overlap: Likewise, the ŝi size can be derived from its original HR object bi

(w(ŝi) =
w(bi)

r ; h(ŝi) =
h(bi)

r ). Then, the overlap between ŝi and s j is computed
using Intersection over Union (IoU).

Finally, the i-th SLR object selected to fill the position et
j will be given by:

i = max(∆i, j + IoU(ŝk( j),e
t
j)) ∀ t = 1, . . . ,T, et

j ∈ Et , (4.6)

Inpainting

The position selector procedure considers each st
j in ft as an empty spot et

j for filling with ŝi. In
these situations, it is mandatory to remove st

j associated to et
j before inserting its pair. To this

end we perform image inpainting using DeepFill [143]. DeepFill is a generative model-based
approach which can synthesize novel image structures using surrounding image features.

Deepfill takes as input the frame ft and a mask mt and returns the same image f ′t but
with the empty regions filled. For generating the mask mt associated with the frame ft , the
bounding boxes of the selected LR objects st

i ∈ Et will be considered, so that those pixels
contained in them will be flagged (mt = 1).

The Deepfill generator architecture is sketched in Figure 4.6. The generator comprises
two encoder-decoder networks for two different purposes. The first one —coarse network—
aims to make an initial coarse prediction and, the second network —refinement network—
takes the coarse prediction as inputs and predicts the final result f ′t . The reason for these two
networks is intuitive: the refinement network sees a more complete scene than the original
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Figure 4.6: DeepFill architecture for object inpainting [143]. The network takes as input an
image and a mask pointing out the object to be deleted, and returns the same input image but
with the masked area filled in.

image with missing regions, so its encoder can better learn feature representation than the
coarse network.

As LRt may be surrounded by other objects, it is interesting to borrow distant image
features within the image without objects. This is addressed by DeepFill with two parallel
refinement network encoders concatenated at the end into a single decoder. The standard en-
coder specifically focuses on refining local contents with layer-by-layer (dilated) convolution,
while the attention encoder tries to capture background interest features.

Insertion and Blending

As a final stage, the pipeline blends the corresponding SLR object ŝi obtained by Equation 4.6
over an f ′t inpainted image obtained in the previous step in each of the spots et

j to generate
f ∗t . The copy-paste is straightforward using the segmentation information collected in the
segmentation step.

Then, the blending step is required to improve color consistencies and to soft the object
edges in order to make the composite image look as natural as possible. We have adopted
the Laplacian pyramid introduced by Burt and Adelson [11] to blend the SLR objects into the
video frames.

This blending method takes as input an inpainted video frame f ′t , the copy-pasted image
f ′′t and the mask image m′t that points out where to blend. In the inpainting stage, the flagged
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original originalcopy & paste copy & pasteblended blended

Figure 4.7: Image results of blending for similar synthetic small objects on different back-
ground conditions.

pixels in mt are those inside the bounding box ground truth, but in m′t the flagged pixels are
those from the SLR segmented pixels. Figure 4.7 shows some examples for this final blending
stage. Algorithm 3 details the procedure to obtain the final synthetic video frame:

1. Create the temporal image f ′′t by copy-pasting each ŝt
k(i) object in et

i on f ′t (line 4).
Generate the mask m′t by flagging those pixels that belong to ŝt

k(i) (line 5).

2. Compute p levels of Gaussian pyramids for f ′t , f ′′t and m′t (lines 6-12). Each Gaussian
pyramid level is the result of blurring and downsampling the previous one.

3. From the Gaussian pyramids, calculate the Laplacian pyramid for f ′t and f ′′t (lines 13-
17). Each Laplacian pyramid level is the result of subtracting each Gaussian pyramid
level with the up-sampled and blurred previous one. The smaller level in the Laplacian
pyramid is the same as the smaller in Gaussian pyramid.

4. Next, each level of the Laplacian pyramid is blended according to m′t of the correspond-
ing Gaussian level (line 21). The set of masks (M′t ) is previously reversed to match the
dimensions (line 19).

5. Finally, from this blended pyramid, the output image ( f ∗t ) is reconstructed by up-
sampling and blurring each level and adding it to the next one (line 23-26).
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Algorithm 3: Insertion and blending algorithm
Input : At = {(et

i, ŝk(i)) . . .(et
n, ŝk(n))} ∀ t = 1, . . . ,T, et

i ∈ Et
Input : Inpainted image: f ′t
Input : Pyramid levels: p
Output: Final synthetic image: f ∗t

1 f ′′t ← f ′t
2 m′t ← /0
3 for i = 1, . . . ,n do
4 f ′′t [e

t
i] = ŝt

k(i)

5 m′t [ŝk(i)] = 1

6 F ′t ←{ f ′t }
7 F ′′t ←{ f ′′t }
8 M′′t ←{m′t}
9 for i = 1, . . . , p do

10 F ′t ← F ′t ∪PyramidDown(F ′t [i])
11 F ′′t ← F ′′t ∪PyramidDown(F ′t [i])
12 M′t ←M′t ∪PyramidDown(F ′t [i])
13 L′t ←{F ′t [p]}
14 L′′t ←{F ′′t [p]}
15 for i = p, . . . ,2 do
16 L′t ← L′t ∪ (F ′t [i−1]−PyramidUp(F ′t [i]))
17 L′′t ← L′′t ∪ (F ′′t [i−1]−PyramidUp(F ′′t [i]))
18 Bt ← /0
19 M′′t ← Reverse(M′′t )
20 for i = 1, . . . , p do
21 b = L′t [i]×M′t [i]+L′′t × (1−M′t [i])
22 Bt ← Bt ∪b

23 b← Bt [1]
24 for i = 2, . . . , p do
25 b = PyramidUp(b)+Bt [i]

26 f ∗t ← b
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4.4 Experiments

In this section we address the experimentation carried out for the evaluation of the quality of
the synthetic objects generated by DS-GAN, and for the final detection improvement using
the pipeline for data augmentation for small object detection on state-of-the-art networks. We
also define the datasets, evaluation metrics and implementation details to validate each of the
experiments.

4.4.1 DS-GAN

For this experimentation, the SLR objects generated by the DS-GAN are compared with the
LR objects —aiming for the greatest similarity— as well as with the resizing functions: linear
interpolation, bicubic interpolation, nearest neighbours and Lanczos [124]. For this purpose,
two metrics will be used to validate the quality of the synthetic objects generated by DS-GAN:

• Frechet Inception Distance (FID) [50]: FID is a popular metric for comparing the
feature vectors calculated for real and generated images. The FID score summarizes
how similar the two groups are in terms of statistics on computer vision features of
the raw images calculated using a pre-trained image classification model —commonly
Inception-v3 [118]. The lower the scores the greater the similarity of the two groups,
meaning that they have more similar statistics, which is the purpose of our DS-GAN.

• Object classification: To support the above metrics, we also train an LR object classi-
fier which differentiates between background (negative) and LR object (positive). We
resort to this metric since it is closer to the objective of the full pipeline, i.e., the im-
provement of small object detection. On the one hand, the classifier is trained with the
LR training set as positive examples and a background set as negative examples. On
the other hand, the SLR set is used for positive examples and keeping the same back-
grounds as negative examples. We have generated different SLR sets, one for each of
the resizing functions, and another one for the DS-GAN. All the learned models are
evaluated with the LR testing subset and different backgrounds. The higher the accu-
racy, the better the quality of the objects synthetically generated.

The DS-GAN generator architecture has a final stride 4× smaller than the fixed size input
image (r = 4). Most of the popular datasets —MS COCO [80], UAVDT [27], VisDrone
[153]— consider as small objects those smaller than 32×32 pixels. Therefore, we will train
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(a) (b)

Figure 4.8: (a) Real HR samples, and (b) real LR samples from the UAVDT dataset.

the DS-GAN to learn how to reduce HR objects to that range. As examples, 128× 128 and
64×64 HR objects would be 32×32 and 16×16 SLR objects provided by our DS-GAN.

We validate our data augmentation for small object detection approach with the car cate-
gory on the UAVDT dataset [27]. This dataset was selected because the whole set of objects
are vehicles, which allows us to isolate the results for a specific category, and also provides a
large number of small instances in the testing set. Quantitatively, UAVDT comprises 23,829
frames of training data and 16,580 frames of test data, belonging to 30 and 20 videos of ≈
1,024 × 540 resolution, respectively. The videos are recorded with an UAV platform over
different urban areas. UAVDT includes a total of 394,633 car instances for training, where
107,091 are considered within the small subset (52.38%), and a total of 361,055 car instances
for testing, where 274,438 are considered within the small subset (76.01%).

Considering that the camera motion in UAVDT slightly modifies the appearance of con-
secutive frames, in this section, only 10% of the video frames are selected for training to avoid
overfitting. The details on the datasets for evaluating DS-GAN are given below:

• Real high resolution (HR) subset: To obtain the HR objects we select those objects
from 48× 48 to 128× 128 pixels, and we add context to have an area of 128× 128
pixels in objects with a smaller area. These conditions result in a total number of 517
HR objects in the UAVDT dataset. To have a larger number, we also select the cars
in the VisDrone dataset with the same restrictions. VisDrone is a dataset with a very
similar nature to that of UAVDT, i.e., high-resolution videos recorded with UAVs. The
total number of HR objects is 5,731 after joining both datasets. Some HR examples are
shown in Figure 4.8a.
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• Real low resolution (LR) training subset: To obtain the LR objects we select those
objects under 32× 32 with sufficient context to cover an area of 32× 32 pixels. This
results in a total of 18,901 objects coming from the UAVDT training set —these objects
are a part of the UAVDT small subset, where redundant instances have been discarded.
However, in order to simulate a small object scarcity scenario, the LR subset will only
consist of approximately 25% of the videos of the UAVDT dataset. The selected videos
include a total of 5,226 LR objects. Some LR examples are shown in Figure 4.8a.

• Real low resolution (LR) testing subset: To evaluate the performance DS-GAN and
the pipeline we use the 274,438 small objects coming from the UAVDT testing set with
sufficient context to cover an area of 32×32 pixels.

For training the DS-GAN, we augment the training data by applying random image flip-
ping to increase diversity. We provide a different noise vector (z) sampled from a normal
distribution to each HR object in order to simulate a large variety of image degradation types.
DS-GAN is trained during 1,000 epochs with an update ratio 1:1 between the discriminator
and the generator, and it is optimized with Adam [68] with parameters β1 = 0 and β2 = 0.9.
We set the base learning rate to 1e-4, decreasing it twice during the training phase by a factor
of 10. We use λ = 0.01 in Eq. 4.2 to balance the relevance of the two components in the image
generation process —lG

adv is two orders of magnitude higher than lpixel . Thus, the adversarial
loss helps to learn to contaminate the HR input with noise and artefacts coming from the LR
subset, and the pixel loss helps to preserve the visual features from the original input.

Figure 4.9 shows the experimental results to evaluate the quality of the synthetic objects
generated by DS-GAN over the LR testing subset of UAVDT. Our approach is compared to
the main re-scaling functions: linear and bicubic interpolation, nearest neighbors and Lanczos
[124]. The reference values are obtained by the models trained on the LR training subset (blue
bars).

The FID value in Figure 4.9a is measured using the final average pooling features in
Inception-v3. The reference value of the LR training objects compared with the LR testing
subset is 27.62. The graph of Figure 4.9a shows how the small objects obtained by any
re-scaling function lead to values above 100, which is a poor performance relative to the
reference value. The FID value of the SLR objects generated by DS-GAN for the LR test
objects is 45.15. This FID value shows how the objects generated by the DS-GAN have better

98



Chapter 4. Data augmentation for small object detection through a downsampling GAN

LR subset Linear Bicubic NN Lanczos DS-GAN0

25

50

75

100

125

FI
D

Frechet Inception Distance (FID)

LR subset Linear Bicubic NN Lanczos DS-GAN70

75

80

85

90

Ac
cu

ra
cy

 (%
)

Classification accuracy

(a) (b)

Figure 4.9: Evaluation metrics for different subsampling methods on the LR testing subset of
UAVDT. (a) Frechet Inception Distance (FID) and (b) Classification accuracy. The lower the
better for the FID, whereas the higher the better for the classification accuracy.

quality than those obtained by a simple re-scaling function, i.e., are more similar to the real
ones.

To complement the FID distance, we have trained a classification network (ResNet-50
pre-trained on ImageNet [110]) with each of the defined subsets and tested them with the LR
testing subset. Figure 4.9b shows, again, how the SLR object generated by DS-GAN provides
a considerably higher accuracy (83.06%) than the re-scaling functions (≈74%), and are very
close to the reference accuracy obtained by the LR training subset (85.16%).

These results validate the conclusions reached in [10, 113], since re-scaling functions
introduce artefacts that make the output object differ considerably from real-world objects.
Even though these differences are not visually appreciable —as we will see in Figure 4.12a
below—, they are identified by the layers within the CNNs (Inception-v3 and ResNet-50).
DS-GAN significantly improves this issue by learning the different artefacts found in real-
world objects.

4.4.2 Data augmentation pipeline

In order to evaluate our pipeline for data augmentation for small object detection, shown
in Figure 4.2, we use the UAVDT detection metrics that were originally defined by the MS
COCO dataset. These metrics are the Average Precision (AP@.5), which gives the average
precision of those objects detected with at least 50% IoU between the detected and the ground-
truth bounding boxes, and AP@[.5,.95], which is the average AP when the IoU goes from 50%
to 95% in 5% steps. STDnet [9] and FPN [78] are adopted as the baseline detection networks.
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Data
augmentation

FPN STDnet
AP@.5

s AP@[.5,.95]
s AP@.5

s AP@[.5,.95]
s

LR 39.0 17.6 41.2 19.0
LR + Interp. 38.1 16.5 38.8 16.9
LR + SLR 46.3 20.1 48.1 20.6
LR + SLR×6 50.9 22.5 51.5 23.4

Table 4.1: Comparison of several data augmentation approaches for small object detection
with FPN and STDnet networks on the small object testing subset of UAVDT. The training
phase was conducted by simulating a low instance small object scenario —25% of the UAVDT
training videos.

The implementation details for DS-GAN are those defined in the previous section. The
other component that requires training is DeepFill for image inpainting. In this case, the
default parameters [143] are used to train the model on the UAVDT dataset. We have set
τ = 40 as the frame search range for the position selector. The rest of the components of the
pipeline shown in Figure 4.2 are also configured with their default values.

We detail the results obtained by STDnet [9] and FPN [78] on the UAVDT testing set
for small objects. The training phase for both models was conducted from the same 25%
of the videos as in the DS-GAN training, in order to simulate a scenario with a low number
of LR objects, up to the whole UAVDT training set. Here, the LR label means that no data
augmentation has been applied for training, so the images come directly from the standard
UAVDT training set. The LR + Interp. and LR + SLR labels mean the same images with
real objects as in LR, and also duplicating those images replacing the real LR objects with
synthetic objects ones generated with the pipeline using bilinear interpolation and DS-GAN,
respectively. So that, in LR + Interp. and LR + SLR, the number of synthetic objects is equal
to the number of LR objects. Finally, the LR + SLR×n labels mean that the number of SLR
objects is n times higher than the number of LR objects.

Table 4.1 studies the influence of different data augmentation methods for a scenario
where the number of small objects for the training phase is reduced. So that, the first row
refers only to the use of real objects contained in the 25% of the videos. The use of data aug-
mentation with DS-GAN improves the performance of FPN by 4.9% AP@[.5,.95]

s and 11.9%
AP@.5

s , and STDnet by 4.4% AP@[.5,.95]
s and 10.3% AP@.5

s —Table 4.1, rows 1 and 4. It
should be noted that the greatest influence is given by the nature of synthetic objects. If they
did not contain useful information for learning the model, they would not improve the per-
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Figure 4.10: AP@.5
s for small object detection in UAVDT for different percentage of training

videos with the FPN and STDnet architectures.
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Figure 4.11: AP@[.5,.95]
s for small object detection in UAVDT for different percentage of train-

ing videos with the FPN and STDnet architectures.

formance, or even worsen it, as seen with the bilinear interpolation method in Table 4.1. The
improvement from data augmentation with objects re-scaled by bilinear interpolation to syn-
thetic objects generated by DS-GAN is of 3.6% AP@[.5,.95]

s and 8.2% AP@.5
s in FPN and of

3.7% AP@[.5,.95]
s and 9.3% AP@.5

s in STDnet —Table 4.1, rows 2 and 3.

Figure 4.10 and Figure 4.11 detail the extended results for the use of a different percentage
of videos in the training phase and, also, show how AP changes by increasing the number of
SLR objects ×n in the training phase. These graphs are designed to show the improvement
due to data augmentation for different percentages of training videos —with real LR objects.
It is possible to appreciate a great improvement in AP for those solutions based on our data
augmentation approach —the greater the number of SLR, the greater the improvement— es-
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pecially when the percentage of training videos is low. As the percentage of training videos
increases, the improvement is reduced, as there are more real objects in the training set. From
the use of 50% of the videos onwards the AP shows a smaller improvement rate, so does the
gain by adding SLR objects. That is, when adding more training images with real objects per-
formance does not improve, and thus it is useless to try to use data augmentation techniques.

As expected, as training examples increase, so does AP. However, as mentioned above,
the improvement from 50% of videos is considerably lower, moving from 59.1% AP@.5

s and
25.9% AP@[.5,.95]

s for 50% of the videos to 61.5% AP@.5
s and 26.8% AP@[.5,.95]

s for FPN on the
whole UAVDT training set (blue lines, left). Similarly, the performance of the trained model
with data augmentation increases as objects are added, but the gain over the baseline is lower
above 50% of training videos. The same conclusions can be drawn in the case of STDnet
(right).

Moreover, the models are able to take advantage of the increasing number of SLR objects
until reaching a point where the progression stops —9× with respect to LR objects. To syn-
thesize new objects above SLR×3 requires to triplicate the images and exchange the synthetic
objects, because there are not enough empty spots available where to insert SLR objects. This
decreases the context variability, and thus the performance improvement.

Finally, we want to highlight how the generated synthetic objects constantly improve the
performance even for the complete training set (100%), where they improve AP@[.5,.95]

s . In
contrast, the objects generated by bilinear interpolation do not provide information, and even
they harm the learning of the models (green lines). This confirms the high quality of the
synthetic dataset produced by our pipeline for data augmentation for small object detection.

4.4.3 Qualitative results

In this section, we show different qualitative results of the DS-GAN and the full pipeline
for data augmentation for small object detection. Figure 4.12 compares the synthetic objects
coming from a simple re-scaling function with those generated by the DS-GAN and with the
real LR objects. Objects obtained by simple re-scaling seem artificially defined with blurry
artefacts. Objects from DS-GAN look more closely to real LR objects as they contain artefacts
and are contaminated by low resolution small objects features. Figures 4.13-4.16 display the
outcome of the complete pipeline for different UAVDT scenarios, as well as for a different
number of synthetic objects.
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(a) (b) (c)

Figure 4.12: (a) Synthetic objects obtained by bilinear interpolation; (b) synthetic objects
generated by the DS-GAN; and (c) real LR objects.

Figure 4.13: Data augmentation for small objects examples from UAVDT training set pro-
vided by our pipeline. From left to right and from top to bottom: standard real frame with LR
objects; LR objects replaced by SLR objects; SLR×2 objects; and SLR×3 objects.
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Figure 4.14: Data augmentation for small objects examples from UAVDT training set pro-
vided by our pipeline. From left to right and from top to bottom: standard real frame with LR
objects; LR objects replaced by SLR objects; SLR×2 objects; and SLR×3 objects.

Figure 4.15: Data augmentation for small objects examples from UAVDT training set pro-
vided by our pipeline. From left to right and from top to bottom: standard real frame with LR
objects; LR objects replaced by SLR objects; SLR×2 objects; and SLR×3 objects.
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Figure 4.16: Data augmentation for small objects examples from UAVDT training set pro-
vided by our pipeline. From left to right and from top to bottom: standard real frame with LR
objects; LR objects replaced by SLR objects; SLR×2 objects; and SLR×3 objects.

4.5 Conclusions

We have designed a novel a pipeline for data augmentation for small object detection, i.e.,
objects under 32×32 pixels. The pipeline takes a video dataset as input and returns the same
dataset but with the images populated with annotated small synthetic objects. Thereby, by
increasing the number of small objects —which are scarce in most of the datasets— the per-
formance of detection models increases too. The main component of the pipeline is the small
objects generation process. For this specific purpose we have designed Downsampling GAN
(DS-GAN), a generative adversarial network based on the latest super-resolution techniques
to generate high quality small objects taking large objects as a starting point —which are
normally available in a high quantity.

The quality of small objects generated by DS-GAN has been validated in an isolated way.
Experiments show that the FID value for the SLR objects is very close to the FID value for
real LR objects, as opposed to the simple downsampled objects, which have a very distant FID
value. In addition, we reached the same conclusion by training a standard CNN classifier. So
that, we confirm that small objects generated by DS-GAN boost small object classification.
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On the contrary, the small objects generated by direct large objects re-scaling are useless for
data augmentation to recognise small objects, as the artefacts introduced by these functions
differ greatly from real-world small objects.

The proposed pipeline for data augmentation method improves the performance of state-
of-the-art models in the detection of small objects over the UAVDT dataset. The results over
the test set demonstrate an improvement of 4.9% AP@[.5,.95]

s and 11.9% AP@.5
s for FPN [78]

and of 4.4% AP@[.5,.95]
s and 10.3% AP@.5

s for STDnet [9] in a scenario where the number
of training small objects is limited –only 25% of the videos are considered. These results
validate the initial hypothesis that, when a dataset contains few small objects, the proposed
data augmentation technique boosts the performance of the detector.

As future work, we plan to enhance the pipeline by bringing time consistency between
synthetic objects within the same video, and also, by integrating the segmentation stage in
DS-GAN to compute more accurate small object masks.
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CONCLUSIONS

Small object detection has become increasingly relevant due to the fact that the performance
of common object detectors falls significantly as objects become smaller. Many computer
vision applications require the analysis of the entire set of objects in the image, including
extremely small objects. Moreover, the detection of small objects allows to perceive objects
at a greater distance, thus giving more time to adapt to any situation or unforeseen event.

In this PhD Thesis the topic of small object detection has been addressed through deep
learning techniques. Particularly, the work has focused on designing CNN-based architectures
able to detect extremely small objects —under 16× 16 pixels—, in both still images and
videos through spatio-temporal processing. This work is complemented with the development
of a system aimed to automatically increase the number of instances of small objects in a given
dataset based on a generative adversarial network (GAN) approach for data augmentation.

In the field of image object detection, we have proposed a new architecture, called Small
Target Detection network (STDnet), a region-proposal-based ConvNet to detect extremely
small objects. The key of STDnet is the Region Context Network (RCN) and the RoI Collec-
tion Layer (RCL), an additional visual attention mechanism that allows STDnet to focus only
on promising regions. This module prevents the processing of more than the 85% of the input
image from this point onward. This saving in computational cost is employed to preserve fine-
grained feature maps throughout the model, which is critical to ensure that small objects are
represented with high-semantics in deep layers. This architecture leads to greater precision
for detecting extremely small objects without increasing the computational cost and achieving
state-of-the-art results in USC-GRAD-STDdb and the well-known MS COCO, UAVDT and
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VisDrone datasets.

Then, in terms of video object detection, STDnet-ST has been introduced, a novel spatio-
temporal ConvNet to detect extremely small objects in video. STDnet-ST is composed of
two STDnet branches, and it binds the most likely candidate regions of two input frames by a
correlation module to seek temporal coherence. This correlation-based approach outperforms
common overlapping assessments as they do not work properly when dealing with small or
fast objects. Moreover, since the correlation module does not rely on the spatial position of the
objects, it can identify the same small object in two non consecutive frames, which is useful in
applications where the videos have a low frame rate. The detections enclosed in the correlated
regions are gradually joined to temporal tubelets to be further refined by a tubelet linking
stage. The tubelet linking applies a Viterbi algorithm extension to the detections based on
correlation linking, and implements a tubelet suppression procedure that allows STDnet-ST to
dismiss unprofitable tubelets while preserving only high-quality ones. STDnet-ST improves
the state-of-the-art results in USC-GRAD-STDdb, UAVDT and VisDrone video datasets by
at least 2% AP@.5

xs .

Finally, this thesis has contributed to address some drawbacks in the fact that object detec-
tion models are biased towards larger objects due to the lack of datasets with a large number of
small objects: (i) we have released the aforementioned USC-GRAD-STDdb, a video dataset
focused on extremely small objects with more than 25,000 annotated frames in complex back-
grounds with clutter; and (ii) a novel pipeline for data augmentation for small —less than 32×
32 pixels— and extremely small —less than 16 × 16 pixels— object detection has been pro-
posed. This pipeline populates a given video dataset with annotated small synthetic objects.
Thereby, by adding different small objects, the performance of detection models increases too
due to larger training sets. The main component of the pipeline is the Downsampling GAN
(DS-GAN), a generative adversarial network based on the latest super-resolution techniques
to generate high quality small objects taking large objects as a starting point —which are nor-
mally available in a high quantity. In addition to DS-GAN, the pipeline consists of several
computer vision processes: object segmentation, object inpainting and object blending. The
combination of these processes enables the data augmentation system to generate high-quality
small synthetic objects, to compute a coherent position inside a new frame, and to insert the
object in accordance with the background. The proposed data augmentation algorithm was
evaluated on the UAVDT video dataset, where all the studied ConvNets performed better
trained with the augmented synthetic objects than without them. The use of augmented data
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boosted the performance in more than 10% AP@.5
s for a scenario with 25% of the training

videos, i.e., with a small amount of training data.
As a result of the work developed in this thesis, some directions of research that might be

worthy to explore in the future have been identified. These ideas focus on further improving
the efficiency of the proposed object detector architectures and data augmentation system.

One promising research direction is to adapt a top-down pathway similar to that of the FPN
into the STDnet architecture. The objective is to use Region Context Network (RCN) in early
stages of the neural network, as has been done so far, but without keeping high-resolution
feature maps, i.e., using the standard stride. As by using low-resolution feature maps in deep
layers, the performance in detecting small objects is reduced, the plan is to apply a top-down
pathway in which the RCN regions would be concatenated at various resolutions. This will
lead to high-resolution feature maps at early stages with high semantics. So that, the whole
computational benefit obtained by STDnet with RCN (over 85%) would not be diminished in
deeper layers.

When it comes to spatio-temporal object detection, an interesting direction is to exploit
several frames simultaneously in the deep feature aggregation. The idea is to forward several
frames at the same time and aggregate the RoI pooling features so that the architecture itself
is capable of generating large spatial-temporal tubelets. The current correlation map will
be concatenated with the aggregated features to be more precise and the tubelet suppression
algorithm will perform as before, but on the tubelets generated by the aggregated features.

Finally, future research in data augmentation for small object detection will include en-
hancing the pipeline by bringing time consistency between synthetic objects within the same
video, and also, by integrating the segmentation stage in the Downsamplig GAN (DS-GAN)
to compute more accurate small object masks. The former will be addressed by using the
computed camera motion by perspective transformation in the position selector procedure,
and the already known object motion, to evaluate if it is coherent a specific place for the same
objects in subsequent frames. For the latter, the DS-GAN architecture will be modified to be
able to generate small objects with their own masks. To do this, the input must be objects with
a pre-computed mask channel.
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[74] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. In IEEE, pages 2278–2324, 1998.

[75] Yann LeCun, Corinna Cortes, and C. J. Burges. Mnist handwritten digit database. ATT

Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[76] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al.
Photo-realistic single image super-resolution using a generative adversarial network. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4681–
4690, 2017.

118



Bibliography

[77] Jianan Li, Xiaodan Liang, Yunchao Wei, Tingfa Xu, Jiashi Feng, and Shuicheng Yan.
Perceptual generative adversarial networks for small object detection. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), 2017.

[78] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. Feature pyramid networks for object detection. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 2117–2125, 2017.

[79] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for
dense object detection. In IEEE International Conference on Computer Vision (ICCV),
pages 2980–2988, 2017.

[80] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common objects in
context. In European Conference on Computer Vision (ECCV), pages 740–755, 2014.

[81] Guilin Liu, Fitsum A. Reda, Kevin J. Shih, Ting-Chun Wang, Andrew Tao, and Bryan
Catanzaro. Image inpainting for irregular holes using partial convolutions. In European

Conference on Computer Vision (ECCV), pages 85–100, 2018.

[82] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, and
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