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Abstract 

 

The development of new analytical tools can be considered a non-stop challenge due to the constant 

search for new improved features and also to the emerging environmental contaminants. Flow-based 

methodologies stand out in contributing for this analytical challenge, providing the automation and 

miniaturization of the analysis including sample pre-treatment.  

This thesis was developed based on two major objectives, one of them was to develop new 

miniaturized and automated analytical tools based on flow analysis for environmental monitoring. 

When designing new methodologies, another essential objective was to simplify sample preparation 

by coupling these techniques, based on solid phase extraction (SPE), within the developed flow-

based system. The developed methodologies were optimized based on the same principles: 

minimize the use of reagent, make greener choices of the reagents, minimize the effluent production, 

lower the limits of detection and quantification, simplify and minimize sample/reagent handling. The 

use of the in-line SPE strategy showed to bring advantageous features to the analytical method 

(lowering limits of detection and quantification). The in-line SPE was achieved by using commercial 

resins (NTA and Chelex 100) and also a lab-made polymer inclusion membrane (Chapter 3). 

A biparametric sequential injection system for the determination of copper and zinc in water and soil 

leachates was developed (Chapter 3). The strategy was to use a non-specific coulour reagent (4-(2-

Pyridylazo)resorcinol – PAR) and explore the use of two different sorbent materials to selectively 

separate the two different metal ions in the same manifold. A polymer inclusion membrane (PIM) and 

the commercial resin Chelex 100 were the chosen materials to selectively retain zinc and copper, 

respectively. It was the first time that a PIM was used with this purpose in a flow system. 

A spectrophotometric method for iron quantification using a newly designed chromogenic chelator 

was developed (Chapter 4). This low toxicity iron chelator was a specially designed 3-hydroxy-4-

pyrydinone functionalized with ethers. Furthermore, this reagent demonstrated to display high affinity 

and specificity for iron ions. With the main objective of quantifying iron in a variety of water samples 

(fresh and marine water) a strategy including SPE was added to the manifold. By using an in-line 

SPE process, resorting to a NTA resin column coupled to the flow system, sample matrix clean-up 

and also the enrichment of the analyte was achieved. 

A method for the screening of biogenic amines in waters was developed (Chapter 5). The system 

was divided in two analytical parts. The first one was devoted to the pre-concentration of the analyte 

using a column packed with Chelex 100; the second was the derivatization of the biogenic amines 

using fluorescamine for the fluorescent detection of the analyte. This method intended to be a 

suitable and ease to operate system to obtain real-time information about biogenic amines content 

in water. 
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A flow injection system for the spectrophotometric determination of the total zinc content in plant 

digests was developed (Chapter 6). By using a NTA resin column, zinc pre-concentration and the 

removal of possible interferences was accomplished. A specially designed multi-reflection flow cell 

coupled with a light emitting diode was the chosen detection system for the spectrophotometric 

determination of zinc using Zincon as colour reagent. The physical configuration of the flow cell 

contributed to improve the limit of detection and minimize refractive index gradients produced by the 

mixture of the reagents. 

 

Keywords: Flow analysis; solid phase extraction; green chemistry; water; plant. 
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Resumo 

 

O desenvolvimento de novas ferramentas analíticas pode ser considerado um desafio constante, 

devendo-se tal à busca incessante de características analíticas cada vez melhores e também ao 

surgimento de novos contaminantes ambientais. Os métodos em fluxo destacam-se ao contribuir 

para este desafio analítico, nomeadamente na automatização e miniaturização da análise, incluindo 

o tratamento da amostra. 

A tese foi desenvolvida com base em dois objetivos principais, um dos quais se centrou no 

desenvolvimento de novos métodos analíticos em fluxo para a monitorização ambiental. No 

planeamento de novos métodos teve-se em consideração outro grande objetivo, a simplificação do 

tratamento da amostra, associando para tal técnicas de extração em fase sólida ao sistema de fluxo 

desenvolvido. A otimização dos sistemas analíticos teve por base os mesmos conceitos: minimizar 

o consumo de reagentes; fazer uma escolha mais ecológica relativamente aos reagentes; minimizar 

a produção de efluentes, melhorar limites de deteção e quantificação; simplificar e minimizar o 

manuseamento de amostras/reagentes. Ao recorrer a processos de extração em fase sólida em 

linha, conseguiu-se uma melhoria das características analíticas associadas ao método (baixando o 

limite de deteção e quantificação). De uma forma geral, a extração em fase sólida em linha foi 

realizada recorrendo à utilização de resinas comerciais (NTA e Chelex 100), mas também foi 

utilizada uma membrana produzida em laboratório (Capítulo 3; membrana de inclusão de polímeros 

– PIM).  

Foi desenvolvido um sistema biparamétrico por injeção sequencial para a determinação de cobre e 

zinco em águas e lixiviados de solos (Capítulo 3). A estratégia usada para o desenvolvimento deste 

método envolveu o uso de um reagente de desenvolvimento de cor não específico - (4-(2-

piridilazo)resorcinol – PAR) - e o explorar da utilização de diferentes materiais adsorventes para 

separar seletivamente os dois iões metálicos no mesmo sistema. Para tal recorreu-se a uma 

membrana de inclusão de polímeros (PIM) e a uma resina comercial (Chelex 100) com o intuito de 

reter e separar o zinco e o cobre, respetivamente. De salientar que foi a primeira vez que uma PIM 

foi utilizada com este objetivo num sistema de fluxo. 

No Capítulo 4 foi desenvolvido um método espectrofotométrico para a determinação de ferro em 

águas naturais utilizando um quelante cromogéneo desenvolvido recentemente. O quelante de ferro 

de toxicidade baixa pertence ao grupo das 3-hidroxi-4-piridinonas funcionalizado com éteres. Este 

reagente demonstrou ainda ter uma elevada afinidade e especificidade para o ferro. Com o objetivo 

de aplicar o método à determinação de ferro em diferentes tipos de águas naturais (doces e salinas), 

foi incluído no sistema de fluxo um passo adicional de extração em fase sólida. Para tal, utilizou-se 

uma coluna empacotada com resina de NTA, a qual permitiu realizar a limpeza da matriz da amostra 

e também a possibilidade de se concentrar o analito de interesse. 
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Foi desenvolvido um método para o despiste de aminas biogénicas em águas (Capítulo 5). O 

sistema foi dividido em duas fases fundamentais. A primeira fase consistiu na pré-concentração do 

analito recorrendo a uma coluna empacotada com Chelex 100 acoplada ao sistema de fluxo; de 

seguida procedeu-se à derivatização das aminas com fluorescamina para a sua deteção 

fluorimétrica. O método desenvolvido tinha como principal objetivo ser de fácil execução, mas que 

desse uma resposta em tempo real sobre o conteúdo em aminas biogénicas em águas. 

Foi desenvolvido um sistema por injeção em fluxo para a determinação de zinco total em plantas 

(Capítulo 6). Com a implementação de uma coluna de NTA no sistema de fluxo conseguiu-se a pré-

concentração de zinco e também a remoção de possíveis interferentes presentes na amostra. Como 

sistema de deteção foi utilizada uma célula de fluxo multi-reflexão acoplada a um LED, visando a 

determinação espectrofotométrica do zinco utilizando Zincon como reagente de desenvolvimento de 

cor. Devido à configuração física da célula de fluxo, esta contribuiu para a minimização da influência 

da refração produzida pela mistura dos reagentes e para o melhoramento do limite de deteção do 

método. 

 

Palavras chave: Análise em fluxo; extração em fase sólida; química verde; água; planta. 
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1.1. Environmental Analysis 

 

1.1.1. The Environment 

 

The concern about environment has been significantly increasing in the last decades. And so, the 

environment and its protection can be considered one of the biggest challenges nowadays. This 

challenge involves governmental agencies, academia and industry, which work together to 

accomplish all the guidelines of quality and minimize the impact of human activity into the 

surrounding environment. Society is then demanding higher quality for the environment (water, 

soil and air) to preserve the equilibrium of the ecosystems and consequently human health and 

well-being of living organisms (1,2).  

In the past few years, a big effort has been made all around the world, involving several entities, 

creating groups focused on the environmental issues. Over the past 30 years, they have been 

trying to organize priorities and solve the existing problems to keep the normality of the 

environment and so reduce the impact of human activity. 

The field of Green Chemistry was codified with 12 principles. These principles are a set of 

guidelines that aims to reduce the risks of the synthesis, processing and use of chemicals to 

humans and environment. In the last few years, there has been an effort for developing innovative 

processes in all the fields that involve chemistry. The ultimate goal is to accomplish a more 

effective, efficient and environmentally benign chemistry (3). 

The twelve principles of Green Chemistry were firstly described by Anastas et al in 1998 (4) and 

they are focused on reducing risks and the impact of the chemistry (in all the fields that include 

chemistry and/or chemicals) to human life and the environment.  

Those twelve principles are: 

“1. Prevention. It is better to prevent waste than to treat or clean up waste after is formed. 

2. Atom Economy. Synthetic methods should be designed to maximize the incorporation of all 

materials used in the process into the final product. 

3. Less Hazardous Chemical Synthesis. Whenever practicable, synthetic methodologies 

should be designed to use generate substances that pose little or no toxicity to human health and 

the environment. 

4. Designing Safer chemicals. Chemical product should be designed to preserve efficacy of the 

function while reducing toxicity. 
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5. Safer solvents and Auxiliaries. The use of auxiliary substances (e.g. solvents, separation 

agents, etc) should be made unnecessary whenever possible and, when used, innocuous. 

6. Design for Energy Efficiency. Energy requirements of chemical processes should be 

recognized for their environmental and economical impacts and should be minimized. If possible, 

synthetic methods should be conducted at ambient temperature and pressure. 

7. Use of Renewable Feedstocks. A raw material should be renewable rather than depleting 

whenever technically and economically practicable. 

8. Reduce Derivatives. Unnecessary derivatization (use blocking groups, 

protection/deprotection, temporary modification of physical/chemical processes) should be 

minimized or avoided if possible, because such steps require additional reagents and can 

generate waste. 

9. Catalysis. Catalytical reagents (as selective as possible) are superior to stoichiometric 

reagents. 

10. Design for Degradation. Chemical products should be designed so that at the end of this 

function they break down into innocuous degradation products and do not persist in the 

environment. 

11. Real-time Analysis for Pollution Prevention. Analytical methodologies need to be further 

developed to allow for real-time, in-process monitoring and control prior to the formation of 

hazardous substances. 

12. Inherently Safer Chemistry for Accident Prevention. Substances and the form of a 

substance used in a chemical process should be chosen to minimize the potential for chemical 

accidents, including releases, explosions and fires.” 

 

 

The awareness behind these guidelines leads to the improvement of the knowledge and 

development of new approaches in all the fields, including analytical chemistry. Under this 

context, there has been a continuous increase in the development of innovative methods, 

reactions conditions and analytical tools to accomplish the objective of a more environmentally-

friendly analytical chemistry (3,5–9). Knowing that any substance is not completely safe, it is 

extremely important to obtain more information related to the chemical compounds, enabling the 

chemists the possibility of make informed and conscious choices. In the past few years, new 

methods and analytical tools have been developed to detect and quantify a variety of possible 

contaminants in the environment (water, soil and air). The new procedures also have the inherent 

objective of reducing the chemical impact of the overall analytical process. 
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A more recent publication, by Erythropel et al 2018, emphasises the use of these 12 principles of 

Green Chemistry in a new format, a tree format (Fig. 1.1 – adapted from the same publication). 

This tree is a result of the advances made along the years in the field of Green Chemistry. The 

ChemisTree diagram is a simple diagram that intends to simplify the interpretation of the principles 

and how these principles correlate with each other (branches and leaves). 

 

 

Fig 1.1. The Green ChemisTREE highlighting the areas of inquiry and progress relevant to each 

of the 12 Principles of Green Chemistry, Abbreviations: crit. – critical; eff. – efficiency; haz. mat. 

– hazardous materials; metr. – metrics; prod. – production; solv. – solvent; ADME-absorption, 

distribution, metabolism, excretion; HTS-high throughput screening; (Q)SAR-(quantitative) 

structure–activity relationship. Adapted from a Journal of the Royal Society of Chemistry, 2018 

(Green Chemistry, 20, 2018, 1929 – 1961).  
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It is obvious that analytical chemistry has a huge impact in the environment, leading to new goals 

for chemists when developing new analytical methods and strategies. The real-time analysis plays 

an important role in environmental contamination prevention. With this strategy, it is possible to 

assess in real-time any change in some parameter in the environment (water, soil or air), allowing 

a fast answer to a probable or detected problem. 

The development of new analytical tools and processes also plays an important role in the Green 

Chemistry point of view. The main goal when developing new methods are: ideally, not use 

reagents; however, when needed, reduce quantities and make conscious options of the reagents 

used; minimize the volumes of sample needed per analysis; reduce the production of effluents. 

New goals are now involved in the design of new analytical methodologies that do not only involve 

sensitivity, precision and throughput.  

The awareness about the environment began in the 90s, not only with the Green Chemistry 

concept and guidelines, but also with the Sustainable Development Goals that were firstly 

discussed at the Earth Summit in Rio de Janeiro. Here, a partnership composed for more than 

178 countries developed a comprehensive plan focused on the environment. This plan was built 

looking to the urgency of improving human lives quality and protect the environment. Sustainable 

Development Goals were organized in a total of seventeen guidelines (Fig. 1.2) that were 

proposed in the United Nations Sustainable Development Summit in September 2015. These 

goals can also be applied to the everyday laboratory practice in analytical chemistry. 

 

Fig. 1.2. Sustainable Development Goals adapted from (10). 
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Therefore, the Green Chemistry overall concepts and the Sustainable Development Goals are 

guidelines that look for the sustainability of the planet and the minimization of the impact of the 

human activity. 

In analytical chemistry, it would be perfect, in a Green Chemistry point of view, if analysis could 

be performed directly upon an untreated sample. It would be also desirable to obtain as much as 

possible information about the sample without the need of a treatment before measurement. 

However, in most of the analytical methods, this is not possible due to the complexity of sample 

matrix or even the concentration and/or availability of the analyte (11,12). The development of 

new methods is an important field, in which a lot of work remains to be done to reduce the risks 

and the impact of human activity, helping to preserve the natural equilibrium of the environment. 

 

 

1.1.2. Environmental Analysis – Water and Plant Analysis 

 

The determination of chemical species in the different environmental matrices presents different 

challenges depending on the nature of the sample (water, soil and plants). The main challenges 

are the ultra-low analyte concentration and the complexity of the sample. These sample 

characteristics can affect quality assurance of the data with regard to accuracy, thus 

compromising the analysis (13–15). 

Water is vital for life in all aspects, not only for consume but also for recreational purposes. The 

vital importance of water makes it indispensable for monitoring. The important chemical 

processes that alter water composition vary on the water source (groundwater, river, lake and 

seawater), consequently varying the expected elements present. Human activity can also 

interfere with water quality. So, analytical chemists must be aware of the possible existing 

problems and analytical tools should ideally be developed to assess any substances (changed 

element content and/or element contamination) that may interfere with water quality and 

consequently with life (14,16,17). 

When developing analytical methods, it is necessary to consider the water source where different 

challenges may be encountered. As an example, when analysing an estuarine water, as it is a 

dynamic system, a high variability, spatial or temporal, in matrix composition can be found. Salinity 

can differ depending on the sampling site (proximity of the sea) and also depend on the weather 

conditions (rainy or dry weather), thus affecting directly sample composition. Therefore, the water 

source and referred conditions may also affect the analyte concentration, and so, the analytical 

method should be directed for the sample and its specificities (13,15). 

Generally, to perform water analysis, two different approaches can be used: (i) in situ analysis; 

(ii) water sampling followed by sample storage, handling and analysis at the laboratory. The in-
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situ analysis offers some advantages over the other approach as it simplify the overall analysis 

process. This occurs because, when a laboratory analysis is performed, there is the need to 

guarantee that the sample integrity is maintained since the sample is collected until is analysed. 

Furthermore, an appropriate protocol should be adopted to minimize any possible change in the 

sample composition that may affect the analysis. Additionally, an in-situ analysis can give the 

possibility of act earlier to revert a possible problem. 

Plant analysis is used to identify the constituents of the plants, playing a major role in detecting 

mineral nutrition problems. Plant analysis is also used to identify and monitor any potential toxic 

species that can affect plant growth or can enter into the food chain for humans or animals (18).  

Plants are solid samples and so other difficulties are associated to plant analysis. For elemental 

analysis, plant sample preparation involves decomposition/destruction of organic matter through 

a digestion or extraction (19). And so, plant analysis is usually carried out on plants after some 

preparation process.  

 

 

1.2. Sample Analysis – Flow-based Methods 
 

 

The need to consider the development of automatic methods of analysis arose in the 1950s, when 

clinical tests started being increasingly used for diagnostic purposes in medicine. A contribution 

to the solution for this problem was provided by segmented flow analysis (SFA), which provided 

elevated throughput and substantial saving in samples and reagents (20–22). 

This technique, SFA (Fig. 1.3), was proposed by Skeggs in 1957 (23). The equipment, used in 

SFA, comprises: peristaltic pumps for continuous aspiration of the sample and reagents; plastic 

tubes to carry liquid streams and the detector. After aspiration of the samples, air bubbles are 

introduced into the liquid stream, thus dividing it into separated compartments. These air bubbles 

serve various purposes: avoid mixture between samples; prevent dispersion of the sample plug; 

and facilitate the formation of a turbulent flow to homogenize the mixture sample/reagent in the 

plug between two bubbles. In SFA, the mixture of the sample and reagents needs to reach 

physical homogenization and chemical equilibrium before passing through the detector, where 

the signal is continuously monitored and recorded (20,23). In this technique, the liquid streams 

flow under a turbulent flow regime and the detection should be performed once the reaction 

reaches the steady state. 
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Fig. 1.3. Schematic representation of a generic manifold of a segmented flow analysis system. 

 

 

SFA was widely used in the laboratory practice, medical, environmental and more. However, new 

flow-based methodologies have been emerging along the years; in the 70´s, a new concept 

emerged, flow injection analysis (FIA). This method is a flow-based method that brought a lot of 

novelties to flow methods and also to the analytical chemistry field. 
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1.2.1. Flow Injection Analysis 

 

 

In 1975, J. Ruzicka and E. H. Hansen proposed a technique that initially resembled SFA, named 

flow injection analysis (24). The basic components of a FIA system (Fig. 1.4) are the same as in 

SFA, including also peristaltic pumps, a series of plastic tubes and the detector. However, unlike 

SFA, this methodology is based on the injection of a constant volume of sample into a non-

segmented and continuous carrier stream via an injection valve. The injected sample forms a 

zone, which is then transported to the detector that continuous records the physical parameter 

(absorbance, potential, or other). The signal changes as the sample passes through the flow cell. 

In a FIA system, a transient signal is obtained, which is caused by the concentration gradient 

formed by the dispersion of the solutions through the tubing (20). Unlike SFA, in a FIA method a 

laminar flow is observed inside the tubbing, which reduces likelihood of carry-over between 

successive samples. 

 

 

 

Fig. 1.4. Schematic representation of a generic manifold of a flow injection analysis system and 

a description of a merging zone at the confluence point. 
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FIA and related techniques rely on the combination of three basic principles: (i) reproducible 

sample injection, (ii) controlled dispersion of the sample zone and (iii) reproducible timing between 

the injection and the detection. The biggest difference between this new generation of flow 

methods in comparison with other analytical methods, is that the chemical reaction is taking place 

while the sample is dispersing within the reagent along the reaction coil until reaching the detector, 

with no need to reach chemical and/or physical equilibrium. If the three principles are guaranteed, 

the conditions are maintained for every single injection, and consequently the equilibrium phase 

of the mixture (sample and reagent) that reaches the detector is maintained. 

The main goals behind the flow-based methods development are: the use of low sample volumes, 

minimize reagent consumption, reduce effluent production, increase the degree of automation, 

simplify and avoid sample handling, reduce contamination risks and increase sample throughput 

(25). 

 

 

1.2.2. Sequential Injection Analysis 

 

Although successful as a laboratory technique and a versatile tool for the enhancement of 

instrumental analysis, the application of FIA has been hampered by the use of increasingly 

complex manifolds and by the limited applicability (25,26). Sequential injection analysis (SIA) was 

developed in 1990, by Ruzicka and Marshall (26) as an alternative to FIA, intending to answer to 

some associated FIA difficulties, such as the continuous consumption of carrier and reagents 

caused by the continuous flow. SIA (Fig. 1.5) is based on the same three principles as FIA: sample 

injection, controlled dispersion and reproducible timing. However, in a SIA system, a single pump 

allows precise flow control in both directions within a single flow channel, incorporating a selection 

valve (instead of injection valve). By means of this valve, precisely measured volumes of sample 

and reagents are aspirated into the holding coil. After this, the valve position is switched to direct 

the flow through the detector. The mixture of the consecutive aspirated solutions is accomplished 

by means of flow reversal when the flow direction is switched. The complexity of a multi-channel 

FIA system is reduced using a selection valve. In a SIA system is also possible to reduce the 

volumes of sample/reagent and consequently the production of effluent is reduced (13). 
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Fig. 1.5. Schematic representation of a generic manifold of a sequential injection analysis system. 

Description of a merging zone of the two consecutive aspirated plugs of sample and reagent 

followed by inversion of the flow thorough to the detector. 

 

 

1.3. Separation and Pre-concentration 

 

In analytical chemistry, one of the biggest challenges, which has a direct impact in the 

determination, is the sample preparation. The challenges associated with the analysis can be due 

to the sample matrix complexity that can interfere with the final concentration and/or to the 

concentration of the analyte itself, that can be at a trace level. These challenges can affect the 

detection of the target analyte and consequently the analysis. Trying to overcome the difficulties 

during the quantification process, sample preparation is often necessary. Several preparation 

techniques are available to make a sample suitable for analysis, being the extraction techniques 

the most common. The basic concept is the use of some kind of affinity to separate one or more 

species from a complex matrix and/or provide the enrichment of the target analyte/s. The most 

used extraction techniques are liquid-liquid extraction (LLE) and solid phase extraction (SPE). 

More recently, membrane-based extraction has gained a large interest in this area of extraction. 

During this thesis the topics that will be mainly discussed are about solid phase and membrane-

based extraction techniques. 
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1.3.1. Solid Phase Extraction 

 

Solid phase extraction is a sample pre-treatment extensively used in analytical chemistry. It is a 

versatile technique in sample preparation for sample matrix removal and/or analyte enrichment. 

The principle of SPE is similar to the one of LLE, in which a partitioning of solutes between two 

different phases is observed. However, unlike LLE, where this partitioning is observed between 

two immiscible liquids, in SPE this process occurs between a liquid phase (usually the sample 

matrix) and a solid phase (the sorbent material). This way, it enables the enrichment of the target 

analyte and/or clean-up of the sample matrix (27–30). 

The first SPE experiments date back to 1950s (27,31,32); however, due to its advantages over 

LLE, the development of SPE and related techniques have been expansively growing during the 

past few years.  

A general SPE method consist in, at least, four basic steps (Fig. 1.6): (i) conditioning of the sorbent 

material – crucial step that enables the wetting and the solvation of the functional groups of the 

sorbent material. The chosen solution to perform the conditioning of the sorbent depends on the 

sorbent and/or the target analyte; (ii) loading of the sample – this step consists on the percolation 

of the sample through the sorbent material, where the concentration of the analyte or the 

elimination of possible interferences is achieved,  it depends on the final objective of the  

extraction; (iii) washing the sorbent – this step intends to eliminate any sample component, not 

desirable, that may be retained by the sorbent; (iv) elution of the target analyte/s from the sorbent 

– at this stage a elution solution percolate the sorbent material to elute the target analyte, this 

fraction is collected for further analysis. At stage (ii) the analyte should have stronger affinity to 

the sorbent material then to the sample matrix. However, at stage (iv), the opposite should occur 

and so the target analyte should have a stronger affinity to the elution solution than to the sorbent 

material. The mechanism of retention and elution of the target species depends on the nature of 

the sorbent material and this could be simply an adsorption mechanism, chelation or ion-

exchange (27). If the major goal of the SPE method is the enrichment of the analyte, the loading 

sample volume should be the higher possible and the collected fraction should be the minimum 

possible volume, favouring the increment of the concentration of a trace element. 
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Fig. 1.6. General steps involved in a solid phase extraction process. 

 

 

SPE offers advantages over LLE, as in the latter the procedures usually involve large volumes of 

organic solvents, methodologies in general are time-consuming and also require strict control of 

the procedure conditions (pH, temperature and ionic strength). On the contrary, in a SPE method, 

the use of organic solvents is reduced or eliminated. Usually, SPE methods are faster, have 

higher analyte recoveries, are relatively low-cost and the sorbents have the possibility of being 

reused. The ease of automation and coupling to other techniques, such as chromatographic 

methods (HPLC and GC), atomic absorption spectrometry, flow-based analytical methods among 

others, is also an advantage associated with SPE. In addition, the high number of available 

sorbent materials (with intrinsic different affinities) for selective analyte removal, makes this 

technique an attractive choice in sample pre-treatment. 
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1.3.2. Emerging Sorbent Material – Liquid Membranes 

 

A membrane is defined, in a simple way, as a barrier between two phases and, when some or 

more elements of a mixture move through the membrane, a separation is accomplished (33–35). 

Membranes have been used for a long time in analytical chemistry as sensing elements in 

analytical sensors (such as in potentiometry) and for separation processes. In the last few years, 

there has been a big effort involving new applications in membranes science, including extraction 

for sample preparation. The main goal of this research is to take advantage of the already known 

associated features of the membranes, such as the specificity, stability and sustainability, and 

use them in another field, the sample preparation. A lot of advantages that will be discussed 

further on are associated with the use of membranes. 

A liquid membrane can be described as a thin organic layer. It is an immiscible liquid between 

two different solutions - donor and acceptor - acting as a barrier between these solutions (33). 

Different approaches have been proposed for liquid membranes. And so, liquid membranes can 

be divided into two major groups: non-supported liquid membranes, if they are composed only by 

liquid phases, or supported liquid membranes, if they additionally include a solid support in their 

composition. Non-supported liquid membranes embrace bulk liquid membranes (BLMs) or 

emulsion liquid membranes (ELMs). When a solid support is in the composition of the membrane, 

we have the supported liquid membrane (SLMs) and more recently polymer inclusion membranes 

(PIMs) (33).  

The overall apparatus for BLMs is simple; the membrane is a thick layer of immiscible liquid that 

separates the two phases (donor and acceptor). The thickness of the membranes influences the 

amount of the target element that is transported across the membrane. At the end, the efficiency 

of this technique is very low. ELMs are based on an emulsion, composed by a liquid membrane 

with an inner receiving phase, being the emulsion stability the major problem.  

In SLMs, the carrier or extractant (selectivity agent) dissolved in an organic solvent is impregnated 

on porous film (polymeric porous support) by capillary action. These liquid membranes operate 

also with two aqueous phases (donor and acceptor), and the target species move through it. The 

organic phase is immiscible with the aqueous phases and sometimes, these membranes, also 

contain a modifier to favour the extraction process. The stability of the membrane is the major 

drawback associated with SLMs. Poor mechanical stability of the film or low chemical stability of 

the carrier is often observed, resulting in the loss of the carrier (33,34,36). 
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Nevertheless these weaknesses associated with the use of liquid membranes for extraction 

purposes, many advances in membrane science have been done to understand and improve 

membrane stability. This is due to the rising awareness of searching more environmentally friendly 

processes. Consequently, the growing concern about the environment leads to the need to 

develop new separation processes and minimize the use of conventional separation processes, 

thus minimizing the use of toxic organic solvents usually used. 

This continuous investigation resulted in the development of PIMs, a type of supported liquid 

membranes formed by a liquid phase and a base polymer. PIMs have been used to provide the 

liquid separation of metal ions and small organic molecules from a solution. These membranes 

can serve many purposes in analytical chemistry, such as a sensing component of an ion-

selective electrode, as optodes and, more recently, for membrane-based extraction in sample 

preparation. PIMs can combine high selectivity and ease of operation as SLMs; however, with 

PIMs, the stability and the durability of the membrane was improved (34,37). The higher lifetime 

can be explained by the fact that the extractant is entrapped in the base polymer, decreasing this 

way possible extractant loss, thus increasing the membrane stability and robustness.  

The interest about the use of PIMs and their wide range of different applications has been rising 

in the last few years. In Fig 1.7, the number of published papers about polymer inclusion 

membranes is shown, the first one dates back in 1996 (search made on ISI Web of Knowledge – 

Web of Science on January 10th 2020. However, due to its advantageous properties, a lot of 

research remains to be done to increase the applicability of PIMs in the field of sample treatment.  

 

Fig. 1.7. Evolution of published papers about polymer inclusion membranes since 1996. Data 

collected on Web of Knowledge site (search made on January 10th 2020). 
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A search for the published papers was made on ISI Web of Knowledge – Web of Science (search 

made on January 10th 2020), describing PIMs and its use. The distribution of the scientific 

literature is depicted in Fig. 1.8. A large number of the published information about PIMs is about 

its use in the extraction processes due to the intrinsic characteristics of these membranes. When 

the search combined the keywords PIMs and extraction, a large number of the cited papers were 

devoted for metal extraction. From these, only a few studies (6%) are focused on sample pre-

treatment in analytical chemistry. 

As mentioned before, sample pre-treatment is a challenging step of major importance in analytical 

chemistry. The continuous demand for lower limits of detection, the increasing concern of 

conventional analytical chemistry techniques and the impact of the chemistry in the environment 

(lower the use or no use of toxic reagents), makes sample pre-treatment an important issue in 

analytical chemistry. PIMs have shown good capabilities to assist in this non-stop challenge 

sample pre-treatment for analytical chemists (Table 1.1).  

 

 

Fig. 1.8. Distribution of the published papers devoted for the development of PIMs and its use. a 

– Polymer Inclusion Membrane or Polymer Inclusion Membranes search (479 papers), in blue the  

percentage of works devoted for the use of PIMs for extraction purposes are presented (357 

papers); b and c – number of papers for the combined search of the keywords PIM and extraction 

(357 papers); the blue part corresponds in b to those devoted to metal ions (237 papers); the blue 

part corresponds in c to those devoted to chemical analysis (23 papers). Data collected on ISI 

Web of Knowledge – Web of Science (search made on January 10th 2020). 
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Table 1.1. Analytical characteristics of developed analytical methodologies involving polymer inclusion membranes for the extraction process (presented in 

descending chronological order). 

Target species PIM composition Detection Application Features Reference 

Extractant Base Polymer/Plasticizer  

Hg PAR, thiourea, CCS 
and dithizone 

PVC X-ray fluorescence Water   (38) 

CN- Aliquat 336 PVC/Mg-Al-CO3 LDH UV spectrometry Water LOD = 1.4 µg L-1 

Dynamic range – 
5 – 500 µg L-1 

(39) 

As (V) Aliquat 336 Poly(vinylidene fluoride-co-
hexafluoropropylene) 

 Drinking water  LOD = 3.0 µg L-1 (40) 

Cd THTDPCl CTA/NPOE  Seawater LOD = 10.0 µg L-1 (41) 

As (V) Aliquat 336 CTA and PVC colorimetry Groundwater  (42) 

Pesticides  CTA/NPOE GC-MS Water Determination 
range – 50-1000 
ng L-1 

(43) 

Naproxen Aliquat 336 CTA/oNPOE UV spectrometry Urine Dynamic range – 
5 – 200 µmol L-1 

(44) 

Cu D2EHPA PVC/DOP Spectrophotometry River water LOD = 0.10 mg L-1 (45) 

V(V) THTDPCl Poly(vinylidene fluoride-co-
hexafluoropropylene)/2NPOE 

Spectrophotometry Water and dietary 
supplements 

LOD = 0.08 mg L-1 (46) 

Hg TOMATS - X-ray fluorescence River, sea, 
ground and tap 
water 

LOD = 0.2 µg L-1 (47) 
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PAR – 4-(2-Pyridilazo) resorcinol; CCS – calconcarboxylic acid; Aliquat 336 – tricaprylmethylammoiium chloride; Mg-Al-CO3 LDH - Mg-Al-CO3 – layered 
double hydroxide; CTA - cellulose triacetate; THTDPCl – trihexyl(tetradecyl)phosphonium chloride: NPOE – nitrophenyl octyl ether; PBAT – poly(butylene 
adipate-co-terephtalate); DNNSA – dinonylnaphthalene sulfonic acid; DOA – dioctyl adipate; DBP – dibuthylphtalate; NTA - nitrilotriacetic acid;; PVDF – 
polyvinylidene fluoride; PVP – polyvinyl pyrrolidone;; D2EHPA – di(2-ethylhexyl)phosphoric acid; DOP – dioctylphtalate; PVP – poly(vinylpyrrolidone) 
*different LODs correspond to different flow analysis strategies 

Al  PVC/Triton X-100 Spectrophotometry Aqueous 
solutions 

LOD = 1.04 x 10-6 
mol L-1 

(48) 

Thiocyanate Aliquat 336 PVC Spectrophotometry Fertilizer 0.014 mg L-1 (49) 

Al Aliquat 336 PVC/2-NPOE Spectrophotometry Aqueous samples 0.2 – 50 mg L-1 (50) 

As Aliquat 336 PVC Spectrophotometry Groundwater 4.5 µg L-1 (51) 

Orthophosphate Aliquat 336   Natural waters LOD = 0.5 µg L-1 

 

(52) 

Zn D2EHPA PVC/DOP  Pharmaceuticals 
and galvanizing 
industrial 
samples 

LOD = 0.04 µg L-1 (53) 

Molecular iodine PVP CTA Spectrophotometry Aqueous samples LOD = 0.3 µg L-1 (54) 

Alpha emitting 
actinides 

D2EHPA CTA  Tap water and 
sewater 

 (55) 

Cr(VI) Aliquat 336 CTA or PVC/2-NPOE X-ray fluorescence Electroplating 
water 

LOD = 0.3 mg L-1 (56) 
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Generally, a PIM (Fig 1.9) is composed by a base polymer, an extractant and some membranes 

also contain a plasticizer in their composition. A PIM is a thin, flexible and stable polymeric film 

that has the property of selectively separate solute/s of interest depending on the composing 

extractant.  

The base polymer is the solid support that entraps the liquid and provides the mechanical strength 

to the membranes. Although the existence of a variety of polymers that can be used with this 

purpose, poly(vinyl)chloride (PVC) or cellulose triacetate (CTA) are still the most usually used 

polymers. With both polymers, a relatively simple procedure based on its dissolution in an organic 

solvent is necessary to produce a thin membrane (37,57), thus explaining the extensively use of 

these two polymers. Furthermore, more investigation needs to be done, to try to get more 

information about the intrinsic characteristics of the base polymer and how a proper choice of a 

polymer can improve the stability of the membrane.  

 

 

Fig. 1.9. PIM composed by PVC (base polymer) and D2EHPA (extractant). 

 

 

Some PIMs also have a plasticizer or modifier in their composition, to increase the flexibility of 

the membrane. A plasticizer can also help in the extraction process, making the species more 

soluble within the extractant phase (57). 

As referred before, the component that confers selectivity to the PIM is the extractant or carrier. 

Many studies have been done during the last few years, focused on the use of new extractants 

to increase selectivity of the PIMs. However, the most documented extractants are Aliquat 336 

and di-(2-ethylhexyl)phosphoric acid (D2EHPA). 

Aliquat 336 (tricaprylmethylammoiium chloride) is a basic carrier and is one of the most referred 

carriers used in a PIM development for quantification purposes (33,40,42,44,49–52). Aliquat 336 
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is a commercial mixture of quaternary ammonium chlorides. When using Aliquat 336, no use of 

plasticizer is required, because of its plasticizing properties (58). Heidarbeigi et al 2019 developed 

a PIM flexible and efficient for cyanide extraction. The PIM was composed by Aliquat 336 as 

extractant and reinforced with Mg-Al-CO3 layered double hydroxide (LDH) to promote the 

extraction efficiency of the membrane (39). With the purpose of applying a PIM for the 

determination of As(V), Vera et al 2019 developed PIM composed of poly(vinylidenefluoride-

cohexafluoropropylene), Aliquat 336 and a microporous polytetrafluoroethylene (PTFE) gas-

permeable membrane. This PIM was used in a flow-based mode for the automatic extraction and 

quantification of As(V) in drinking water (40). In another study, Vera et al 2014 proposed a PIM 

with the same extractant for the extraction and preconcentration of As(V). This PIM was 

successfully applied for the determination of the target analyte in groundwater (51). A PIM with 

the same extractant was developed by See et al 2018 for the extraction and quantification of 

naproxen in urine samples (44).  

Another extractant that has been widely used is D2EHPA. This extractant has been used for the 

extraction of metal ions (45,53,55). D2EHPA is classified as an acidic carrier and can also act as 

a bidentate chelating agent (37). Using this carrier, the extraction process occurs by the exchange 

of the metal ions for the protons present in the carrier. 

Generally, a PIM is prepared by dissolving the correspondent quantity of all components with a 

minimal volume of a volatile solvent and finally let the solvent evaporate onto a surface 

(depending on the application). The overall apparatus for a PIM preparation makes these 

membranes physically and chemically versatile sorbent options. The possibility of choosing and 

adapt the PIM constituents (extractant, base polymer and plasticizer) to the target species, make 

PIMs an attractive subject for analytical chemist to develop new strategies to improve sensitivity 

and selectivity in an extraction procedure (59). 
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1.4. In-Line Solid Phase Extraction  

 

As mentioned, SPE is a technique that can easily be coupled with a variety of other techniques 

used in analytical chemistry. Flow-based methods are appealing to implement this type of 

strategies for the in-line sample preparation due to the associated apparatus versatility. 

Additionally, the high versatility of a SPE strategy, makes it to be fairly easily implemented into a 

flow-based manifold. 

When the two techniques are coupled, flow-based methods with in-line sample pre-treatment, the 

system gains the inherent advantages of the two techniques. The automation and miniaturization 

of the sample extraction, in a flow-based mode procedure, decrease the time needed per analysis, 

thus improving sample throughput, minimize the operator sample handling, improve method 

precision and minimize the overall reagents/sample volumes consumption (15,36). 

The features of a final analytical system with in-line sample extraction are more advantageous in 

comparison to a batch mode sample pre-treatment. In addition, when a SPE strategy is 

incorporated in a flow-based technique, usually offers the advantage of easily reuse the sorbent 

material and also lower the quantity of the sorbent material needed for the sample preparation.  

A high number of strategies to implement SPE in a flow-based method have been developed 

during the last few years as a response to the inherent advantages (Fig. 1.10). A review was 

published in 2018 by Rocha et al describing the applications of solid phase extraction in flow 

analysis, and the synergic development made in this area (60). Another review was published by 

Calderilla et al 2018, in which recent advances in the automation of solid phase extraction are 

described (30). A search for the published papers (since these two last reviews in 2018) was 

made on ISI Web of Knowledge – Web of Science describing the hyphenation of solid phase 

extraction and flow-base methods. The features of the developed methodologies are summarized 

in Table 1.2.  

As referred, a PIM is a supported liquid membrane and so, the partitioning of the solutes occurs 

between two liquids. However, based on the solid support, an option was made, and this type of 

membrane was considered as a SPE strategy. 
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Fig. 1.10. Developed sorbent and/or strategies to implement solid phase extraction in flow-based 

methodologies. 

 

 

Most of the documented applications of SPE in a flow-based system involve the use of packed 

columns coupled with the manifold, FIA or SIA systems. This strategy of using packed columns 

for the in-line SPE involve trapping the sorbent material into a commercial mini-column, 

cartridges, or another type of bed reactor (61,62). Solid phase extraction resorting to commercial 

resins has been widely used and the most used sorbents are based on silica or organic polymers 

functionalized with different ligands. The selection of the sorbent depends on the target analyte 

and its reaction with the sorbent material (30,60).  

The incorporation of the packed column within the system can be made in different modalities, 

depending on the system and also the purpose of the extraction. Miranda et al 2016 developed a 

sequential injection system for iron determination in natural waters. In this system, a packed 

column of NTA resin was incorporated in a side port of the selection valve with the purpose of 

matrix clean-up (63). Paluch et al 2018 developed a bi-parametric sequential injection system 

with in-line SPE. A packed column with Chelex 100 resin was the chosen strategy to retain copper 

to perform zinc determination (64). The column was placed in a side port of the selection valve 

and the sample was aspirated directly through this port. Another system, developed by Ribas et 

al 2019 (described in this thesis), used a packed column with the purpose of pre-concentrate the 
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analyte. A column packed with the same commercial resin, Chelex 100, had the objective of 

analyte enrichment to lower limits of detection (65). 

The main challenges of using packed columns can be the excessive backpressure formed with 

the packed material, low contact area, preferential pathways, the clogging of the flow and also 

the leakage of the fluids (61). As the advantages of using SPE in flow analysis are greater than 

the associated drawbacks, efforts have been made to overcome the related limitations. Some 

alternatives to packed columns have been designed with the main goal of applying sample 

treatment to flow-based systems (Fig 1.10). 

One of those alternatives is bead injection. The procedure of a bead injection analysis involves 

the introduction of a defined quantity of the sorbent (as suspension) into the flow system and 

trapping it in the flow-cell (66,67). Most of the documented flow systems with bead injection were 

implemented in a SIA system. The selection valve in a SIA system can provide versatility and the 

possibility of flow reversal, thus simplifying the bead suspension handling (60).  

A lab-on-valve (LOV) system developed by Vidigal et al 2011 used the bead injection mode for 

the quantification of total iron content in wines. A suspension of NTA resin was used as sorbent 

material for iron complexation. A defined quantity of the resin was aspirated and packed in the 

flow cell. After this, the sample was aspirated and passes through the resin at the flow cell where 

the iron is retained. The final step was the aspiration of the reagent that passes through the flow 

cell and reacts with the retained iron, at this point the absorbance was measured (67). Another 

approach was developed by Yu et al 2012, where the beads of Sephadex QAE-A25 previously 

immobilized with Zincon (colour reagent) were used for determination of copper in waters. This 

system was also developed in a LOV format (68).  

Fluidized beds were developed as a SPE strategy, aiming to improve the solid-liquid interfacial 

interaction, thus increasing the efficiency of analyte extraction. In fluidization, the sorbent material 

is not static, but on the contrary it should be movable. The fluidization of the particles is attained 

by a pulsed stream that passes through the chamber where the sorbent material is in. The 

fluidization is accomplished by mechanical stirring, air inlet, sonication or magnetic beads (60,69).  

A recent review paper focused on the applications of the fluidized beds was published by Dias et 

al 2018. In here, the potentialities and the limitations of the technique (61) were also discussed. 

Fontes et al 2008 developed a multi-pumping flow system for the determination of sulphate and 

chloride in natural water. The strategy was to resort to an in-line column with Bio-Rex 70 cation 

exchanger mini-column with fluidized beds for the sample matrix clean-up (70). 

In general, flow-based analytical systems do not allow the separation of the analytes for multi-

component analysis (71). However, to overcome this weakness, an attempt was made in this 

direction, coupling low pressure chromatographic columns (monolithic columns) to flow-based 

systems. A monolithic column is a column composed by macropores and mesopores. The 

objectives for having different, but well-defined pore-size, are: mesopores act as retention phase 
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and the macropores make possible the through flow, providing good separation power and high 

chemical stability with low flow pressure (71–74). Coupling the use of monolithic columns in a 

flow-based system, a faster, selective, low-cost separation and determination in a multi-

component analysis is accomplished. (73–75). 

Santos et al 2016, developed a simple and high throughput low pressure chromatography method 

for monitoring the biodegradation of fluoroquinolones (ofloxacin and ciprofloxacin). A monolithic 

column was coupled efficiently to a flow system for the simultaneous determination of the two 

different analytes. The developed method required less expensive instrumentation, short time of 

analysis and low consumption of solvents and production of effluent, when compared with 

conventional HPLC method (74). 

Another format for SPE in flow analysis, is the molecularly imprinted SPE. This technique is based 

on the use of molecularly imprinted polymers, what results in a more selective sorbent material. 

This selectivity occurs by the impression of the target analyte (template) in the imprinted polymer, 

forming recognition sites after analyte removal (60,76). Serrano et al 2017 developed a flow 

injection SPE system for the determination 1-hydroxypyren in human urine. SPE using a 

molecular imprinted polymer was the authors chosen strategy to perform matrix clean-up and pre-

concentration of the target analyte (77). 

Biosorbents work as an alternative for the extensively used synthetic sorbents and can be 

obtained from plants and microorganisms. The use of biosorbents are mainly explored in the 

analysis of metal ions. As an example for the use of this particularly sorbent material, filamentous 

fungi loaded on TiO2 nanoparticles was successfully used for the separation and pre-

concentration of lead in tap and seawater (60,78). 

Magnetic materials have also been used as sorbent material in SPE. The use of this magnetic 

sorbent is based on its dispersion on the sample and separation of the sorbent material by means 

of an external magnetic field after extraction process. The following steps of the SPE procedure 

(washing and elution) are based on the same concepts, using the magnetic characteristics of this 

sorbent (30,60,79). Frizzarin et al 2016 proposed a flow-based methodology using magnetic 

porous carbon for the determination of anionic surfactants in waters (80). González et al 2017 

used the same magnetic sorbent in a flow-based mode for the determination of estrogens in 

wastewater (81). 
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Table 1.2. Analytical features of flow-based analytical methodologies with in-line sample extraction. Data presented in descending chronological order until  

the review presented by Rocha et al 2018 (60) (search made on ISI Web of Knowledge – Web of Science January 24th 2020). 

Flow System Analyte Sorbent material Sample Sample Volume Sample 

throughput (h-1) 

LOD Reference 

SIA Hydrazine Oasis HLB  Pharmaceuticals 200 µL 12 0.9 µg L-1 (82) 

LOV Flavonoids C18 resin Citrus juices 8 mL - 0.1 µg mL-1 (83) 

SIC Phenolic acids DSC - SAX - 200 µL - 0.0075 – 0.03* 

mg L-1 

(84) 

SIA Uranium (VI) 3D printed device 

coated with TEVA 

resin 

Water 0.1 – 9 mL - 0.5 µg L-1 (85) 

FIA Cu (II) IIP-HEMA-BSA Milk 20.0 mL 20 1.1 µg L-1 (86) 

FIA Tl PTFE Water/ urine 12.4 mL 40 1.93 µg L-1 (87) 

FI Pb MNPs coated with 

ionic liquid 

Drinking water 14 mL - 4 µg L-1 (88) 

FIA Ti NTA Seawater 25 mL 8 0.10 nmol L-1 (89) 

SIA Biogenic amines Chelex 100 Water 1.0 mL 10 1.4 µmol L-1 (65) 

SIA lovastatin MIP Dietary 

supplements 

0.25 mL 8 0.150 µg mL-1 (90) 
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FI Cr(III)/Cr(VI) PTFE Water 5 mL 30 0.26/0.30 µg L-1 (91) 

SIA Zn/Cu Chelex 100 Soil leachates 

and water 

413 µL 3 1.4/3.0 µg L-1 (64) 

FIA Sr MSPE** Water 1 mL 13 0.59 µg L-1 (92) 

FIA As/Sb/Hg DTPH-MNPs Water 10 mL 16 0.25/0.003/0.22 

µg L-1 

(93) 

FIA naproxen PIM (Aliquat 336) Urine 10 µL - 2 µmol L-1 (44) 

SIA Sr/Ni Sr resin extractant 

Ni resin extractant 

Water 3 – 10 mL 5 - 9 0.25/3.56 µg L-1 (94) 

Flow-based F LDH Water 42 mL - 15 µg L-1 (95) 

SIA – sequential injection analysis; Oasis HLB – Hydrophilic-Lipophilic based material, universal polymeric reversed phase sorbent (Waters); SIC – sequential 
injection chromatography; DSC – SAX. strong anion-exchanger resin (Discovery®); FIA – flow injection analysis; IIP-HEMA-BSA – copper-imprinted 
poly(allylthiorrea) modified with 2-hydroxyethyl methacrylate and bovine serum; PTFE – poly-tetrafluoroethylene; MNPs – magnetic nanoparticles; NTA – 
nitrilotriacetic acid resin; MIP – molecularly imprinted polymer: FI – flow injection; MSPE – magnetic solid phase extraction; DTPH-MNPs – magnetic 
nanoparticles functionalized with 1,5-bis(di-2-pyridil) methylene thiocarbohydrazide; Sr resin extractant – composed of 4,4’(5’)-di-t-butylcyclohexane 18-crown-
6 (crown ether chromatographic resin); Ni resin extractant – composed of dimethylglyoxime polymethacrylate (DMG); LDH – layered double hydroxide. 
*different LODs correspond to different phenolic acids 
**Micro-magnetic silica-based particles chemically immobilizing diethyl sulfone functional groups 
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Mrecently, PIMs have also been successfully used as sorbent material in an automatic in-line 

sample extraction procedure. Vera et al 2019 described for the first time the use of a PIM  for the 

extraction and separation of trace levels of arsenate in drinking water, in a flow system (43). 

Yaftian et al 2018 developed also a flow injection analysis system using a PIM for the extraction 

and determination of vanadium. The system was efficiently applied to water and dietary 

supplements (46). 

The use of PIMs coupled to flow systems is a very recent application of liquid membranes, for the 

in-line sample extraction; however, due its features and promising high analyte application more 

research remains to be done. 

As previously referred, the determination of chemical species in environmental samples are 

addressed with a variety of challenges, and the most frequent are the complexity of the matrix 

and the trace content of the analyte. To overcome these challenges, SPE strategies showed to 

offer many attractive features. These features can be even more advantageous when SPE 

process is coupled to a flow-based system. 
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1.5. Objectives 

 

 

The main objective of this thesis was to develop miniaturized and automatic analytical tools for 

environmental monitoring based on flow analysis methods. 

The idea was to design methods with no need for off-line treatments. Therefore, when required, 

in-line sample extraction would be included aiming also the automation and miniaturization of the 

sample treatment. Extraction process resorting to different sorbent material could serve various 

proposes, such as the elimination of sample matrix and/or enrichment of the target analyte. 

Furthermore, the development of the flow-based techniques resorting to low toxicity reagents was 

a priority. When the use of low toxicity reagents was not accomplished, the idea was to minimize 

the quantity of reagents needed per analysis. The overall process for the development of new 

analytical methods was carried aiming to accomplish some of the Green Chemistry principles, 

minimizing the impact of the chemistry into the environment. 
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1.6. Structure of the thesis 

 

 

This thesis was organized in seven chapters. 

In chapter 1, a general introduction about environmental analysis and related challenges, is 

presented. The main concepts of flow-based methodologies, in-line sample treatment and its 

contribution to environmental analysis, is also discussed. 

In chapter 2, a brief presentation of the general material and methods used throughout the 

experimental work, is presented. However, material and methods specificities of the developed 

analytical methodologies are referred in the respective chapter.  

In the subsequent four chapters (from chapter 3 to chapter 6), a detailed description of the 

developed flow-based systems for environmental analysis is presented. In each chapter, the 

results, their discussion and respective conclusions of the developed method, is also described. 

Chapters 3, 4 and 5 are devoted to the development of analytical tools for water analysis and, in 

chapter 6, to plant analysis. 

The developed work of this thesis that is published in international scientific periodicals with 

referees is identified in each chapter. The information presented in this thesis corresponds to the 

published information. However, an option was made to present it in the format of a thesis. 

In chapter 3, a description of the work entitled “Use of a polymer inclusion membrane and a 

chelating resin as sorbents for the flow-based determination of copper and zinc in water and soil 

leachates” is presented. This work is now in preparation for publication. 

In chapter 4, a description of the work entitled “Greener and wide applicability range flow-based 

spectrophotometric method for iron determination in fresh and marine water” is presented. This 

work is in the submission process for publication.  

In chapter 5, a work already published is presented: A sequential injection fluorimetric 

methodology with in-line solid phase extraction for biogenic amines screening in water. This work 

was published at the International Journal of Environmental Analytical Chemistry, volume 99, 

2019 (270-281). 

In chapter 6, a published work is presented: A solid phase extraction flow injection 

spectrophotometric method for the zinc determination in plants. This work is published at the 

Microchemical Journal, volume 130, 2017 (366-370). 

The final chapter of this thesis (chapter 7) is devoted for the general conclusions of the developed 

work during this thesis. Additionally, in this chapter, some possible future work is proposed. 
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2.1. Introduction 
 

 

The general considerations related with reagents and sample preparation are described along 

this chapter. 

In this chapter, it is also described the general characteristics and components of the developed 

flow-based manifolds. 

Additionally, several aspects of optimization procedures and statistical treatment are also 

described in this chapter. 

 

 

2.2. Reagents and Solutions 
 

 

All solutions were prepared with analytical grade chemicals and MilliQ water (resistivity > 18M 

cm, Millipore, USA). 

In chapters 3, 4 and 6, the stock solution for each metal was prepared by dilution of the respective 

1000 mg L-1 atomic absorption standard solution (Spectrosol, England). Working standards were 

prepared by dilution of the respective stock solution in 0.01 mol L-1 nitric acid solution.  

In chapter 5, stock solution of BAs were prepared by dissolution of the correspondent quantity of 

the solid with water. Working standards were prepared by dilution of the stock solution. 

A 0.01 mol L-1 nitric acid solution was prepared by dilution of the commercial solution (d = 1.39, 

65%, Merck, Germany). 

A buffer solution of 0.50 mol L-1 boric acid (Aldrich, Germany) was prepared by dissolution of the 

correspondent quantity of the solid in a solution of 0.2 mol L-1 sodium hydroxide (Panreac, USA). 

The final pH of the buffer solution (depending on the reaction) was adjusted with sodium 

hydroxide. 

When required, a combined glass pH electrode (Crison potentiometer, model 2002, Spain) was 

used to measure the pH of the solutions. 
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2.3. Sample Collection and Preparation 

 

 

Water samples (chapter 3, 4 and 5) were collected and filtered with Acrodisc 25 mm syringe filters 

0.45 µm (Pall, USA) and acidified to pH 2 with nitric acid. Samples were kept refrigerated until 

analysis. 

In chapter 3, soil leachate samples were produced in the laboratory. For that purpose, soil 

samples were collected using an acrylic cylinder. To produce the samples, rain simulations were 

performed by passing previously collected rain through the soil columns. Both collected rainwater 

and soil leachates were filtered with Acrodisc 25 mm syringe filters 0.45 µm (Pall, USA) and the 

soil leachates acidified to pH 2 with nitric acid. Characteristics of these soil leachates samples 

are detailed in chapter 3. 

Plant samples, in chapter 6, were sampled and cleaned with flowing tap water, deionized water 

and finally oven dried until constant weight. Microwave assisted digestion was performed in the 

dried plan samples as follows: two hundred milligrams were mixed with 5 mL of 65% nitric acid in 

a Teflon reaction vessel and heated in a SpeedwaveTM MWS-3+ (Berghof, Germany) microwave 

system. The resulting clear solutions were transferred to 25.00 mL volumetric flasks and the 

volume made up with ultrapure water. 

All the sample solutions were diluted in a multistep approach in order to fit their composition to 

the range of the established calibration plot. 

 

 

2.4. Flow-Based System Components 
 

 

2.4.1. In-Line Extraction Columns 
 

 

Laboratory made packed columns (Fig. 2.1) were prepared for the in-line solid phase extraction 

described in chapters 3, 4, 5 and 6. 

The column was made of Tygon tube (Gilson, France), and the respective resin packed inside 

the tubing. To prevent the packed column to get out from the tubing, two pieces of dishwashing 

foam were placed in each extremity of the column. The column was subsequently coupled to the 

flow-based system. The resins were chosen according to the correspondent targeted extraction 

and their characteristics are detailed in each chapter. 
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Fig. 2.1. Laboratory-made in-line extraction columns  

 

 

2.4.2. Propulsion Devices  
 

 

The propulsion devices used during this work are depicted on Fig. 2.2. These devices provided 

the movement, aspiration and propelling of the solutions inside the system tubing. 

A multisyringe pump (Crison, Spain) was the device used in chapters 3, 4 and 5. In chapter 6, a 

Minipuls 3 peristaltic pump (Gilson, France) was used as propulsion device. 

 

 

 

 

Fig 2.2. Photographs of the propulsion devices: a – Crison multisyringe pump; b – Minipuls 3 

peristaltic pump. 
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2.4.3. Valves 
 

 

The development of the different methodologies was conducted resorting to different flow-based 

strategies. To accomplish the individual proposed analytical strategy, different valves were used 

(Fig. 2.3). 

In chapters 3 and 5, a ten-port electrically actuated selection valve was used (Valco VICI 

cheminert C25-3180D 06B – 0699C, USA). In chapter 4, the selection valve was connected to an 

injection valve (Valco VICI Cheminert 60736-E45 230, USA). Both the selection and the injection 

valve were controlled by an AutoAnalysis Station 5.0 computer software (Sciware, Spain). 

In chapter 6, a laboratory-made injector commutator was used so that it could comprise an 

injection volume (loop) and an extra loop to perform the SPE step of the method. 

 

 

 

 

Fig 2.3. Valves: a – ten-port selection valve; b – eight-port injection valve; c – injector commutator. 

 

 

 

2.4.4. Detection Systems 
 

 

The detection system used in chapter 3 and 4 comprised an Ocean Optics (USA) USB 4000 

charged coupled device (CCD) detector equipped with a pair of 600 mm optic cable and a 

Mikropack DH-2000_BAL deuterium halogen light source and an Ultem® flow cell (SMA-Z-50) 

with 50 mm optical path. The analytical signal was recorded by an OceanView software. 

As detection system, in chapter 5, a fluorescence spectrophotometer (LS 55, Perkin Elmer, USA), 

equipped with a flow cell made of quartz for fluorescence measurement was used. The analytical 

signal was recorded by BioLight Studio Software version 1.03.01. 
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In chapter 6, the detection system consisted in an especially designed multi-reflection flow cell, 

equipped with a red-light emitting diode as a light source connected to a 12 V power supply 

regulated to a 5 V using a multimeter. The analytical signal was recorded by a Kipp and Zonen 

(Delft, Holand) BD chart recorder. 

 

 

2.4.5. Tubes, Connectors and Other Devices 
 

 

All the tubing that connected the components of the flow-based systems were made of 0.8 mm 

i.d. PTFE from Ominifit (UK). 

In chapter 6, the Minipuls 3 peristaltic pump was equipped with Tygon pumping tubes (Gilson, 

France). The remaining tubes that connected all the components were of 0.8 mm i.d. PTFE from 

Ominifit (UK). 

 

 

2.5. Study and Characterisation of the Method 
 

 

All the parameters were optimized in order to reach the targeted dynamic working range, 

accomplish the highest possible sensitivity and lowest interception point on the calibration curve. 

Additionally, the optimization process was carried out using a univariate process, in order to 

minimize the reagent consumption and maximize the determination rate. 

Calibration curves were established by injecting working standard solutions into de developed 

system and the corresponding signal registered: absorbance (chapter 3 and 4); fluorescence 

intensity (chapter 5); and peak height (chapter 6). The relationship between signal and 

concentration was linear in all the developed methodologies. 

Afterwards, the developed flow-based systems were characterized as follows: limits of detection 

and quantification, application range, determination rate, in-line extraction, reagents consumption 

and applicability of the method to environmental samples. 

The limits of detection and quantification were calculated according to IUPAC recommendations, 

corresponding to the concentration of the sum of three and ten times, respectively, the standard 

deviation to the mean value of ten consecutive blank signals. 

The determination rate was calculated for one cycle and comprised a three-replica analysis of a 

sample. 
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The reagents consumption was calculated per cycle, composed by three replicas of a sample. 

The repeatability of the developed methods was evaluated in terms of relative standard deviation 

(RSD), expressed in percentage. This value was calculated from consecutive determinations of 

the same standard solution. The repeatability was also evaluated by performing calibration curves 

in the same day and different days (inter and intraday repeatability of the method). 

 

2.6. Accuracy Assessment 
 

 

For accuracy assessment, in chapters 3 and 4, the results were compared with those obtained 

by ICP-OES (Perkin Elmer Optima 7000 dv, USA). 

For comparison purposes, in chapter 6, the determination of zinc was carried out using the atomic 

absorption method (equipment: Solaar 969 AA Spectrometer, Unicam, UK) as reference 

procedure. 

The results obtained with the developed methods were compared with those obtained with 

reference procedure by establishing a linear relationship between the two set of results with a 

95% confidence interval. 

Additionally, to evaluate also the accuracy of the developed methodologies, certified reference 

materials were analysed (chapters 3, 4 and 6). The analysis of the certified reference material 

was performed with the developed flow-based system and the results were compared with the 

certified values.
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Abstract 

A biparametric sequential injection method for the determination of copper(II) and zinc(II) when 

present together in aqueous samples was developed. This was achieved by using a non-specific 

colorimetric reagent (4-(2-pyridylazo)resorcinol – PAR) together with two ion-exchange polymeric 

materials to discriminate between the two metal ions. A polymer inclusion membrane (PIM) and 

a chelating resin (Chelex 100) were the chosen materials to retain zinc(II) and copper(II), 

respectively. The influence of the flow system parameters, such as composition of the reagent 

solutions, flow rates and standard/sample volume, on the method sensitivity were studied. The 

interference of several common metal ions was assessed, and no significant interferences were 

observed (< 10% signal deviation). The limits of detection were 3.1 and 5.6 µg L-1, for copper(II) 

and zinc(II), respectively; the dynamic working range was from 10 to 40 µg L-1 for both analytes. 

The newly developed SIA system was applied to natural waters and soil leachates, and the results 

were in agreement with those obtained with the reference procedure. 

 

Keywords: bi-parametric method, sequential injection analysis, micronutrients, polymer inclusion 

membrane, Chelex 100. 
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3.1. Introduction 

 

Sample preparation is considered an essential part of the analytical process. Some of the most 

commonly used sample pre-treatment methods are extraction techniques, namely solid-phase 

extraction (SPE), liquid-liquid extraction (LLE), and more recently, membrane-based extraction 

techniques, among others (1). 

The basic principles of both SPE and LLE can involve adsorption, partition or ion-exchange of 

solutes between the two different phases. In SPE this occurs between a liquid phase (i.e., 

aqueous sample) and a solid phase (e.g., sorbent material) while in LLE this occurs between two 

immiscible liquid phases (2–5). In recent years, these techniques have been evolving towards 

their miniaturization (i.e., solid-phase/liquid-phase microextraction), and different types of 

membranes have also been used as a support for the microextraction (1). 

Separation techniques using solid resins or liquid membrane-based materials offer: good 

selectivity; ease of operation; low use (or no use at all) of organic solvents; low cost; fast rates of 

analyte extraction; and the possibility of being reused (2,3,6). These factors can be even more 

advantageous when these techniques are conducted in an on-line fashion as part of flow analysis 

methods. Therefore, these on-line separation techniques have gained high interest in the last 

decade (3,7). 

In the present study, the strategy was to explore different polymeric materials to selectively 

separate and determine both copper(II) and zinc(II). A sequential injection system for the direct 

determination of these metal ions using the same colour reagent was proposed. The chromogenic 

reagent selected was 4-(2-pyridylazo)resorcinol (PAR). PAR is a very commonly used 

chromogenic chelator for the spectrophotometric determination of various metal ions (8). This 

reagent was selected because it is water soluble and does not need the use of organic solvents 

in the preparation of its solutions, unlike some chromogenic chelating agents used for metals 

quantification (9). 

According to a previous work (9), Chelex 100 efficiently retains copper at pH of 2. Thus, Chelex 

100 was the chosen resin to avoid copper(II) interference in the zinc(II) determination. Chelex 100 

resin is a styrene divinylbenzene copolymer, weakly acidic due to its carboxylic acid groups thus 

allowing cation exchange. This sorbent material acts as chelating resin to bind metal ions and its 

selectivity is closely related to the pH of the chelating process. Advantage was taken from this 

property to retain the target analyte. 

For the selective detection of zinc(II), a polymer inclusion membrane (PIM) was used (6,10). PIMs 

are considered as a type of liquid membranes which have attracted considerable attention in 

recent years (11). These membranes are usually fabricated by casting a solution containing an 

extractant, a base polymer, a plasticizer (if necessary), and a volatile solvent which dissolves all 
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PIM components. After casting and evaporation of the volatile solvent a thin, flexible and stable 

polymeric film is formed. PIMs have the ability to selectively separate a species of interest 

depending on the extractant used (6). Kolev et al. reported a PVC-based PIM with di-(2-

ethylhexyl)phosphoric acid (D2EHPA) as the extractant, capable of extracting Zn(II) selectively 

(12). This PIM composition was thus chosen for the zinc(II) extraction from the sample matrix, 

thus enabling the copper(II) determination. 

The target analytes, copper(II) and zinc(II), are important micronutrients essential for the proper 

functioning of living organisms, however, in high concentrations both become toxic. The presence 

of these metal ions in ground and surface water are a direct result of using soil fertilizers or of 

other anthropogenic activities influencing water quality. In this scenario, it is important to monitor 

these metal ions in natural waters, as they act as pollution indicators. Some research has already 

been done for the determination of these two metal ions in water samples based on flow systems 

(9,13–18). However, to accomplish both determinations with a single sequential injection analysis 

(SIA) system, a mathematical discrimination treatment of the experimental results had to be used 

(9,14–18), except for the system developed by Santos et al (13). A different approach is here 

proposed which involves the use of two on-line columns containing different ion-exchange 

polymeric materials for the biparametric determination of copper(II) and zinc(II) in natural waters 

and soil leachates. 

 

3.2. Experimental 

 

3.2.1. Reagents and Solutions 

 

All solutions were prepared with analytical grade chemicals and MilliQ water (resistivity > 18 M 

cm, Millipore, USA). 

A stock solution of 50.0 mg L-1 of copper(II) and zinc(II) were prepared by dilution of the respective 

1000 mg L-1 atomic absorption standard solutions (Spectrosol, England). An intermediate solution 

of 500 µg L-1 of each metal solution was prepared by dilution of a 50.0 mg L-1 stock solution. 

Working standards, in the range 10-40 µg L-1 in 0.01 mol L-1 of nitric acid were prepared weekly 

by dilution of a 500 µg L-1 intermediate solution with a 0.01 mol L-1 nitric acid solution. 

A 0.01 mol L-1 nitric acid solution was prepared by dilution of the commercial concentrated nitric 

acid solution (d = 1.39; 65%, Merck; Germany). 

A buffer solution of 0.50 mol L-1 boric acid was prepared by dissolution of the solid (H3BO3, 

Aldrich, Germany) in a solution of 0.2 mol L-1 NaOH (Panreac, USA), with the final pH adjusted 

to 11.0 with a sodium hydroxide solution. 
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A 2 mmol L-1 stock solution of PAR (C11H8N3NaO2·H2O, Sigma-Aldrich, Germany) was prepared 

by dissolving the corresponding quantity of the monosodium salt hydrate in water. A PAR reagent 

solution of 25 µmol L-1 was prepared weekly by dilution of the stock solution with MilliQ water. 

 

3.2.2. Preparation of the PIM Column 

 

PIMs were produced by dissolving a mixture of 8.25 g of PVC and 6.75 g of D2EHPA in 165 mL 

of tetrahydrofuran (THF). Approximately 2.75 mL of this solution was cast into a glass ring with a 

76 mm diameter position of a flat glass plate. All rings were covered with filter paper, a glass plate 

and a foil tray to control the evaporation of THF which was completed within a period of 48-72 h. 

The resulting PIM composition was 45 wt % D2EHPA and 55 wt % PVC. 

PIMs were subsequently cut into strips of approximately 2 mm in width. A laboratory made column 

(5.5 cm length of Versilon 2001 tubing with 4.8 mm i.d.) was packed with the PIM stripes 

(approximately 100 mg) between two female luer Tefzel connectors (P-624; Thermo Scientific, 

USA). The column was connected to one of the ports of the selection valve of the SIA utilised in 

this study and subsequently used for zinc(II) retention. 

 

3.2.3. Preparation of the Chelex 100 Column 

 

A laboratory made column with 25 mm in length of Tygon tubing (Gilson, France) with 1.85 mm 

i.d. and 67 µL inner volume was used to pack the chelating resin. Approximately 75 mg of Chelex 

100 (mesh 200-400, Bio-Rad, USA), previously suspended in water, was introduced into the 

column between two pieces of dishwashing sponge. The column was connected to one of the 

ports of the SIA selection valve and used for copper retention. 
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3.2.4. Apparatus 

 

Solutions were propelled in the experimental SIA system (Fig. 3.1) by a syringe pump with a 5 

mL barrel (Crison, Spain). The pump was connected to the central channel of a ten-port 

electrically actuated selection valve (Valco VICI Cheminert C25-3180D 06B – 0699C, USA) with 

a polytetrafluoroethylene (PTFE) tubing. PTFE tubing (0.8 mm i.d., Omnifit, UK) connected all the 

components of the SIA system. The syringe pump and the selection valve were controlled by 

AutoAnalysis Station 5.0 computer software (Sciware, Spain). As detection system consisted of 

an Ocean Optics (USA) USB 4000 charged coupled device detector (CCD) equipped with a pair 

of 600 mm optic cables, a Mikropack DH-2000-BAL deuterium halogen light source and an 

Ultem® flow cell (SMA-Z-50 cell) with 50 mm optical path (130 µL inner volume). 

 

3.2.5. Flow Manifold and Procedure 

 

The sequence of steps for the determination of copper(II) and zinc(II) is shown in Table 3.1. It 

was divided in two parts, one corresponding to the Zn(II) determination using solid-phase 

extraction for the removal of Cu(II), and the other to the Cu(II) determination using a PIM to retain 

Zn(II). For the Zn(II) determination (steps A - D), reagent (Port 1, Fig. 3.1), buffer (Port 2) and 

sample/standard (Port 5)  were sequentially aspirated into the holding coil (HC). The 

sample/standard was aspirated through the Chelex 100 column (C2) via Port 5.  Then the staked 

zones were propelled to the flow cell (FC) where the absorbance was continuously monitored at 

490 nm corresponding to the absorption maximum of the Zn(II)-PAR coloured complex. For the 

Cu(II) determination (steps E – M, Table 3.1), sample/standard was aspirated to the holding coil 

via Port 3, and then propelled through the PIM column (C1) to eliminate possible Zn(II) 

interference (steps E and F). After passing through the PIM column, the flow was reversed twice 

to promote Zn(II) retention. After this procedure, reagent (Port 1), buffer (Port 2) and the Zn(II) 

free sample/standard (Port 1) were aspirated into the holding coil (HC). Then these three zones 

were propelled to the flow cell (FC) for absorbance measurement of the Cu(II)-PAR coloured 

complex at 490 nm. 

At the end of the cycle, the PIM column was washed and reconditioned with 0.5 mol L-1 nitric acid 

(Port R4) and ultrapure water (carrier solution), sequentially. 

Each absorbance value was calculated as the difference between the absorbance at 490 nm 

(wavelength of maximum absorption) and that at 800 nm; this subtraction aimed at minimizing the 

schlieren effect (19). 
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Fig 3.1. Flow manifold for Cu(II) and Zn(II) determination in waters and soil leachates. St/S – 

standard solution or sample; R1 – PAR reagent (25 µmol L-1); R2 – boric acid buffer solution (pH 

11); R3 – nitric acid solution (0.5 mol L-1); C1 – PIM column; C2 – Chelex 100 resin column; P – 

syringe pump; SV – selection valve; HC – holding coil (300 cm); RC – reaction coil (10 cm); D – 

CCD detector; L – light source; FC – Z flow cell (50 mm path length); W – waste. 
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Table 3.1. Experimental protocol sequence for the copper(II) and zinc(II) determination. 

 

  

Step Selection 

valve 

position 

Volume 

(mL) 

Flow-rate 

(mL min-1) 

Description 

 

Preliminary steps 

before starting 

consecutive cycles 

5.000 - Syringe reset position – syringe fill with carrier 

1.000 5.000 Propel carrier (water) to waste 

A 1 0.250 3.529 Aspirate PAR solution 

B 2 0.020 3.529 Aspirate boric acid buffer solution 

C 5 0.550 2.000 Aspirate standard/sample trough the Chelex 

100 column to eliminate copper(II) interference 

D 10 2.100 3.529 Propel through the spectrometer for Zn(II) 

quantification 

    Fill the syringe with carrier 

E 3 0.550 2.000 Aspirate standard/sample 

F 4 0.600 2.000 Propel through the PIM column to eliminate 

Zn(II) interference by retaining Zn(II) 

G 4 0.250 2.000 Aspirate standard/sample trough the column to 

promote retention of Zn(II) 

H 4 0.250 2.000 Propel standard/sample trough the PIM 

column to promote retention of Zn(II) 

I 9 0.250 3.529 Dispense to waste the left residues in the 

holding coil 

J 1 0.250 3.529 Aspirate PAR solution 

K 2 0.020 3.529 Aspirate boric acid buffer solution 

L 4 0.550 2.000 Aspirate Zn(II) free standard sample solution 

M 10 2.100 3.529 Propel through the spectrometer flow cell for 

Cu(II) quantification 

    Fill the syringe with carrier 

R 7 0.500 5.000 Aspirate HNO3 solution 

S 4 1.500 5.000 Propel through the PIM column – cleaning step 
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3.2.6. Sample Collection and Preparation 

 

3.2.6.1. Water Samples 

 

River water samples (S1 - S9) from various locations in the Porto area were collected, filtered 

(Acrodisc 25 mm syringe filters 0.45 µm, Pall, USA) and acidified to pH 2 with nitric acid, according 

to the reference procedure (20). Samples were kept refrigerated at 4 °C until analysis. 

When copper(II) concentration was above 40 µg L-1, the water samples were diluted in order to 

fit the respective linear working range. In some samples the zinc(II) concentration was below the 

detection limit and in those cases the samples were spiked with zinc(II) (samples S1 - S3). 

 

3.2.6.2. Soil Leachates Samples 

 

The soil samples were collected in the northwest of Portugal using an acrylic cylinder that was 

pushed into the ground to collect a superficial soil core (about 20 cm depth). Tow soil cores were 

collected.  

To produce soil leachates, rain simulations were performed by passing 50 mL of previously 

collected rain-water (pH  6.6; conductivity  8.4 µS cm-1) through each soil core. Both the 

collected rain-water and the obtained leachates were filtered (Acrodisc 25 mm syringe filters 0.45 

µm, Pall, USA) and acidified to pH 2 with nitric acid. 

Several simulations of rain were performed (for 5 consecutive days) and the soil leachates were 

collected. Samples were kept refrigerated until analysis. The soil leachates samples (S9 – S14) 

were diluted when zinc(II) concentrations were above 40 µg L-1, in order to fit in the linear range 

of the zinc(II) calibration. 
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3.2.7. Reference Procedure 

 

For validation purposes, the determinations of Cu(II) and Zn(II) in soil leachates and natural 

waters were carried out by inductively coupled plasma – optical emission spectrometry, ICP-OES 

(Perkin Elmer Optima 7000 dv, USA), and the results were compared with those obtained with 

the newly developed SIA method. 

Additionally, the SIA system developed for the quantification of Cu(II) and Zn(II) was applied to 

the analysis of a certified water sample, ERM-CA011 (hard drinking water, LGC, UK). The certified 

water sample was diluted in a multi-step fashion so that its concentration would fit within the linear 

range of the corresponding calibration curves. 

 

3.3. Results and Discussion 

 

3.3.1.  Preliminary Studies 

 

Two different colorimetric reagents for metal ions, namely PAR and 1-(2-pyridylazo)-2-naphthol 

(PAN) were initially studied via wet/bench chemistry, in order to determine which one could be 

more advantageous for the spectrophotometric quantification of both Cu(II) and Zn(II). Using the 

same conditions for both reagents (1 mL of 0.1 mmol L-1 of reagent solution, 1 mL of 0.5 µg L-1 

of metal solution and 1 mL of 0.6 mmol L-1 of carbonate buffer solution pH 10), a spectrum for 

each metal-reagent complex was obtained (ESI Fig. 1). By assessing the wavelength of maximum 

absorption of both metal complexes, it was observed that the signal was higher for the metal-PAR 

complexes, therefore PAR was chosen as the metal indicator to develop the SIA method. 

Additionally, PAR is water-soluble which makes it easier to use. 
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3.3.2. Development of the SIA System 

 

The development of the SIA system involved a number of optimization studies to assess the 

influence of some chemical and physical variables on the system’s analytical performance. As 

both complexes of PAR, with copper(II) or zinc(II), showed similar sensitivity under the same 

conditions (concentration of PAR, metal and buffer), copper(II) was chosen as the model analyte 

to conduct the optimization of the colorimetric reaction in the SIA system. The parameters 

assessed were: the volumes of the PAR, sample and buffer solutions; the pH of the buffer solution; 

the reaction coil length; and the concentration of the PAR solution. These parameters were 

optimized in order to attain the highest sensitivity (calibration curve slope), the lowest reagent 

consumption and most effective sampling rate. 

 

3.3.2.1. Study of the Reaction Conditions 

 

The first study to be carried out was the PAR, sample and buffer solution volumes. Different 

volumes of PAR (250-350 µL), buffer (10-30 µL) and sample/standard (300-650 µL) solutions 

were studied to evaluate their impact on the calibration curves parameters (Fig. 3.2). The increase 

in the reagent volume resulted in an increase of the intercept ( 15%) but no increase of sensitivity 

(calibration curve slope); so, the lowest volume was selected to ensure minimal reagent 

consumption. The sensitivity increased with increasing the buffer volume up to 20 µL, with almost 

no variation in the intercept (< 5% variation). A similar behavior was observed for the sample 

volume, as the sensitivity increased with the increase in the sample volume up to 550 µL, but in 

this case the intercept decreased. For higher sample volumes, the slope decreased slightly ( 

10% variation) and the intercept increased slightly ( 10% variation). 

The chosen volumes were 250 µL for PAR, 20 µL for the buffer, and 550 µL for the 

sample/standard solutions, as this combination displayed the highest slope and lowest intercept 

values for the calibration curve, indicating better reaction sensitivity with potentially lower 

detection limits for both determinations.  
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Fig. 3.2. Study of the influence of the reagents (A and B) and sample (C) volumes on sensitivity 

expressed as the calibration curve slope (circles) and on the calibration curve intercept (squares); 

the chosen values are represented in black; the error bars represent the standard error. 

 

 

The reaction PTFE coil length was initially kept to a minimum (10 cm) allowing to physically 

connect the central port of the selection valve to the flow cell. As there was no significant 

difference (less than 10%) in the absorbance signal when the coil length was increased to 20 cm, 

the 10 cm length was used in the remaining experiments. 

The influence of the buffer solution composition and pH was studied by comparing the sensitivity 

obtained when using a boric acid buffer (0.5 mol L-1) or a carbonate buffer (0.6 mol L-1). Both 

buffer solutions were tested at two different pH values: 10 or 11. No significant differences were 

observed (< 5% sensitivity) between boric acid and carbonate buffers at pH 10. However, with 

the use of carbonate buffer, air bubbles were formed inside the tubing of the flow system. When 

the carbonate buffer with pH 11 was used, poor repeatability of the signal was obtained. Hence, 

the chosen buffer solution was the boric acid solution at pH 11. 
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The influence of the PAR reagent concentration was also evaluated and the concentration of 25 

µmol L-1 was chosen from the tested values (10, 25, 50 and 100 µmol L-1). When the concentration 

was increased above 25 µmol L-1, no significant variation (< 10%) of the calibration curves slopes 

was observed; the chosen concentration also produced a lower intercept value. 

 

 

3.3.2.2. Study of the Retention of Copper(II) and Zinc(II)  

 

Since PAR is sensitive to both copper(II) and zinc(II), a dual-extraction approach was adopted in 

order to be able to determine both metal ions individually and sequentially. The strategy chosen 

for the selective copper(II) determination consisted of the use of a PVC-based PIM containing 

D2EHPA as the extractant to retain zinc(II). Some studies were conducted to maximize the on-

line retention of zinc(II) in natural water samples into the PIM and consequently determine 

copper(II). As the PIM column was linked to one of the peripheral ports of the selection valve, 

direct aspiration of a standard, containing both copper(II) and zinc(II), through the column was 

attempted first; however, the retention was not efficient. Alternatively, with the aim to enhance the 

interaction between the solution and the PIM, the standard was aspirated from another port of the 

selection valve to the holding coil of the SIA system, and subsequently propelled through the 

column, and aspirated back to the holding coil. Using this approach, two experiments were 

conducted. In the first one, the standard was propelled through the PIM column, followed by the 

sequential aspiration of PAR reagent, buffer solution and Zn(II)-free standard into the holding coil. 

After flow reversal the stack of solution zones in the holding coil were propelled towards the 

detector. In the second experiment, a similar procedure was adopted except that the flow was 

stopped when the standard zone was in the PIM column for 5 s. No significant difference in the 

maximum absorbance signals was observed between the two experiments, thus to further 

improve the retention of zinc(II) the procedure involving the propelling and aspirating the standard 

zone through the PIM column was conducted twice (ESI Fig. 3.2A). This retention procedure was 

thus the chosen approach for further optimization. 

According to Paluch et al (9), copper(II) can be retained in a column packed with Chelex 100 resin 

at pH of 2. Hence, for the selective zinc(II) determination, this was the strategy chosen to eliminate 

the interference of copper(II). A packed column was linked to one of the peripheral ports of the 

selection valve, through which the standard/sample was directly aspirated towards the holding 

coil, thus retaining any copper(II) present in the original standard/sample (ESI Fig 3.2B).  
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3.3.3.  Interferences Studies 

 

Being a non-specific chromogenic reagent, PAR forms an orange complex with a variety of 

different metal ions and so, the potential interference from other metal ions was assessed. The 

ions that can be present in natural water samples and thus interfere with the proposed analytical 

method are described in Table 3.2. The selected concentrations for each ion corresponded to the 

maximum concentration that can be expected in environmental waters (20). The obtained 

absorbance of a standard with and without the possible interfering ion was measured and the 

interference percentage calculated (Table 3.2). 

 

Table 3.2. Interference study of metal ions ([Mn+]) commonly present in environmental waters at 

their maximum expected concentrations ([Mn+]max) (20). SD – Standard deviation (n=3). 

Tested 

ion 

[Mn+]max in 

streams, 

µg L-1 

Tested 

[Mn+], 

µg L-1 

Interference in Cu(II) 

determination, 

% 

SD Interference in Zn(II) 

determination, 

% 

SD 

Al3+ 400 400 -1.0 1.0 -1.3 0.9 

Ca2+ 15000 15000 1.0 1.0 -3.6 2.0 

Co2+ 0.2 10 1.6 0.1 1.5 0.1 

Cu2+ < 12 40 - - 2.5 0.7 

Fe3+ 700 
400 

200 

14.9 

8.2 

2.8 

1.3 

8.5 

- 

0.3    

- 

Mg2+ 4000 
5000 

2500 

3.1 

- 

2.6    

- 

35.8 

-4.3 

5.8 

3.0 

Mn2+ 7 50 4.3 3.0 1.4 0.3 

Ni2+ 1 50 4.5 1.8 1.2 0.4 

Zn2+ 20 40 5.1 2.1 - - 

 

The only interferences above 10% were from iron(III) and magnesium(II); however, values above 

400 µg L-1 Fe(III) are not usually found in environmental waters; and the tested magnesium 

concentration was above the expected values. The interference from iron(III) had been previous 

reported and could be eliminated by precipitation with phosphate prior to the analysis (12). 
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3.3.4. Features 

 

The features of the newly developed SIA method for the biparametric determination of copper(II) 

and zinc(II) are summarized in Table 3.3. 

 

Table 3.3. Calibration curves and dynamic concentration ranges for copper(II) and zinc(II), and 

respective limits of detection (LOD). A – absorbance; SD - standard deviation; M2+ – metal ion; 

RSD – relative standard deviation. 

Metal ion 
Dynamic range 

(µg L-1) 

Calibration curvea 

A = slope ± SD [Me2+] + intercept ± SD 

LOD 

(µg L-1) 
RSD (%) 

Copper(II) 10.0 – 40.0 A = 9.00 x 10-4 ± 1 x 10-4 [Cu2+] + 0.112 ± 0.007 3.1 2.0 

Zinc(II) 10.0– 40.0 A = 1.80 x 10-3 ± 1 x 10-4 [Zn2+] + 0.099 ± 0.003 5.6 1.3 

a n = 3 

 

 

The limits of detection were calculated according to the IUPAC recommendations as the 

concentration corresponding to the sum of three times the standard deviation to the mean value 

of ten consecutive blank solution measurements (21,22). 

The relative standard deviation (RSD) for Cu(II) and Zn(II) determination was calculated with 

twelve replicate analysis (four consecutive cycles) of a standard with 20 µg L-1 of each metal ion. 

A complete cycle, which includes three replicas for each determination and the washing of the 

PIM column at the end, has the duration of 10 min. The corresponding PAR, sodium hydroxide 

and boric acid consumption per cycle is 8.1 µg, 1.4 mg and 5.6 mg, respectively. 
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3.3.5. Application to Natural Water and Soil Leachate Samples – 

Validation of the Method 

 

The newly developed SIA system for the determination of copper(II) and zinc(II) was applied to 

river water samples (S1-S9) and soil leachates (S10-S14). The validation was attained by 

comparison of the results obtained with the newly developed SIA method with those obtained by 

the reference procedure (ICP-OES) (Table 3.4). 

 

Table 3.4. Comparison of the results obtained with the newly developed SIA system for copper(II) 

and zinc(II) determination (three replicates) to those obtained with ICP-OES (two replicates). S1-

S9 – river water samples; S10-S14 – soil leachate samples; SD – standard deviation; RD – 

Relative deviation. 

*samples spiked with zinc (II) 

 

 

A linear relationship was established between the copper(II) and zinc(II) concentrations 

determined by the newly developed SIA system (CSIA (µg L-1)) and the reference procedure (CICP 

(µg L-1)) (ESI Fig 3.3). The linear regression for the copper(II) determination was CSIA = 1.05 (± 

0.10) CICP – 2.63 (± 10.99), where the values in brackets represent the 95% confidence interval. 

The linear regression for the zinc(II) determination was CSIA = 1.03(± 0.02) CICP – 0.46(± 2.53), 

where the values in brackets represent the 95% confidence interval. These data show that the 

estimated slope and intercept do not differ statistically from 1 and 0, respectively (23). In addition, 

the relative deviation between the two sets of results proved that there were no significant 

Sample 
ID 

 
Copper(II)  Zinc(II) 

 
SIA ICP   SIA ICP  

  [Cu2+] µg/L SD [Cu2+] µg/L SD RD %   [Zn2+] µg/L SD [Zn2+] µg/L SD RD % 

S1*  14.9 1.2 14.3 0.1 +3.7  22.8 2.4 21.6 0.3 +5.4 

S2*  19.5 2.6 20.6 0.3 -5.8  20.1 0.9 19.3 0.3 +3.9 

S3*  22.8 1.8 20.8 0.3 +6.4  31.4 3.0 33.5 0.4 -6.5 

S4  197 8 183 3 +7.6  <LOD - <LOD - - 

S5  140 8 143 2 -2.3  <LOD - <LOD - - 

S6  107 5 114 2 -6.4  <LOD - <LOD - - 

S7  72.2 4.1 74 3 -2.4  <LOD - <LOD - - 

S8  156 10 143 5 +9.3  <LOD - <LOD - - 

S9  <LOD - <LOD - -  <LOD - <LOD - - 

S10  <LOD - 2.08 0.1 -  15.2 2.0 14.9 0.2 +2.0- 

S11  <LOD - 2.71 0.1 -  14.3 1.6 14.6 0.3 -2.0 

S12  <LOD - <LOD - -  340 12 332 3 +2.5- 

S13  <LOD - <LOD - -  32.9 3.5 33.2 0.3 -0.9 

S14  <LOD - 0.58 0.1 -  203 3 193 3 +4.9- 
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differences between the newly developed SIA method and the reference procedure, RD ≤ 10% 

(Table 3.4). 

The accuracy of the newly developed SIA method was evaluated by analysing a certified 

reference water sample (ERM CA011 – Hard drinking water - Metals) with 1963 ± 62 and 605 ±17 

µg L-1 of copper(II) and zinc(II), respectively. The concentration values obtained with the newly 

developed SIA system were 1789 ± 61 and 609 ± 24 µg L-1 for copper(II) and zinc(II), respectively, 

corresponding to relative deviations of -8.9% and +0.7%. These results indicated that the newly 

developed SIA system offered acceptable accuracy. 

 

 

3.4. Conclusions 

 

With the aim of directly and individually quantify copper(II) and zinc(II) with the same colour 

reagent, two polymeric materials, namely a PIM and Chelex 100, packed in columns, were 

efficiently used. To the authors’ best knowledge, this was the first time that a PIM was used with 

this objective of on-line retaining and eliminating interferences from a sample. PVC-based PIMs 

containing D2EHPA proved to be efficient in retaining zinc(II), allowing for the quantification of 

copper(II). Chelex 100 was the polymeric material used to retain copper(II) at pH 2.0, as has 

already been reported in previous studies (9). Zinc(II) was not retained at this pH, thus allowing 

for its quantification to be performed free of copper(II) interference.  

Some flow-based methodologies have been previously developed (9,13–18,24,25) for the 

determination of these two metals in different kinds of samples using various chromogenic 

reagents (Table 5). Unlike these methods, the newly developed SIA system can determine 

copper(II) and zinc(II) individually and directly using a single manifold with the use of a single 

colorimetric reaction (PAR-Metal), thus reducing the time required per analysis while offering 

similar and in some cases better sensitivity. For example, the Zincon-Metal approach does not 

allow individual determination (14,16–18). 
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Table 3.5. Analytical features of flow-based systems developed for copper and zinc 

spectrophotometric determination in water samples (presented in descending chronological 

order). 

System Sample 

Sample 

volume 

(µL) 

SPE Reagent 

Sample 

throughput 

(h-1) 

LOD 

(µg L-1) 
Ref. 

SIA Natural waters 550 
PIM and 

Chelex 100 
PAR 6 

Cu - 3.1 

Zn- 5.6 

This 

work 

SIA 
Water and soil 

leachates 
413 Chelex 100 PAN 3 

Cu – 3.0 

Zn – 1.4 
(9) 

µSI-LOV Freshwaters 600 NTA  Dithizone 
Cu – 15 

Zn - 13 

Cu – 0.11 

Zn – 2.39 
(13) 

SIC Water 90 - PAR 9 
Cu – 13 

Zn - 13 
(24) 

MSFIA Waters 400 - Zincon 43 
Cu – 0.1 

Zn – 2 
(14) 

SIA Water samples 150 - Zincon 36 
Cu – 48 

Zn - 13 
(17) 

BIS-FIA 

Waters, 

pharmaceuticals 

and soils 

1000 
Sephadex 

QAE A-25 
Zincon 15 

Cu – 29 

Zn - 40 
(16) 

FIA Water and brass  Chelex 100 Zincon 70 
Cu – 800 

Zn – 350 
(18) 

SPE – solid phase extraction; LOD – limit of detection; Ref. – Reference; SIA – sequential injection 
analysis; PIM – polymer inclusion membrane; PAR - 4-(2-pyridylazo)resorcinol; PAN – 1-(2-
pyridilazo)-2-naphtol; µSI-LOV – micro sequential injection – lab-on-valve; SIC – sequential 
injection chromatography; MSFIA – multi-syringe injection analysis; BIS-FIA – bead injection 
spectrometry – flow injection analysis; FIA – flow injection analysis. 

 

The use of PAR as chromogenic reagent, instead of other reagents used by other authors (e.g., 

dithizone and PAN) (9,13), displays some advantages: PAR is considered a non-hazardous 

substance, unlike dithizone that is considered eye and skin irritant according to European 

regulations (EC) (26); PAR is also a water soluble reagent and so, does not need the use of 

organic solvents in its preparation. Additionally, the newly developed SIA system presents also 

the advantage of displaying near real-time results for copper(II) and zinc(II) content in natural 

waters and soil leachate samples (10 minutes per each sample analysis), involving relatively low-

cost and portable equipment. 
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Fig 3.S1. Spectra of the colour metal complexes with PAR (A) and PAN (B); spectra of the blank 

(reagent in milliQ water) (blue lines), Cu(II)-PAR/PAN complex (yellow lines) and Zn(II)-PAR/PAN 

complex (green lines); PAR/PAN concentration of 0.1 mmol L-1; metal ion concentration of 0.5 µg 

L-1; carbonate buffer (0.6 mmol L-1) solution at pH = 10. 
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Fig 3.S2. Study of the effect of the PIM column (A) and the Chelex column (B) on the calibration 

curves of zinc(II) and copper(II); A) direct zinc(II) calibration curve without (blue) and with (orange) 

using a PIM; B) calibration curve with mixed standards of copper(II) and zinc(II) aspirated through 

the Chelex column (green) and without going through the Chelex column (grey); calibration curve 

with zinc(II) standards with (yellow) and without (blue) using a Chelex column. 

 

 

Fig 3.S3. Comparison of the results obtained with the newly developed SIA system and those 

obtained with a reference method (ICP-OES); A) copper(II) determination; B) zinc(II) 

determination; the lines represent the linear relationship between the two methods. 
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Abstract 

A flow-based method for the spectrophotometric determination of iron in recreational waters, both 

fresh and marine (variable salinity content), was developed. For that purpose, 3-hydroxy-4-

pyrydinone ligand functionalized with an ether function was synthetized and used as chromogenic 

chelator (1-(3’-methoxypropyl)-2-methyl-3-benzyloxy-4-(1H)pyridinone - MRB13) for iron 

quantification. This water-soluble reagent was previously reported as a greener alternative to 

quantify iron, due to its low toxicity and a more environmental friendly synthesis. Furthermore, it 

also displayed a high affinity and specificity for iron. With the main objective of quantifying iron in 

a variety of water types (different matrices and iron content), two strategies were developed, one 

of them including on-line solid-phase extraction (SPE), and the other without resorting to a SPE 

process. Water matrix clean-up and iron enrichment was achieved using a nitrilotriacetic acid 

resin column. The potential interference of metal ions usually present in water samples was 

assessed and no significant interference (<10%) was observed. The limits of detection were 11 

and 2.9 µg L-1 without and with SPE, respectively. For one determination (three replicates), the 

corresponding consumption of MRB13 is 90 µg, sodium hydroxide is 1.4 mg, and boric acid is 5.6 

mg. The method was applied to certified water samples and the results were in agreement with 

certified values. The developed method was also applied to fresh and marine water, and recovery 

ratios of 103 ± 4 and 101 ± 7 without and with SPE, respectively, were achieved. 

Keywords: Flow analysis, 3-hydroxy-4-pyridinone, solid-phase extraction, NTA   
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4.1. Introduction 

 

Iron is a micronutrient essential for living organisms; however, as it can be introduced in the 

environment by human activity, it is important to monitor its content, namely in aquatic systems 

(1–3). At low concentrations, iron is vital for almost all living organisms, participating in a wide 

variety of biological processes; nevertheless, in excess, iron becomes dangerous, producing also 

aesthetic effects, thus affecting the colour, taste and odour of the water (1,2,4). In this context, 

iron quantification has been of particularly interest to environmental analytical chemists, aiming 

for new methods to improve the limit of detection, use low toxicity reagents, and reduce reagents 

consumption and effluents production. As flow analysis techniques can be quite useful for this 

purpose, several works were described (Table 4.1). 

The recommended methods for iron quantification (5–7) are based on atomic absorption 

spectrometry, inductively coupled plasma spectrometry, molecular absorption (like the 

phenanthroline colorimetric procedure) and chemiluminescence. However, atomic absorption and 

emission methods present some limitations like its high cost and non-portability of the 

corresponding equipment, low tolerance for high salinity samples, together with the need for a 

skilled operator. Due to their inherent simplicity of operation and lower lost, colorimetric methods 

have been extensively studied, but the use of toxic reagents (phenantroline, thiocyanate, 

bathophenantroline, 2,2-bipyridyl, eriochrome R and cetyltrimethylammonium) (8) is nowadays a 

concern, being the green chemistry principles a priority. The chemiluminescence method, using 

a luminol-hydrogen peroxide system, is highly sensitive for iron determination; however, this 

reaction is not specific for iron and other ions such as manganese(II), chromium(III), cobalt(II) and 

copper need to be separated prior to detection (6).  

In the present work, a low toxicity iron chelator was employed for the development of a 

spectrophotometric flow-based method. The chosen reagent is a 3-hydroxy-4-pyridinone, (3,4-

HPO) ligand functionalized with an ether function to increase solubility in water (9). These iron 

chelators with chromogenic properties display significant advantages as a low toxicity reagent 

with high affinity and specificity for iron(III) (9–11), making them an attractive choice for the 

quantification of iron from a green chemistry perspective. In the last few years, some 3,4-HPOs 

with different substituents in different positions have been developed, including the latest 1-(3’-

methoxypropyl)-2-methyl-3-benzyloxy-4-(1H)pyridinone (MRB13), the chelator used in the 

present work. The way the synthesis of MRB13 is achieved is also important to remark, as its 

route of synthesis is more efficient and sustainable if compared to the one for other ligands (9). 
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Table 4.1. Analytical characteristics of developed spectrophotometric flow system for iron determination in water samples (presented in descending chronological 

order). 

System Type of water 
Sample volume 

(µL) 
SPE Reagent 

Sample throughput 

(h-1) 

LOD 

(µg L-1) 
Ref. 

SI Fresh and marine 
650 

800 

- 

NTA 
MRB13 

20 

8 

10.9 

2.9 
This work 

µSI-LOV 
River, ground, tap, sea and 

estuarine 
40-700 NTA CP256  7.3 (12) 

pFI Sea 300 - Ferrozine 90/40* 3.1/0.57* (13) 

rFIA Bottled, tap and lake - - Ferrozine 20 2 (14) 

µSI-LOV River 150 - MRB12 50 15 (4) 

SI Sea 15 mL - 
Sulfosalicylic acid 

and EDTA 
30 90 (15) 

SI River and sea 903 
- 

NTA 
CP256 

58/42** 

28/24** 

33/3** 

27/3** 
(16) 

SI Natural 5000 - PEG-HPO 24 48 (17) 

SI River 700 - 1.10-phenantroline - 10 (18) 

µSI-LOV Fresh and marine 400 NTA Hmpp 14 9 (11) 

FA Fresh 420 - SCN- 64 60 (1) 

SI Waste and environmental 100 - SCN- - 200 (19) 

SI 

µSI-LOV 
Natural 

300 

50 
- 3,4-HPO 

102 

90 

83 

7 
(10) 

SIA 
River, well, ground, potable and 

sea 
250 - Ferrozine 41 0.15 (20) 
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MSFIA Drinking 5000 
Modified Amberlite 

XAD-4 
Chrome azurol S 6 5.6 (3) 

MSFIA Treatment unit 3200 
Modified Amberlite 

XAD-4 
Chrome azurol S - 2.3 (2) 

SI-LOV Industrial waste 45 - 5-Br-PSAA 18 25 (21) 

FIA River 500 - DPD 20 0.02 (22) 

FIA Tap and bottled 500 - DPD 25 0.01 (23) 

SI Waste, tap and river 150 - 1.10-phenantroline - 12 (24) 

 

Ref. – reference; SPE – solid phase extraction; SI – Sequential injection analysis; pFI – programmable flow; µSI-LOV – micro sequential injection lab-on-
valve; CP256 – hexadentate 3-hydroxy-4-pyridinone ligand; rFIA – reverse flow injection analysis; FA – Flow analysis, HMPP – 3-hydroxy-1(H)-2methyl-4-
pyridinone; MSFIA – multisyringe flow injection analysis; PEG-HPO - 3-hydroxy-4-pyridinone ligand functionalized with an hydrophilic ethylene glycol chain; 5-
Br-PSAA – 2-(5-bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfoptopyl)amino]aniline;  FIA – flow injection analysis; DPD – N,N-dimethyl-p-phenylenediamine. 
*different values correspond to different flow strategies-stop in holding coil/stop in flow cell. 
**different values correspond to the use of different flow cells. 
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Besides aiming to use a low toxicity colorimetric agent, the objective of this work was to design a 

flow method that could be applied to recreational water samples with different salinities. In fact, 

most of previously reported methods do not cope with salinity interference, including those 

involving atomic absorption or emission spectrometry. To accomplish this objective, in this work 

a versatile method involving two different strategies, one including a solid phase extraction (SPE) 

process, is proposed. The SPE was used both to remove the sample matrix interference and/or 

the enrichment of the analyte. This in-line SPE process has been increasingly used as sample 

pre-treatment due to some advantages over other extraction techniques, namely liquid-liquid, as 

little or no organic reagents are employed (25,26). With this purpose, a column with nitrilotriacetic 

acid (NTA) was employed, as it was previously reported that in certain conditions (pH = 2), NTA 

has the capability of specifically retain Fe(III) (12). This retention occurs because NTA in the fully 

deprotonated form acts as a sequestering agent and this property is pH dependent (27).  

By combining the capabilities of in-line SPE, it was possible to devise a flow method to measure 

iron in fresh and marine water, with favourable analytical features over previously reported ones. 

 

 

4.2. Experimental  

 

4.2.1. Reagents and solutions 

 

All solutions were prepared with analytical grade chemicals and MilliQ water, MQW (resistivity > 

18 M cm, Millipore, USA). 

A stock solution of 50.0 mg L-1 of Fe(III) was prepared by dilution of the respective 1000 mg L-1 

atomic absorption standard solution (Fluka, Germany). An intermediate solution of 4.00 and 1.00 

mg L-1 of Fe(III) solution was prepared by dilution of the 50.0 mg L-1 stock solution. Working 

standards from 5.00 to 80.0 µg L-1 with 0.01 mol L-1 of nitric acid were weekly prepared by dilution 

of the 1.00 mg L-1 solution. Working standards from 50.0 to 600 µg L-1 with 0.01 mol L-1 of nitric 

acid were weekly prepared by dilution of the 4.00 mg L-1 solution.  

A 0.01 mol L-1 nitric acid solution was prepared by dilution of the concentrated solution (d = 1.39; 

65%, Merck; Germany). 

A 0.50 mol L-1 borate buffer solution was prepared by dissolution of the solid (H3BO3, Aldrich, 

Germany) in a solution of 0.2 mol L-1 NaOH (Panreac, USA), with the final pH adjusted to 10.0 

with sodium hydroxide. 
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A stock solution of 40.0 mmol L-1 of 3-hydroxy-4-pyridinone (MRB13, molar mass = 233.1 g mol-

1) was prepared by dissolution of the corresponding quantity of the reagent in water. A 0.6 mmol 

L-1 of MRB13 (9), reagent solution, was daily prepared by dilution of the stock solution in water.  

Artificial seawater was prepared according to Kester et al (1967). This seawater solution was 

composed by: 23.926 g kg-1 NaCl (Merck; Germany), 4.008 g kg-1 Na2SO4 (Merck; Germany), 

0.677 g kg-1 KCl (Merck; Germany), 0.196 g kg-1 NaHCO3 (Merck; Germany), 0.098 g kg-1 KBr 

(Merck; Germany), 0.026 g kg-1 H3BO3 (Aldrich; Germany), 0.003 g kg-1 NaF (Merck; Germany), 

0.05327 mol kg-1 MgCl2·6H2O (Merck; Germany), 0.01033 mol kg-1 CaCl2 2H2O (Merck; 

Germany), and 0.00009 mol kg-1 SrCl2·6H2O (Fluka; Germany). Standards of Fe(III) were 

prepared with artificial seawater and acidified with nitric acid 0.01 mol L-1. 

All solutions used for the interferences assessment (Al, Ca, Co, Cu, Mg, Mn, Ni and Zn) were 

prepared by diluting commercial atomic absorption standard solution (1000 mg L-1, Spectrosol, 

England). 

A stock solution of 1000 mg L-1 of Fe(II) was prepared by dissolution of the corresponding quantity 

of ammonium iron (II) sulphate hexahidrate (Merck, Germany) in 0.5 mol L-1 nitric acid. An 

intermediate stock solution of 50.0 mg L-1 of Fe(II) was prepared by dilution of the 1000 mg L-1 

standard solution. An intermediate solution of 1.00 mg L-1 of Fe(II) solution was prepared by 

dilution of the 50.0 mg L-1 intermediate stock solution. Working standards from 5.0 to 80.0 µg L-1 

with 0.01 mol L-1 of nitric acid were prepared by dilution of the 1.00 mg L-1 solution. Work standards 

prepared similarly as Fe(III) working standard solutions. 

 

 

4.2.2. Preparation of the NTA column 

 

NTA resin (60 – 160 µm, NTA Superflow, Qiagen, Netherlands) was used as sorbent for SPE of 

Fe(III) and packed in a laboratory-made column with 25 mm length of Tygon tube (Gilson, 

France), 1.85 mm i.d. and 67 µL inner volume. Approximately 100 mg of NTA resin was 

suspended in water and introduced as a slurry in the column between two pieces of dishwashing 

foam.  
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4.2.3.  Apparatus 

 

Solutions were propelled by a syringe pump of 5 mL (Crison, Spain) controlled by computer 

software. The pump was connected to the central channel of a ten-port electrically actuated 

selection valve (Valco VICI Cheminert C25-3180D 06B – 0699C, USA) with a PTFE tubing. An 

injection valve (Valco VICI Cheminert 60736-E45 230, USA) was connected to the selection valve 

by the port 7 and 8. All the components of the flow system were connected by PTFE tubing from 

Omnifit (0.8 mm i.d., UK). The syringe pump, the selection valve and the injection valve were 

controlled by AutoAnalysis Station 5.0 computer software (Sciware, Spain). 

As detection system, an Ocean Optics USB 4000 charged coupled device (CCD) detector 

spectrophotometer (USA) equipped with a pair of 600 mm optic cable and a Mikropack DH-2000-

BAL deuterium halogen light source was used. An Ultem® flow cell (SMA-Z-50 cell, Ocean Optics, 

USA) with 50 mm optical path and silica windows and 130 µL inner volume was used. 

 

 

4.2.4.  Flow manifold and procedure  

 

The flow manifold for the developed method for spectrophotometric determination of Fe(III) in 

waters is depicted in Fig. 4.1. 

The sequence of steps for iron determination and respective volumes are shown in Table 4.2. 

The method is subdivided in two different parts, corresponding to the different strategies for Fe(III) 

determination. 

The sequence of steps described from A to D corresponds to the determination of iron without 

SPE (FA). This strategy can be chosen for samples that do not need matrix cleaning and/or pre-

concentration of the analyte. Reagent, buffer solution, and sample were sequentially aspirated to 

the holding coil (steps A to C), and the mixture sent to the detector for absorbance measurement 

(step D).  
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Fig 4.1. Flow manifold for Fe(III) determination in waters. St/S – standard solution or sample; R1 

– MRB13 solution (0.6 mmol L-1); R2 – borate buffer solution (pH 11); R3 – nitric acid solution 

0.01 mol L-1; R4 – nitric acid solution 0.5 mol L-1; C – NTA resin column; P – syringe pump; SV – 

selection valve; IV – injection valve; HC – holding coil (300 cm); RC – reaction coils (10 cm); D – 

Ocean Optics USB 4000 CCD; L – light source; FC – Z flow cell (50 mm path length); W – waste. 

 

The steps from E to I describe the sequence for the determination of iron with SPE (SPE-FA), 

providing the sample matrix (high salinity) clean-up and/or preconcentration of iron. In this case, 

the sample was aspirated to the holding coil and then sent through the column towards the waste 

(steps E and F). Subsequently, the plugs of reagent and buffer were aspirated to the holding coil 

(steps G and H), the injection valve was switched and the plugs sent through the column to the 

detector (step I). At the end of each sample analysis (one cycle that corresponds to three replicas) 

the NTA column was washed and reconditioned with nitric acid 0.5 and 0.01 mol L-1 respectively 

(steps J – M). 
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Table 4.2. Protocol sequence for the iron determination in waters by (i) Strategy without solid 

phase extraction, FA: A – D; (ii) Strategy with in-line solid phase extraction SPE-FA: E – M. 

 

 

4.2.5.  Water sample collection and preparation  

 

Water samples from various recreational locations from Porto district (Portugal) were collected 

20 cm below the surface. The samples were filtered with Acrodisc 25 mm syringe filters 0.45 µm 

(Pall, USA) and acidified with nitric acid (0.01 mol L-1) according the reference sampling procedure 

(5). Samples were kept refrigerated until analysis. 

 

  

Strategy Step SV 

position 

IV 

position 

Volume 

(mL) 

Flow-rate 

(mL/min) 

Description 

 

Preliminary steps before starting consecutive 

cycles 

5.000     - Syringe reset position - syringe fill with 

carrier 

1.000 5.000 Propel carrier to waste 

FA A 1  0.250 3.529 Aspirate MRB13 solution 

B 2  0.020 3.529 Aspirate borate buffer solution 

C 3  0.650 3.529 Aspirate standard/sample solution 

D 8 ON 2.100 3.529 Propel through the CCD detector for Fe 

quantification 

       

SPE-FA E 3  0.800 3.529 Aspirate standard/sample solution 

F 7 ON 1.400 1.500 Propel through the NTA column 

G 1  0.250 3.529 Aspirate MRB13 solution 

H 2  0.020 3.529 Aspirate borate buffer solution 

I 7 OFF 1.500 2.000 Propel through the CCD detector for Fe 

quantification 

SPE-FA - 

washing & 

conditioning 

J 5  0.200 3.529 Aspirate HNO3 solution 0.5 mol L-1 

K 7 OFF 0.500 3.529 Propel through the NTA column – 

cleaning step 

L 4  0.250 3.529 Aspirate HNO3 solution 0.01 mol L-1 

M 7 ON 0.500 3.529 Propel through the NTA column – 

reconditioning step 
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4.2.6.  Reference procedure 

 

For comparison purposes, the determination of iron in waters was carried out by the reference 

procedure with inductively coupled plasma – optical emission spectrometry (ICP-OES) (5), in a 

Perkin Elmer Optima 7000 dv (USA) equipment. Results were compared with those obtained with 

the developed flow method. 

Additionally, the developed flow method was applied to certified water samples available for the 

determination of trace elements: ERM-CA615 (ground water), ERM-CA011 (hard drinking water), 

SLRS4 (river water, CRM, Canada) and TM27.3 (lake water, Canada). The certified water 

samples were diluted in order to fit the linear range of the calibration of the developed method. 

 

 

4.3. Results and discussion 

 

Regarding the flow system configuration (Fig. 4.1) an option was made to use a selection valve 

coupled to an injection valve. The selection valve was used to select, in a versatile way, the 

different solutions and samples with the respective volumes. The injection valve was used to 

incorporate of the NTA resin column in a loop assembly. This configuration enabled the analyte 

retention in the NTA to be carried out in one direction, and the elution in the opposite direction, 

thus minimizing the compaction of the column, without aspirating through the column. Additionally, 

when the SPE process was not necessary, the injection valve only acts as a flow path to the 

detector. 

The development of the two strategies of the flow system involved several studies to assess the 

influence of some variables. Those parameters were optimized in order to use low volumes of 

reagents and standards, increase the determination rate and also increase the sensitivity for the 

iron determination.  
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4.3.1. Development of the FA strategy – iron determination without SPE 

 

The use of this newly reported chelator, MRB13, for the spectrophotometric determination of iron 

was studied. In a recent work (9), the features of this ligand and some parent ligands were 

compared in a flow mode for iron measurement. However, no application for iron quantification 

with the use of this chelator (MRB13) was described. 

In the present work, the performance of MRB13 was compared with a parent ligand (MRB12) 

already referred by Mesquita et al as a chromogenic chelator for iron determination (17) in waters. 

For that purpose, the selected volumes for reagent, buffer and standard were those state in the 

same reported work. There were no significant differences in the slope or intercept in the 

calibration curve (<10%), using the two different ligands. In the reported work (17), a carbonate 

buffer was used. However, in flow systems, carbonate buffers may generate bubble formation. 

So, in this work an alternative borate buffer was tested. A 0.6 mmol L-1 carbonate buffer and 0.5 

mmol L-1 borate buffer, both with pH10 were compared; no significant differences in the slope 

(<10%) of the calibration curves were observed. Therefore, borate buffer was the selected 

solution. 

The effect of MRB13 solution concentration (1.2, 0.6 and 0.3 mmol L-1) on the calibration curve 

(slope and intercept) was also assessed. Using 1.2 and 0.60 mmol L-1, no significant differences 

were observed in the slope (<10%) of the calibration curve; however, the intercept decreased 

about 50%. When using the 0.30 mmol L-1, the slope decreased 12%. Then, the concentration of 

the MRB13 reagent solution was set to 0.60 mmol L-1. The volumes of aspiration of standard, 

buffer solution and MRB13 solution were also evaluated. First, the volume of 500 µL of 

sample/standard (17) was set, and then the results compared with those obtained with 550, 650 

and 750 µL. No significant differences were observed in the slope of the calibration curve; 

however, a decrease of 16% in the intercept was observed when using the volumes of 650 and 

750 µL. So, the volume of sample/standard was set to 650 µL. The influence of the volume of 

buffer was also evaluated: volumes of 34 and 20 µL were tested. As the results for the two 

volumes did not displayed significant differences (<10%), 20 µL was the chosen volume. 
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4.3.1.1. Interference studies 

 

The potential interference of some metal ions that can be present in water samples was tested. 

As evidenced on Table 4.3, no significant interference in the iron determination was observed. 

 

Table 4.3. Interference study of some metal ions, commonly present in natural waters, in iron 

determination. Values for the concentration of ions that can be present in water streams (5). 

Tested 
ion 

Water streams  
µg L-1 

Tested  
 µg L-1 

Interference in Fe  
determination % 

Al3+ 400 400 -0.9 

Ca2+ 15000 15000 -5.5 

Co2+ 0.2 10 -1.7 

Cu2+ < 12 100 +0.6 

Mg2+ 4000 5000 -3.8 

Mn2+ 7 100 +0.6 

Ni2+ 1 100 0.0 

Zn2+ 20 100 -1.2 

 

 

As the main goal of this work was to propose a method that could cope with different salinities, 

the influence of this parameter was studied. For that purpose, standards were prepared in MQW, 

artificial sea water, and seawater diluted 1:2 (to mimic the composition of an estuarine water). 

Using iron standards prepared in artificial seawater, the signals were erratic, possibly due to the 

high refraction signal produced during the detection. This phenomenon is usually called schlieren 

effect, caused by refractive index gradients between the saline solution and the other flowing 

aqueous solutions. With the standards prepared in ultrapure water and lower salinity content 

water, no significant differences were observed (< 10%) in the slope and intercept of a typical 

calibration curve (n=3). 
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4.3.2. Development of the SPE-FA method 

 

In order to overcome the above-mentioned problem associated with salinity and also to carry out 

analyte enrichment, targeting a better detection limit, an on-line solid-phase extraction process 

was implemented (Fig. 4.1).  

Then, some variables were evaluated. The first one was the influence of the sample loading 

volume. By increasing the volume, an increasing enrichment factor should be obtained. The use 

of 650, 800 and 900 µL volumes were compared. An increase of 25% of the slope was observed 

when the volume was increased from 650 to 800. On the contrary, for a 900 µL loading volume, 

the slope decreased, and the stability of the repeatability of the absorbance signals also 

decreased. This could be due to physical processes associated with some alteration of the 

positioning of the sorbent inside the column. So, the sample volume of 800 µL was the one 

chosen. 

The flow rate for the sample loading (0.5, 1.0, 1.5, 2.0 mL min-1), and the one for the iron elution 

(1.0, 1.5, 2.0 mL min-1) from the NTA column was also assessed. The chosen flow rates were 1.5 

mL min-1 for the loading step and 2.0 mL min-1 for the extraction step. These flow rates were 

chosen as a compromise between sensitivity and determination rate.  

 

 

4.3.2.1. Interference studies 

 

The influence of salinity was a parameter of study for the determination of iron with SPE, as this 

water property can interfere in the quantification. For that purpose, standards were prepared in 

ultrapure water, artificial sea water (28), and seawater diluted 1:2 (this last one to reproduce 

approximately the composition of an estuarine water). The calibration curve for these different 

standards (prepared with different matrix) were compared, and no significant differences for the 

slope and intercept were observed (< 10%). Therefore, the salinity of the standards did not 

influence the absorbance signal and so, the developed flow procedure can be applied to different 

water samples. The NTA resin acts as a matrix clean-up process; this occurs at the loading step, 

being the iron retained at the NTA resin, while the water sample matrix is transported away from 

the resin and discarded. 

The interference of metal ions was not assessed at this strategy, because the use of MRB13 

reagent showed to be specific as iron chelating agent (see section 3.1.1). As the eluting agent is 

MRB13, no interferences are expected in this strategy for iron detection. 
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Some previous studies pointed out that iron at ferrous state (Fe2+) is not retained by the NTA resin 

(11,16) and, because of that, by using this SPE strategy the detected ion would be the iron in 

ferric state (Fe3+). This issue was revisited: standards of Fe2+ were prepared between 5.0 and 

80.0 µg L-1 and analyzed with SPE system; the absorbance signal of the different standards did 

not statistically differ from the absorbance of the blank solution (< 5%). This confirms that, by 

using the NTA, only the determination of Fe(III) is performed. However, this is not a problem for 

this study, as it is not expected to find significant ferrous iron concentrations in superficial waters, 

if compared with ferric iron. 

 

 

4.3.2.2. NTA column breakthrough 

 

The breakthrough of the NTA packed column was evaluated. This value would correspond to the 

maximum quantity of Fe(III) that could be retained by the column. This was estimated by 

increasing the quantity of the analyte that perfuses the column (increasing the standard 

concentration) and calculating the recovered quantity of iron (in mass). The absorbance was 

plotted against the mass of iron; the signal increased until 1.6 µg of iron, that corresponds to a 

2.00 mg L-1 standard. For higher concentration values, the absorbance signal maintained 

constant, possibly having reached the breakthrough of the NTA column. 

However, using the 2.00 mg L-1 iron standard, the stoichiometric ratio (1Fe:3MRB13), between 

iron and MRB13 reagent is almost reached; so, this value could not be the breakthrough of the 

NTA column, but merely a lack of reagent. Actually, this is not a problem because the 2.00 mg L-

1 standard is twenty-five times higher than the highest standard concentration of the calibration 

curve.  
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4.3.3. Application to water samples – accuracy assessment 

 

4.3.3.1. Certified water samples 

 

For accuracy assessment, the developed flow system was applied to determination of iron in 

certified water samples. For that objective, the two strategies for iron determination were tested 

(Table 4.4). The relative deviation between the certified value and the one obtained with the 

developed system were below 10%, validating the developed method for iron determination. 

 

Table 4.4. Comparison of the results obtained with the developed flow system for iron 

determination in certified water samples with the certified value for iron; direct determination (FA) 

and with on-line SPE (SPE - FA). RD – Relative deviation. 

Sample 

ID 

[Fe3+]certified 

µg L-1 

[Fe3+]FA 

 µg L-1 
RD % 

[Fe3+]SPE-FA 

µg L-1 

RD 

% 

Ca011 198 ± 5 196 ± 7 -1.0 - - 

SLRS4 103 ± 5 98 ± 3 -5.0 110 ± 5 +6.6 

TM27.3 10.9 ± 0.3 11 ± 3 0.0 11 ± 1 +5.0 

Ca615 5.1 ± 0.3 mg L-1 5.19 ± 0 mg L-1 +1.6 
4.9 ± 0.3 mg L-1 

5.0 ± 0.6 mg L-1* 

-4.3 

-1.6 

*sample diluted 1:100 in artificial sea water (28). 

 

 

4.3.3.2. Recovery studies 

 

Since the concentration of a number of the analyzed samples were below the limit of detection of 

the developed system and/or the reference procedure (ICP-OES), recovery tests were performed 

for both strategies. The recovery percentages calculations were made according to the IUPAC 

recommendations (29) and the results are depicted in Table 4.5. The developed flow methodology 

for the determination of iron in fresh and marine water provided recovery ratios of 103 ± 4 without 

SPE and 101 ± 7 with SPE (average ± standard deviation). The statistical t-test for a 95% 

significance level was calculated for the two strategies of iron quantification. 
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For the direct determination, t-value was 0.184 and the correspondent critical value was 3.163. 

For the determination of iron with SPE, the calculated t-value was 0.410 and the correspondent 

critical value was 3.163. The statistical t-test for both strategies of iron determination indicates 

there is no evidence of systematic errors or the presence of some matrix interference (30). 

Therefore, the developed system can be applicable for the quantification of iron in a variety of 

waters samples with different salt content.  

 

Table 4.5. Recovery percentages obtained with the developed flow-based system in FA mode 

(samples F1, F2 and F3) and SPE – FA mode (samples M1, M2 and M3). 

Type of 

water 

Sample 

ID 

[Fe3+]initial  

µg L-1 

[Fe3+]added  

µg L-1 

[Fe3+]found  

µg L-1 

Recovery 

(%) 

Fresh  

waters 

F1 26.3 ± 5.1 
50.0 74.2 ± 3.0 95.8 

200 233 ± 11 103 

F2 34.4 ± 3.6 
50.0 85.3 ± 3.6 102 

200 245 ± 5 104 

F3 16.0 ± 0.0 
50.0 70.8 ± 3.0 109 

200 219 ± 8 102 

Marine 

waters 

M1 < LOD 
30.0 28.7 ± 1.1 95.7 

60.0 62.2 ± 8.8 104 

M2 < LOD 
30.0 32.5 ± 5.5 108 

60.0 57.4 ± 1.4 95.7 

M3 11.3 ± 1.5 
30.0 43.9 ± 1.0 109 

60.0 67.9 ± 3.0 94.3 

 

 

4.3.4. Features 

 

The dynamic ranges of both strategies as well as the calibration curves and the limit of detection 

and quantification (LOD and LOQ, respectively) for the determination of Fe were summarized in 

Table 4.6. 

The LOD and LOQ values were calculated according to IUPAC recommendations as the 

concentration corresponding to the sum of three and ten times (for limit of detection and 

quantification respectively) the standard deviation to the mean value of ten consecutive blank 

solution measurements (31,32). 
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Table 4.6. Features of the developed flow-based system for iron quantification, FA, flow analysis 

system without SPE; SPE-FA, flow analysis system with solid phase extraction; LOD, limit of 

detection; LOQ, limit of quantification. SD - standard deviation. 

Strategy Dynamic range 

(µg L-1) 

Typical calibration curvea 

A = (slope ± SD) µg L-1 Fe3+ + intercept ± SD 

LOD 

(µg L-1) 

LOQ 

(µg L-1) 

FA 25.0 - 800 A = (2.21 x 10-4 ± 1 x 10-6) Fe3+ + 0.045 ± 0.001 10.9 32.4 

SPE-FA 5.0 – 80.0 A = (6.62 x 10-4 ± 2 x 10-5) Fe3+ + 0.043 ± 0.002 2.9 12.1 

a n=3 

 

The calibrations curves presented in Table 4.6 correspond to the mean slope and intercept of 

three curves with the respective standard deviation. The repeatability was assessed by calculation 

of the relative standard deviation (RSD) of twelve replicate analysis of a standard (four 

consecutive cycles); the RSD for Fe determination with FA strategy was 2.5% (200 µg L-1) and 

with the SPE-FA strategy was 3.8% (40 µg L-1). 

A complete analytical cycle (three replicas) for the determination of iron with the FA strategy takes 

3 min, and for SPE-FA strategy takes 8 min (including the NTA column washing). The 

corresponding consumption values for a complete analytical cycle (three replicas) were: 90 µg of 

MRB13, 1.4 mg of sodium hydroxide and 5.6 mg of boric acid. 

 

 

4.4. Conclusions 

 

The developed flow-based methods for iron quantification in surface recreational water proved to 

be an efficient tool for water monitoring and applicable to the determination of iron in different 

salinity content waters (fresh and marine). The described method enables iron(III) determination 

with two possible strategies: a direct approach (FA) and using solid phase extraction (SPE-FA); 

within the same manifold. Water samples with a relatively high iron content and low salinity 

concentration, were assessed without resorting to the SPE strategy. If the water samples 

presented high salinity levels and/or a low concentration of iron, it was possible to resort to the 

SPE strategy with a NTA resin column incorporated in the system, enabling to clean-up the 

sample matrix and/or pre-concentration of iron(III). 

The choice of a newly reported iron chelator (9) as a colorimetric reagent proved to be successful 

as both the limit of detection and quantification were better than the previously reported with 

similar chelators (11,12,16), except when resorting to a long pathlength flow cell. Additionally, 
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MRB13 has a simpler and cheaper synthesis meeting the requirements of green chemistry 

guidelines (9). MRB13 reagent proved to have high affinity and specificity for iron (9,17), similar 

to other parent ligands, as no significant interferences were observed in the presence of other 

ions commonly present in natural waters (< 10%). 

The incorporation of the NTA column, as a SPE strategy, in the flow-based system proved to be 

an effective choice to quantify low concentration of iron and to apply to high salinity waters. With 

SPE-FA strategy, there was the discarding of the matrix, resulting a matrix clean-up, and analyte 

enrichment, thus improving the detection limit from 10.9 µg L-1 to 2.9 µg L-1. 

Overall, combining the new chelator MRB13 with an in-line SPE process, an efficient method was 

devised for iron determination in recreational waters, displaying a low reagent consumption, low 

effluent production using low toxicity reagents. 

The developed method was applied to certified water samples (ground, river, lake and drinking 

water) and the results were in agreement with the expected results. 

The portability of the system makes it appropriate for the in-situ monitoring of iron in water bodies. 
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Abstract 

A method for the screening of biogenic amines in waters, whose presence at some concentration 

levels potentially cause adverse effects on humans, was developed for the first time. A suitable 

and easy system to operate, with low reagent consumption was devised. The proposed flow-

based system was divided into two analytical parts, pre-concentration and derivatization of the 

biogenic amines. Solid phase extraction, using a Chelex 100 resin, was the newly chosen strategy 

for preconcentration of the analyte and also removal of possible matrix interferences. 

Fluorescamine was used as derivatization reagent for biogenic amines followed by fluorimetric 

detection. The influence of different sorbent materials for preconcentration and flow system 

parameters such as pH of standards and buffer, composition of the eluent solution, flow-rates, 

standard/sample volume, were studied. The interference of ammonia was assessed, and no 

interference was observed. The limits of detection and quantification were 1.7 and 5.6 µmol L-1, 

respectively. The developed system was applied to water samples and the recovery results were 

about 98 ± 7%.  

 

Keywords: Primary amines; sequential injection analysis; preconcentration; Chelex 100; 

fluorescamine; fluorescence  
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5.1. Introduction 

 

Biogenic amines (BAs) are nitrogenous organic basic compounds with low molecular weight (1–

8). According to their structure, these organic molecules can have aliphatic (putrescine, 

cadaverine, spermine, spermidine), aromatic (tyramine, phenylethylamine) or heterocyclic 

structure (1,2); according to the number of amino groups present in the molecule, BAs can be 

classified as monoamines (like histamine and tryptamine), diamines (like putrescine and 

cadaverine) and poliamines (like spermine and spermidine) (Fig. 5.1). These amines are 

synthetized or degraded by living cells and participate in biological pathways, as in the 

neurotransmission and regulation of blood pressure, body temperature or even in the synthesis 

of DNA, RNA and proteins (2,3). So, they have important physiological functions; however, the 

continuous intake can influence the human health, affecting nervous and cardiovascular systems 

(4,5). BAs can also react with nitrite and form nitrosamines, which are carcinogenic compounds 

(6).  

 

 

  

Fig. 5.1. Chemical structure of some biogenic amines. 
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Essentially, BAs are formed by the decarboxylation of amino acids, and can be present in 

biological or in environmental samples. The level of biogenic amines can be related to microbial 

contamination, as can be generated by microorganisms capable of producing decarboxylases (4), 

bacterial decomposition after a death of an organism can produce BAs, and so pollute the 

environment. 

The analytical determination of BAs is not an easy task because these compounds are present 

in very low concentrations, and usually in complex matrices. The most frequently used methods 

for the determination of BAs involve separation and derivatization processes prior to ultraviolet 

(UV) spectrometric or fluorescent detection. 

Most of the documented separation procedures are performed by one of the following techniques: 

liquid chromatography (LC) (5,9–17), gas chromatography (GC) (18,19), thin layer 

chromatography (TLC) (20) and capillary electrophoresis (CE) (21,22). BAs determination 

becomes even more difficult because they do not have any specific chromophore or fluorophore 

in their molecule (23,24). As BAs do not show good intrinsic radiation absorption properties, 

derivatization prior to detection is required when spectrophotometric detection is used. Ideally, a 

derivatization produces a stable and absorbent/fluorescent species that can easily be measured. 

The most commonly used technique is liquid chromatography coupled with various detection 

systems like mass spectrometry (MS) (5,9–11), UV detection (12–14) or fluorescence (15–17). In 

the last few years, MS has become a popular detection system because of the intrinsic high 

sensitivity and low limits of detection; however, the equipment high cost and the need of a 

specialized operator may be limiting aspect for its use (25,26). 

In the last few years, BAs sensors have also been developed, which usually are based on different 

enzymes for the detection of the amines (27,28). 

Most of the developed methods for amines determination were directed for the analysis of BAs in 

food and beverages and only a few applied to environmental samples, including water 

(1,2,5,6,29). As far as we know, until now, no regulation is available for BAs contamination in the 

environment (29). In this scenario, it would be interesting to develop a screening methodology to 

assess the total amount of these compounds in waters. 

With the present work, a sequential injection (SI) method with on-line solid phase extraction (SPE) 

for the fluorescence detection of biogenic amines in water, using fluorescamine as derivatization 

agent, is proposed. With the main goal of preconcentrating BAs and eliminating possible 

interferences, SPE was the chosen strategy; for this purpose, a lab-made and reusable column 

of Chelex 100 was employed. Chelex 100 resin is a styrene divinylbenzene copolymer, classified 

as weakly acidic cation exchange resin due to its carboxylic acid groups, which act as chelating 

resin and is usually used to bind metal ions. However, in the anionic form, can potentially be used 

to bind cationic species like amines; for the first time, advantage was taken from this property to 
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retain the target analyte. Fluorescamine was used as derivatization agent for biogenic amines 

fluorimetric determination and it was firstly synthetized in 1972 by Udenfriend et al (30). 

Fluorescamine and its hydrolysis products do not present fluorescent properties, however reacts 

instantaneously with primary amines producing highly fluorescent derivative compounds (Fig 5.2). 

 

 

Fig. 5.2. Derivatization reaction between fluorescamine and primary amines. 

 

 

5.2.  Experimental 

 

5.2.1.  Reagents and Solutions 

 

All solutions were prepared with analytical grade chemicals and MilliQ water (resistivity >18 MΩ 

cm, Millipore, Bedford, MA, USA). Cadaverine dihydrochloride (Cad) – C5H14N2·2HCl, spermine 

tetrahydrochloride (Spe) – C10H26N4·4HCl, tyramine hydrochloride (Tyr) – C8H11NO·HCl, 

tryptamine hydrochloride (Try) – C10H12N2·HCl and 2-phenyilethylamine hydrochloride (2-PEA) – 

C8H11N·HCl were purchased from Sigma (Germany). Histamine dihydrochloride (His) – 

C5H9N3·2HCl was purchased from Merck (Germany). Stock solutions of 1.00 mmol L-1 of BAs 

standards were prepared by dissolution of the correspondent quantity of the solid. Working 

standards, in the range 5.0-60.0 µmol L-1, were weekly prepared by dilution of the stock solution. 

Chelex 100 sodium form resin, mesh 200-400 and mesh 50-100 (Bio-Rad, USA), Amberlite IR120 

sodium form (Dow, USA) and MCX cartridges (mixed-mode polymeric sorbent, Waters, USA), 

were used to perform SPE studies in batch and in flow mode. 

A 1.0 mol L-1 sodium chloride solution was prepared by dissolution of the solid (Panreac, USA) in 

a solution of 0.1 mol L-1 sodium hydroxide (Panreac, USA) and was used as elution solution. 

Hydrochloric acid 1 mol L-1 was prepared from the concentrated solution (d = 1.2; 37%, Merck, 

Germany) and was used as column cleaning solution. 

Fluorescamine 

(non-fluorescent) 
Derivative compound 

(fluorescent) 
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A 0.50 mol L-1 boric acid buffer solution was prepared by dissolution of the solid (Aldrich, 

Germany) in a solution of 0.2 mol L-1 NaOH (Panreac, USA), with the final pH adjusted to 9.0 with 

sodium hydroxide or nitric acid. 

A solution of fluorescamine (Sigma, Germany) 0.3 mg mL-1 was weekly prepared by dissolving 

the solid in acetone (Merck, Germany). 

For the interference study, a 100 µmol L-1 stock solution of ammonium sulfate (Merck, Germany) 

was prepared by dissolution of the solid in water. 

 

 

5.2.2. Sample Collection and Preparation 

 

Water samples from various locations of recreational parks with inland lakes with animals in Porto 

district, Portugal were sampled. The samples were firstly filtered with Acrodisc 25 mm syringe 

filters 0.45 µm (Pall, USA), the samples were kept refrigerated until analysis. 

 

 

5.2.3. Preparation of the Solid Phase Extraction Column 

 

To incorporate SPE strategy in the flow system solid phases were used as suspension for packing 

the column for BAs retention. A laboratory made column with 25 mm length of Tygon tube (Gilson, 

Villiers-le-Bel, France), 1.85 mm i.d. and 67 µL inner volume was used to pack the solid phase. 

Approximately 75 mg of each solid phase was introduced in the column between two pieces of 

dishwashing foam. The column was subsequently placed in a side port of the selection valve. 
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5.2.4.  Apparatus 

 

Solutions were propelled by a syringe pump of 5.000 mL (Crison, Barcelona, Spain) controlled by 

computer software. The pump was connected to the central channel of a ten-port electrically 

actuated selection valve (Valco VICI Cheminert C25-3180D 06B – 0699C, Houston, USA) with a 

PTFE tubing. All tubing that connected all the components of the flow system were of PTFE from  

Omnifit (0.8 mm i.d., Cambridge, UK). The syringe pump and the selection valve were controlled 

by AutoAnalysis Station 5.0 computer software (Sciware, Spain). 

As detection system, a fluorescence spectrometer (LS 55, Perkin Elmer, USA), equipped with a 

flow cell made of quartz (100 µL inner volume, Hellma, Germany) for fluorescence measurement 

of the BAs derivatives, was used. Analytical signal was recorded by BioLight Studio Software 

version 1.03.01. 

 

 

5.2.5. Flow Manifold and Procedure 

 

The flow manifold for the fluorimetric determination of BAs in waters is depicted in Fig. 5.3. The 

sequence of the steps and respective volume is shown in Table 5.1. The system is divided in two 

different parts: the first one for pre-concentration of BAs (steps A-D) and the second for the BAs 

derivatization and fluorimetric measurement (steps E-J). For the column cleaning, hydrochloric 

acid was propelled through the Chelex 100 resin column (steps K and L).  
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Fig. 5.3. Flow manifold for biogenic amines determination in waters using fluorescamine as a 

fluorescence reagent. S – sample or standard solution; R1 – ultrapure water; R2 – fluorescamine 

solution (0.3 mg mL-1); R3 – boric acid buffer solution (pH 9); R5 – NaCl:NaOH solution (1 mol 

L-1:0.1 mol L-1); R6 – HCl solution (1 mol L-1); CChelex – Chelex 100 resin column; P – syringe 

pump; SV – selection valve; HC – holding coil (300 cm); RC – reaction coil (60 cm); D – 

fluorescence spectrometer (ex = 380 nm, em = 490 nm); W – waste. 

 

Table 5.1. Protocol sequence for BAs determination in waters. 

Step Selection 

valve position 

Volume 

(mL) 

Flow-rate 

(mL/min) 

Description 

 

Preliminary steps before 

starting consecutive cycles 

5.000 - Syringe reset position – syringe fill with carrier 

1.000 5.000 Propel carrier to waste 

A 3 1.000 5.000 Aspirate standard/sample 

B 7 1.500 0.500 Propel through the Chelex column for pre-

concentration of the BAs 

C 4 0.200 5.000 Aspirate elution solution 

D 7 0.200 0.500 Propel the elution solution through the Chelex 

100 column 

E 7 0.200 0.500 Aspirate the eluate 

F 2 0.050 5.000 Aspirate buffer 

G 1 0.200 5.000 Aspirate fluorescamine solution 

H 10 0.100 5.000 Propel through the reaction coil 

I 10 0.050 5.000 Aspirate through the reaction coil to promote 

mixture of the solutions 

J 10 1.600 5.000 Propel through the spectrometer 

K 5 0.500 5.000 Aspirate HCl 

L 7 1.000 1.000 Propel through the Chelex 100 column 
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5.2.6. Recovery Procedure 

 

Known BAs concentrations of 10, 30 and 40 µmol L-1 were added to the samples. For that, the 

proper amount of a 2.00 mmol L-1 cadaverine standard solution was added to 10.0 mL of water 

samples and analyzed. 

 

 

5.3. Results and Discussion 

 

The developed system was divided in two analytical parts, being the first one the preconcentration 

of the amines and the second the derivatization with fluorescamine followed by fluorescence 

detection (ex = 380 nm; em = 490 nm) (Fig 5.4).  

 

 

 

Fig. 5.4. 3D scan of the intensity of the fluorescent derivative compound. The arrow indicates the 

combined wavelength of excitation and emission where the higher intensity is obtained for this 

reaction. Ex Wl - excitation wavelength; Em Wl - emission wavelength; Int [#] – fluorescence 

intensity. 
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The fluorescamine solution stability was assessed for seven consecutive days, and there were 

no significant differences in the fluorescence intensity during that period (n=7; RSD = 3%). This 

study was performed in both batch and in flow mode. 

Some preliminary calibration curves (20-80 µmol L-1) in batch mode were performed with all the 

BAs in the study (cadaverine, spermine, spermidine, histamine, tyramine, tryptamine and 2-

phenylethylamine). Comparing the sensitivities and intercept of every calibration curve (ESI Fig. 

5.S1), a higher sensitivity and lower interception point was achieved for cadaverine. So, this BA 

was chosen as model to conduct all the subsequent sequential injection system optimization. 

 

 

5.3.1. Development of the Sequential Injection System 

 

5.3.1.1. On-Line Derivatization 

 

The flow procedure for the on-line derivatization of BAs with fluorescamine for fluorescence 

detection was optimized based on some parameters (Table 5.2), namely volumes needed of each 

solution (fluorescamine, buffer and standard), the order of aspiration of the solutions, flow-rate, 

reaction coil length, different cells with different inner volumes, and buffer pH. The order of 

aspiration of the solutions influences the repeatability of the signal. The fluorescamine is not a 

stable reagent when in contact with water and so, when it is aspirated right before the detection, 

the intensity signal is more repeatable. The chosen conditions were those provide the highest 

slope and lowest interception for the cadaverine calibration curve. 

To attain a reproducible intensity signal, different flow approaches were tested: aspiration and 

flow reversal towards detector; aspiration and flow reversal followed by stopping the flow before 

measurement; and aspiration and double flow reversal. The last approach was chosen as a more 

reproducible signal was obtained; this could be due to a better mixture of the different plugs. 

Under the optimized conditions, the typical calibration curve for cadaverine was I = 0.0078 ± 

0.0007[Cad] + 0.2091 ± 0.0177, with limit of detection of 6.8 µmol L-1 and a limit of quantification 

of 22.7 µmol L-1. 

 

 

 



Chapter 5 - Biogenic Amines in Waters 

 

 
112 

 

Table 5.2. Assessed parameters for the on-line derivatization optimization of biogenic amines 

with fluorescamine. 

 

 

 

 

 

 

 

 

5.3.1.2. On-Line Pre-Concentration  

 

The flow procedure for the on-line preconcentration involved a number of studies to evaluate the 

influence of chemical and physical variables. Different solid phases were evaluated: MCX, 

Amberlite IR120, Chelex 100 (two different meshes, 50-100 and 200-400). In preliminary 

experiments, the study was conducted in a batch mode. MCX is a mixed-mode polymeric sorbent, 

commonly used for the extraction of basic compounds with cation-exchange groups, and often 

employed as pre-treatment step prior to chromatography. These cartridges showed to provide 

preconcentration capability of the solution for the different BAs (23). As preconcentration was 

achieved, an attempt was made to implement this process in the flow analysis system; thus, a 

lab-made column was prepared with MCX material and subsequently placed in a side port of the 

selection valve. However, the application under flow conditions was hindered by the excessive 

backpressure, as the sorbent material became too compact inside the column, and so the solution 

could not be propelled through it. Then, to find a possible alternative, the performances of some 

cation exchange resins were compared (Amberlite IR120 and Chelex 100). Chelex 100 mesh 

200-400 was the one that showed to provide capability to preconcentrate the amines (Table 5.3), 

displaying an increase of the sensitivity and a decrease of both the limits of detection and 

quantification (ESI Fig. 5.S2), while displaying physical characteristics compatible with its use in 

a flow mode. In these conditions, this resin was used for the subsequent studies. Various sample 

loading volumes used for preconcentration, between 500 to 1000 µL, were evaluated. The 

intensity signal for a standard concentration of 60 µmol L-1 increased from 0.812 ± 0.044 (loading 

volume of 500 µL) to 1.254 ± 0.062 (loading volume of 1000 µL). The selected loading volume 

was 1000 µL to conduct the subsequent studies, as a further increase would compromise the 

determination rate. 

 

  

Parameter Tested conditions Selected condition 

Fluorescamine volume 150, 200 and 250 µL 200 µL 

Buffer volume 30 – 150 µL 50 µL 

Standard/Sample volume 150 – 300 µL 200 µL 

Flow-rate 2.5 – 6.0 mL min-1 5.0 mL min-1 

Reaction coil length 40, 60 and 100 cm 60 cm 

Buffer pH 8.5 – 10.0 9.0 

Flow cell 100 and 500 µL inner volume 100 µL 
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Table 5.3. Cadaverine typical calibration curve with pre-concentration with Chelex 100 mesh 200-

400 and without preconcentration.  LOD – limit of detection; LOQ – limit of quantification. I – 

fluorescence intensity; [Cad] – cadaverine concentration. 

 Dynamic range 

(µmol L-1) 

Calibration curve LOD  

(µmol L-1) 

LOQ 

(µmol L-1) 

With SPE 5.0 – 60.0 I = 0.021±0.001[Cad]+ 0.184±0.012 1.7 5.6 

Without SPE  10.0 – 60.0 I = 0.008±0.001[Cad]+ 0.209±0.018 6.8 22.7 

 

 

The preconcentration (loading and elution) flow-rate was also studied; lower flow-rates increase 

the analyte interaction with the sorbent, but increase the determination time. Flow rates between 

0.333 and 1.000 mL min-1 were studied. The intensity signal increased up to a 0.500 mL min-1 

and decreased after this value; so, 0.500 mL min-1 was chosen as loading flow-rate.  

The influence of the pH of the standards in the preconcentration step was a parameter of study. 

So, standards with pH values of 4.5, 5.5 and 6.5 were tested. The pH did not influence the extent 

of preconcentration and so the pH of standard solutions was not adjusted in further experiments. 

The composition of the elution solution was another important parameter of study. For the elution 

of BAs, different solutions were studied: NaOH:NaCl 0.1 mol L-1: 1 mol L-1; NaOH:NaCl 1 mol L-

1: 1 mol L-1 and boric acid buffer. With the boric acid buffer, no intensity signal was observed. With 

the highest concentration of NaOH, no reproducible signal was obtained. Using NaOH:NaCl 0.1 

mol L-1: 1 mol L-1 as elution solution, a reproducible fluorescence intensity signal was obtained, 

as it can be evidenced for a replicate analysis of a standard (n = 10; RSD = 4.3%); for this reason 

it was chosen as elution solution. 

The Chelex 100 packed column for biogenic amines preconcentration was reused for a period of 

roughly 2 months. The daily maintenance of the packed column included a washing step with 1 

mol L-1 hydrochloric acid (5 mL at 1 mL min-1), followed by ultra-pure water (5 mL at 1 mL min-1), 

before the end of each working day. The performance of the column remained constant, as shown 

in the interday repeatability of the method (Table 5.3). 

The breakthrough of the column, corresponding to the maximum quantity of cadaverine retained 

by the packed column, was also evaluated. This quantity was estimated by increasing the amount 

of cadaverine that perfused the solid material, and calculating the quantity that was recovered. 

The correspondent intensity values were plotted against the mass of cadaverine. The signal 

increased until 6.1 µg of cadaverine and, for larger values, fluorescence intensity did not 

statistically increase (ESI Fig. 5.S3). Therefore, 6.1 µg was considered as the maximum amount 

of cadaverine retained in the lab-made Chelex 100 column used. 
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5.3.2. Interference Studies 

 

After this optimization process, an interference study was carried out. Considering its structure, 

ammonium could be an interfering age nt that could react with fluorescamine or even to be 

retained in the preconcentration resin. And so, it was tested as a possible interfering agent in a 

batch approach. To a 40 µmol L-1 cadaverine solution, 10, 40 and 100 µmol L-1 of an ammonium 

solution were added. The intensity signal remained constant and so no significant interference 

was observed. 

 

 

5.3.3. Method Performance with Other Biogenic Amines 

 

Considering that only cadaverine was used as a model BA, the following study intend to assess 

if other BAs displayed similar analytical behaviour. Based on the studies already discussed, this 

would be expected, because fluorescamine reacts with all BAs in study. Then, the developed SI 

system was also applied to the determination of histamine, spermine, tyramine, tryptamine and 

2-phenylethylemine. Tryptamine was not detected for concentrations lower than 60 µmol L-1. For 

spermine and 2-phenylethyamine, no enhancement of the sensitivity (slope) was observed with 

SPE (ESI Fig 5.S5). As observed for cadaverine, an enhancement of the sensitivity was observed 

for histamine and tyramine with the use of the SPE (ESI Fig 5.S4). The dynamic concentration 

range for these three BAs was the same. Tyramine presented the highest sensitivity; however, it 

also displayed the highest standard deviation in the interday studies. For cadaverine, a lower limit 

of detection and quantification was achieved, as shown in Table 5.4. 

 

 

Table 5.4. Typical calibration curves (n = 3) and dynamic concentration range of the calibration 

curve for cadaverine, histamine and tyramine and respective limits of detection (LOD) and limits 

of quantification (LOQ). I – Fluorescence intensity; [Cad] – cadaverine concentration; [His] – 

histamine concentration; [Tyr] – tyramine concentration. 

Biogenic amine Dynamic range 

(µmol L-1) 

Calibration curve LOD 

(µmol L-1) 

LOQ  

(µmol L-1) 

Cadaverine 5.0 – 60.0 I = 0.021±0.001[Cad]+0.184±0.012 1.7 5.6 

Histamine 5.0 – 60.0 I = 0.016±0.001[His]+0.191±0.016 3.0 9.9 

Tyramine 5.0 – 60.0 I = 0.027±0.002[Tyr]+0.215±0.030 3.3 11.1 
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5.3.4. Recovery Studies 

 

Since the concentration of cadaverine in the analyzed samples was below the limit of detection, 

recovery tests were performed. The recovery percentages calculations were made according to 

the IUPAC (31) and the results are depicted in Table 5.5. The developed SI methodology provided 

recovery ratios of 98 ± 7% (average ± standard deviation) for cadaverine determination. The 

statistical test, t-test was calculated, and for a 95% significance level the calculated t-value was 

0.149 and the correspondent critical value was 2.685, thus indicating no evidence of systematic 

errors or the presence of some matrix interference (32). 

 

Table 5.5. Recovery percentages obtained with the developed SI system; the initial cadaverine 

concentration in the samples was above the LOD. 

Sample ID [Cad]added [µmol L-1] [Cad]found [µmol L-1] Recovery % 

S1 10.0 9.4 ± 0.7 94.5 

S1 30.0 28.1 ± 0.9 96.1 

S1 40.0 38.3 ± 2.1 95.7 

S2 10.0 9.7 ± 1.2 96.7 

S3 10.0 10.1 ± 1.4 100.1 

S4 10.0 9.01 ± 1.9 90.1 

S4 40.0 44.2 ± 1.9 110.4 

S6 10.0 10.9 ± 0.7 109.0 

S6 30.0 27.0 ± 0.8 99.9 

S6 40.0 36.7 ± 2.0 91.8 

 

 

5.3.5. Figures of Merit 

 

The proposed SI system displayed a limit of detection and quantification of 1.7 µmol L-1 and 5.6 

µmol L-1, respectively, referring to cadaverine standards. These values were calculated according 

to IUPAC recommendations, as the concentration corresponding to three and ten times, 

respectively, the standard deviation of the intercept of three consecutive calibration curves divided 

by the slope of the same calibration curves (33,34). The corresponding fluorescamine 

consumption is 60 µg, hydrochloric acid is 18 mg, sodium hydroxide is 0.8 mg, sodium chloride is 

12 mg and boric acid is 2 mg per determination. 
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The typical calibration curve was presented in Table 5.4. The presented calibration curve 

corresponds to the mean slope and intercept of three curves with the respective standard 

deviation. After 10 replicate analyses of a standard, the relative standard deviation was estimated 

as 4.3%. 

 

 

5.4. Conclusions 

 

The developed sequential injection system for biogenic amines determination in waters proved to 

be an efficient tool for screening BAs (not alternative as accurate reference method) content in 

waters. As far as we know, only a few systems are described for biogenic amines determination 

in water and those ones are mainly based on separation methods, liquid chromatography (5) and 

capillary electrophoresis (1,2,6,29) giving individual amines results. The proposed flow system 

presents the advantage of displaying real-time results (6 minutes from loading until measurement) 

for the total content of BAs, involving relatively low-cost equipment, with portability capability.  

As far as we know, in this paper, Chelex 100 was firstly used as sorbent for biogenic amines 

retention. 

Recovery procedures pointed that there is no evidence of systematic errors or the presence of 

matrix interferences, being a reliable and simple option for screening BAs content in waters. 
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Fig. 5.S1. Slope and intercept of the calibration curves in batch mode for the different biogenic 

amines. 
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Fig. 5.S2. Cadaverine calibration curves with and without SPE. The group of curves (n=3) with 

higher slope represents SPE calibration curves (a) and the curves (n=3) with lower slope 

represents the cadaverine calibration curves without SPE (b). 

 

 

 

Fig. 5.S3. Study of the breakthrough of the Chelex 100 packed column; the maximum quantity of 

cadaverine retained by the resin is 6.1 µg. 
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Fig. 5.S4. Calibration curves with and without pre-concentration with Chelex 100 column (  - 

without SPE; - with SPE). 

 

 

 

 

Fig. 5.S5. Slope and respective standard deviation of the typical calibration curves for cadaverine, 

tyramine and histamine. 
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Abstract 

A solid phase extraction flow injection system for the spectrophotometric determination of total 

zinc in plant digests was developed. Solid phase extraction was chosen as a strategy for zinc 

preconcentration and removal of some interferences. The determination of zinc was based on the 

colorimetric reaction with Zincon. As detection system, a multi-reflection flow cell coupled with a 

light emitting diode was used. The analytical characteristics of the methodology such as pH of 

standard/sample solution, nitric acid concentration, the placement of SPE column within the 

manifold and preconcentration flow rate were studied. The interference of some metals present 

in plants was also assessed. The limits of detection and quantification achieved were 0.04 mg L-

1 and 0.12 mg L-1, respectively. The corresponding Zincon consumption was 0.17 mg for each 

determination. The developed system was applied to plant digests and the results obtained were 

in agreement with those obtained with reference procedure. 

 

 

Keywords: Zinc; flow injection analysis; Nitrilotriacetic Acid Superflow resin; multi-reflection flow 

cell; plant digests  
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6.1. Introduction 

 

Heavy metals play an important role in plants metabolism, and its concentration is strictly related 

with chemical composition of growth media. Some heavy metal such as zinc, one of the most 

common element in earth crust, also plays a very important role in metabolic processes in plants, 

the most significant is its activity as component of a variety of enzymes (1). However, zinc is very 

toxic at higher concentrations affecting plant growth. Zinc is widely used in many industries, 

namely in the fabrication of batteries and also in dental and medical applications, and this way 

introduced in the environment by anthropogenic activities. 

Several methods are available for zinc determination on plant tissue or in plant digests. One of 

them is X-ray fluorescence, a non-destructive method and consequently rapid one, but it has the 

limitation of the lack of standards for plant tissue. The most common way to measure zinc in 

plants is to analyze the respective digest solution. Plant tissue can be digested by one of many 

procedures for organic matter decomposition. The plant tissue liquid digest that contain the 

analyte of interest is then analyzed by Atomic Absorption Spectrometry (AAS) or Inductively 

Coupled Plasma Atomic Emission Spectrometry (ICP-AES) (2). These methods present high 

selectivity and low detection limits, but also present limitations like relatively high equipment cost, 

consumption of toxic gases. Simpler methods such as based on colorimetric or voltametric 

methods were also applied for zinc determination in a variety of samples, such as environmental 

or biological samples (Table 6.1) (3–22). 

In this context, flow analysis systems are very suitable for automating wet chemistry methods, 

because good reproducibility, precision, low equipment cost, increased accuracy, simplified 

sample handling, reduced contamination risks, high degree of automation, and reduction in 

reagent/sample consumption (23). Although a number of flow systems for the determination of 

zinc in environmental samples, such as waters (9,18), were already developed, only a few have 

been devoted to plant analysis (7,10). This can be due to the need for a previous sample 

preparation involving digestion/extraction procedures, which are difficult to achieve in flow 

systems. Anyway, if the derivatization and subsequent measurement is automated, a significant 

improvement is achieved. 

In this scenario, we propose a flow injection system for the spectrophotometric determination of 

total zinc content in plants digests. The method is based on the colorimetric determination 

involving Zincon as chromogenic reagent and a solid phase extraction (SPE) process for zinc pre-

concentration and removal of some interferences. To implement this approach, an injector 

commutator device and a multi-reflection cell were used. 
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SPE is an emerging process to concentrate the analyte of interest and/or matrix removal (24), 

presenting some advantages over liquid-liquid extraction, namely to reduce the consumption of 

organic reagents. This economy of reagents is even larger if SPE is carried out in a flow analysis 

system. For this SPE step, a lab-made and reusable column of Nitrilotriacetic acid (NTA) was 

used. NTA is a simple aminocarboxylic acid, is a colorless solid which in the fully deprotonated 

form acts as a general chelating agent for all metal ions and this sequestering tendency is strongly 

dependent on the solution pH value (3,25).  

The chromogenic reagent used for zinc determination was 2-carboxy-2′-hydroxy-5′-sulfoformazyl-

benzene (Zincon). This reagent is a well-known and non-specific reagent for the photometric 

determination of metals (26) in a variety of environmental and biological samples. This reagent 

forms a stable blue complex with zinc at a pH of 9. The interference of other metals was minimized 

by including citrate in the chromogenic solution (9,18). 

As a detection system, a multi-reflection flow cell coupled with a light emitting diode (MRC-LED) 

developed by Ellis P.S. et al. (27), was used. By using this system, an enhancement of sensitivity 

was expected, due to the physical characteristics of this flow cell, increasing the optical path 

length. A minimization of the physical dispersion of the sample, thus contributing to improve the 

detection limit, can also be achieved. Another important feature of this cell is the possibility to 

reduce the schlieren effect (27,28). In fact, different pH conditions are produced in the 

retention/elution steps and during the colorimetric measurement, so refractive index gradients are 

expected between adjacent solutions that could impair the analytical signal. The use of this 

especially designed flow cell proved to be an efficient solution to this problem. 

A flow injection methodology with pre-concentration and spectrophotometric detection for zinc 

determination in plants digests is proposed. This method provides a simple, reliable and 

miniaturized methodology able to determine zinc content in plants, whose concentration normally 

lies between 27 and 150 mg kg-1 (1). The achieved quantification limit (15 mg kg-1) allows to 

measure zinc in plants with lowest expected values. 
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Table 6.1. Analytical characteristics of flow systems developed for zinc determination in environmental samples (presented in descending chronological order). 

System Sample Sample 
volume  

Pre-concentration material Reagent Detection Sample throughput 
(h-1) 

LOD 
(µg L-1) 

Reference 

FIA Plant digests 200 µL NTA beads Zincon Spectrophotometry 12 40 This work 
µSI-LOV Freshwaters 600 µL NTA beads Dithizone Spectrophotometry 13 2.39 (3) 
FIA Water 5 mL 8-hydroxyquinolone 

funtionalized Amberlite XAD-2 
- FAAS 30 0.33 (4) 

MIS Wastewater 25-200 mL Amberlite XAD-7 - FAAS - 0.027 (15) 
MCSWIA Wet aerosols - - 8-quinolazo-

epsilon 
Spectrophotometry - 3 (16) 

µSI-LOV Seawater 75 µL - FluoZin-3 Fluorescence 60 0.02 (17) 
MSFIA Natural waters 1 mL - Zincon Spectrophotometry 43 2 (18) 
SIA Natural waters 1.5 mL - - Voltammetry - 3.6 (19) 
FIA Seawater 10 mLa and 

50 mLb 
Serdolit Chelite Che - FAAS 8a and 4b  0.055a 0.013 (20) 

SIA Herbs 1440 µL  - - Voltammetry 10-15 11 (21) 
FIA Natural waters 4.5 mL Polytetrafluoroethylene-

turnings 
- FAAS 30 0.3 (22) 

FIA Environmental 7.6 mL Bamboo charcoal - FAAS 45 0.36 (5) 
FIA Natural waters 7.5 mL Spherical resin with PAR PAN Spectrophotometry - 0.42 (6) 
FIA Plants digests 1.6 mL Dowex 1-X8 Zincon Spectrophotometry 30 100 (7) 
FIA Water 1.5 mL - PAN Spectrophotometry - 30 (8) 
SIA Water 150 µL - Zincon Spectrophotometry - 13 (9) 
FIA Plant digests 750 µL - NED Spectrophotometry 65 200 (10) 
FIA Soil - C-18-bonded silica gel - FAAS 30 0.15 (11) 
FIA           
SIA 

Water 30 µL            
130 µL 

- - Voltammetry 20 
- 

17470 (12) 

FIA Water - - - Voltammetry 8-12 14.7 (13) 
MFIA Plant digests 300 µL - Zincon Spectrophotometry 45 40 (14) 

µSI-LOV-micro-Sequential Injection lab-on-valve, FIA-Flow Injection Analysis, FAAS-Flame atomic absorption spectrometry, MIS-microsample injection 
system, MCSWIA-Multicommutated Stepwise Injection Analysis, MSFIA-multi-syringe injection analysis, SIA-Sequential Injection Analysis, NED-1-
naphthylethylenediamine, PAN-1-(2-Pyridylazo)-2-naphthol 
a- Total dissolved concentration, b- dissolved labile metallic concentration 
 

 



Chapter 6 - Zinc in Plants 

 
 

 
131 

 

6.2. Experimental 

 

6.2.1. Reagents and Solutions 

 

All solutions were prepared with analytical grade chemicals and MilliQ water (resistivity >18 MΩ 

cm, Millipore, Bedford, MA, USA). A stock solution of 100 mg L-1 zinc (II) standard was prepared 

by dilution of the 1000 mg L-1 atomic absorption standard (Spectrosol, England). Working 

standards, 0.1–1.0 mg L-1, were daily prepared by dilution of the stock solution. 

Nitrilotriacetic Acid Superflow resin (Qiagen, Netherlands), highly cross-linked 6% agarose and 

bead diameter 60–160 μm, was used as bead suspension for packing the column for zinc (II) 

retention. 

Nitric acid 5 mmol L-1 was prepared from the concentrated solution (d = 1.39; 65%, Merck, 

Germany) and used as elution solution. 

A 0.50 mol L-1 boric acid buffer solution was prepared by dissolution of the solid (H3BO3, Aldrich, 

Germany) in a solution of 0.2 mol L-1 NaOH (Panreac, USA), with the final pH adjusted to 9.0 with 

sodium hydroxide or nitric acid. Sodium citrate, 0.015 mol L-1 was added to boric acid buffer 

solution in order to minimize some ions interference. 

A solution of 2-carboxy-2’-hydroxy-5’-sulfoformacylbenzol (Zincon reagent - 

C20H15N4NaO6S.H2O, Merck, Germany) 5.0 mmol L-1 was prepared by dissolving 0.12 g of the 

solid in the boric acid buffer solution. A solution of 100 µmol L-1 of Zincon reagent was prepared 

weekly by diluting the previous solution in boric acid buffer solution. 

A certified reference spinach leaves sample (NIST - SRM 1570a) was analyzed in order to 

evaluate the accuracy of the developed method.  

All solutions used in interference studies (Co, Cu, Ni, Mn) were prepared by diluting commercial 

atomic absorption standard solution (Spectrosol, England). 
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6.2.2.  Sample Collection and Preparation 

 

Plants were sampled in various locations of recreational parks in Porto district. Samples were 

cleaned with flowing tap water, deionized water, and oven dried (40 – 60ºC) until constant weight 

and ground.  

Microwave-assisted digestion was performed in different dried samples and the certified 

reference spinach leaves as follows: two hundred milligrams were mixed with 5 mL of 65% HNO3 

in a Teflon reaction vessel and heated in a SpeedwaveTM MWS-3+ (Berghof, Germany) 

microwave system. Digestion procedure was conducted in five steps (29). The resulting clear 

solutions were transferred to 25 mL volumetric flasks and the volume made up with ultrapure 

water. Sample solutions were diluted in a multi-step approach in order to fit their composition to 

the linear range of the established calibration; the pH of the diluted solutions was between 3 and 

5, adjusted with NaOH. 

 

 

6.2.3. Preparation of the NTA Solid Phase Extraction Column 

 

A laboratory made column with 25 mm length of Tygon tube (Gilson, Villiers-le-Bel, France), 1.85 

mm i.d. and 67 µL inner volume was used to pack the NTA resin (60-160 µm, NTA Superflow, 

Qiagen, Netherlands). Approximately 35 mg of NTA resin was introduced in the column between 

two pieces of dishwashing foam and subsequently placed in the injector commutator. 

 

 

6.2.4. Flow Injection Manifold and Procedure 

 

As shown in Fig.6.1, the flow injection manifold consisted on two Minipuls 3 peristatic pumps 

(Gilson, Villiers-le-Bel, France) equipped with a Tygon pumping tubes (Gilson, Villiers-le-Bel, 

France) and a commutator injector (laboratory made) to inject defined volumes (200 µL) of 

samples or standard solutions. The tubing was made of PTFE (0.8 mm i.d., Cambridge, UK) and 

Gilson end fitting connectors and Y-shaped confluence to link the different parts of the manifold 

and a reaction coil of 40 cm of tubing. 
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The detection system consisted in an especially designed multi-reflection flow cell (MRC) (27), 

equipped with a red light emitting diode (LED -max at 660 nm) as a light source connected to a 

12 V power supply regulated to 5 V using a multimeter. Analytical signal was recorder by a Kipp 

and Zonen (Delft, Holland) BD chart recorder and the signal evaluation was made by peak height 

(cm). 

 

 

 

Fig.6.1. Flow injection manifold for Zn determination in plants digests. S – Sample or standard 

solution; R1 – ultrapure water (0.6 mL min-1); R2 – HNO3 5 mmol L-1 (1 mL min-1); R3 - Zincon 

100 µmol L-1 (0.7 mL min-1); PP – Peristaltic pump; IC – Injector commutator (position 

corresponding to sample loading/zinc elution; dashed line corresponds to sample injection/zinc 

retention); L – sampling loop (V = 200 µL); CNTA – NTA beads column; RC – Reaction coil (40 

cm); D – detector multi-reflective flow cell coupled to a LED (660 nm); W – waste. 

 

 

6.2.5. Reference Procedure 

 

For comparison purposes, the determination of total Zn in plants was carried out on diluted digests 

of plant using the atomic absorption method as reference method (2). Sample solutions were 

diluted in a multi-step approach in order to fit their composition to the linear range of the 

established calibration. Results were compared to those obtained with the developed FIA-SPE 

method.  
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6.2.6. Certified Reference Sample 

 

For further accuracy assessment, the developed system was applied to the quantification of zinc 

in a certified reference spinach sample (NIST - SRM 1570a), available for the determination of 

major, minor and trace elements in botanical material. The certified reference sample was 

prepared in the same way as the plant samples (as in 6.2.2), in order to obtain a final diluted 

solution to fit Zn content in the linear range of the established calibration. 

 

 

6.3. Results and Discussion 

 

The aim of this study was to develop a flow injection system for the determination of total zinc in 

plants. So, the system was divided in two analytical procedures, the first one being the 

injection/resin loading step followed by the elution step along with the spectrophotometric 

detection carried with MRC coupled with a red LED (max 660 nm). Those two steps were carried 

out based on the use of a commutator injector.  

For the first step, a SPE process involving a packed column of NTA beads for zinc pre-

concentration and also interferences removal was used. The column was reusable for a period of 

roughly two weeks. The daily maintenance of the packed NTA column included a continuous 

wash with nitric acid (5 mM) for about ten minutes and with ultra pure water for the same time 

before the end of each working day. The performance of the column was maintained, as shown 

in the intraday repeatability of the method. 

 

 

6.3.1. Development of the Flow Injection System 

 

The flow procedure involved a number of studies to assess the influence of chemical and physical 

variables, namely the concentration of nitric acid, the placement of the SPE column within the 

manifold, and the pre-concentration flow-rate. Some parameters like the reactor length and inner 

diameter, and configuration of the confluence points were set based on preliminary tests. 

The nitric acid concentration was important for the elution step; concentrations of 1.0, 2.5, 5.0 and 

10 mM were tested. A concentration of 5 mM of acid was chosen for the elution solution. Below 
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this value, it took a longer time to elute Zn from the NTA resin and consequently the peak was 

smaller and wider. For 5.0 or 10 mM nitric acid concentration, equivalent results for zinc were 

registered; however, with a 10 mM conc., Cu interference was observed. So, 5.0 mM 

concentration for HNO3 was chosen for the elution of Zn. 

The preconcentration flow rate was also a parameter of study to maximize the interaction between 

zinc and the NTA resin and reduce the time for each determination. A flow rate of 0.7 mL min-1 

was chosen as the best flow rate to accomplish those two conditions. 

 

 

6.3.2. Interference Studies 

 

Zincon is a non-specific chromogenic reagent that forms a blue complex with a variety of different 

metals. Sodium citrate is referred as a masking agent in order to minimize the interference of 

some metals such as copper, cobalt, manganese and nickel (9). The concentration of sodium 

citrate in the buffer solution was also studied because the presence of citrate also causes a 

decrease in the sensitivity of the zinc determination. Concentrations of 0.3, 0.1, 0.03 and 0.015 

M were studied and the last one was chosen as a concentration that did not decrease the 

sensitivity and can also work as a masking agent for possible metals interferences.  

The position of loading and consequently elution was also studied to minimize the interference of 

copper. If loading and the elution steps were carried out in the same direction, the influence of 

the presence of copper was minimized; this might occur as the stability constant of the NTA-Cu 

is higher than NTA-Zn, so it is more difficult to elute copper from the column (25). When loading 

and elution steps are carried out in the same direction, as the copper should be retained in the 

beginning of the sorbent material, on the elution step the time elapsed to elute the copper is larger, 

not significantly influencing the signal. 

After this optimization process, several metal ions were tested as possible interference in the 

developed system for determination of zinc in plants digests. The ions studied in this experiment 

were Co, Cu, Mn and Ni. The selected concentrations for each ion corresponded to the maximum 

concentration that can be expected in plants (1). The obtained peak height of a standard with and 

without the possible interfering ion was analyzed and the interference percentage calculated 

(Table 6.2). No significant interferences were observed (< 5%), with the exception for Mn that 

showed an interference of 10%; however, this is in the worst case that could happen, when the 

concentration of this metal ion in plant is near 300 mg kg-1.  
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Table 6.2. Interference study of some metal ions. 

Tested 
metal ion 

Normal 
concentrationa 

(mg kg-1) 

Tested 
concentration 
(mg kg-1) 

Signal 
interference 
(%) 

Co2+ 0.02 - 1 1 0 

Cu2+ 5 - 30 30 0.4 

Mn2+ 30 - 300 300 10 

Ni2+ 0.1 - 5 5 0.4 
a values referenced in Kabata-Pendias (1) 

 

 

6.3.3.  Figures of Merit 

 

The developed FIA system has a limit of detection and quantification of 0.04 mg L-1 and 0.12 mg 

L-1, respectively. These values were calculated according to IUPAC recommendations, as the 

concentration corresponding to three and ten times, respectively, the standard deviation of the 

intercept of five consecutive calibration curves divided by the slope of the same calibration 

curves(30,31). A cycle involving analyte retention, elution and spectrophotometric measurement 

takes around 5 minutes. The corresponding Zincon consumption is 0.17 mg, nitric acid is 1.6 mg, 

sodium citrate is 14 mg, sodium hydroxide is 28 mg and boric acid is 108 mg. 

The typical calibration curve was S = 3.7 ± 0.2 [Zn] + 0.18 ± 0.03, where S is the signal 

corresponding to the peak height and [Zn] is the zinc concentration in mg L-1. The presented 

calibration curve corresponds to the mean slope and intercept of three curves with the respective 

standard deviation. After 10 replicate analysis of a plant digest, the relative standard deviation 

was estimated as 4.5%. 
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6.3.4. Application to Plant Digests 

 

The developed system for the determination of total Zn in plants was then applied to plants 

digests. The accuracy validation was attained by comparing the obtained results with the 

developed FIA with the results obtained by a reference procedure for Zn determination, atomic 

absorption spectrometry (AAS) (Table 6.3). 

A linear relationship was established between the developed FIA system (CFIA (mg L-1)) and the 

reference procedure for Zinc determination (CAAS (mg L-1) (ES1). And the linear regression 

obtained was CFIA= 1.01 CAAS - 0.0269 (ESI Fig.6.S1). The intercept was 0.0269 with upper and 

lower limits of – 0.0376 and + 0.0914 and the slope is 1.01 with 95% confidence interval of 0.9708 

– 1.0549. These figures show that the estimated slope and intercept do not differ statistically from 

1 and 0 respectively, so, the two set of results do not show systematic differences (32). In addition, 

relative deviation, between the results obtained with the developed system and reference 

procedure were calculated and proved that there are no significant differences between the two 

set of results, RD ≤ 10 % (Table 6.3).  

For further accuracy assessment, the developed system was applied to the quantification of zinc 

in a certified reference spinach sample (SRM 1570a), 82.3 ± 3.9 mg L-1. The value obtained with 

the developed FIA system was 84.6 ± 1.2 mg L-1, and so a relative deviation of 2.8 % was 

observed, that validates also the developed method for zinc determination. 

 

Table 6.3. Comparison of the results obtained with the developed flow injection system (FIA) for 

zinc determination to those obtained with atomic absorption spectrometry (AAS) for accuracy 

validation. SD. Standard deviation, RD, Relative deviation. 

Sample ID 

FIA  AAS 
RD % 

[Zn] mg L-1 SD  [Zn] mg L-1 SD 

P1 0.62 0.01  0.66 0.00 -6.1 

P2 0.79 0.00  0.85 0.01 -7.1 

P4 0.74 0.01  0.75 0.00 -1.3 

P6 0.58 0.01  0.59 0.00 -1.7 

P7 0.79 0.01  0.84 0.01 -6.0 

P8 1.83 0.01  1.75 0.01 4.6 

P9 0.80 0.00  0.79 0.01 1.3 

P10 3.51 0.00  3.52 0.01 -0.3 
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6.4. Conclusion 

 

The developed flow injection system for zinc determination in plant digests proved to be an 

efficient tool for plants analysis, displaying a low limit of detection (LOD=0.04 mg/L). As far as we 

know, only a few systems were described for the determination of zinc in plant digests using flow 

analysis (7,10,14). When compared with similar methodologies applied to plant digests the 

proposed method presents better features; the detection limit is about ten times lower than those 

displayed by Ribeiro et al. (7) and Dias et al. 2004 (10). 

Although the limit of detection is similar to the one presented by Oliveira et al. 1996 (14), the 

system herein proposed presents some other advantages like the need for a lower quantity of dry 

sample for the digestion process and also a lower volume of this digest is needed for the analysis. 

The reagents used by Oliveira et al., like KCN or formaldehyde have very known toxicity, although 

they are employed with the objective of measuring two metal ions. The consumption of reagents 

and consequently production of effluents are also lower in our work. The proposed system 

involving the use of an ion-exchange resin also allows to measure Zn in digests displaying an 

intrinsic absorption, as the other matrix components are discarded during the pre-concentration 

step, and only the retained analyte is measured after elution. 

Another novelty in the present study is the use of a multi-reflection cell as part of the detection 

system; it showed to be an advantageous set up for detection due to the physical characteristics 

of the flow cell. As described before (33), the physical configuration of the flow cell contributes to 

improve the limit of detection and minimizes refractive index gradients produced in the confluence 

of the nitric acid and the boric acid buffer. With the use of this cell coupled to a red-light emitting 

diode, an enhancement of sensitivity was also achieved. These advantages were confirmed in 

preliminary experiments in comparison with a conventional flow cell. 

The results obtained with the developed system for zinc determination in plant digests were in 

agreement with those obtained with reference procedure. The result obtained with reference 

material was also in agreement with the expected result. 
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Fig. 6.S1. Comparison of the results obtained with the developed FIA system and those obtained 

with a reference method (AAS). The full line represents the linear relationship between the two 

methodologies. 
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7.1. General conclusions 

 

The developed solid phase extraction flow-based methods proved to be valuable tools for 

environmental monitoring. By including the sample preparation step into the automatic method, 

the overall analysis set-up becomes simplified. When the two techniques are coupled (flow 

analysis and the solid phase extraction), the final features are more advantageous in comparison 

with the individual features. And so, a more favourable analytical method in terms of sensitivity, 

selectivity and throughput is devised. Additionally, it is also an advantageous method considering 

the Green Chemistry point of view. 

The use of a PIM containing D2EHPA, and a Chelex 100 resin, showed to be an interesting choice 

to selectively retain zinc and copper, respectively (chapter 3). As far as we know, it was the first 

time that a PIM was used as a sorbent material in a flow-based method. This membrane provided 

the in-line retention of zinc (eliminating zinc from the matrix) and this way the copper 

determination was performed. Furthermore, a PIM is a membrane fairly easy to produce in the 

laboratory. The use of this lab-made sorbent did not impair the features of the method, when 

compared with similar methodologies already described by other authors for copper 

determination. By using, in the same manifold, two different extraction columns and a non-specific 

reagent, it was possible to perform the individual determination without resorting to extra 

calculations, thus reducing the associated errors. When comparing PAR with other non-specific 

reagents, it should be mentioned that is a water-soluble reagent and so the use of organic 

solvents on its preparation is not necessary. Furthermore, PAR is considered a non-hazardous 

substance. 

The developed flow system for iron quantification in fresh and marine water (chapter 4) showed 

to be an efficient tool for water monitoring. In the same apparatus, two different strategies were 

developed for iron quantification, one of those resorting to a SPE process. In the proposed 

method, SPE could act as sample matrix clean-up and/or iron enrichment. For this purpose, a 

NTA resin column (chelating resin) was the chosen sorbent to perform iron extraction. The system 

can be applied for the determination of iron in waters with high salt content (like marine or 

estuarine) and/or low iron content. However, in the presence of fresh waters with high iron content 

and low salt content, there is the possibility of performing the quantification without resorting to 

the SPE strategy (direct determination), minimizing this way the time needed per analysis. The 

use of the newly reported low toxicity iron chelator, MRB13, provided similar features for iron 

spectrophotometric determination when compared with other similar parent ligands previously 

used. 
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A screening method for the total content of biogenic amines in natural waters was successfully 

developed (chapter 5). In this method, a SPE technique was incorporated in the flow system 

aiming for the pre-concentration of the analyte. This pre-concentration was successfully achieved 

by resorting to the Chelex 100 resin, a cation exchange resin. As far as we know, biogenic amines 

are mainly determined based on chromatography-like separation methods. These conventional 

methods are usually laborious, time-consuming and involve the use of organic solvents. With the 

developed flow-based system, an analytical method that employs relatively low-cost equipment 

and reagents was developed. Additionally, the method described in chapter 5 displays real-time 

results and has the possibility of portability for in-situ analysis. 

A flow-based system for the zinc determination (chapter 6) was developed and efficiently applied 

to this metal quantification in plant digests. When compared to similar methods, the system 

described herein needed lower quantities of sample for digestion, lower volume of the digest for 

analysis, lower volume of reagents, and the colour reagent presents lower toxicity. By means of 

a column packed with NTA resin coupled to the flow system, possible interfering species of the 

sample matrix were discarded. The use of a multi-reflection flow cell equipped with a light emitting 

diode showed to be an advantageous detection system due to the intrinsic physical characteristics 

of the flow-cell; the use of this flow cell minimized refractive index signals and improved the 

sensitivity of the method (lowering the limit of detection) when compared with a conventional flow 

cell. 

I would also like to point that flow-based systems are very versatile, being their apparatus fairly 

easy to adapt for different determinations. The associated versatility of the flow-based systems 

played also an important role when coupling different sample preparation strategies within the 

flow-based apparatus. Coupling solid phase extraction to flow systems for the miniaturized and 

automatic sample preparation and quantification, brought notable advantages to the chemical 

analysis field.  
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7.2. Some Suggestions for Future Work 

 

The continuous need of improving sensitivity and selectivity of the analytical determinations leads 

to the continuous need of developing new analytical tools in the analytical chemistry field. 

Furthermore, the analytical chemistry development is indispensable due to the rising knowledge 

of the risk associated to chemicals and to the emerging contaminants.  

As suggestions for future work, several other potentialities could be exploited by taking advantage 

of the improved features when coupling sample pre-treatment and flow-based methods. It would 

be of high value the development of new methods for the determination of toxic metals, usually 

present at trace level in the environment, including in-line SPE as the strategy for pre-

concentration, aiming for reducing the quantification limits. 

For the in-line SPE, the use of new sorbent materials to respond to different analytes could be of 

high interest, thus promoting the selectivity and sensitivity of the analysis. The new materials 

could be designed, for instance, for the quantification of cadmium, lead, nickel and other metals, 

to improve analytical features, specially lowering limits of detection.  

Taking advantage of the intrinsic characteristics of the systems and conditions developed during 

this thesis, it could be interesting to adapt the methods to the new generation of flow-based 

systems (higher associated miniaturization) such as lab-on-valve or µSIA. Furthermore, these 

new generation of flow systems have the advantage of possible portability, making them suitable 

for real-time analysis.  
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