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Abstract: Terrestrial Laser Scanning (TLS) enables rapid, automatic, and detailed 3D representation 
of surfaces with an easily handled scanner device. TLS, therefore, shows great potential for use in 
Forest Inventories (FIs). However, the lack of well-established algorithms for TLS data processing 
hampers operational use of the scanner for FI purposes. Here, we present FORTLS, which is an R 
package specifically developed to automate TLS point cloud data processing for forestry purposes. 
The FORTLS package enables (i) detection of trees and estimation of their diameter at breast height 
(dbh), (ii) estimation of some stand variables (e.g., density, basal area, mean, and dominant height), 
(iii) computation of metrics related to important tree attributes estimated in FIs at stand level, and 
(iv) optimization of plot design for combining TLS data and field measured data. FORTLS can be 
used with single-scan TLS data, thus, improving data acquisition and shortening the processing 
time as well as increasing sample size in a cost-efficient manner. The package also includes several 
features for correcting occlusion problems in order to produce improved estimates of stand 
variables. These features of the FORTLS package will enable the operational use of TLS in FIs, in 
combination with inference techniques derived from model-based and model-assisted approaches.  

Keywords: forest inventory; LiDAR; remote sensing; R-package; software; stand-level; TLS 
 

1. Introduction 
Information about forest resources is essential for sustainable forest management 

and development of forest policies. In this regard, forest inventories (FIs) are used as the 
main approach for estimating and monitoring the state and evolution of the main 
variables of interest. FIs have improved since they were first introduced, as a result of the 
continuous appearance of new technologies, such as Terrestrial Laser Scanning (TLS), 
considered of great potential value for enhancing FIs [1,2]. However, TLS has not yet been 
adopted in FIs for several reasons [3]. However, many studies agree that affordability is 
the main key challenge to overcome, emphasizing that automation of the point cloud 
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processing with attainable and easy-to-use software able to extract information related to 
important forest attributes is essential [1–5]. 

Since TLS data sets comprise millions of points, sophisticated methods for automatic 
processing are necessary. In this respect, many algorithms with a high level of automation 
that are able to extract tree attributes (diameter at breast height, dbh, height, volume, etc.) 
have been developed in the last few decades [6]. Some of these algorithms have also been 
included in software applications, e.g., SimpleTree [7], 3D Forest [8], and AutoStemTM [9]. 
However, there are some drawbacks to using these applications in FIs: (i) single-tree 
instead of stand-level approaches (SimpleTree), (ii) semi-automatic processing (3D 
Forest), and (iii) commerciality (not suitable for all users) (AutoStemTM). 

Here, we present FORTLS, an R package developed with the objective of automating 
TLS point cloud data processing and estimating variables for forestry purposes. FORTLS 
can be used with single-scan TLS data and enables (i) detection of trees and estimation of 
dbh, (ii) estimation of some stand variables, such as density (N, trees ha−1), basal area (G, 
m2 ha−1), and mean and dominant height, defined as the mean height of the 100 largest 
trees ha−1 (hm and H0 respectively), (iii) computation of metrics related to important tree 
attributes estimated in FIs at stand level, and (iv) optimization of plot design for 
combining TLS data and field measured data. These features of the FORTLS package will 
enable the operational use of TLS in FIs in combination with model-based or model-
assisted inference approaches. 

2. Materials and Methods 
The steps involved in the TLS data processing algorithms are described in the 

following sections. 

2.1. Detection of Trees and Estimation of dbh 
This first algorithm detects trees and estimates their dbh, which is the basis for further 

computations. This is done by the normalize function (Figure 1), which obtains 
coordinates relative to the plot centre and the digital terrain model. This function also 
applies the point cropping process as a criterion for reducing point density 
homogeneously in space and proportional to object size [10]. The output generated is then 
used as input for the tree.detection function, which detects as many trees as possible from 
point clouds in the TLS scans. In addition, for every tree detected, the function calculates 
the coordinates of the section centre, estimates dbh, and classifies it as fully visible or 
partially occluded. Finally, this function obtains the number of points corresponding to 
1.3-m height sections of trees (i.e., the dbh) for original and reduced point clouds (by 
applying a point cropping process) as well as their estimations. 
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Figure 1. Schematic workflow of FORTLS. The pathway shown in red represents the shortest 
possible procedure for estimating variables and metrics. The pathway shown in green includes 
choose.plot.design as a previous step for assessing the stability of estimations, based only on TLS 
data. The pathway shown in blue includes plot.design and optimize functions with the objective 
of determining the best plot design according to field measured data. distance.sampling is an 
optional function that can be used in both approaches. 

2.2. Computation of Variables and Metrics Related to Attributes Estimated in FIs at the Stand 
Level 

Once trees have been detected, the next application of FORTLS is to compute 
variables and metrics at plot level. For this purpose, the metrics.variables function 
produces a set of TLS-based variables and metrics related to forest attributes. These can 
be obtained for different plot designs (circular fixed area, k-tree, and angle-count) if 
specified in the arguments. This function also includes features for correcting occlusion 
problems generated in TLS point clouds. These features are based on correcting the 
shadowing effect [11] and gap probability attenuation with distance to TLS [12]. Apart 
from these features, others based on distance sampling methods can be applied with the 
distance.sampling function by implementing point transects methods with the trees 
detected [13]. This calculates the detection probability for every tree by fitting probability 
detection functions to the histogram of trees distribution, according to their distance from 
the plot centre. As in previous studies by the same authors [13], half normal and hazard 
rate probability functions without and with dbh as a covariate were used. 

Before using the metrics.variables function, previous steps are recommended in 
order to select the most appropriate values for the radius, k-tree, and BAF (Basal Area 
Factor) in the function arguments. This can be done with or without field data. 

2.2.1. Field Measurements Not Available 
In this case, the choose.plot.design function can be used to plot empirical charts of N 

and G estimates as a function of the plot size (estimation-size charts) for different plot 
designs (circular fixed area, k-tree, and angle-count) through continuous size increments 
(radius, k, and BAF, respectively). These size-estimation charts represent the consistency 
in predicting the stand variables across different values of radius, k, and BAF. Size-
estimation charts can be drawn for individual sample plots (including all plots together 
in the same charts) or for mean values (global mean computed for all the sample plots, or 
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for group means if different strata are considered). Finally, different plot designs can be 
compared if specified in the arguments, producing one size-estimation chart per variable 
(N and G). 

2.2.2. Field Measurements Available 
When field measurements are available for the same positions of TLS single-scans, 

the plot.design and optimize functions can be used to assess the performance of TLS-
based metrics and variables relative to field measurements. The plot.design function 
examines correlations (Pearson and Spearman) and the relative deviance between TLS-
based estimates and field measurements, through plots with a continuous size increment. 
This is done for different plot designs and by default for the most common metrics and 
variables. However, other metrics/variables may be considered in the arguments. In a 
second step, those metrics and variables most closely correlated with the variables of 
interest are evaluated by the optimize function. This function generates heatmaps (one 
per plot design) in which correlations between TLS metrics-variables and estimations of 
variables based on field data can be evaluated for all variables and plot sizes. 

3. Results 
The outputs of the previously mentioned functions are reported below. 

3.1. Detection of Trees and Estimation of Their dbh 
The result of these applications is a list of the trees detected with the previously 

mentioned tree.detection function, which is a data frame object containing attributes for 
every tree detected (Table 1). 

Table 1. Data frame with detected trees and their estimated attributes. 

id file Tree 
x 
y 

phi 
phi.left 
phi.right 

dbh 
Horizontal.Distance 

 

num.points 
num.points.est 
num.points.hom 
num.points.hom.est 

partial.occlusion  

numeric/  
character 

character  
(id.txt) 

numeric  
(n) 

numeric  
(m) 

numeric  
(rad) 

numeric  
(m) 

 
numeric  
(n) 

numeric  
(0–1) 

 

id: identification assigned to a sample plot and which coincides with the file name. file: file name, consisting of the id and the 
respective extension (.txt, csv, etc.). tree: number assigned to every detected tree (1, 2, …, n). x: x coordinate of tree centre 
relative to plot centre. y: y coordinate of tree centre relative to plot centre. phi: azimuth of tree centre from plot centre. phi.left: 
azimuth corresponding to left border of tree section detected. phi.right: azimuth corresponding to right border of detected 
tree section. dbh: estimated diameter at breast height. horizontal.distance: horizontal distance from sample plot centre to tree 
centre. num.points: number of points corresponding to normal tree section (1.3 ± 0.05 m). num.points.est: estimated number 
of points corresponding to normal tree section (1.3 ± 0.05 m). num.points.hom: number of points corresponding to normal tree 
section (1.3 ± 0.05 m) after the point cropping process. num.points.est: estimated number of points corresponding to normal 
tree section (1.3 ± 0.05 m) after the point cropping process. partial.occlusion: tree fully visible (0) or partial occluded (1). 

3.2. Computation of Variables and Metrics Related to Attributes Estimated in FIs at Stand Level 
The output of the function metrics.variables is a list with three data frames, 

one per plot design (circular fixed area, k-tree, and angle-count plot), containing the 
following metrics and variables included in Table 2: 
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Table 2. Structure of list containing metrics and variables. 

 N G V dbhm dbh0 

Number of Points 
Belonging to Normal 

Sections 
Percentiles 

fix.plot 
k.tree 

angle.count 

N 
N.hn 1 
N.hr 1 

N.hn.cov1 
N.hr.cov 1 

N.sh 1 
N.corr 2 

G 
G.hn 1  

G.hr 1 G.hn.cov 1 
G.hr.cov 1 G.sh1 

G.corr 2 

V 
V.hn 1  

V.hr 1 V.hn.cov 1 
V.hr.cov 1 V.sh 1 

V.corr 2 

dbh.arit 
dbh.sqrt 

dbh.geom 
dbh.harm 

dbh.dom.arit 
dbh.dom.sqrt 

dbh.dom.geom 
dbh.dom.harm 

num.points 
num.points.est  

num.points.hom 
num.points.hom.est 

P1, P5, P10, P20, P25, 

P30, P40, P50, P60, P70, 

P75, P80, P90, P95, P99 

N: all N variables are direct estimates of N, estimated using trees detected in TLS data. They are computed without 
considering occlusion corrections (N) and by implementing distance sampling methodologies (N.hn, N.hr, N.hn.cov, 
N.hr.cov), shadowing effect (N.sh) and gap probability attenuation with distance from TLS (N.corr). G: all G variables are 
direct estimates of G, estimated using detected trees from TLS data. They are computed without considering occlusion 
corrections (G) and by implementing distance sampling methodologies (G.hn, G.hr, G.hn.cov, G.hr.cov), a shadowing 
effect (G.sh), and gap probability attenuation with distance from TLS (G.corr). V: all V variables are direct estimates of V, 
estimated using trees detected in TLS data. They are computed without considering occlusion corrections (V) and by 
implementing distance sampling methodologies (V.hn, V.hr, V.hn.cov, V.hr.cov), a shadowing effect (V.sh), and gap 
probability attenuation with distance from TLS (V.corr). dbhm: estimated dbh mean for detected trees using arithmetic 
(dbh.arit), square (dbh.sqrt), geometric (dbh.geom), and harmonic means (dbh.harm). dbh0: estimated dominant dbh mean 
(considering the 100 largest trees ha−1) for trees detected using arithmetic (dbh.dom.arit), square (dbh.dom.sqrt), geometric 
(dbh.dom.geom), and harmonic means (dbh.dom.harm). Number of points belonging to normal sections: sum of points 
belonging to normal sections of all trees detected from the original point cloud (num.points) and reduced point cloud, 
reduced using a point cropping process (num.points.hom), and number of points estimated from the original point cloud 
(num.points.est) and reduced point cloud, reduced using the point cropping process (num.points.hom.est). Percentiles: 
percentile of z coordinate (m) relative to ground level. 1 Variables are computed for the fix area and k-tree plots. 2 Variables 
are computed for angle count plots. 

3.2.1. Plot Design When Field Measurements Are Not Available 
Figure 2 is an example of choose.plot.design output when no arguments are defined. 

In these graphical representations, it can be observed that estimations of N and G become 
approximately stable from a radius of 8 m (circular fixed area plot) and 10 trees (k-tree 
plot) and between 1 and 2 for BAF (angle count plot). 
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Figure 2. Line charts with estimated values of N and G for different plot designs (circular fixed 
area, k-tree and angle-count), through continuous size increments (radius, k, and Basal Area 
Factor (BAF), respectively). Each grey line represents a sample plot. 

3.2.2. Plot Design When Field Measurements Are Available 
The outputs of the plot.design function are line charts showing correlation patterns 

and relative deviance for TLS derived metrics-variables and estimations of variables based 
on field data for different designs and sizes of plots. One interactive chart (html file) per 
plot design (circular fixed area, k-tree, and angle-count plot) and variables of interest (N, 
G, V, hm, H0, dbhm, dbh0) (Figure 3) as well as their associated database as the csv file are 
saved in the work directory. 
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Figure 3. Line chart showing Pearson correlation (continuous line) and relative deviance (dotted line) for basal area 
estimation based on field data and the TLS derived metrics and variables: G (direct estimates of G estimated using trees 
detected in TLS data), G.hn, G.hr, G.hn.cov, G.hr.cov (considering occlusion corrections based on distance sampling 
methodologies) and G_sh (considering occlusion corrections based on the shadowing effect) through a continuous size 
increment (k) for the k-tree plot design. 

Once all TLS metrics and variables have been assessed according to how they are 
correlated with the variables of interest, the next step is to evaluate them with the optimize 
function. This function generates interactive heatmaps (one per plot design) in which the 
behaviour of those metrics showing the best correlations across continuous plot size 
increments can be observed (Figure 4). The color palette gives warm and cold colours to 
highly positive and negative correlations, respectively. 

 
Figure 4. Heatmap showing correlations between variables of interest and TLS variables-metrics. 
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4. Discussion 
FORTLS enables automated processing of TLS point clouds and production of 

variables and metrics related to relevant information about forest attributes. Since some 
of the functions assess the performance of variable estimations for different plot designs, 
the application finds the best possible sampling design for any case. This attribute makes 
FORTLS a flexible application for FIs purposes and valid for several types of forests. 

Although FORTLS can be used without including conventional field data, its use is 
optimal when TLS data and field measured data are combined and assessed with the 
plot.design and optimize functions. This enables optimization of plot design by assessing 
correlations between variables of interest (dbh, H, G, etc.) and metrics and variables 
computed for TLS data, which enables selection of the most appropriate plot designs for 
each situation. In the best case, those metrics and variables for which low deviations from 
field measurements are obtained can be used to estimate variables, as in other 
conventional methods. However, occlusions caused by trees, especially in single-scan 
data, represent the main problem in this approach [3]. This drawback may be solved with 
some of the occlusion correction features implemented in this package, as assessed in 
previous studies [11–13]. 

The utility of the R package FORTLS for operational use of TLS in FIs has been 
demonstrated, confirming previous conclusions considered a guideline for further 
research on TLS in forestry [5]. Since FORTLS works with single-scan data, co-registration 
of point clouds in specific software and placement of targets at field measurements are 
not required. This improves data acquisition and shortens the processing time, as well as 
increases sample size in a cost-efficient manner, which is one of the most desirable features 
of TLS in FIs [3]. Further research with study cases by considering different metrics that 
are potentially highly correlated with forest attributes is necessary in order to consolidate 
this R package. 
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