

Structural Health Monitoring

A data-driven damage detection approach

Miguel Nogueira Rodrigues

Under the supervision of

Vera Miguéis

Católica Porto Business School, Universidade Católica Portuguesa

2020

Structural Health Monitoring

A data-driven damage detection approach

Final Assignment in the Dissertation modality

presented to Universidade Católica Portuguesa

to obtain the master’s degree in MANAGEMENT

with specialization in Business Analytics

by

Miguel Nogueira Rodrigues

Under the supervision of

Vera Miguéis

Católica Porto Business School, Universidade Católica Portuguesa

March 2020

 iii

Acknowledgments

The author would like to acknowledge to the Instituto Superior de Engenharia

do Porto for the opportunity to work on the S4Bridges project, as well as to the

S4Bridges team for its hospitality and availability.

Also, a big thanks to the supervisor Vera Miguéis for her support throughout

these six months, always showing availability to help when needed. This work

could not have been done without her wisdom.

 v

Abstract

Despite their importance, many Structural Health Monitoring (SHM) systems

still rely on human inspection to verify the condition of the structure under

analysis. Thus, the present work focus on creating an intelligent system that is

able to detect damage automatically. This system is based on a real-life structure

and the data collected in both undamaged and damaged states of the structure.

Two SHM approaches are proposed. First, explanatory models supported by

machine learning algorithms (linear regression, random forest, support vector

machines and neural network) are used to predict the values of the physical

properties monitored in a regular condition. By comparing the predicted and

observed values, a potential abnormal condition of the structure is detected by

means of a Hotelling T2 control chart. In the second approach, a time series

analysis is adopted, using the cointegration properties of the series to compute

the relationships between the variables monitored. These relationships are

monitored with a X-bar control chart, where a potential change in the

relationship indicate the presence of damage.

The two proposed approaches revealed to be capable of damage detection

only when there is indeed a damage. More so, after the damage has been induced

in the structure, both were able to signal an anomaly before 24 hours have passed.

These results support the fact that SHM systems constitute a relevant tool to

support the decision-makers in charge of monitoring the condition of the

structures.

Keywords: Structural Health Monitoring; Bridge diagnosis; Damage detection;

Linear regression; Random forest; Support vector machine; Neural network;

Cointegration analysis; Johansen cointegration procedure; Temperature effect

 vii

Sumário

Apesar da sua importância, muitos sistemas de Monitorização da Saúde

Estrutural (MSE) ainda dependem da inspeção humana para verificar a condição

da estrutura em análise. Assim, o presente trabalho foca-se na criação de um

sistema inteligente capaz de detetar dano de forma autónoma. Este sistema é

baseado numa estrutura real em que os dados são captados nos estados com e

sem dano da própria estrutura.

Duas abordagens para a MSE são propostas. Primeiro, modelos explicativos

suportados por algoritmos de machine learning (regressão linear, random forest,

redes neuronais e máquina de vetores de suporte) são usados para prever os

valores das propriedades físicas monitorizadas numa condição normal.

Comparando os valores previstos com os observados, uma potencial condição

anormal da estrutura é detetada por meios de uma carta de controlo Hotelling

T2. Numa segunda abordagem, a análise de series temporais é adotada, usando

as propriedades da cointegração das séries para encontrar as relações entre as

variáveis monitorizadas. Estas relações são acompanhadas por uma carta de

controlo X-bar, onde uma potencial mudança nas anteriores indica a presença de

dano.

As duas abordagens propostas revelam ter a capacidade de detetar dano

apenas quando realmente ele existe. Mesmo depois de o dano ter sido induzido

na estrutura, ambas foram capazes de sinalizar uma anomalia antes de passarem

24 horas. Estes resultados apoiam o facto de os sistemas de monitorização da

saúde estrutural revelarem ser ferramentas relevantes ao suporte à tomada de

decisão no que toca à monitorização da condição de estruturas.

 viii

Palavras-chave: Monitorização da Saúde Estrutural; Deteção de dano;

Regressão Linear; Random Forest; Máquina de vetores de suporte; Redes

neuronais; Análise de cointegração; Procedimento de cointegração Johansen;

Efeito temperatura

 ix

Index

Acknowledgments .. iii

Abstract ... v

Sumário ... vii

Index ... ix

Figure Index... xi

Table Index ... xv

Introduction .. 17

Literature review ... 19

Methodology and Data ... 23

1. Structure .. 23

2. Data cleaning process .. 25

3. Explanatory and Time series models .. 27

3.1 Explanatory models ... 27

3.2 Time series models ... 31

Results ... 35

1. Explanatory models... 35

2. Time series analysis ... 40

Conclusion .. 45

Bibliography ... 47

Appendix .. 53

 xi

Figure Index

Figure 1: Visual representation of the structure ... 24

Figure 2: The two conditions the structure was subjected to 25

Figure 3: Sample of temperature data to demonstrate the outlier removal

procedure .. 26

Figure 4: Visual representation of the data division for explanatory models 29

Figure 5: Observed and Predicted observations from the Neural Network

model. Black dots refer to the observed values; Blue dots refer to the predicted

values for the validation period; Green dots refer to the predicted values for the

undamaged test period; Red dots refer to the predicted values for damage period

 .. 37

Figure 6: Difference between the Observed and Predicted observations from

the Neural Network model .. 37

Figure 7: Hotelling T2 control chart for the validation period 38

Figure 8: Hotelling T2 control chart for the validation and undamaged test

period. Vertical line separates these two periods ... 38

Figure 9: Hotelling T2 control chart for the calibration and damage period.

Vertical line separates these two periods ... 38

Figure 10: Graphical representation of which sets of 8 observations include

only out of control observations .. 39

Figure 11: Sample of Temperature F2 Lower, where the values between the

green lines have been interpolated using the Kalman Filter 40

Figure 12: Visual representation of the data division for time series analysis

 .. 40

Figure 13: Cointegration residuals computed from the first cointegration

vector. The horizontal lines relate to the upper and lower limits defined by the

 xii

mean plus or minus 3 standard deviations, respectively, referenced to the

calibration and validation period. The first vertical line divides the calibration

and validation from the undamaged test period, while the second divides the

undamaged test and damage period .. 42

Figure 14: Graphical representation of which sets of 3 observations include

only out of control observations .. 43

Figure 15: Top graph refers to Observed and Predicted observations from the

Neural Network model. Black dots refer to the observed values; Blue dots refer

to the predicted values for the validation period; Green dots refer to the predicted

values for the undamaged test period; Red dots refer to the predicted values for

damage period. Bottom graph represents the difference between the Observed

and Predicted observations .. 107

Figure 16: Top graph refers to Observed and Predicted observations from the

Neural Network model. Black dots refer to the observed values; Blue dots refer

to the predicted values for the validation period; Green dots refer to the predicted

values for the undamaged test period; Red dots refer to the predicted values for

damage period. Bottom graph represents the difference between the Observed

and Predicted observations .. 107

Figure 17: Top graph refers to Observed and Predicted observations from the

Neural Network model. Black dots refer to the observed values; Blue dots refer

to the predicted values for the validation period; Green dots refer to the predicted

values for the undamaged test period; Red dots refer to the predicted values for

damage period. Bottom graph represents the difference between the Observed

and Predicted observations .. 108

Figure 18: Top graph refers to Observed and Predicted observations from the

Neural Network model. Black dots refer to the observed values; Blue dots refer

to the predicted values for the validation period; Green dots refer to the predicted

values for the undamaged test period; Red dots refer to the predicted values for

 xiii

damage period. Bottom graph represents the difference between the Observed

and Predicted observations .. 108

Figure 19: Top graph refers to Observed and Predicted observations from the

Neural Network model. Black dots refer to the observed values; Blue dots refer

to the predicted values for the validation period; Green dots refer to the predicted

values for the undamaged test period; Red dots refer to the predicted values for

damage period. Bottom graph represents the difference between the Observed

and Predicted observations .. 109

Figure 20: Top graph refers to Observed and Predicted observations from the

Neural Network model. Black dots refer to the observed values; Blue dots refer

to the predicted values for the validation period; Green dots refer to the predicted

values for the undamaged test period; Red dots refer to the predicted values for

damage period. Bottom graph represents the difference between the Observed

and Predicted observations .. 109

Figure 21: Top graph refers to Observed and Predicted observations from the

Neural Network model. Black dots refer to the observed values; Blue dots refer

to the predicted values for the validation period; Green dots refer to the predicted

values for the undamaged test period; Red dots refer to the predicted values for

damage period. Bottom graph represents the difference between the Observed

and Predicted observations .. 110

Figure 22: Top graph refers to Observed and Predicted observations from the

Neural Network model. Black dots refer to the observed values; Blue dots refer

to the predicted values for the validation period; Green dots refer to the predicted

values for the undamaged test period; Red dots refer to the predicted values for

damage period. Bottom graph represents the difference between the Observed

and Predicted observations .. 110

 xv

Table Index

Table 1: Error metrics for the Neural Network Model 36

Table 2: Differences in the data division done for the explanatory models and

time series analysis .. 41

Table 3: SHM related studies summary .. 57

Table 4: Code difference between the loop designed for 15, 30 and 45 minutes

differences and the loop designed for differences between 1 hour and 23h45 .. 64

Table 5: Code difference between the loop designed for 15, 30 and 45 minutes

differences and the loop designed for differences between 24 hours 64

Table 6: Error metrics for the Linear Regression Model 106

Table 7: Error metrics for the Random Forest Model 106

Table 8: Error metrics for the Support Vector Machine Model 106

 17

Introduction

The current society lives surrounded by a growing number of infrastructures

that are used regularly. Thus, it is imperative to have constant revisions and

quality monitoring of the mentioned infrastructures to ensure the minimum

quality standards, avoiding any victims and accidents that result from

infrastructures degradation and damages. In this perspective, monitoring

systems have gained relevance, in particular because many infrastructures such

as bridges are used beyond their life expectancy and are exposed to higher

pressure from automobiles due to increased transport capacity (Neves, Gonz, &

Leander, 2018).

In order to detect and report structural damages, sensitive systems have been

developed to avoid permanent damages or an altogether collapse of a structure.

These systems are called Structural Health Monitoring (SHM) systems and are

responsible for collecting data and use it as input in a panoply of techniques that

will detect if future data refer to potential anomalies and therefore a possible

damage.

Although there are many infrastructures that throughout the previous

decades were monitored, originating high volumes of data that characterize their

condition, only in some cases the data produced was used to support decision-

making process in what regards health assessment (Tomé, Pimentel, & Figueiras,

2019). The data recorded has usually a large data size, a high number of variables

and low quality, making the use of Data Mining (DM) technology a must to

 18

extract knowledge from the data (Duan & Zhang, 2006; Gordan, Razak, Ismail, &

Ghaedi, 2017).

Throughout the last years, complex methods have been suggested and

implemented in the SHM literature, which in turn are being slowly implemented

in real SHM systems. These methods can mainly be divided in explanatory

models and time series based models. In short, the explanatory models use one

or more variables (explanatory variables) to explain the structure characteristics

(dependent variables) (Farreras-Alcover, Chryssanthopoulos, & Andersen,

2015), while time series analysis use historic data to find a trend in the structure

characteristics (Omenzetter & Brownjohn, 2006; Worden, Cross, & Barton, 2012).

In this work, both methods will be implemented in the development of a SHM

system capable of damage detection. For explanatory models, four different

machine learning algorithms will be used including linear regression, random

forest, support vector machine and neural networks. After, they will be tested

against each other by means of performance metrics comparison. Only the model

with the best performance will be considered. As for the time series based models

the cointegration properties of the series will be studied to compute the

relationship between variables.

The damage detection process comes in the form of control charts. In the

explanatory models, the difference between the predicted and observed values

will be the input of a Hotelling T2 based control chart. Meanwhile, the

cointegration residuals that come from the relationship among variables will be

applied to a X-bar based control chart.

All the practical procedures were developed in R language. In order to allow

other users to learn and replicate the methods adopted, all the written code will

be shared in the following work. Throughout Section 3 and Section 4, references

will be made to the respective parts of the code.

 19

Chapter 1
Literature review

Studies on SHM usually follow one of two approaches, either a global

approach or a local approach (Chang, Flatau, & Liu, 2003). The first focuses on

data collection and analysis of the state of the infrastructure considering only the

dynamic effects and compares it to its normal condition. The local approach

focuses on the quantification of the damage in specific parts of the structure such

as the cables of a bridge (Farreras-Alcover et al., 2015). The local approach could

be seen as the next step of the global-based SHM stage, where the first step is to

detect damage and the second step to locate and quantify such damage (Sharma

& Sen, 2018; Tibaduiza, Mujica, & Rodellar, 2011).

The table in Appendix 1 summarizes some studies on the topic of SHM,

highlighting the common practices and algorithms that have been used recently

to support them. These studies are supported by three main types of data. The

first will be called virtual data approach and relies on using a virtual simulated

structure to generate data from an undamaged and damaged state. Another,

called virtual damage data approach, refers to the use of a real-life structure to

record data in an undamaged state and then simulate the same structure virtually

with damage to gather new data. Finally, there is the situation in which both

undamaged and damaged state data come from a real-life structure. This is called

physical data approach.

 20

Example of studies following a virtual data approach are: (Dunia & Qin, 1998;

Kim, Ryu, Cho, & Stubbs, 2003; Kromanis & Kripakaran, 2013; Neves et al., 2018;

Posenato, Lanata, Inaudi, & Smith, 2008; Slišković, Grbić, & Hocenski, 2012; Yan,

Kerschen, De Boe, & Golinval, 2005). In this approach, the insertion of damage in

the structure is easier and without any real-life danger. This approach also

promotes consistency on the data since the method of data collection in the

undamaged and the damaged state is the same. However, some real-world

variables may not be encompassed in it, making the models that come from this

data less reliable. These models usually do not involve independent variables,

being the principal component analysis the most used technique in this setting.

However, the variables considered when modelling are generally different

between studies.

All studies analyzed that adopt a virtual damage data approach (Tomé et al.,

2019; Tomé, Pimentel, & Figueiras, 2020; Wipf, Phares, Doornink, Greimann, &

Wood, 2007), use a real bridge to record data in an undamaged state. This allows

for close view of the reality, resulting in models that have an accurate base to

incorporate the behavior of the bridge in question.

When it comes to a physical data approach, there is a need to divide this

approach in two categories. The first category uses a small structure to replicate

the real structure (Barthorpe, 2010; Cross, Worden, & Chen, 2011; Farrar,

Doebling, & Nix, 2001; Kesavan, John, & Herszberg, 2008; Pandey, Thostenson,

& Heider, 2013; Park & Inman, 2007; Phares, Lu, Wipf, Greimann, & Seo, 2013;

Rosales & Liyanapathirana, 2017; Tibaduiza et al., 2011; Yan et al., 2005). In this

category, several models are used for SHM purposes. Some examples are

principal component analysis and linear regression. Despite the different

variables used in these models, the most frequent are strain and vibration. The

second category refers to the studies that use a real structure to record both data

in an undamaged and damaged states (Da Silva, 2017; Farreras-Alcover et al.,

 21

2015; Reynders, Wursten, & de Roeck, 2014; Worden et al., 2012). It is rare to have

the opportunity to record data of a bridge with damage in a controlled way,

making these studies have a high value added when considering the accuracy

that SHM systems can have. In this setting, the most common variables used to

support the models are both temperature and vibration. The principal

component is the most popular method in this branch of the literature.

Overall, the literature reveals a clear preference for the use of techniques that

do not accommodate independent variables, i.e. other techniques than the

explanatory ones. The most used one is principal component analysis (Cross et

al., 2011; Da Silva, 2017; Dunia & Qin, 1998; Posenato et al., 2008; Reynders et al.,

2014; Slišković et al., 2012; Tibaduiza et al., 2011; Tomé et al., 2019; Yan et al.,

2005) and cointegration (Dao, 2013; Tomé et al., 2019, 2020; Worden et al., 2012).

Meanwhile, only a third of the studies presented use machine learning,

prioritizing the use of linear regression (Farreras-Alcover et al., 2015; Phares et

al., 2013), autoregressive models with exogeneous inputs (Park & Inman, 2007;

Rosales & Liyanapathirana, 2017) and neural networks (Da Silva, 2017; Neves et

al., 2018). Regarding the variables monitored by the SHM systems, the most

widely adopted variables are vibration, then strain and finally temperature.

 23

Chapter 2
Methodology and Data

This study uses a real-life structure to support the development of two SHM

models, i.e. one explanatory model, supported by machine learning techniques,

and another based on time series analysis, supported by cointegration. In the next

section it is detailed the data collected and the methodology proposed.

1. Structure

As mentioned before, a real structure is used to support this study and is

consequently used to gather undamaged and damaged state datasets. This

structure is a partial representation of a bridge, formed by two iron beams with

the lower being thicker (see Figure 1). The structure is equipped with several

sensors, such as an electrical resistance extension meters, accelerometers,

inclinometers, displacement transducers, GPS and thermometers. These sensors

collect data at a predetermined interval of time. Every sensor writes data every

15 minutes, which in turn generates 96 observations every 24 hours. These

sensors enabled the collection of data from the end of April 2018 until the

beginning of April 2019.

 24

Figure 1: Visual representation of the structure

Throughout this period, the structure was exposed to two different situations

(please refer to Figure 2). A period in which the structure is just being influenced

by its dynamic and static properties which will therefore be used as a reference

(between 27/04/2018 and 10/09/2018), and then a second state where some degree

of damage is induced (from 10/09/2018 until the end of April 2019). The damage

was induced by attaching a steel cable to the structure and connect it to the

building where it is planted. The building is made of concrete and has an

expansion joint. The cable is connected to the segment of the building that the

structure is not placed. Since the cable is connected to the other segment of the

building, a different response will be registered due to the different displacement

caused by thermal contraction and expansion. Therefore, throughout the period,

different tensions will be stimulated through the cable and these anomalies will

be considered a case where the structure is under damage.

 25

Figure 2: The two conditions the structure was subjected to

2. Data cleaning process

Since the accelerometers collect data only thrice per day, they were discarded

from the dataset. This results in four group of variables being collected, i.e.:

thermometers (7 sensors), strain gauge (4 sensors), displacement transducer (2

sensors) and inclinometer (3 sensors).

Due to the use of sensors, there will be inevitably some outliers that will need

to be treated. Firstly, the dataset was divided into two, one containing the data

that concerns the undamage period (stored in the DataUD object) and the other

that refers to the damage period (stored in the DataD object). Only the former

was considered in the data cleaning process. This was an attempt to mimic a real

case scenario where there is access to data that is sure to be undamaged and then

have data that may have outliers due to the existence of damage. In the case of

data representing the damage period, having a data cleaning process could result

in removing observations reflecting the damage and not anomalies in the sensors.

To identify outliers that should be removed from the undamage period, some

techniques were tested. The process that provided better results was a procedure

based on the absolute difference between past and future observations. First, the

absolute difference between an observation and the previous observation was

computed as well as the absolute difference between that observation and the

subsequent observation. These two differences in the values of the variables

monitored correspond to deviations observed in intervals of 15 minutes. If these

27/04/2018

• No cable attached

• Undamaged state

10/09/2018

• Structure connected with a
8m steel cable

• Damaged state

 26

two differences were greater than the mean of the differences plus three standard

deviations, the observation was removed. This procedure was also conducted for

differences of 30 minutes, 45 minutes and so on, until an observation was

compared to the homologous observation of the day before (96 observations

before) and the homologous observation of the day after (96 observations after).

A visual representation of this procedure can be found in Figure 3 where a

random observation in green is first compared to the observations 15 minutes

before and after in red, then compared to the observations 30 minutes before and

after in blue, and thirdly compared to the observation 45 minutes before and after

in orange.

Figure 3: Sample of temperature data to demonstrate the outlier removal procedure

This procedure allowed the thoroughly detection and removal of outliers

present in the dataset. Users interested in how this procedure was coded in R

should follow Appendix 2.1. where an explanation of its mechanics is there fully

described.

After computing the differences and classify them as being above or not the

mean plus three standard deviations, they can finally be removed from the

dataset altogether (see Appendix 2.2.). As mentioned before, this process was

applied only to the data referring to the undamage period of the bridge. When it

comes to the rest of the data, in the process of inserting damage, the data suffered

 27

a shift in the recorded variables. The value of the shift was assumed to be equal

to the difference between the mean of the last 672 observations of the undamage

period and the mean of the first 672 observations of the damage period. This

value was then applied to the damage data, removing the effect of the shift. The

group of 672 observations considered was picked to represent a week of values.

3. Explanatory and Time series models

After a time consuming data processing stage, the data was used to support

the damage detection system. In the development of the SHM system, two types

of approaches were used and compared in order to define which model can

better understand the data in question.

First, explanatory models were adopted, using both the structure and ambient

temperature to predict the structure characteristics. In this case, several machine

learning techniques were tested. Having the predictions of the structure

characteristics, it is possible to evaluate whether the actual characteristics are

deviating from what was expected to happen, i.e. it is possible to detect an

abnormal behavior.

Concerning the time series analysis, the cointegration properties were used to

draw the relationships between the variables regarding the structure

characteristics. These relationships come in the form of linear cointegration

vectors that can be used to generate cointegration residuals. Since these residuals

represent the relationship between the variables, any abrupt changes in them

should indicate a change in this relationship and therefore an anomaly.

3.1 Explanatory models

 28

Foremost, the explanatory and dependent variables need to be defined. On

this case, the temperature related variables will be used as explanatory variables,

while the variables coming from the other three groups of sensors will be used

as dependent variables independently. This is, an explanatory model will be

created for each variable related to strain gauge, displacement transducer and

inclinometer, resulting in a total of 9 models.

The temperature related variables that came from the 7 thermometers were

chosen as the explanatory variables with the assumption that the temperature

will affect the variables representing the structure, since it is part of its dynamic

properties.

By creating these explanatory models, there is the ability to predict the

expected values of the variables in a regular condition, and likewise compare

them to the observed values. The difference between the predicted and observed

values is the error or residual. The error can also be seen as the part that the

temperature cannot explain. Following this line of thought, the residuals

produced by these models are the true behavior of the variables without the

influence of the temperature. Finally, by using the residuals as the input of the

Hotelling T2 control chart, it is possible to detect when there is damage in the

structure (Dunia & Qin, 1998; Slišković et al., 2012; Tibaduiza et al., 2011; Tomé

et al., 2019, 2020). Thus, for the damage period, the model should predict values

significantly different than the ones observed since this data reflect an abnormal

behavior, which was not observed before. On the other hand, for the period

without damage, the predictions are expected to be similar to the observed

values.

The model proposed should detect anomalies but should not flag false positive

situations, i.e. situations in which there is not a damage and the model classifies

as an abnormal period. Therefore, both the data that refers to the damage period,

as well as the undamage test period that consists on the last month of the

 29

undamaged period were considered to evaluate the ability of the model

proposed to detect a damage when it happened. This means that only the data

referring to the period before the undamage test period was used to verify the

ability of the SHM model. This period of data was considered to train (calibration

period) and test (validation period) the four machine learning techniques used

for prediction purposes. In Figure 4, a representation of the data division is

illustrated. These machine learning algorithms were linear regression, random

forests, support vector machines and neural networks. The respective parameters

for each algorithm were computed and tested in unseen data. The parameters of

the models were then tuned using a grid search approach and the final

performance of the models was tested in unseen data.

Figure 4: Visual representation of the data division for explanatory models

The model creation process went through randomly dividing the data in the

undamage period, except for the undamage test period data, into two folds with

the same number of observations (see Appendix 2.3.). Thereafter the cross-

validation technique was used to evaluate the accuracy of the model and try to

avoid overfitting problems. The first fold (stored in object DataVal) was divided

into ten random samples, from which the algorithm takes nine of those and then

tests its performance one the sample that was left out. This is done ten times, each

time leaving a different sample out, and computing the ten sets of parameters.

 30

Firstly, the linear regression was embraced. Although this is a simple

algorithm, it has its advantageous for its low computational needs with the

ability to create great predictive models (see Appendix 2.4. and 2.5.). Secondly,

the Random Forest algorithm was used by referring to 1000 decision trees in

order to create the regression parameters and decide how many variables are

necessary to predict accurately (see Appendix 2.6. and 2.7.). Thirdly, the data was

fed to a Support Vector Machine model with a variant cost and gamma parameter

(see Appendix 2.8. and 2.9.). Finally, the Neural Network model was used with

changes to the size and decay parameters (see Appendix 2.10. and 2.11.).

With the parameters estimated, they are to be applied to the second fold

created earlier (stored in object DataCal). This fold will be referred as the

validation period from now on. The validation period was also handled in a

cross-section manner to avoid overfitting problems. The results that come from

the validation period should already mirror what would be expected in the

undamage period and will be applied to the undamage test and damage period

(both stored in object DataNew). As said earlier, applying these parameters

should wield an accurate prediction in the undamage test period but not to the

in the damage period.

The performance metrics chosen to verify the performance of the machine

learning models were the following: coefficient of determination (R2), root mean

square deviation (RMSE), mean absolute error (MAE) and mean absolute

percentage error (MAPE).

Regarding the control charts, as mentioned before, the Hotelling T2 control

chart was used. This control chart can be used in multivariate settings and

consequently can evaluate simultaneously whether the values of the strain

gauge, displacement transducer and inclinometer variables reflect an anomaly.

In short, the Hotelling T2 control chart considers the mean of each individual

residual and a matrix of the covariance between each pair of residuals (Santos-

 31

Fernández, 2012). This means that changes in the mean and variance of the

residuals should result in a greater Hotelling T2. An Upper Control Limit (UCL)

is calculated and any values above of the UCL are out of control and represent

an abnormal behavior in comparison to the rest of the data.

The Hotelling T2 control chart is a two phased quality control chart. This

means that in phase I one dataset is used to set a base mean and covariance

matrix, while on phase II the mean and covariance matrix of the phase I are used

as input along with a second dataset (Harris & Harris, 1995). In practice (see

Appendix 2.12.), the validation period data is used for the Hotelling T2 control

chart in phase I, while both the undamage test and damage period data are used

as input for the phase II.

3.2 Time series models

Time-series models take a set of observations ordered in a time order,

registered in a defined pattern, and try to find a trend to fit it. These models do

not accept datasets with missing values since it will violate the rule of being

registered in a defined pattern, on this case every 15 minutes. In order to bypass

this, there is a need to infer some missing values. This obviously has drawbacks

since it will try to replicate the normal behavior of the series while the original

data may have been abnormal. Nonetheless, it is a necessary step that should be

taken into consideration when analyzing the results.

To interpolate the missing values, the Kalman filter was chosen. In simple

terms, by feeding the algorithm a dataset and specifying the seasonal period, it

will predict the missing value by replicating the trend of the series. For further

details, please refer to Rudolf E. Kalman (Kalman, 1960, 1963; Kalman & Bucy,

1961). The process of interpolating the missing values in R is documented in the

appendix (Appendix 2.13.).

 32

Cointegration is a property of the time-series that defines the relationship

between several variables. Variables are only said to be cointegrated if there is a

linear relationship between them. This linear relationship can only be determined

if the variables themselves are stationary. For a variable to be stationary, its

parameters such as mean and variance cannot change over time (Chatfield, 1975).

In case one or more variables are not stationary, the difference between an

observation and p observations before must be done (Harris & Harris, 1995).

Considering p to be 1, it is computed the difference between an observation and

the one before, in this case it would be the differences in 15 minutes.

To check for stationarity, stationarity statistic test needs to be used, such as the

augmented dickey-fuller (Dickey & Fuller, 1979, 1981). Nonetheless, before

applying a stationarity test, the number of lags (p) need to be determined. To

determine the optimal number of lags (p) some vectors autoregressive need to be

created considering different p’s and then compared, using some model selection

criteria like AIC, HQ, SC, FPE (Liew, 2004, 2006).

After the series is deemed stationary, it is possible to explore the cointegration

properties, computing the relationships between variables present in the series.

In this work, the linear relationships between variables will be computed using

the Johansen test (Johansen, 1988). The number of linear relationships that come

from it can be at minimum zero and at maximum the number of variables minus

one. If the number of linear relationships is zero, then the series are not

cointegrated. The number of linear relationships is also tested in the Johansen

test.

The determination of the optimal number of lags, the application of

stationarity tests and the discovery of the cointegration vectors is present in the

appendix (see Appendix 2.14.).

The parameters that define the relationships are called cointegration vectors,

while the series produced by the cointegration vectors are called cointegration

 33

residuals. Although the cointegration residuals values do not represent anything

per se, any anomalies in them translates into a shift in the relationships between

the variables. This shift is expected to signal a change in the behavior of the

structure and the presence of damage. Therefore, by monitoring the cointegration

residuals, it is possible to detect the presence of damage. For monitoring, an X-

bar control chart is used, where the upper and lower limit are the mean plus or

minus 3 standard deviations, respectively, in reference to the validation test

period (Appendix 2.15.).

 35

Chapter 3
Results

1. Explanatory models

In order to validate the use of explanatory models to detect anomalies, it is

important to evaluate the performance of the predictive models proposed. This

was performed in the calibration period. Moreover, the usage of different

machine learning algorithms leads to different results. Thus, Table 1 shows the

performance of each model supported by Neural Networks model. Appendix 3

presents the results for Linear Regression, Random Forest and Support Vector

Machine models. Comparing the metrics, the models supported by Neural

Networks seem to perform better, producing an average R2 of 84% with a

relatively low error variance in comparison the other models. Although the

Random Forest model had some similar values, both the Linear Regression and

Support Vector Machine Models had a worse overall performance. Based on

these results, the neural networks were the algorithm adopted to perform the

predictions.

 36

Neural Networks (error metrics)

Strain

F1

Middle

Strain

F2

Middle

Strain

F1

Lower

Strain

F2

Lower

LVDT

Upper

LVDT

Middle

Inclinometer

Upper

Inclinometer

Middle

Inclinometer

Lower

R2 0,84 0,79 0,85 0,87 0,87 0,70 0,92 0,89 0,88

RMSE 5,37 6,54 5,40 8,51 0,13 0,07 7,96 6,95 6,70

MAE 4,05 4,88 4,14 6,19 0,10 0,6 5,59 5,30 5,35

MAPE 0,02 0,03 0,02 0,18 0,10 0,65 0,00 0,00 0,00

Table 1: Error metrics for the Neural Network Model

Focusing on the Inclinometer Upper variable, the model provides accurate

predictions. This can be verified in Figure 5, in particular when comparing the

observed values in dark and the predicted values in blue. For the same period,

the error observed in Figure 6 also empathizes the quality of the predictions.

Having validated the performance of the neural networks in what regards

their prediction ability in this setting, it is important to verify whether they are

able to detect anomalies and whether they do not signal situations in which no

anomaly occurred. Thus, it can be observed in green the predictions for a regular

period (undamage test period) and conclude that the predictions seem to be

aligned with observed values. The error for this same period also seems to be

reasonable given the past error.

However, as soon as the damage is introduced (damage period), represented

after the red line, the behavior of the structure changes and the model can no

longer encompass it. This is also shown in the residuals, in Figure 6, which start

to fluctuate a lot more. In fact, there is a significant change between the observed

and predicted observations, from the moment the damage occurred, which is

mirrored in the residual values. From this, an alarm system can be developed to

detect this change automatically and more robustly.

 While only the Inclinometer Upper variable was presented here, the

graphics of the other variables can be found in the Appendix 4. The pattern

 37

observed for Inclinometer Upper variable is similar to that observed for the other

variables.

Figure 5: Observed and Predicted observations from the Neural Network model. Black dots refer

to the observed values; Blue dots refer to the predicted values for the validation period; Green

dots refer to the predicted values for the undamaged test period; Red dots refer to the predicted

values for damage period

Figure 6: Difference between the Observed and Predicted observations from the Neural Network

model

As a way to develop a tool that combines the residuals of the whole set of

variables that are used to evaluate the condition of the structure, the Hotelling T2

control chart is adopted. Looking at Figure 7, the validation period used to

calibrate de control chart, only few values are above the control limit, more

precisely 0,71% of the values. The same occurs for the undamage test period (see

Figure 8) with 2,5% of the values above the UCL. As for the damage period (see

Figure 9), there are much more values above the limit where 42,62% of the values

are out of control, highlighting an abnormal behavior.

 38

Figure 7: Hotelling T2 control chart for the validation period

Figure 8: Hotelling T2 control chart for the validation and undamaged test period. Vertical line

separates these two periods

Figure 9: Hotelling T2 control chart for the calibration and damage period. Vertical line separates

these two periods

 39

The number of successive observations out of the control limits was also

analyzed. Thus, sets of 96 observations out of control were considered, in the

sense that if in a period of 24h there were only values out of control, then there

was with no doubt some damage in the structure. This approach showed to be

promising, as this only occurred in the damage period. A similar analysis was

developed considering only 2 hours and this revealed to be a better approach, as

in case 8 observations in a row are out of control, there is a 100% confidence that

there is something wrong with the structure in question (Appendix 2.16.). With

this method false positives are completely removed, false negatives do not exist

and the damage detection system is quicker.

The described procedure is illustrated in Figure 10. In this figure each dot

represents a set of 8 consequent observations. If all the observations in a set are

out of control, then Alarm equals 1. Observing the validation and undamage test

period, it never happens to have 8 out of control observations for 2 hours straight.

In the damage period, 12% of the sets include solely out of control observations

which is quite alarming on itself. Nonetheless, the first damaged situation is

flagged after 20h30m of damage being implemented. Also, as time passes, not

only the number of sets where Alarm is 1 increase but the number of sets without

any out of control observation decreases.

Figure 10: Graphical representation of which sets of 8 observations include only out of control

observations

 40

2. Time series analysis

After the data cleaning process referred in Section 2.3., the series started to

have some missing values, meaning that it was not possible to apply any kind of

time series analysis. Therefore, as mentioned before, some values were

interpolated with the Kalman filter. An example of interpolated values can be

seen in Figure 11. After the missing values were interpolated, the series is finally

complete in the sense that it can be used in time series analysis without violating

any assumption. The data is then divided into 3 different datasets. In Figure 12

it can be seen the data division, while Table 2 presents the differences between

this division and the one referred in Section 3.1. for the explanatory models.

Figure 11: Sample of Temperature F2 Lower, where the values between the green lines have been

interpolated using the Kalman Filter

Figure 12: Visual representation of the data division for time series analysis

 41

Explanatory models Time series analysis

Calibration period Calibration and Validation

period Validation period

Undamage test period Undamage test period

Damage period Damage period

Table 2: Differences in the data division done for the explanatory models and time series analysis

As stated before, a stationarity test needs to be used. To do so, several vectors

autoregressive were created for the validation period, considering p to be

anything between 1 and 300. After doing so, the AIC, HQ, SC, FPE criteria were

used. The optimal number of lags that resulted from them were 56, 15, 4 and 56

respectively. Therefore, the number of lags chosen was 56 since 2 different

criterions suggested it.

Having the number of lags selected, it was possible to apply the augmented

dickey-fuller test which states that the series is not stationary. This was expected

since it is known the temperature affects the variables from the exploratory

models and the temperature itself is not stationary. By differencing the series

with 56 lags and test it once again for stationarity, the series is now stationary

and therefore a series of order I(1) is enough.

After making sure the data in the calibration and validation period is

stationary, the Johansen test was used to know how many cointegration vectors

there were, and then to compute them. From this, 8 different cointegration

vectors were calculated.

Afterwards, the data in the undamage test and damage period were also tested

for stationary. By considering the data without integration, both series were not

stationary. However, by differencing the series with 56 lags they started to

present stationarity.

 42

Since all the series present stationarity, they were all once again compiled into

one. From these, the cointegration vectors computed for the calibration and

validation period were applied to the whole series, generating 8 cointegration

residuals. The first set of residuals is seen in Figure 13. By focusing on the

calibration and validation period, an X-bar control chart was developed.

Figure 13: Cointegration residuals computed from the first cointegration vector. The horizontal

lines relate to the upper and lower limits defined by the mean plus or minus 3 standard

deviations, respectively, referenced to the calibration and validation period. The first vertical line

divides the calibration and validation from the undamaged test period, while the second divides

the undamaged test and damage period

Once again, both in the calibration and validation and the undamage test

period, there are observations that fall outside the limits defined. To avoid this

problem the method described in Section 3.1 is adopted. This time, instead of

testing for 2 hours of values outside of the control limits, it is possible to be more

restrictive and consider only 45 minutes (see Appendix 2.17.). Doing so, allows

this method to detect damage only in the damage period as seen Figure 14.

Nonetheless, this system is only capable of flagging about 1% of the sets of

observations in this period. Even so, this method is able detect damage 5 hours

after the damage is introduced.

 43

Figure 14: Graphical representation of which sets of 3 observations include only out of control

observations

 45

Conclusion

Keeping in mind the increase importance of a reliable SHM system nowadays,

this work focused on the development of a system capable of detecting damage

autonomously. The system should be robust enough to avoid false positives,

while being sensitive enough to detect damage in a structure.

In the development of this system, a real-life partial experimental model of a

bridge was used as case study. This structure was subjected to a period of free

action and a period of damage. This allowed for very rich data capable to mirror

what a real-life behavior would be, which in turn made the system that depend

on the data more reliable.

The developed system took advantage of two different methods to test if it

was possible to produce a model that could encompass the behavior of the

structure. The first method relied on the use of machine learning algorithms

(linear regression, random forest, support vector machine and neural network)

to build explanatory models. While the second took advantage of time series

analysis to draw the cointegration properties of the structure.

Finally, control charts were used to detect anomalies. By feeding the control

charts data of a structure in a normal condition, they could detect atypical

behaviors that signal damage. In the case of the explanatory models, the residuals

that came from the difference between the predicted and observed values were

used as input of Hotelling T2 based control chart. Nevertheless, regarding time

series analysis, the cointegration residuals were used in the development of a X-

bar based control chart.

The creation of the control charts revealed that explanatory models have a

greater damage detection capability than the results that come from time series

analysis. While both these methods enabled the detection of damage only in the

 46

damage period, their sensitivity difference is clear. Considering only the damage

period, the cointegration residuals allowed for 1% of the observations to be

correctly detected as damage, while the system developed around the

explanatory models was capable of flagging 12% of the observations.

Although the explanatory model system is more reliable in damage detection,

when it comes to how quickly a damage is detected the roles swap. Despite the

explanatory model system detects a damage situation after 20 hours and 30

minutes of damage being induced in the structure, the cointegration approach

signals damage only 5 hours after.

 Even though there is a significant difference between the two systems

developed, it should be considered that the one based on the cointegration

properties of the series had some values interpolated, which could hinder its

performance.

Bibliography

Barthorpe, R. J. (2010). On Model and Data Based Approaches to Structural Health

Monitoring.

Chang, P. C., Flatau, A., & Liu, S. C. (2003). Review paper: Health monitoring of

civil infrastructure. Structural Health Monitoring, 2(3), 257–267.

https://doi.org/10.1177/1475921703036169

Chatfield, C. (1975). The Analysis of Time Series: Theory and Practice.

Cross, E. J., Worden, K., & Chen, Q. (2011). Cointegration: A novel approach for

the removal of environmental trends in structural health monitoring data.

Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 467(2133), 2712–2732. https://doi.org/10.1098/rspa.2011.0023

Da Silva, M. F. M. (2017). Machine learning algorithms for damage detection in

structures under changing normal conditions.

Dao, P. B. (2013). Cointegration method for temperature effect removal in

damage detection based on lamb waves. Diagnostyka, 14(3), 61–67.

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for

Autoregressive Time Series With a Unit Root. Journal of the American

Statistical Association, 74(366), 427. https://doi.org/10.2307/2286348

Dickey, D. A., & Fuller, W. A. (1981). Likelihood Ratio Statistics for Autoregressive

Time Series with a Unit Root. 49(4), 1057–1072.

https://doi.org/10.1017/CBO9781107415324.004

Duan, Z., & Zhang, K. (2006). Data Mining Technology for Structural Health

Monitoring. Pacific Science Review, 8(1), 27–36.

Dunia, R., & Qin, S. J. (1998). Subspace Approach to Multidimensional Fault

Identification and Reconstruction. En, 44(8).

Farrar, C. R., Doebling, S. W., & Nix, D. A. (2001). Vibration-based structural

 48

damage identification. Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences, 359(1778), 131–149.

https://doi.org/10.1098/rsta.2000.0717

Farreras-Alcover, I., Chryssanthopoulos, M. K., & Andersen, J. E. (2015).

Regression models for structural health monitoring of welded bridge joints

based on temperature, traffic and strain measurements. Structural Health

Monitoring, 14(6), 648–662. https://doi.org/10.1177/1475921715609801

Gordan, M., Razak, H. A., Ismail, Z., & Ghaedi, K. (2017). Recent developments

in damage identification of structures using data mining. Latin American

Journal of Solids and Structures, 14(13), 2373–2401.

https://doi.org/10.1590/1679-78254378

Harris, R. I., & Harris, R. I. D. (1995). Using Cointegration Analysis in Econometric

Modelling.

Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of

Economic Dynamics and Control, 12(2–3), 231–254.

https://doi.org/10.1016/0165-1889(88)90041-3

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

Journal of Fluids Engineering, Transactions of the ASME, 82(1), 35–45.

https://doi.org/10.1115/1.3662552

Kalman, R. E. (1963). Mathematical Description of Linear Dynamical Systems.

Journal of Society for Industrial and Applied Mathematic.

https://doi.org/10.1016/S0076-5392(08)63251-8

Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and prediction

theory. Journal of Fluids Engineering, Transactions of the ASME, 83(1), 95–108.

https://doi.org/10.1115/1.3658902

Kesavan, A., John, S., & Herszberg, I. (2008). Strain-based structural health

monitoring of complex composite structures. Structural Health Monitoring,

7(3), 203–213. https://doi.org/10.1177/1475921708090559

 49

Kim, J. T., Ryu, Y. S., Cho, H. M., & Stubbs, N. (2003). Damage identification in

beam-type structures: Frequency-based method vs mode-shape-based

method. In Engineering Structures (Vol. 25). https://doi.org/10.1016/S0141-

0296(02)00118-9

Kromanis, R., & Kripakaran, P. (2013). Advanced Engineering Informatics

Support vector regression for anomaly detection from measurement

histories. Advanced Engineering Informatics, 27(4), 486–495.

https://doi.org/10.1016/j.aei.2013.03.002

Liew, V. K. (2004). On Autoregressive Order Selection Criteria On

Autoregressive Order Selection Criteria. Computational Economics, (March),

1–14. Retrieved from http://129.3.20.41/eps/comp/papers/0404/0404001.pdf

Liew, V. K. (2006). Which Lag Length Selection Criteria Should We Employ.

Economics Bulletin, 3(33), 1–9.

Neves, A. C., Gonz, I., & Leander, J. (2018). Experimental Vibration Analysis for Civil

Structures. 5(January), 72–84. https://doi.org/10.1007/978-3-319-67443-8

Omenzetter, P., & Brownjohn, J. M. W. (2006). Application of time series analysis

for bridge monitoring. Smart Materials and Structures, 15(1), 129–138.

https://doi.org/10.1088/0964-1726/15/1/041

Pandey, G., Thostenson, E. T., & Heider, D. (2013). Electric time domain

reflectometry sensors for non-invasive structural health monitoring of glass

fiber composites. Progress in Electromagnetics Research, 137(February), 551–

564. https://doi.org/10.2528/PIER13020611

Park, G., & Inman, D. J. (2007). Structural health monitoring using piezoelectric

impedance measurements. Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences, 365(1851), 373–392.

https://doi.org/10.1098/rsta.2006.1934

Phares, B., Lu, P., Wipf, T., Greimann, L., & Seo, J. (2013). Field validation of a

statistical-based bridge damage-detection algorithm. Journal of Bridge

 50

Engineering, 18(11), 1227–1238. https://doi.org/10.1061/(ASCE)BE.1943-

5592.0000467

Posenato, D., Lanata, F., Inaudi, D., & Smith, I. F. C. (2008). Model-free data

interpretation for continuous monitoring of complex structures. Advanced

Engineering Informatics, 22(1), 135–144.

https://doi.org/10.1016/j.aei.2007.02.002

Reynders, E., Wursten, G., & de Roeck, G. (2014). Output-only structural health

monitoring in changing environmental conditions by means of nonlinear

system identification. Structural Health Monitoring, 13(1), 82–93.

https://doi.org/10.1177/1475921713502836

Rosales, M. J., & Liyanapathirana, R. (2017). Data driven innovations in structural

health monitoring. Journal of Physics: Conference Series, 842(1).

https://doi.org/10.1088/1742-6596/842/1/012012

Santos-Fernández, E. (2012). Multivariate Statistical Quality Control Using R.

https://doi.org/10.1007/978-81-322-0763-4

Sharma, S., & Sen, S. (2018). Damage detection in presence of varying temperature

through residual error modelling approach with dual neural network. (5).

Slišković, D., Grbić, R., & Hocenski, Ž. (2012). Multivariate Statistical Process

Monitoring.

Tibaduiza, D. A., Mujica, L. E., & Rodellar, J. (2011). Structural Health Monitoring

based on principal component analysis: damage detection, localization and

classification. Advances in Dynamics, Control, Monitoring and Applications,

Universitat Politècnica de Catalunya, Departament de Matemàtica Aplicada, 3(1),

8–17.

Tomé, E. S., Pimentel, M., & Figueiras, J. (2019). SHM based damage detection using

cointegration and linear multivariate data analysis: performance comparison based

on a real case study.

Tomé, E. S., Pimentel, M., & Figueiras, J. (2020). Damage detection under

 51

environmental and operational effects using cointegration analysis –

Application to experimental data from a cable-stayed bridge. Mechanical

Systems and Signal Processing, 135, 4–8.

https://doi.org/10.1016/j.ymssp.2019.106386

Wipf, T. J., Phares, B., Doornink, J. D., Greimann, L., & Wood, D. L. (2007).

Evaluation of Steel Bridges , Volumes I & II.

Worden, K., Cross, E., & Barton, E. (2012). Damage detection on the NPL

footbridge under changing environmental conditions. Proceedings of the 6th

European Workshop - Structural Health Monitoring 2012, EWSHM 2012, 2,

1124–1131.

Yan, A. M., Kerschen, G., De Boe, P., & Golinval, J. C. (2005). Structural damage

diagnosis under varying environmental conditions - Part I: A linear analysis.

Mechanical Systems and Signal Processing, 19(4), 847–864.

https://doi.org/10.1016/j.ymssp.2004.12.002

 53

Appendix

Appendix 1 – Studies summary

Damage

Location
Structure Undamaged State

Structure Damaged

State
Variables

Article Global Local Physical
Virtual

Simulation
Material Physical

Virtual

Simulation

Independent

Variable(s)

Dependent

Variables(s)
Model Damage Detection Algorithm

Dunia 1998 x

process with

reboilers and

pre-heaters

with control

valves

x x flow Principal Component Analysis
SPE and the T2 indices (control

charts)

Farrar 2001 x Columns concrete x vibration
Auto-regressive estimation (linear

predictive coding)
Fisher's discriminant

Kim 2003 x beams
concrete and

steel
 x

strain

Finite element models

frequency-based damage detection

(damage index)

mode shapes
mode-shape-based damage

detection (damage index)

Yan 2005 x

 bridge concrete x

 vibration Principal Component Analysis Mahalanobis distance
wooden

bridge
 wood x

 54

Damage

Location
Structure Undamaged State

Structure Damaged

State
Variables

Article Global Local Physical
Virtual

Simulation
Material Physical

Virtual

Simulation

Independent

Variable(s)

Dependent

Variables(s)
Model Damage Detection Algorithm

Omenzetter

2006
x

Singapore-

Malaysia

Second Link

concrete and

reinforced

steel

x strain
ARIMA (moving coefficients) with

extended Kalman filter

Analysis of level shifts in coefficient

values

Posenato

2008
 x beam concrete x displacement

Moving Principal Component

Analysis
eigenvector analysis

Moving correlation analysis correlation analysis

Instance-based method distance-from-training-set analysis

Short-term Fourier transform frequency and modulus analysis

Continuous wavelet transform coefficient analysis

Wipf 2007 x US 30 bridge

steel, concrete

and

reinforced

concrete

 x strain

Extrema event analysis

(relationship between target and

non-target sensors)

Analysis of % of values above or

below manually set control limits

Park 2007 x walls
reinforced

concrete
x frequency impedance

Modified frequency-domain

autoregressive model with

exogenous inputs (ARX)

analysis of: outlier damage metric

based on extreme value statistics

and root mean square deviation

damage metric

Kesavan

2008
 x

T-joint

specimens
 glass fiber x strain

Global Neural network Algorithm

for Sequential Processing of

Internal sub Networks

(GNAISPIN), which uses multiple

ANNs in conjunction with a

modified DRAT (Damage

Relativity Analysis Technique)

delamination comparisson

 55

Damage

Location
Structure Undamaged State

Structure Damaged

State
Variables

Article Global Local Physical
Virtual

Simulation
Material Physical

Virtual

Simulation

Independent

Variable(s)

Dependent

Variables(s)
Model Damage Detection Algorithm

Barthorpe

2010
x

aluminium

aicraft wing

aluminium

baseplate
x vibration

Mahalanobis squared distance

(MSD)
ROC curve and AUC value

Support vector machines

percentage of correctly classified,

incorrectly classified and

unclassified

Tibaduiza

2011
 x

Aircraft

turbine blade

similar to

titanium
x

vibration

time based

signals and

piezoelectric

transducers

Principal Component Analysis

Self Organizing Maps (SOM) and

the following indexes: Q-index (or

SPE-index), the Hotelling’s T2-

statistic (D - statistic), Phi and I2
Aluminium

plate

smooth-raw

aluminium
x

Cross 2011 x
composite

panel

carbon fibre-

reinforced

plastic

x
Lamb-wave

signals
Principal Component Analysis

Multivariate outlier analyses of

novelty index based on mean,

covariance matrix and feature

samples

Worden

2012
x footbridge concrete x

structure

local slope
Cointegration X-bar chart (control charts)

Slišković

2012
 x liquid storage x x

input flow,

flow and

output flow

Principal Component Analysis and

ICA

Hotelling's (T2), I2 and Q (SPE)

(control charts)

Kromanis

2013
x

girder found in

highway

bridges

reinforced

concrete
 x temperature Strain Support vector regression

moving fast Fourier transform

(MFFT)

 56

Damage

Location
Structure Undamaged State

Structure Damaged

State
Variables

Article Global Local Physical
Virtual

Simulation
Material Physical

Virtual

Simulation

Independent

Variable(s)

Dependent

Variables(s)
Model Damage Detection Algorithm

Pandey

2013
x

ASTM D3039

tensile

specimens

E-glass fibers

and resin
x

dielectric

constant and

impedance

strain

Equation based on material

dielectric and magnetic properties,

specimen geometry and

transmission line width
Impedance change measurements

Analysis Dielectrostriction phenomenon

linear relationship

Linear dependence of the dielectric

constant on strain

Phares 2013 x

specimens

that replicate

the US 30

bridge

steel, concrete

and

reinforced

concrete

x
strain range

of a sensor

strain range

of another

sensor

Linear regression X-bar chart (control charts)

Dao 2013 x plates aluminium x
Lamb-wave

signals
Cointegration

analysis of the adf t-statistic value of

variables and cointegration vectors

Reynders

2014
x Z24 bridge concrete x vibration

Linear and kernel Principal

Component Analysis

visual analysis of the prediction

error (not the focus of this work)

Alcover

2015
x

Great Belt

Bridge

(Denmark)

 steel (doesn’t have)

daily-

averaged

pavement

temperatures

daily-

aggregated

heavy traffic

counts) and

a strain-

based

performance

indicator

Weighted least squares regression
Analysis of stress range residuals

(control chart)

 57

Damage

Location
Structure Undamaged State

Structure Damaged

State
Variables

Article Global Local Physical
Virtual

Simulation
Material Physical

Virtual

Simulation

Independent

Variable(s)

Dependent

Variables(s)
Model Damage Detection Algorithm

Rosales

2015
 x

Small three

story building

representation

aluminium

baseplate
x

force from

the shaker
vibration

Autoregression (AR) model;

Autoregressive with Exogeneous

(ARX) Inputs

Mahalanobis distance

Silva 2017

x

z-24 bridge

concrete x

temperature,

vibration

Linear Principal Componetne Analysis,

Auto-Associative Neural Network,

Mahalanobis squared distance,

Gaussian mixture models

Number and percentage of Type I/II

errors
x Tamar Bridge

concrete and

steel
x

tensions on

stays,

vibration,

wind velocity,

temperature,

deflection and

tilt

Neves 2018 x
single-track

railway bridge

concrete and

steel
 x train speed

vibration and

axle loads
Artificial Neural Networks

Receiver Operating Characteristic

curves

Tomé 2019 x Corgo Bridge concrete x
concrete

temperatures

stay-cable

forces

Cointegration ratio between the mean values of the

T2 statistic in the damaged and

undamaged states; ratio between the

mean values of the T2 statistic in the

damaged state and the UCL

Multilinear Regression and Principal

Component Analsysis (MLR-PCA)

Tomé 2020 x Corgo Bridge concrete x vibration Cointegration

ratio between the mean values of the

T2 statistic in the damaged and

undamaged states; ratio between the

mean values of the T2 statistic in the

damaged state and the UCL

Table 3: SHM related studies summary

 58

Appendix 2 – Code

Note: DataUD refers to the undamaged data. This data has a total of 17

columns. The first has the time when the observation was recorded while the

other 16 are in a numeric form.

2.1. Outlier detection

To do this in R, the data had to be first prepared for it. First, two variables were

created. The first was an id variable, while the second was a binary one to

determine if the observation at some point was detected as outlier and therefore

not to be considered in the next difference. After, some objects were created to be

later used.

When calculating the time difference between two observations in R, there

needs to be extra attention. While a 15-minute difference is considered 15, an

hour difference is 1 instead of 60. Also, if the time between two observations is

one day, the result is 1 instead of 24. In order to work around this problem, three

different loops were constructed in a way to be missing value proof. The first

loop is designed to calculate the differences between 15, 30 and 45-minutes, the

mean and standard deviation of the respective differences and finally compare

the differences computed to the mean plus three standard deviations. The second

loop is the same but designed for differences of 1 hour until differences of 23

hours and 45 minutes. Lastly, the third loop is used exclusively for differences of

24 hours.

When it comes to naming variables, the computed differences were stored and

named B if they were being compared with the previous observations and named

A if they were taking future observations into account. Also, in naming, all the

time differences were considered in minutes.

 59

If at any time, an observation had both differences above the mean plus three

standard deviations, the variable look was set to 0. At the end of each loop, it is

counted and stored in object Difs how many observations were removed so that

the number outliers found in each time difference is known. In order to be

missing value proof, the time difference between observations were computed

and tested every loop to verify the right differences were being calculated.

Prepare data for the data cleaning process

DataUD$id <- 1:nrow(DataUD)

DataUD$id[1:9] <- paste("0000",DataUD$id[1:9],sep="")

DataUD$id[10:99] <- paste("000",DataUD$id[10:99],sep="")

DataUD$id[100:999] <- paste("00",DataUD$id[100:999],sep="")

DataUD$id[1000:9999] <- paste("0",DataUD$id[1000:9999],sep="")

DataUD$look <- 1 #if 1 the observation is not an outlier and should be

considered in the computation of the Mean + 3*SD.

shift <- c(0)

MeanSDB <- list()

MeanSDA <- list()

for (i in 1:96){

 MeanSDB[[i]] <- c(0,0)

 MeanSDA[[i]] <- c(0,0)

}

Difs <- c(0,0)

 60

Compare differences between 15, 30 and 45 minutes

for (t in 1:3){

#create names for the differences: B for before and A for after

 for (i in c(2:17)) { #c(2:17) refers to the variables in the dataset

 name=paste(colnames(DataUD)[round(i)],"Dif",t*15,"B",sep="")

 DataUD$name <- 0

 colnames(DataUD)[grep("name",colnames(DataUD))] <- name

 }

 name=paste("Time",t*15,"B",sep="")

 DataUD$name <- 0

 colnames(DataUD)[grep("name",colnames(DataUD))] <- name

 for (i in c(2:17)) {

 name=paste(colnames(DataUD)[round(i)],"Dif",t*15,"A",sep="")

 DataUD$name <- 0

 colnames(DataUD)[grep("name",colnames(DataUD))] <- name

 }

 name=paste("Time",t*15,"A",sep="")

 DataUD$name <- 0

 colnames(DataUD)[grep("name",colnames(DataUD))] <- name

 #Compute the differences

 for (i in 1:(nrow(DataUD)-t)) { #loop to compute the time difference between

observations

 DataUD[i+t,(ncol(DataUD)-17)] <- DataUD$Time[i+t] - DataUD$Time[i]

 }

 61

 for (k in 2:17){ #loop to compute the absolute differences for the observations

before

 DataUD[,(k-49+67*t)] <- c(shift, abs(DataUD[-c(1:t),k] - DataUD[-

c((nrow(DataUD)-t+1):nrow(DataUD)),k]))

 }

 for (i in (-47+67*t):(-31+67*t)){ #loop to compute the absolute differences for the

observations after

 DataUD[,i+17] <- c(DataUD[-c(1:t),i],shift)

 }

 #create variables to know if the differences are above or below the Means +

3*SD (binary)

 names <-

c("TempInfF2","TempIntF1","TempIntF2","IncInf","IncInt","IncSup","LVDTInt","

LVDTSup","SF1Inf","SF2Inf","SF1Int","SF2Int","TempSupF1","TempSupF2","Tem

pSupF2Despro","TempAmb")

 for (i in 1:16) {

 DataUD$name <- 0

 colnames(DataUD)[grep("name",colnames(DataUD))] <-

paste("Dif",t*15,"B",names[i],sep="")

 }

 for (i in 1:16) {

 DataUD$name <- 0

 colnames(DataUD)[grep("name",colnames(DataUD))] <-

paste("Dif",t*15,"A",names[i],sep="")

 }

 62

 #Compute Mean + 3*SD and classify the differences as 1 is above the Mean +

3*SD

 for (i in 2:17){ #differences Before

 MeanSDB[[t]] <- rbind(MeanSDB[[t]],c((mean(DataUD[DataUD$look==1 &

DataUD[,(-31+67*t)]==(t*15),(i-49+67*t)])+3*sd(DataUD[DataUD$look==1 &

DataUD[,(-31+67*t)]==(t*15),(i-49+67*t)])),(mean(DataUD[DataUD$look==1 &

DataUD[,(-31+67*t)]==(t*15),(i-49+67*t)])-3*sd(DataUD[DataUD$look==1 &

DataUD[,(-31+67*t)]==(t*15),(i-49+67*t)]))))

 look.for <- c((DataUD[DataUD$look==1 & DataUD[,(-31+67*t)]==(t*15) &

DataUD[,(i-49+67*t)]>MeanSDB[[t]][i,1],(i-49+67*t)]),(DataUD[DataUD$look==1

& DataUD[,(-31+67*t)]==(t*15) & DataUD[,(i-49+67*t)]<MeanSDB[[t]][i,2],(i-

49+67*t)]))

 DataUD[DataUD[,(i-49+67*t)] %in% look.for,(i-15+67*t)] <- 1

 }

 for (i in 2:17){ #differences After

 MeanSDA[[t]] <- rbind(MeanSDA[[t]],c((mean(DataUD[DataUD$look==1 &

DataUD[,(-14+67*t)]==(t*15),(i-32+67*t)])+3*sd(DataUD[DataUD$look==1 &

DataUD[,(-14+67*t)]==(t*15),(i-32+67*t)])),(mean(DataUD[DataUD$look==1 &

DataUD[,(-14+67*t)]==(t*15),(i-32+67*t)])-3*sd(DataUD[DataUD$look==1 &

DataUD[,(-14+67*t)]==(t*15),(i-32+67*t)]))))

 look.for <- c((DataUD[DataUD$look==1 & DataUD[,(-14+67*t)]==(t*15) &

DataUD[,(i-32+67*t)]>MeanSDA[[t]][i,1],(i-32+67*t)]),(DataUD[DataUD$look==1

& DataUD[,(-14+67*t)]==(t*15) & DataUD[,(i-32+67*t)]<MeanSDA[[t]][i,2],(i-

32+67*t)]))

 DataUD[DataUD[,(i-32+67*t)] %in% look.for,(i+1+67*t)] <- 1

 }

 63

 #Create a variable to classify an observation if both differences (Before and

After) are above the Mean + 3*SD. Variable is set to 1 if both differences are

abnormal and “look” is set to 0

 name=paste("Dif",t*15,sep="")

 DataUD$name <- 0

 colnames(DataUD)[grep("name",colnames(DataUD))] <- name

 for (i in 1:nrow(DataUD)){

 for (k in 2:17){

 if(sum(DataUD[i,(k-15+67*t)])>0 & sum(DataUD[i,(k+1+67*t)])>0){

 DataUD$look[i] <- 0

 DataUD[i,ncol(DataUD)] <- 1

 }

 }

 }

 Difs <- rbind(Difs,c(sum(DataUD[,ncol(DataUD)]),sum(DataUD$look))) #Table

that records how many observations are left out for 15, 30 and 45 minute

differences

 shift <- rbind(shift,c(0))

 print(t)

}

colnames(Difs) <- c("Observations Removed","Observations considered when

computing MeanSD")

 64

Compare differences between 1 hour and 23h45

The code is the same as above. The only differences are:

Differences between 15, 30 and 45 minutes Differences between 1 hour and 23h45

for (t in 1:3){ for (t in 4:95){

==(t*15) ==(t/4)

Table 4: Code difference between the loop designed for 15, 30 and 45 minutes differences and the

loop designed for differences between 1 hour and 23h45

Compare differences for 24 hours

The code is the same as the first. The only differences are:

Differences between 15, 30 and 45 minutes Differences between 24 hours

for (t in 1:3){ for (t in 96){

==(t*15) ==round(t*15/1440,4)

Table 5: Code difference between the loop designed for 15, 30 and 45 minutes differences and the

loop designed for differences between 24 hours

2.2. Remove Outliers and correct shift in damage

period data

DataUD <- DataUD[DataUD$Dif15==0 & DataUD$Dif30==0 &

DataUD$Dif45==0 & DataUD$Dif60==0 & DataUD$Dif75==0 &

DataUD$Dif90==0 & DataUD$Dif105==0 & DataUD$Dif120==0 &

DataUD$Dif135==0 & DataUD$Dif150==0 & DataUD$Dif165==0 &

DataUD$Dif180==0 & DataUD$Dif195==0 & DataUD$Dif210==0 &

DataUD$Dif225==0 & DataUD$Dif240==0 & DataUD$Dif255==0 &

DataUD$Dif270==0 & DataUD$Dif285==0 & DataUD$Dif300==0 &

 65

DataUD$Dif315==0 & DataUD$Dif330==0 & DataUD$Dif345==0 &

DataUD$Dif360==0 & DataUD$Dif375==0 & DataUD$Dif390==0 &

DataUD$Dif405==0 & DataUD$Dif420==0 & DataUD$Dif435==0 &

DataUD$Dif450==0 & DataUD$Dif465==0 & DataUD$Dif480==0 &

DataUD$Dif495==0 & DataUD$Dif510==0 & DataUD$Dif525==0 &

DataUD$Dif540==0 & DataUD$Dif555==0 & DataUD$Dif570==0 &

DataUD$Dif585==0 & DataUD$Dif600==0 & DataUD$Dif615==0 &

DataUD$Dif630==0 & DataUD$Dif645==0 & DataUD$Dif660==0 &

DataUD$Dif675==0 & DataUD$Dif690==0 & DataUD$Dif705==0 &

DataUD$Dif720==0 & DataUD$Dif735==0 & DataUD$Dif750==0 &

DataUD$Dif765==0 & DataUD$Dif780==0 & DataUD$Dif795==0 &

DataUD$Dif810==0 & DataUD$Dif825==0 & DataUD$Dif840==0 &

DataUD$Dif855==0 & DataUD$Dif870==0 & DataUD$Dif885==0 &

DataUD$Dif900==0 & DataUD$Dif915==0 & DataUD$Dif930==0 &

DataUD$Dif945==0 & DataUD$Dif960==0 & DataUD$Dif975==0 &

DataUD$Dif990==0 & DataUD$Dif1005==0 & DataUD$Dif1020==0 &

DataUD$Dif1035==0 & DataUD$Dif1050==0 & DataUD$Dif1065==0 &

DataUD$Dif1080==0 & DataUD$Dif1095==0 & DataUD$Dif1110==0 &

DataUD$Dif1125==0 & DataUD$Dif1140==0 & DataUD$Dif1155==0 &

DataUD$Dif1170==0 & DataUD$Dif1185==0 & DataUD$Dif1200==0 &

DataUD$Dif1215==0 & DataUD$Dif1230==0 & DataUD$Dif1245==0 &

DataUD$Dif1260==0 & DataUD$Dif1275==0 & DataUD$Dif1290==0 &

DataUD$Dif1305==0 & DataUD$Dif1320==0 & DataUD$Dif1335==0 &

DataUD$Dif1350==0 & DataUD$Dif1365==0 & DataUD$Dif1380==0 &

DataUD$Dif1395==0 & DataUD$Dif1410==0 & DataUD$Dif1425==0 &

DataUD$Dif1440==0,1:17]

rownames(DataUD) <- NULL

 66

#Remove shift in damage data

for (i in c(5:13)) {

 DataD[,i] <- DataD[,i] + (mean(DataUD[(nrow(DataUD)-672):nrow(DataUD),i])

- mean(DataD[,i][1:672]))

}

2.3. Fold creation (Calibration and Validation

data)

DataUD$id <- 1:nrow(DataUD)

DataUD$id[1:9] <- paste("0000",DataUD$id[1:9],sep="")

DataUD$id[10:99] <- paste("000",DataUD$id[10:99],sep="")

DataUD$id[100:999] <- paste("00",DataUD$id[100:999],sep="")

DataUD$id[1000:7159] <- paste("0",DataUD$id[1000:7159],sep="")

DataD$id <- 1:nrow(DataD)

DataD$id[1:9] <- paste("0000",DataD$id[1:9],sep="")

DataD$id[10:99] <- paste("000",DataD$id[10:99],sep="")

DataD$id[100:999] <- paste("00",DataD$id[100:999],sep="")

DataD$id[1000:9999] <- paste("0",DataD$id[1000:9999],sep="")

DataUDT <- DataUD[(nrow(DataUD)-2879):nrow(DataUD),]

DataNew <- rbind(DataUDT,DataD)

DataCalVal <- DataUD[1:(nrow(DataUD)-2880),]

library(caret)

set.seed(13)

 67

folds <- createFolds(DataCalVal$id, k=2)

DataCal <- DataCalVal[folds[[1]],]

DataVal <- DataCalVal[folds[[2]],]

set.seed(14)

folds_train <- createFolds(DataCal$id, k=10)

set.seed(15)

folds_test <- createFolds(DataVal$id, k=10)

2.4. Linear regression for calibration period data

The code below refers solely to one of the dependent variables

(Strain_F1_Middle). This should be done as many times as dependent variables

there are.

library(Metrics)

feats <- colnames(DataUD[c(2:4,14:17)]) # c(2:4,14:17) refers to the independent

variables

f <- paste(feats,collapse=' + ')

f <- paste('Strain_F1_Middle ~',f) #“Strain_F1_Middle” refers to the name of the

dependent variable

f <- as.formula(f) #Convert to formula

#Train

results_reg_sf1int <- data.frame()

predictions_summary <- data.frame()

fitsummary <- list()

 68

for (k in 1:10){ #loop to compute the parameters and save the predictions

 fit <- lm(f, data=DataCal[-folds_train[[k]],])

 fitsummary[[k]] <- summary(fit)

 prediction <- predict(fit, newdata=DataCal[folds_train[[k]],])

 predictions_summary <- rbind(predictions_summary,

data.frame(Time=DataCal[folds_train[[k]],'Time'],

y=DataCal$Strain_F_Middle[folds_train[[k]]], prediction))

}

#Save metrics

R2 <- cor(predictions_summary$y, predictions_summary$prediction)

RMSE <- rmse(predicted = predictions_summary$prediction, actual =

predictions_summary$y)

MAE <- mae(predicted = predictions_summary$prediction, actual =

predictions_summary$y)

MAPE <- mape(predicted = predictions_summary$prediction, actual =

predictions_summary$y)

results_reg_sf1int=rbind(results_reg_sf1int,data.frame(R2, RMSE, MAE,

MAPE))

RegTrain_sf1int <- results_reg_sf1int

RegTrain_sf1int

for (i in 1:10){print(fitsummary[[i]])} #the variables that, on average, have a p-

value above 0.01 should be removed by changing the feats object at the start,

until all variables are significative

 69

2.5. Linear regression for validation, undamaged

test and damage period data

The code below refers solely to one of the dependent variables

(Strain_F1_Middle). This should be done as many times as dependent variables

there are.

feats <- colnames(DataUD[c(2:4,14,17)])

f <- paste(feats,collapse=' + ')

f <- paste('Strain_face1_intermedio ~',f)

f <- as.formula(f) #Convert to formula

predictions_summaryregsf1int <- data.frame()

results_reg_sf1int <- data.frame()

for (k in 1:10){

 fit <- lm(f, data=DataVal[-folds_test[[k]],])

 fitsummary[[k]] <- summary(fit)

 prediction <- predict(fit, newdata=DataVal[folds_test[[k]],])

 predictions_summaryregsf1int <- rbind(predictions_summaryregsf1int,

data.frame(Time=DataVal[folds_test[[k]],'Time'],

y=DataVal$Strain_face1_intermedio[folds_test[[k]]], pred=prediction))

}

#Save metrics for testing data

R2 <- cor(predictions_summaryregsf1int$y,

predictions_summaryregsf1int$pred)

 70

RMSE <- rmse(predicted = predictions_summaryregsf1int$pred, actual =

predictions_summaryregsf1int$y)

MAE <- mae(predicted = predictions_summaryregsf1int$pred, actual =

predictions_summaryregsf1int$y)

MAPE <- mape(predicted = predictions_summaryregsf1int$pred, actual =

predictions_summaryregsf1int$y)

results_reg_sf1int=rbind(results_reg_sf1int,data.frame(R2, RMSE, MAE,

MAPE))

results_reg_sf1int

fit <- lm(f, data=DataVal)

predictionsf1int <- predict(fit, newdata=DataNew)

predictions_summaryregsf1int$dif <- predictions_summaryregsf1int$y -

predictions_summaryregsf1int$pred

predictions_summaryregsf1int <-

rbind(predictions_summaryregsf1int,data.frame(Time=DataNew$Time,y=Data

New$Strain_face1_intermedio,pred=predictionsf1int,dif=DataNew$Strain_face1

_intermedio-predictionsf1int))

#Undamage Test period

R2 <- cor(predictions_summaryregsf1int$y[3221:6100],

predictions_summaryregsf1int$pred[3221:6100])

RMSE <- rmse(predicted = predictions_summaryregsf1int$pred[3221:6100],

actual = predictions_summaryregsf1int$y[3221:6100])

MAE <- mae(predicted = predictions_summaryregsf1int$pred[3221:6100], actual

= predictions_summaryregsf1int$y[3221:6100])

MAPE <- mape(predicted = predictions_summaryregsf1int$pred[3221:6100],

actual = predictions_summaryregsf1int$y[3221:6100])

 71

results=rbind(results,data.frame(R2, RMSE, MAE, MAPE))

#Damage period

R2 <- cor(predictions_summaryregsf1int$y[6101:28354],

predictions_summaryregsf1int$pred[6101:28354])

RMSE <- rmse(predicted = predictions_summaryregsf1int$pred[6101:28354],

actual = predictions_summaryregsf1int$y[6101:28354])

MAE <- mae(predicted = predictions_summaryregsf1int$pred[6101:28354],

actual = predictions_summaryregsf1int$y[6101:28354])

MAPE <- mape(predicted = predictions_summaryregsf1int$pred[6101:28354],

actual = predictions_summaryregsf1int$y[6101:28354])

RegTest_sf1int=rbind(results_reg_sf1int,data.frame(R2, RMSE, MAE, MAPE))

rownames(RegTest _sf1int) <- c("Validation Data","Undamage Test

Data","Damage Data")

#plot

library(ggplot2)

gridExtra::grid.arrange(ggplot(predictions_summaryregsf1int) +

geom_point(aes(Time,y)) +

geom_point(data=predictions_summaryregsf1int[1:3220,], aes(Time, pred),

colour = "blue") + geom_point(data=predictions_summaryregsf1int[3221:6100,],

aes(Time, pred), colour = "green") +

geom_point(data=predictions_summaryregsf1int[6101:28354,], aes(Time, pred),

colour = "red") + geom_vline(xintercept =

predictions_summaryregsf1int$Time[3220], colour = "green") +

geom_vline(xintercept = predictions_summaryregsf1int$Time[6101], colour =

"red") + labs(title="Linear Regression Model (Strain F1 Middle)") +

 72

ylab("Strain"), ggplot(predictions_summaryregsf1int) +

geom_point(aes(Time,dif)) + ylab("Residuals"), nrow = 2)

2.6. Random Forest for calibration data

The code below refers solely to one of the dependent variables

(Strain_F1_Middle). This should be done as many times as dependent variables

there are.

library(Metrics)

library(randomForest)

feats <- colnames(Dados[c(2:4,14:17)])

f <- paste(feats,collapse=' + ')

f <- paste('Strain_face1_intermedio ~',f)

f <- as.formula(f) #Convert to formula

results_forest<-data.frame()

for(i in c(2:7)){ #loop to compute the parameters and save the predictions

considering groups of 2 to 7 variables

 predictions_summarysf1int<-data.frame()

 for (k in 1:10){

 fit <- randomForest(f, data=DataCal[-folds_train[[k]],], mtry=i, ntree=1000)

 prediction <- predict(fit, newdata=DataCal[folds_train[[k]],])

 73

 predictions_summarysf1int <- rbind(predictions_summarysf1int,

data.frame(Time=DataCal[folds_train[[k]],'Time'],

y=DataCal$Strain_face1_intermedio[folds_train[[k]]], prediction))

 }

 variables=i

 #Save metrics

 R2 <- cor(predictions_summarysf1int$y,

predictions_summarysf1int$prediction)

 RMSE <- rmse(predicted = predictions_summarysf1int$prediction, actual =

predictions_summarysf1int$y)

 MAE <- mae(predicted = predictions_summarysf1int$prediction, actual =

predictions_summarysf1int$y)

 MAPE <- mape(predicted = predictions_summarysf1int$prediction, actual =

predictions_summarysf1int$y)

 results_forest=rbind(results_forest,data.frame(R2, RMSE, MAE, MAPE,

variables))

}

ForestTrainsf1int <- results_forest

2.7. Random Forest for testing, validation and

damaged data

The code below refers solely to one of the dependent variables

(Strain_F1_Middle). This should be done as many times as dependent variables

there are.

 74

feats <- colnames(Dados[c(2:4,14:17)])

f <- paste(feats,collapse=' + ')

f <- paste('Strain_face1_intermedio ~',f)

f <- as.formula(f) #Convert to formula

variables=ForestTrainsf1int[which.max(ForestTrainsf1int$R2),5] #tendo em

conta os valores obtidos

predictions_summaryrfsf1int <- data.frame()

results_forest <- data.frame()

for (k in 1:10){ #loop to compute the parameters and save the predictions

considering the optimal number of variables

 fit <- randomForest(f, data=DataVal[-folds_test[[k]],],mtry=variables,

ntree=1000)

 fit$importance

 prediction <- predict(fit, newdata=DataVal[folds_test[[k]],])

 predictions_summaryrfsf1int <- rbind(predictions_summaryrfsf1int,

data.frame(Time=DataVal[folds_test[[k]],'Time'],

y=DataVal$Strain_face1_intermedio[folds_test[[k]]], pred=prediction))

}

#Save metrics for testing data

R2 <- cor(predictions_summaryrfsf1int$y, predictions_summaryrfsf1int$pred)

RMSE <- rmse(predicted = predictions_summaryrfsf1int$pred, actual =

predictions_summaryrfsf1int$y)

 75

MAE <- mae(predicted = predictions_summaryrfsf1int$pred, actual =

predictions_summaryrfsf1int$y)

MAPE <- mape(predicted = predictions_summaryrfsf1int$pred, actual =

predictions_summaryrfsf1int$y)

results_forest=rbind(results_forest,data.frame(R2, RMSE, MAE, MAPE,

variables))

results_forest

#Save metrics

fit <- randomForest(f, data=DataVal,mtry=variables, ntree=1000)

predictionsf1int <- predict(fit, newdata=DataNew)

predictions_summaryrfsf1int$dif <- predictions_summaryrfsf1int$y -

predictions_summaryrfsf1int$pred

predictions_summaryrfsf1int <-

rbind(predictions_summaryrfsf1int,data.frame(Time=DataNew$Time,y=DataN

ew$Strain_face1_intermedio,pred=predictionsf1int,dif=DataNew$Strain_face1_i

ntermedio-predictionsf1int))

#Undamage Test period

R2 <- cor(predictions_summaryrfsf1int$y[3221:6100],

predictions_summaryrfsf1int$pred[3221:6100])

RMSE <- rmse(predicted = predictions_summaryrfsf1int$pred[3221:6100],

actual = predictions_summaryrfsf1int$y[3221:6100])

MAE <- mae(predicted = predictions_summaryrfsf1int$pred[3221:6100], actual

= predictions_summaryrfsf1int$y[3221:6100])

MAPE <- mape(predicted = predictions_summaryrfsf1int$pred[3221:6100],

actual = predictions_summaryrfsf1int$y[3221:6100])

results=rbind(results,data.frame(R2, RMSE, MAE, MAPE, variables))

 76

#Damage period

R2 <- cor(predictions_summaryrfsf1int$y[6101:28354],

predictions_summaryrfsf1int$pred[6101:28354])

RMSE <- rmse(predicted = predictions_summaryrfsf1int$pred[6101:28354],

actual = predictions_summaryrfsf1int$y[6101:28354])

MAE <- mae(predicted = predictions_summaryrfsf1int$pred[6101:28354], actual

= predictions_summaryrfsf1int$y[6101:28354])

MAPE <- mape(predicted = predictions_summaryrfsf1int$pred[6101:28354],

actual = predictions_summaryrfsf1int$y[6101:28354])

RFTest_sf1int=rbind(results_rf_sf1int,data.frame(R2, RMSE, MAE, MAPE,

variables))

rownames(RFTest _sf1int) <- c("Data Teste","Data Validation","Data Damaged")

#plot

library(ggplot2)

gridExtra::grid.arrange(ggplot(predictions_summaryrfsf1int) +

geom_point(aes(Time,y)) +

geom_point(data=predictions_summaryrfsf1int[1:3220,], aes(Time, pred), colour

= "blue") + geom_point(data=predictions_summaryrfsf1int[3221:6100,],

aes(Time, pred), colour = "green") +

geom_point(data=predictions_summaryrfsf1int[6101:28354,], aes(Time, pred),

colour = "red") + geom_vline(xintercept =

predictions_summaryrfsf1int$Time[3220], colour = "green") +

geom_vline(xintercept = predictions_summaryrfsf1int$Time[6101], colour =

"red") + labs(title="Random Forest Model (Strain F1 Middle)") + ylab("Strain"),

 77

ggplot(predictions_summaryrfsf1int) + geom_point(aes(Time,dif)) +

ylab("Residuals"), nrow = 2)

2.8. Support Vector Machine for testing,

validation and damaged data

The code below refers solely to one of the dependent variables

(Strain_F1_Middle). This should be done as many times as dependent variables

there are.

library(e1071)

library(Metrics)

library(randomForest)

feats <- colnames(Dados[c(2:4,14:17)])

f <- paste(feats,collapse=' + ')

f <- paste('Strain_face1_intermedio ~',f)

f <- as.formula(f) #Convert to formula

performance_metrics <- data.frame()

results_train_SVM_g=data.frame()

for (cost in 2^(seq(-5,15, by=2))){ #loop to compute the parameters and save the

predictions with varying cost and gamma

 for (gamma in 2^(seq(-15,3, by=2))){

 predictions_summary <- data.frame()

 78

 for (k in 1:10){

 svm.model <- svm(f, DataCal[-folds_train[[k]],], kernel="linear", type="eps-

regression", scale=TRUE, cost=cost, gamma=gamma)

 prediction <- predict(svm.model, newdata=DataCal[folds_train[[k]],])

 predictions_summary<-rbind(predictions_summary,

data.frame(Time=DataCal[folds_train[[k]],'Time'],

y=DataCal$Strain_face1_intermedio[folds_train[[k]]], prediction))

 }

 R2 <- cor(predictions_summary$y, predictions_summary$prediction)

 RMSE <- rmse(predicted = predictions_summary$prediction, actual =

predictions_summary$y)

 MAE <- mae(predicted = predictions_summary$prediction, actual =

predictions_summary$y)

 MAPE <- mape(predicted = predictions_summary$prediction, actual =

predictions_summary$y)

 cost=cost

 gamma=gamma

 results_train_SVM_g=rbind(results_train_SVM_g,data.frame(R2, RMSE,

MAE, MAPE, cost, gamma))

 }

}

 79

#Save metrics

results_train_SVM_g

SVMTrainsf1int <- results_train_SVM_g

unique(SVMTrainsf1int$cost)

unique(SVMTrainsf1int$R2)

2.9. Support Vector Machine for training data

The code below refers solely to one of the dependent variables

(Strain_F1_Middle). This should be done as many times as dependent variables

there are.

feats <- colnames(Dados[c(2:4,14:17)])

f <- paste(feats,collapse=' + ')

f <- paste('Strain_face1_intermedio ~',f)

f <- as.formula(f) #Convert to formula

results=data.frame()

predictions_summarysvmsf1int <- data.frame()

performance_metrics <- data.frame()

cost=SVMTrainsf1int[which.max(SVMTrainsf1int$R2),5]

for (k in 1:10){ #loop to compute the parameters and save the predictions

considering the optimal cost and gamma

 svm.model <- svm(f, DataVal[-folds_test[[k]],], kernel="linear", type="eps-

regression", scale=TRUE, cost=cost, gamma=gamma)

 prediction <- predict(svm.model, newdata=DataVal[folds_test[[k]],])

 80

 predictions_summarysvmsf1int<-rbind(predictions_summarysvmsf1int,

data.frame(Time=DataVal[folds_test[[k]],'Time'],

y=DataVal$Strain_face1_intermedio[folds_test[[k]]], pred=prediction))

}

R2 <- cor(predictions_summarysvmsf1int$y,

predictions_summarysvmsf1int$pred)

RMSE <- rmse(predicted = predictions_summarysvmsf1int$pred, actual =

predictions_summarysvmsf1int$y)

MAE <- mae(predicted = predictions_summarysvmsf1int$pred, actual =

predictions_summarysvmsf1int$y)

MAPE <- mape(predicted = predictions_summarysvmsf1int$pred, actual =

predictions_summarysvmsf1int$y)

results=rbind(results,data.frame(R2, RMSE, MAE, MAPE, cost, gamma))

results

fit <- svm(f, DataVal, kernel="linear", type="eps-regression", scale=TRUE,

cost=cost, gamma=gamma)

predictionsf1int <- predict(fit, newdata=DataNew)

predictions_summarysvmsf1int$dif <- predictions_summarysvmsf1int$y -

predictions_summarysvmsf1int$pred

predictions_summarysvmsf1int <-

rbind(predictions_summarysvmsf1int,data.frame(Time=DataNew$Time,y=Data

New$Strain_face1_intermedio,pred=predictionsf1int,dif=DataNew$Strain_face1

_intermedio-predictionsf1int))

#Undamage Test period

 81

R2 <- cor(predictions_summarysvmsf1int$y[3221:6100],

predictions_summarysvmsf1int$pred[3221:6100])

RMSE <- rmse(predicted = predictions_summarysvmsf1int$pred[3221:6100],

actual = predictions_summarysvmsf1int$y[3221:6100])

MAE <- mae(predicted = predictions_summarysvmsf1int$pred[3221:6100],

actual = predictions_summarysvmsf1int$y[3221:6100])

MAPE <- mape(predicted = predictions_summarysvmsf1int$pred[3221:6100],

actual = predictions_summarysvmsf1int$y[3221:6100])

results=rbind(results,data.frame(R2, RMSE, MAE, MAPE, variables))

#Damage period

R2 <- cor(predictions_summarysvmsf1int$y[6101:28354],

predictions_summarysvmsf1int$pred[6101:28354])

RMSE <- rmse(predicted = predictions_summarysvmsf1int$pred[6101:28354],

actual = predictions_summarysvmsf1int$y[6101:28354])

MAE <- mae(predicted = predictions_summarysvmsf1int$pred[6101:28354],

actual = predictions_summarysvmsf1int$y[6101:28354])

MAPE <- mape(predicted = predictions_summarysvmsf1int$pred[6101:28354],

actual = predictions_summarysvmsf1int$y[6101:28354])

SVMTest_sf1int=rbind(results_svm_sf1int,data.frame(R2, RMSE, MAE, MAPE,

variables))

rownames(SVMTest _sf1int) <- c("Data Teste","Data Validation","Data

Damaged")

#plot

library(ggplot2)

 82

gridExtra::grid.arrange(ggplot(predictions_summarysvmsf1int) +

geom_point(aes(Time,y)) +

geom_point(data=predictions_summarysvmsf1int[1:3220,], aes(Time, pred),

colour = "blue") + geom_point(data=predictions_summarysvmsf1int[3221:6100,],

aes(Time, pred), colour = "green") +

geom_point(data=predictions_summarysvmsf1int[6101:28354,], aes(Time,

pred), colour = "red") + geom_vline(xintercept =

predictions_summarysvmsf1int$Time[3220], colour = "green") +

geom_vline(xintercept = predictions_summarysvmsf1int$Time[6101], colour =

"red") + labs(title="Support Vector Machine Model (Strain F1 Middle)") +

ylab("Strain"), ggplot(predictions_summarysvmsf1int) +

geom_point(aes(Time,dif)) + ylab("Residuals"), nrow = 2)

2.10. Neural Networks for training data

The code below refers solely to one of the dependent variables

(Strain_F1_Middle). This should be done as many times as dependent variables

there are.

library(nnet)

library(Metrics)

library(randomForest)

learning_rate=0

hidden_layers=0

feats <- colnames(Dados[c(2:4,14:17)])

f <- paste(feats,collapse=' + ')

 83

f <- paste('Strain_face1_intermedio ~',f)

f <- as.formula(f) #Convert to formula

NeuralTrainsf1int=data.frame()

set.seed(13)

performance_metrics <- data.frame()

for(H in seq(10,80,10)){ #loop to compute the parameters and save the

predictions with varying decay and size

 for(L in 10^seq(-3, 0, length = 10)){

 predictions_summary <- data.frame()

 for (k in 1:10){

 nn <- nnet(f,data=DataCal[-folds_train[[k]],],size=H, decay=L, linout=TRUE,

trace = FALSE, maxit=100, MaxNWts=7000)

 prediction <- predict(nn,DataCal[folds_train[[k]],])

 predictions_summary <- rbind(predictions_summary,

data.frame(Time=DataCal[folds_train[[k]],'Time'],

y=DataCal$Strain_face1_intermedio[folds_train[[k]]], prediction))

 }

 decay=L

 size=H

 R2 <- cor(predictions_summary$y, predictions_summary$prediction)

 RMSE <- rmse(predicted = predictions_summary$prediction, actual =

predictions_summary$y)

 84

 MAE <- mae(predicted = predictions_summary$prediction, actual =

predictions_summary$y)

 MAPE <- mape(predicted = predictions_summary$prediction, actual =

predictions_summary$y)

 NeuralTrainsf1int=rbind(NeuralTrainsf1int,data.frame(R2, RMSE, MAE,

MAPE, decay, size))

 }

}

#Save metrics

NeuralTrainsf1int

NeuralTrainsf1int[which.max(NeuralTrainsf1int$R2),]

2.11. Neural Networks for testing, validation and

damaged data

The code below refers solely to one of the dependent variables

(Strain_F1_Middle). This should be done as many times as dependent variables

there are.

size=NeuralTrainsf1int[which.max(NeuralTrainsf1int$R2),6]

decay=NeuralTrainsf1int[which.max(NeuralTrainsf1int$R2),5]

feats <- colnames(Dados[c(2:4,14:17)])

f <- paste(feats,collapse=' + ')

f <- paste('Strain_face1_intermedio ~',f)

f <- as.formula(f) #Convert to formula

 85

results=data.frame()

predictions_summarynnsf1int <- data.frame()

performance_metrics <- data.frame()

for (k in 1:10){

 nn <- nnet(f,data=DataVal[-folds_test[[k]],], size=size, decay=decay,

linout=TRUE, trace = FALSE, maxit=100, MaxNWts=7000)

 prediction <- predict(nn,DataVal[folds_test[[k]],])

 predictions_summarynnsf1int <- rbind(predictions_summarynnsf1int,

data.frame(Time=DataVal[folds_test[[k]],'Time'],

y=DataVal$Strain_face1_intermedio[folds_test[[k]]], pred=prediction))

}

predictions_summarynnsf1int$dif <- predictions_summarynnsf1int$y -

predictions_summarynnsf1int$pred

R2 <- cor(predictions_summarynnsf1int$y, predictions_summarynnsf1int$pred)

RMSE <- rmse(predicted = predictions_summarynnsf1int$pred, actual =

predictions_summarynnsf1int$y)

MAE <- mae(predicted = predictions_summarynnsf1int$pred, actual =

predictions_summarynnsf1int$y)

MAPE <- mape(predicted = predictions_summarynnsf1int$pred, actual =

predictions_summarynnsf1int$y)

results=rbind(results,data.frame(R2, RMSE, MAE, MAPE, size, decay))

fit <- nnet(f, data=DataVal, size=size, decay=decay, linout=TRUE, trace = FALSE,

maxit=100, MaxNWts=7000)

validationsf1int <- predict(fit, newdata=DataNew)

 86

validation_summarynn <-

data.frame(Time=DataNew$Time,y=DataNew$Strain_face1_intermedio,pred=v

alidationsf1int,dif=DataNew$Strain_face1_intermedio-validationsf1int)

predictions_summarynnsf1int <-

rbind(predictions_summarynnsf1int,validation_summarynn)

#Undamage Test period

R2 <- cor(predictions_summarynnsf1int$y[3221:6100],

predictions_summarynnsf1int$pred[3221:6100])

RMSE <- rmse(predicted = predictions_summarynnsf1int$pred[3221:6100],

actual = predictions_summarynnsf1int$y[3221:6100])

MAE <- mae(predicted = predictions_summarynnsf1int$pred[3221:6100], actual

= predictions_summarynnsf1int$y[3221:6100])

MAPE <- mape(predicted = predictions_summarynnsf1int$pred[3221:6100],

actual = predictions_summarynnsf1int$y[3221:6100])

results=rbind(results,data.frame(R2, RMSE, MAE, MAPE, size, decay))

#Damage period

R2 <- cor(predictions_summarynnsf1int$y[6101:28354],

predictions_summarynnsf1int$pred[6101:28354])

RMSE <- rmse(predicted = predictions_summarynnsf1int$pred[6101:28354],

actual = predictions_summarynnsf1int$y[6101:28354])

MAE <- mae(predicted = predictions_summarynnsf1int$pred[6101:28354],

actual = predictions_summarynnsf1int$y[6101:28354])

MAPE <- mape(predicted = predictions_summarynnsf1int$pred[6101:28354],

actual = predictions_summarynnsf1int$y[6101:28354])

 87

NNTest_sf1int=rbind(results_nn_sf1int,data.frame(R2, RMSE, MAE, MAPE,

size, decay))

rownames(NNTest_sf1int) <- c("Data Teste","Data Validation","Data Damaged")

#plot

library(ggplot2)

gridExtra::grid.arrange(ggplot(predictions_summarynnsf1int) +

geom_point(aes(Time,y)) +

geom_point(data=predictions_summarynnsf1int[1:3220,], aes(Time, pred),

colour = "blue") + geom_point(data=predictions_summarynnsf1int[3221:6100,],

aes(Time, pred), colour = "green") +

geom_point(data=predictions_summarynnsf1int[6101:28354,], aes(Time, pred),

colour = "red") + geom_vline(xintercept =

predictions_summarynnsf1int$Time[3220], colour = "green") +

geom_vline(xintercept = predictions_summarynnsf1int$Time[6101], colour =

"red") + labs(title="Neural Network Model (Strain F1 Middle)") + ylab("Strain"),

ggplot(predictions_summarynnsf1int) + geom_point(aes(Time,dif)) +

ylab("Residuals"), nrow = 2)

2.12. Hotelling T2 Control chart

library(MSQC)

library(qcc)

library(MASS)

#Data preparation

"Validation Period" <-

data.frame(cbind(predictions_summarynnsf1int$dif[1:3220],predictions_summ

 88

arynnsf2int$dif[1:3220],predictions_summarynnsf1inf$dif[1:3220],predictions_s

ummarynnsf2inf$dif[1:3220],predictions_summarynnLVDTSup$dif[1:3220],pre

dictions_summarynnLVDTInt$dif[1:3220],predictions_summarynnIncSup$dif[1

:3220],predictions_summarynnIncInt$dif[1:3220],predictions_summarynnIncInf

$dif[1:3220]))

colnames(`Validation Period`) <-

c("SF1int","SF2Int","SF1Inf","SF2Inf","LVDTSup","LVDTInt","IncSup","IncInt","In

cInf")

"Undamage Test Period" <-

data.frame(cbind(predictions_summarynnsf1int$dif[3221:6100],predictions_su

mmarynnsf2int$dif[3221:6100],predictions_summarynnsf1inf$dif[3221:6100],pr

edictions_summarynnsf2inf$dif[3221:6100],predictions_summarynnLVDTSup$

dif[3221:6100],predictions_summarynnLVDTInt$dif[3221:6100],predictions_su

mmarynnIncSup$dif[3221:6100],predictions_summarynnIncInt$dif[3221:6100],p

redictions_summarynnIncInf$dif[3221:6100]))

colnames(`Undamage Test Period`) <-

c("SF1int","SF2Int","SF1Inf","SF2Inf","LVDTSup","LVDTInt","IncSup","IncInt","In

cInf")

"Damage Period" <-

data.frame(cbind(predictions_summarynnsf1int$dif[6101:28354],predictions_su

mmarynnsf2int$dif[6101:28354],predictions_summarynnsf1inf$dif[6101:28354],

predictions_summarynnsf2inf$dif[6101:28354],predictions_summarynnLVDTS

up$dif[6101:28354],predictions_summarynnLVDTInt$dif[6101:28354],predictio

ns_summarynnIncSup$dif[6101:28354],predictions_summarynnIncInt$dif[6101:

28354],predictions_summarynnIncInf$dif[6101:28354]))

colnames(`Damage Period`) <-

c("SF1int","SF2Int","SF1Inf","SF2Inf","LVDTSup","LVDTInt","IncSup","IncInt","In

cInf")

 89

#T2-Hotelling#

rob <- cov.rob(`Validation Period`)

#Phase I

q <- mqcc(`Validation Period`, type = "T2.single", confidence.level =

0.9999999999999999, plot=TRUE, center = rob$center, cov = rob$cov)

summary(q)

(length(q$statistics[q$statistics>q$limits[2]])/nrow(Before))*100

#Phase II (Validation)

qval <- mqcc(`Validation Period`, type = "T2.single", confidence.level =

0.9999999999999999, newdata = `Undamage Test Period`, plot=TRUE, center =

rob$center, cov = rob$cov)

summary(qval)

(length(qval$newstats[qval$newstats>qval$limits[2]])/nrow(Validation))*100

#Phase II (Damage)

qq <- mqcc(`Validation Period`, type = "T2.single", confidence.level =

0.9999999999999999, newdata = `Damage Period`, plot=TRUE, center =

rob$center, cov = rob$cov)

summary(qq)

2.13. Missing values interpolation

The present dataset registered the hour, minute and second of when an

observation was recorded. Since there were some intervals where the system

stopped recording observations, the data had to be normalized. This was done

 90

by first considering the observations were always recorded at zero seconds. Next,

the minute part had to be either 0, 15, 30 or 45. To do so, every observation

recorded between minute 0 and minute 14 was to be considered recorded in

minute 0. This leads to the Time variable to only be presented in the xxh00m00s,

xxh15m00s, xxh30m00s and xxh45m00s.

After normalizing the data a sequence of time in multiples of 15 minutes from

27-04-2018 14h15m00s to 23-05-2019 07h00m00s was created. From these a match

was made from this sequence and the dataset.

Next the Kalman filter was used. Applying it to the whole series creates object

DataTS1 which has very good results except for the last day of the undamaged

data. To correct this, in parallel, the Kalman filter was used feeding it only the

undamaged data creating DataTS2. From this, a new dataset is created (DataTS3),

considering the observations in DataTS1 and the day of observations in DataTS2.

From this, the process of removing the shift after the insertion of damage is also

dealt with.

#Tranform time to always be in multiples of 15 minutes

DataTS <- rbind(DataCalVal,DataD)

DataTS$Hour <- substr(DataTS$Time,15,16)

DataTS$Hour <- replace(DataTS$Hour, DataTS$Hour > 0 & DataTS$Hour < 15,

"00")

DataTS$Hour <- replace(DataTS$Hour, DataTS$Hour > 15 & DataTS$Hour < 30,

15)

DataTS$Hour <- replace(DataTS$Hour, DataTS$Hour > 30 & DataTS$Hour < 45,

30)

DataTS$Hour <- replace(DataTS$Hour, DataTS$Hour > 45 & DataTS$Hour < 60,

45)

library(lubridate)

 91

DataTS$Time <-

ymd_hm(paste(substr(DataTS$Time,1,14),DataTS$Hour,sep=""))

DataTS$Hour <- NULL

#Create a sequence of time in multiples of 15 minutes from 27-04-2018

14h15m00s to 23-05-2019 07h00m00s

allDates <- seq(ISOdate(2018,4,27,14,15), ISOdate(2019,5,23,7,0), by = "15 min")

DataTS <- merge(data.frame(Time=allDates),DataTS,all.x=TRUE)

rownames(DataTS) <- NULL

DataTS$id <- 1:nrow(DataTS)

DataTS$id[1:9] <- paste("0000",DataTS$id[1:9],sep="")

DataTS$id[10:99] <- paste("000",DataTS$id[10:99],sep="")

DataTS$id[100:999] <- paste("00",DataTS$id[100:999],sep="")

DataTS$id[1000:9999] <- paste("0",DataTS$id[1000:9999],sep="")

library(imputeTS)

DataTS1 <- DataTS

DataTS1[,-c(1,18,19)] <- na_seasplit(DataTS[,-c(1,18,19)], algorithm = "kalman",

find_frequency=TRUE, type="level")

DataTS2 <- DataTS

DataTS2[1:13079,-c(1,18,19)] <- na_seasplit(DataTS[1:13079,-c(1,18,19)],

algorithm = "kalman", find_frequency=TRUE, type="level")

DataTS2[13080:37508,-c(1,18,19)] <- na_seasplit(DataTS[13080:37508,-c(1,18,19)],

algorithm = "kalman", find_frequency=TRUE, type="level")

 92

DataTS3 <-

rbind(DataTS1[1:13017,],DataTS2[13018:13979,],DataTS1[13980:37508,])

DataCalVal <- DataTS3[1:13079,c(1:17,19)]

DataD <- DataTS3[13080:37508,c(1:17,19)]

#Correct shift in damage period data

for (i in c(5:13)) {

 DataD[,i] <- DataD[,i] + (mean(DataCalVal[12408:13079,i],na.rm=TRUE) -

mean(DataD[,i][1:671],na.rm=TRUE))

}

DataTS <- rbind(DataCalVal,DataD)

2.14. Cointegration

library(tseries)

library(forecast)

library(urca)

library(vars)

library(tsDyn)

#Data Undamage####

IncInf <- ts(DataCalVal[,5], start=1.15625, frequency=96)

IncInt <- ts(DataCalVal[,6], start=1.15625, frequency=96)

IncSup <- ts(DataCalVal[,7], start=1.15625, frequency=96)

LVDTInt <- ts(DataCalVal[,8], start=1.15625, frequency=96)

LVDTSup <- ts(DataCalVal[,9], start=1.15625, frequency=96)

 93

sf1Inf <- ts(DataCalVal[,10], start=1.15625, frequency=96)

sf2Inf <- ts(DataCalVal[,11], start=1.15625, frequency=96)

sf1Int <- ts(DataCalVal[,12], start=1.15625, frequency=96)

sf2Int <- ts(DataCalVal[,13], start=1.15625, frequency=96)

#Create dataset and select the number of lags (data test)

DataCalValT <-

(data.frame((IncInf[1:10199]),(IncInt[1:10199]),(IncSup[1:10199]),(LVDTInt[1:101

99]),(LVDTSup[1:10199]),(sf1Inf[1:10199]),(sf2Inf[1:10199]),(sf1Int[1:10199]),(sf2I

nt[1:10199])))

VARselect <- VARselect(DataCalValT, lag.max=300)$selection #optimal number

of lags=56

#Verify the stationarity of the series before and after integration of order 1: I(1)

ur.df(IncInf[1:10199], type = "none", lags=56 ,selectlags = "Fixed") %>%

summary()

ur.df(diff(IncInf[1:10199],lag=56), type = "none", lags=56, selectlags = "Fixed")

%>% summary()

ur.df(IncInt[1:10199], type = "none", lags=56 ,selectlags = "Fixed") %>%

summary()

ur.df(diff(IncInt[1:10199],lag=56), type = "none", lags=56, selectlags = "Fixed")

%>% summary()

ur.df(IncSup[1:10199], type = "none", lags=56 ,selectlags = "Fixed") %>%

summary()

ur.df(diff(IncSup[1:10199],lag=56), type = "none", lags=56, selectlags = "Fixed")

%>% summary()

ur.df(LVDTInt[1:10199], type = "none", lags=56 ,selectlags = "Fixed") %>%

summary()

 94

ur.df(diff(LVDTInt[1:10199],lag=56), type = "none", lags=56, selectlags = "Fixed")

%>% summary()

ur.df(LVDTSup[1:10199], type = "none", lags=56 ,selectlags = "Fixed") %>%

summary()

ur.df(diff(LVDTSup[1:10199],lag=56), type = "none", lags=56, selectlags =

"Fixed") %>% summary()

ur.df(sf1Inf[1:10199], type = "none", lags=56 ,selectlags = "Fixed") %>%

summary()

ur.df(diff(sf1Inf[1:10199],lag=56), type = "none", lags=56, selectlags = "Fixed")

%>% summary()

ur.df(sf2Inf[1:10199], type = "none", lags=56 ,selectlags = "Fixed") %>%

summary() #sai

ur.df(diff(sf2Inf[1:10199],lag=56), type = "none", lags=56, selectlags = "Fixed")

%>% summary()

ur.df(sf1Int[1:10199], type = "none", lags=56 ,selectlags = "Fixed") %>%

summary()

ur.df(diff(sf1Int[1:10199],lag=56), type = "none", lags=56, selectlags = "Fixed")

%>% summary()

ur.df(sf2Int[1:10199], type = "none", lags=56 ,selectlags = "Fixed") %>%

summary()

ur.df(diff(sf2Int[1:10199],lag=56), type = "none", lags=56, selectlags = "Fixed")

%>% summary()

#Johansen Test

jotest=ca.jo(DataCalValT, type="trace", K=56, ecdet="none", spec = 'longrun')

summary(jotest)

 95

#Generate Cointegration residuals for Validation data

BeforeV1 <-

as.numeric(jotest@V[1,1]*diff(IncInf[1:10199],lag=56)+jotest@V[2,1]*diff(IncInt[1:

10199],lag=56)+jotest@V[3,1]*diff(IncSup[1:10199],lag=56)+jotest@V[4,1]*diff(LV

DTInt[1:10199],lag=56)+jotest@V[5,1]*diff(LVDTSup[1:10199],lag=56)+jotest@V[6

,1]*diff(sf1Inf[1:10199],lag=56)+jotest@V[7,1]*diff(sf2Inf[1:10199],lag=56)+jotest@

V[8,1]*diff(sf1Int[1:10199],lag=56)+jotest@V[9,1]*diff(sf2Int[1:10199],lag=56))

BeforeV2 <-

as.numeric(jotest@V[1,2]*diff(IncInf[1:10199],lag=56)+jotest@V[2,2]*diff(IncInt[1:

10199],lag=56)+jotest@V[3,2]*diff(IncSup[1:10199],lag=56)+jotest@V[4,2]*diff(LV

DTInt[1:10199],lag=56)+jotest@V[5,2]*diff(LVDTSup[1:10199],lag=56)+jotest@V[6

,2]*diff(sf1Inf[1:10199],lag=56)+jotest@V[7,2]*diff(sf2Inf[1:10199],lag=56)+jotest@

V[8,2]*diff(sf1Int[1:10199],lag=56)+jotest@V[9,2]*diff(sf2Int[1:10199],lag=56))

BeforeV3 <-

as.numeric(jotest@V[1,3]*diff(IncInf[1:10199],lag=56)+jotest@V[2,3]*diff(IncInt[1:

10199],lag=56)+jotest@V[3,3]*diff(IncSup[1:10199],lag=56)+jotest@V[4,3]*diff(LV

DTInt[1:10199],lag=56)+jotest@V[5,3]*diff(LVDTSup[1:10199],lag=56)+jotest@V[6

,3]*diff(sf1Inf[1:10199],lag=56)+jotest@V[7,3]*diff(sf2Inf[1:10199],lag=56)+jotest@

V[8,3]*diff(sf1Int[1:10199],lag=56)+jotest@V[9,3]*diff(sf2Int[1:10199],lag=56))

BeforeV4 <-

as.numeric(jotest@V[1,4]*diff(IncInf[1:10199],lag=56)+jotest@V[2,4]*diff(IncInt[1:

10199],lag=56)+jotest@V[3,4]*diff(IncSup[1:10199],lag=56)+jotest@V[4,4]*diff(LV

DTInt[1:10199],lag=56)+jotest@V[5,4]*diff(LVDTSup[1:10199],lag=56)+jotest@V[6

,4]*diff(sf1Inf[1:10199],lag=56)+jotest@V[7,4]*diff(sf2Inf[1:10199],lag=56)+jotest@

V[8,4]*diff(sf1Int[1:10199],lag=56)+jotest@V[9,4]*diff(sf2Int[1:10199],lag=56))

BeforeV5 <-

as.numeric(jotest@V[1,5]*diff(IncInf[1:10199],lag=56)+jotest@V[2,5]*diff(IncInt[1:

10199],lag=56)+jotest@V[3,5]*diff(IncSup[1:10199],lag=56)+jotest@V[4,5]*diff(LV

 96

DTInt[1:10199],lag=56)+jotest@V[5,5]*diff(LVDTSup[1:10199],lag=56)+jotest@V[6

,5]*diff(sf1Inf[1:10199],lag=56)+jotest@V[7,5]*diff(sf2Inf[1:10199],lag=56)+jotest@

V[8,5]*diff(sf1Int[1:10199],lag=56)+jotest@V[9,5]*diff(sf2Int[1:10199],lag=56))

BeforeV6 <-

as.numeric(jotest@V[1,6]*diff(IncInf[1:10199],lag=56)+jotest@V[2,6]*diff(IncInt[1:

10199],lag=56)+jotest@V[3,6]*diff(IncSup[1:10199],lag=56)+jotest@V[4,6]*diff(LV

DTInt[1:10199],lag=56)+jotest@V[5,6]*diff(LVDTSup[1:10199],lag=56)+jotest@V[6

,6]*diff(sf1Inf[1:10199],lag=56)+jotest@V[7,6]*diff(sf2Inf[1:10199],lag=56)+jotest@

V[8,6]*diff(sf1Int[1:10199],lag=56)+jotest@V[9,6]*diff(sf2Int[1:10199],lag=56))

BeforeV7 <-

as.numeric(jotest@V[1,7]*diff(IncInf[1:10199],lag=56)+jotest@V[2,7]*diff(IncInt[1:

10199],lag=56)+jotest@V[3,7]*diff(IncSup[1:10199],lag=56)+jotest@V[4,7]*diff(LV

DTInt[1:10199],lag=56)+jotest@V[5,7]*diff(LVDTSup[1:10199],lag=56)+jotest@V[6

,7]*diff(sf1Inf[1:10199],lag=56)+jotest@V[7,7]*diff(sf2Inf[1:10199],lag=56)+jotest@

V[8,7]*diff(sf1Int[1:10199],lag=56)+jotest@V[9,7]*diff(sf2Int[1:10199],lag=56))

BeforeV8 <-

as.numeric(jotest@V[1,8]*diff(IncInf[1:10199],lag=56)+jotest@V[2,8]*diff(IncInt[1:

10199],lag=56)+jotest@V[3,8]*diff(IncSup[1:10199],lag=56)+jotest@V[4,8]*diff(LV

DTInt[1:10199],lag=56)+jotest@V[5,8]*diff(LVDTSup[1:10199],lag=56)+jotest@V[6

,8]*diff(sf1Inf[1:10199],lag=56)+jotest@V[7,8]*diff(sf2Inf[1:10199],lag=56)+jotest@

V[8,8]*diff(sf1Int[1:10199],lag=56)+jotest@V[9,8]*diff(sf2Int[1:10199],lag=56))

BeforeV <-

cbind(BeforeV1,BeforeV2,BeforeV3,BeforeV4,BeforeV5,BeforeV6,BeforeV7,Befor

eV8)

#Data Undamaged (Undamage Test period)

#Generate cointegration residuals

 97

BeforeUT1 <-

as.numeric(jotest@V[1,1]*diff(IncInf[10200:13079],lag=56)+jotest@V[2,1]*diff(IncI

nt[10200:13079],lag=56)+jotest@V[3,1]*diff(IncSup[10200:13079],lag=56)+jotest@V

[4,1]*diff(LVDTInt[10200:13079],lag=56)+jotest@V[5,1]*diff(LVDTSup[10200:130

79],lag=56)+jotest@V[6,1]*diff(sf1Inf[10200:13079],lag=56)+jotest@V[7,1]*diff(sf2I

nf[10200:13079],lag=56)+jotest@V[8,1]*diff(sf1Int[10200:13079],lag=56)+jotest@V[

9,1]*diff(sf2Int[10200:13079],lag=56))

BeforeUT2 <-

as.numeric(jotest@V[1,2]*diff(IncInf[10200:13079],lag=56)+jotest@V[2,2]*diff(IncI

nt[10200:13079],lag=56)+jotest@V[3,2]*diff(IncSup[10200:13079],lag=56)+jotest@V

[4,2]*diff(LVDTInt[10200:13079],lag=56)+jotest@V[5,2]*diff(LVDTSup[10200:130

79],lag=56)+jotest@V[6,2]*diff(sf1Inf[10200:13079],lag=56)+jotest@V[7,2]*diff(sf2I

nf[10200:13079],lag=56)+jotest@V[8,2]*diff(sf1Int[10200:13079],lag=56)+jotest@V[

9,2]*diff(sf2Int[10200:13079],lag=56))

BeforeUT3 <-

as.numeric(jotest@V[1,3]*diff(IncInf[10200:13079],lag=56)+jotest@V[2,3]*diff(IncI

nt[10200:13079],lag=56)+jotest@V[3,3]*diff(IncSup[10200:13079],lag=56)+jotest@V

[4,3]*diff(LVDTInt[10200:13079],lag=56)+jotest@V[5,3]*diff(LVDTSup[10200:130

79],lag=56)+jotest@V[6,3]*diff(sf1Inf[10200:13079],lag=56)+jotest@V[7,3]*diff(sf2I

nf[10200:13079],lag=56)+jotest@V[8,3]*diff(sf1Int[10200:13079],lag=56)+jotest@V[

9,3]*diff(sf2Int[10200:13079],lag=56))

BeforeUT4 <-

as.numeric(jotest@V[1,4]*diff(IncInf[10200:13079],lag=56)+jotest@V[2,4]*diff(IncI

nt[10200:13079],lag=56)+jotest@V[3,4]*diff(IncSup[10200:13079],lag=56)+jotest@V

[4,4]*diff(LVDTInt[10200:13079],lag=56)+jotest@V[5,4]*diff(LVDTSup[10200:130

79],lag=56)+jotest@V[6,4]*diff(sf1Inf[10200:13079],lag=56)+jotest@V[7,4]*diff(sf2I

nf[10200:13079],lag=56)+jotest@V[8,4]*diff(sf1Int[10200:13079],lag=56)+jotest@V[

9,4]*diff(sf2Int[10200:13079],lag=56))

 98

BeforeUT5 <-

as.numeric(jotest@V[1,5]*diff(IncInf[10200:13079],lag=56)+jotest@V[2,5]*diff(IncI

nt[10200:13079],lag=56)+jotest@V[3,5]*diff(IncSup[10200:13079],lag=56)+jotest@V

[4,5]*diff(LVDTInt[10200:13079],lag=56)+jotest@V[5,5]*diff(LVDTSup[10200:130

79],lag=56)+jotest@V[6,5]*diff(sf1Inf[10200:13079],lag=56)+jotest@V[7,5]*diff(sf2I

nf[10200:13079],lag=56)+jotest@V[8,5]*diff(sf1Int[10200:13079],lag=56)+jotest@V[

9,5]*diff(sf2Int[10200:13079],lag=56))

BeforeUT6 <-

as.numeric(jotest@V[1,6]*diff(IncInf[10200:13079],lag=56)+jotest@V[2,6]*diff(IncI

nt[10200:13079],lag=56)+jotest@V[3,6]*diff(IncSup[10200:13079],lag=56)+jotest@V

[4,6]*diff(LVDTInt[10200:13079],lag=56)+jotest@V[5,6]*diff(LVDTSup[10200:130

79],lag=56)+jotest@V[6,6]*diff(sf1Inf[10200:13079],lag=56)+jotest@V[7,6]*diff(sf2I

nf[10200:13079],lag=56)+jotest@V[8,6]*diff(sf1Int[10200:13079],lag=56)+jotest@V[

9,6]*diff(sf2Int[10200:13079],lag=56))

BeforeUT7 <-

as.numeric(jotest@V[1,7]*diff(IncInf[10200:13079],lag=56)+jotest@V[2,7]*diff(IncI

nt[10200:13079],lag=56)+jotest@V[3,7]*diff(IncSup[10200:13079],lag=56)+jotest@V

[4,7]*diff(LVDTInt[10200:13079],lag=56)+jotest@V[5,7]*diff(LVDTSup[10200:130

79],lag=56)+jotest@V[6,7]*diff(sf1Inf[10200:13079],lag=56)+jotest@V[7,7]*diff(sf2I

nf[10200:13079],lag=56)+jotest@V[8,7]*diff(sf1Int[10200:13079],lag=56)+jotest@V[

9,7]*diff(sf2Int[10200:13079],lag=56))

BeforeUT8 <-

as.numeric(jotest@V[1,8]*diff(IncInf[10200:13079],lag=56)+jotest@V[2,8]*diff(IncI

nt[10200:13079],lag=56)+jotest@V[3,8]*diff(IncSup[10200:13079],lag=56)+jotest@V

[4,8]*diff(LVDTInt[10200:13079],lag=56)+jotest@V[5,8]*diff(LVDTSup[10200:130

79],lag=56)+jotest@V[6,8]*diff(sf1Inf[10200:13079],lag=56)+jotest@V[7,8]*diff(sf2I

nf[10200:13079],lag=56)+jotest@V[8,8]*diff(sf1Int[10200:13079],lag=56)+jotest@V[

9,8]*diff(sf2Int[10200:13079],lag=56))

 99

BeforeUT <-

cbind(BeforeUT1,BeforeUT2,BeforeUT3,BeforeUT4,BeforeUT5,BeforeUT6,Befor

eUT7,BeforeUT8)

#Data Damage####

IncInfD <- ts(DataD[,5], start=1.7083333, frequency=96)

IncIntD <- ts(DataD[,6], start=1.7083333, frequency=96)

IncSupD <- ts(DataD[,7], start=1.7083333, frequency=96)

LVDTIntD <- ts(DataD[,8], start=1.7083333, frequency=96)

LVDTSupD <- ts(DataD[,9], start=1.7083333, frequency=96)

sf1InfD <- ts(DataD[,10], start=1.7083333, frequency=96)

sf2InfD <- ts(DataD[,11], start=1.7083333, frequency=96)

sf1IntD <- ts(DataD[,12], start=1.7083333, frequency=96)

sf2IntD <- ts(DataD[,13], start=1.7083333, frequency=96)

#Generate cointegration residuals

After1 <-

as.numeric(jotest@V[1,1]*diff(IncInfD,lag=56)+jotest@V[2,1]*diff(IncIntD,lag=56)

+jotest@V[3,1]*diff(IncSupD,lag=56)+jotest@V[4,1]*diff(LVDTIntD,lag=56)+jotest

@V[5,1]*diff(LVDTSupD,lag=56)+jotest@V[6,1]*diff(sf1InfD,lag=56)+jotest@V[7,1

]*diff(sf2InfD,lag=56)+jotest@V[8,1]*diff(sf1IntD,lag=56)+jotest@V[9,1]*diff(sf2In

tD,lag=56))

After2 <-

as.numeric(jotest@V[1,2]*diff(IncInfD,lag=56)+jotest@V[2,2]*diff(IncIntD,lag=56)

+jotest@V[3,2]*diff(IncSupD,lag=56)+jotest@V[4,2]*diff(LVDTIntD,lag=56)+jotest

@V[5,2]*diff(LVDTSupD,lag=56)+jotest@V[6,2]*diff(sf1InfD,lag=56)+jotest@V[7,2

 100

]*diff(sf2InfD,lag=56)+jotest@V[8,2]*diff(sf1IntD,lag=56)+jotest@V[9,2]*diff(sf2In

tD,lag=56))

After3 <-

as.numeric(jotest@V[1,3]*diff(IncInfD,lag=56)+jotest@V[2,3]*diff(IncIntD,lag=56)

+jotest@V[3,3]*diff(IncSupD,lag=56)+jotest@V[4,3]*diff(LVDTIntD,lag=56)+jotest

@V[5,3]*diff(LVDTSupD,lag=56)+jotest@V[6,3]*diff(sf1InfD,lag=56)+jotest@V[7,3

]*diff(sf2InfD,lag=56)+jotest@V[8,3]*diff(sf1IntD,lag=56)+jotest@V[9,3]*diff(sf2In

tD,lag=56))

After4 <-

as.numeric(jotest@V[1,4]*diff(IncInfD,lag=56)+jotest@V[2,4]*diff(IncIntD,lag=56)

+jotest@V[3,4]*diff(IncSupD,lag=56)+jotest@V[4,4]*diff(LVDTIntD,lag=56)+jotest

@V[5,4]*diff(LVDTSupD,lag=56)+jotest@V[6,4]*diff(sf1InfD,lag=56)+jotest@V[7,4

]*diff(sf2InfD,lag=56)+jotest@V[8,4]*diff(sf1IntD,lag=56)+jotest@V[9,4]*diff(sf2In

tD,lag=56))

After5 <-

as.numeric(jotest@V[1,5]*diff(IncInfD,lag=56)+jotest@V[2,5]*diff(IncIntD,lag=56)

+jotest@V[3,5]*diff(IncSupD,lag=56)+jotest@V[4,5]*diff(LVDTIntD,lag=56)+jotest

@V[5,5]*diff(LVDTSupD,lag=56)+jotest@V[6,5]*diff(sf1InfD,lag=56)+jotest@V[7,5

]*diff(sf2InfD,lag=56)+jotest@V[8,5]*diff(sf1IntD,lag=56)+jotest@V[9,5]*diff(sf2In

tD,lag=56))

After6 <-

as.numeric(jotest@V[1,6]*diff(IncInfD,lag=56)+jotest@V[2,6]*diff(IncIntD,lag=56)

+jotest@V[3,6]*diff(IncSupD,lag=56)+jotest@V[4,6]*diff(LVDTIntD,lag=56)+jotest

@V[5,6]*diff(LVDTSupD,lag=56)+jotest@V[6,6]*diff(sf1InfD,lag=56)+jotest@V[7,6

]*diff(sf2InfD,lag=56)+jotest@V[8,6]*diff(sf1IntD,lag=56)+jotest@V[9,6]*diff(sf2In

tD,lag=56))

After7 <-

as.numeric(jotest@V[1,7]*diff(IncInfD,lag=56)+jotest@V[2,7]*diff(IncIntD,lag=56)

 101

+jotest@V[3,7]*diff(IncSupD,lag=56)+jotest@V[4,7]*diff(LVDTIntD,lag=56)+jotest

@V[5,7]*diff(LVDTSupD,lag=56)+jotest@V[6,7]*diff(sf1InfD,lag=56)+jotest@V[7,7

]*diff(sf2InfD,lag=56)+jotest@V[8,7]*diff(sf1IntD,lag=56)+jotest@V[9,7]*diff(sf2In

tD,lag=56))

After8 <-

as.numeric(jotest@V[1,8]*diff(IncInfD,lag=56)+jotest@V[2,8]*diff(IncIntD,lag=56)

+jotest@V[3,8]*diff(IncSupD,lag=56)+jotest@V[4,8]*diff(LVDTIntD,lag=56)+jotest

@V[5,8]*diff(LVDTSupD,lag=56)+jotest@V[6,8]*diff(sf1InfD,lag=56)+jotest@V[7,8

]*diff(sf2InfD,lag=56)+jotest@V[8,8]*diff(sf1IntD,lag=56)+jotest@V[9,8]*diff(sf2In

tD,lag=56))

After <- cbind(After1,After2,After3,After4,After5,After6,After7,After8)

2.15. X-bar Control chart – time series analysis

CointResiduals <- as.data.frame(rbind(BeforeV,BeforeUT,After))

CointResiduals <- cbind(c(1:nrow(CointResiduals)),CointResiduals)

colnames(CointResiduals) <-

c("Observation","Residual1","Residual2","Residual3","Residual4","Residual5","R

esidual6","Residual7","Residual8")

library(ggplot2)

ggplot(CointResiduals) +

geom_point(data=CointResiduals,aes(Observation,Residual1)) +

 geom_vline(xintercept=nrow(BeforeV),linetype="dashed",color="green") +

geom_vline(xintercept=(nrow(BeforeV)+nrow(BeforeUT)),linetype="dashed",col

or="green") +

 102

 geom_hline(yintercept = mean(CointResiduals$Residual1[1:nrow(BeforeV)])-

3*sd(CointResiduals$Residual1[1:nrow(BeforeV)]), colour = "green") +

 geom_hline(yintercept =

mean(CointResiduals$Residual1[1:nrow(BeforeV)])+3*sd(CointResiduals$Resid

ual1[1:nrow(BeforeV)]), colour = "green") +

 ylab("Value") + labs(title="Cointegration Residual1", caption="Vertical lines

separate validation, undamaged test and damage period ; Horizontal lines are

mean+-3*sd limits based on the validation period")

2.16. Hotelling T2 based Control chart –

explanatory models

#Phase I

t2I <- as.data.frame(q$statistics)

t2I$UCL <- 0

t2I$UCL[t2I$`q$statistics`>q$limits[2]] <- 1

t2I$L8 <- 0

for (i in 8:3220){

 t2I$L8[i] <- sum(t2I$UCL[(i-7):i])

}

length(t2I$L8[t2I$L8==8])

#Phase II (Validation)

t2Val <- as.data.frame(qval$newstats)

t2Val$UCL <- 0

t2Val$UCL[t2Val$`qval$newstats`>qval$limits[2]] <- 1

 103

t2Val$L8 <- 0

for (i in 8:2880){

 t2Val$L8[i] <- sum(t2Val$UCL[(i-7):i])

}

length(t2Val$L8[t2Val$L8==8])

#Phase II (Damage)

t2II <- as.data.frame(qq$newstats)

t2II$UCL <- 0

t2II$UCL[t2II$`qq$newstats`>qq$limits[2]] <- 1

t2II$L8 <- 0

for (i in 8:22254){

 t2II$L8[i] <- sum(t2II$UCL[(i-7):i])

}

length(t2II$L8[t2II$L8==8])-4

(length(t2II$L8[t2II$L8==8])-4)/22254

#plot

T28 <- as.data.frame(c(t2I$L8,t2Val$L8,t2II$L8))

T28 <- cbind(c(1:28354),T28)

colnames(T28) <- c("Observation","Frequency")

library(ggplot2)

ggplot(T28) + geom_point(data=T28,aes(Observation,Frequency)) +

 geom_vline(xintercept=nrow(t2I),color="green") +

geom_vline(xintercept=(nrow(t2I)+nrow(t2Val)),color="green") +

 scale_y_continuous(breaks = seq(0, 8, len = 5))

T28$Alarm <- 0

 104

T28$Alarm[T28$Frequency==8] <- 1

ggplot(T28) + geom_point(data=T28,aes(Observation,Alarm)) +

 geom_vline(xintercept=nrow(t2I),color="green") +

geom_vline(xintercept=(nrow(t2I)+nrow(t2Val)),color="green") +

 scale_y_continuous(breaks = seq(0, 1)) +

 xlab(“Sets of 8 Observations”)

2.17. X-bar based Control chart – time series

analysis

XbarI <- as.data.frame(CointResiduals[,1:2])

XbarI$CL <- 0

XbarI$CL[XbarI$Residual1>mean(CointResiduals$Residual1[1:nrow(BeforeV)])

+3*sd(CointResiduals$Residual1[1:nrow(BeforeV)])] <- 1

XbarI$CL[XbarI$Residual1<mean(CointResiduals$Residual1[1:nrow(BeforeV)])

-3*sd(CointResiduals$Residual1[1:nrow(BeforeV)])] <- 1

XbarI$OC <- 0

for (i in 3:37340){

 XbarI$OC[i] <- sum(XbarI$CL[(i-2):i])

}

XbarOC <- XbarI[,c(1,4)]

colnames(XbarOC) <- c("Observation","Frequency")

library(ggplot2)

ggplot(XbarOC) + geom_point(data= XbarOC,aes(Observation,Frequency)) +

 105

 geom_vline(xintercept=nrow(BeforeV),linetype="dashed",color="green") +

geom_vline(xintercept=(nrow(BeforeV)+nrow(BeforeUT)),linetype="dashed",col

or="green") +

 scale_y_continuous(breaks = seq(0, 3, len = 4))

XBAROC$Alarm <- 0

XBAROC$Alarm[XBAROC$Frequency==3] <- 1

ggplot(XBAROC) + geom_point(data=XBAROC,aes(Observation,Alarm)) +

 geom_vline(xintercept=nrow(BeforeV),linetype="dashed",color="green") +

geom_vline(xintercept=(nrow(BeforeV)+nrow(BeforeUT)),linetype="dashed",col

or="green") +

 scale_y_continuous(breaks = seq(0, 1)) +

 xlab("Sets of 3 Observations")

 106

Appendix 3 – Explanatory Models Results

 Linear Regression

 Strain F1

Middle

Strain F2

Middle

Strain F1

lower

Strain F2

lower

LVDT

upper

LVDT

middle

Inclinometer

upper

Inclinometer

middle

Inclinometer

lower

R2 0,76 0,69 0,77 0,82 0,53 0,62 0,90 0,85 0,87

RMSE 6,45 7,70 6,65 9,99 0,22 0,08 9,06 8,16 6,92

MAE 5,07 5,96 5,20 7,55 0,16 0,06 6,56 6,16 5,53

MAPE 0,03 0,04 0,03 0,20 0,16 0,80 0,01 0,01 0,00

Table 6: Error metrics for the Linear Regression Model

 Random Forest

 Strain F1

Middle

Strain F2

Middle

Strain

F1

lower

Strain

F2

lower

LVDT

upper

LVDT

middle

Inclinometer

upper

Inclinometer

middle

Inclinometer

lower

R2 0,81 0,75 0,83 0,85 0,82 0,62 0,88 0,86 0,87

RMSE 5,88 7,04 5,83 9,10 0,15 0,8 9,90 7,88 6,91

MAE 4,45 5,24 4,41 6,68 0,10 0,06 6,38 5,76 5,51

MAPE 0,02 0,03 0,02 0,19 0,11 0,79 0,01 0,00 0,00

Table 7: Error metrics for the Random Forest Model

 Support Vector Machine

 Strain F1

Middle

Strain F2

Middle

Strain F1

lower

Strain F2

lower

LVDT

upper

LVDT

middle

Inclinometer

upper

Inclinometer

middle

Inclinometer

lower

R2 0,76 0,69 0,77 0,82 0,80 0,62 0,90 0,84 0,87

RMSE 6,47 7,75 6,67 9,98 0,15 0,08 9,13 8,22 6,94

MAE 5,06 5,93 5,19 7,52 0,12 0,06 6,53 6,12 5,52

MAPE 0,03 0,04 0,03 0,20 0,12 0,77 0,01 0,01 0,00

Table 8: Error metrics for the Support Vector Machine Model

 107

Appendix 4 - Neural Network Model Prediction

Figure 15: Top graph refers to Observed and Predicted observations from the Neural Network

model. Black dots refer to the observed values; Blue dots refer to the predicted values for the

validation period; Green dots refer to the predicted values for the undamaged test period; Red

dots refer to the predicted values for damage period. Bottom graph represents the difference

between the Observed and Predicted observations

Figure 16: Top graph refers to Observed and Predicted observations from the Neural Network

model. Black dots refer to the observed values; Blue dots refer to the predicted values for the

validation period; Green dots refer to the predicted values for the undamaged test period; Red

dots refer to the predicted values for damage period. Bottom graph represents the difference

between the Observed and Predicted observations

 108

Figure 17: Top graph refers to Observed and Predicted observations from the Neural Network

model. Black dots refer to the observed values; Blue dots refer to the predicted values for the

validation period; Green dots refer to the predicted values for the undamaged test period; Red

dots refer to the predicted values for damage period. Bottom graph represents the difference

between the Observed and Predicted observations

Figure 18: Top graph refers to Observed and Predicted observations from the Neural Network

model. Black dots refer to the observed values; Blue dots refer to the predicted values for the

validation period; Green dots refer to the predicted values for the undamaged test period; Red

dots refer to the predicted values for damage period. Bottom graph represents the difference

between the Observed and Predicted observations

 109

Figure 19: Top graph refers to Observed and Predicted observations from the Neural Network

model. Black dots refer to the observed values; Blue dots refer to the predicted values for the

validation period; Green dots refer to the predicted values for the undamaged test period; Red

dots refer to the predicted values for damage period. Bottom graph represents the difference

between the Observed and Predicted observations

Figure 20: Top graph refers to Observed and Predicted observations from the Neural Network

model. Black dots refer to the observed values; Blue dots refer to the predicted values for the

validation period; Green dots refer to the predicted values for the undamaged test period; Red

dots refer to the predicted values for damage period. Bottom graph represents the difference

between the Observed and Predicted observations

 110

Figure 21: Top graph refers to Observed and Predicted observations from the Neural Network

model. Black dots refer to the observed values; Blue dots refer to the predicted values for the

validation period; Green dots refer to the predicted values for the undamaged test period; Red

dots refer to the predicted values for damage period. Bottom graph represents the difference

between the Observed and Predicted observations

Figure 22: Top graph refers to Observed and Predicted observations from the Neural Network

model. Black dots refer to the observed values; Blue dots refer to the predicted values for the

validation period; Green dots refer to the predicted values for the undamaged test period; Red

dots refer to the predicted values for damage period. Bottom graph represents the difference

between the Observed and Predicted observations

