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Abstract 

Despite their importance, many Structural Health Monitoring (SHM) systems 

still rely on human inspection to verify the condition of the structure under 

analysis.  Thus, the present work focus on creating an intelligent system that is 

able to detect damage automatically. This system is based on a real-life structure 

and the data collected in both undamaged and damaged states of the structure.  

Two SHM approaches are proposed. First, explanatory models supported by 

machine learning algorithms (linear regression, random forest, support vector 

machines and neural network) are used to predict the values of the physical 

properties monitored in a regular condition. By comparing the predicted and 

observed values, a potential abnormal condition of the structure is detected by 

means of a Hotelling T2 control chart. In the second approach, a time series 

analysis is adopted, using the cointegration properties of the series to compute 

the relationships between the variables monitored. These relationships are 

monitored with a X-bar control chart, where a potential change in the 

relationship indicate the presence of damage. 

The two proposed approaches revealed to be capable of damage detection 

only when there is indeed a damage. More so, after the damage has been induced 

in the structure, both were able to signal an anomaly before 24 hours have passed. 

These results support the fact that SHM systems constitute a relevant tool to 

support the decision-makers in charge of monitoring the condition of the 

structures. 

 

Keywords:  Structural Health Monitoring; Bridge diagnosis; Damage detection; 

Linear regression; Random forest; Support vector machine; Neural network; 

Cointegration analysis; Johansen cointegration procedure; Temperature effect
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Sumário 

Apesar da sua importância, muitos sistemas de Monitorização da Saúde 

Estrutural (MSE) ainda dependem da inspeção humana para verificar a condição 

da estrutura em análise. Assim, o presente trabalho foca-se na criação de um 

sistema inteligente capaz de detetar dano de forma autónoma. Este sistema é 

baseado numa estrutura real em que os dados são captados nos estados com e 

sem dano da própria estrutura. 

Duas abordagens para a MSE são propostas. Primeiro, modelos explicativos 

suportados por algoritmos de machine learning (regressão linear, random forest, 

redes neuronais e máquina de vetores de suporte) são usados para prever os 

valores das propriedades físicas monitorizadas numa condição normal. 

Comparando os valores previstos com os observados, uma potencial condição 

anormal da estrutura é detetada por meios de uma carta de controlo Hotelling 

T2. Numa segunda abordagem, a análise de series temporais é adotada, usando 

as propriedades da cointegração das séries para encontrar as relações entre as 

variáveis monitorizadas. Estas relações são acompanhadas por uma carta de 

controlo X-bar, onde uma potencial mudança nas anteriores indica a presença de 

dano. 

As duas abordagens propostas revelam ter a capacidade de detetar dano 

apenas quando realmente ele existe. Mesmo depois de o dano ter sido induzido 

na estrutura, ambas foram capazes de sinalizar uma anomalia antes de passarem 

24 horas. Estes resultados apoiam o facto de os sistemas de monitorização da 

saúde estrutural revelarem ser ferramentas relevantes ao suporte à tomada de 

decisão no que toca à monitorização da condição de estruturas. 
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Introduction 

The current society lives surrounded by a growing number of infrastructures 

that are used regularly. Thus, it is imperative to have constant revisions and 

quality monitoring of the mentioned infrastructures to ensure the minimum 

quality standards, avoiding any victims and accidents that result from 

infrastructures degradation and damages. In this perspective, monitoring 

systems have gained relevance, in particular because many infrastructures such 

as bridges are used beyond their life expectancy and are exposed to higher 

pressure from automobiles due to increased transport capacity (Neves, Gonz, & 

Leander, 2018). 

In order to detect and report structural damages, sensitive systems have been 

developed to avoid permanent damages or an altogether collapse of a structure. 

These systems are called Structural Health Monitoring (SHM) systems and are 

responsible for collecting data and use it as input in a panoply of techniques that 

will detect if future data refer to potential anomalies and therefore a possible 

damage. 

Although there are many infrastructures that throughout the previous 

decades were monitored, originating high volumes of data that characterize their 

condition, only in some cases the data produced was used to support decision-

making process in what regards health assessment (Tomé, Pimentel, & Figueiras, 

2019). The data recorded has usually a large data size, a high number of variables 

and low quality, making the use of Data Mining (DM) technology a must to 
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extract knowledge from the data (Duan & Zhang, 2006; Gordan, Razak, Ismail, & 

Ghaedi, 2017). 

Throughout the last years, complex methods have been suggested and 

implemented in the SHM literature, which in turn are being slowly implemented 

in real SHM systems. These methods can mainly be divided in explanatory 

models and time series based models. In short, the explanatory models use one 

or more variables (explanatory variables) to explain the structure characteristics 

(dependent variables) (Farreras-Alcover, Chryssanthopoulos, & Andersen, 

2015), while time series analysis use historic data to find a trend in the structure 

characteristics (Omenzetter & Brownjohn, 2006; Worden, Cross, & Barton, 2012). 

In this work, both methods will be implemented in the development of a SHM 

system capable of damage detection. For explanatory models, four different 

machine learning algorithms will be used including linear regression, random 

forest, support vector machine and neural networks. After, they will be tested 

against each other by means of performance metrics comparison. Only the model 

with the best performance will be considered. As for the time series based models 

the cointegration properties of the series will be studied to compute the 

relationship between variables. 

The damage detection process comes in the form of control charts. In the 

explanatory models, the difference between the predicted and observed values 

will be the input of a Hotelling T2 based control chart. Meanwhile, the 

cointegration residuals that come from the relationship among variables will be 

applied to a X-bar based control chart. 

All the practical procedures were developed in R language. In order to allow 

other users to learn and replicate the methods adopted, all the written code will 

be shared in the following work. Throughout Section 3 and Section 4, references 

will be made to the respective parts of the code. 



 19 

 

 

 

Chapter 1 
Literature review 

Studies on SHM usually follow one of two approaches, either a global 

approach or a local approach (Chang, Flatau, & Liu, 2003). The first focuses on 

data collection and analysis of the state of the infrastructure considering only the 

dynamic effects and compares it to its normal condition. The local approach 

focuses on the quantification of the damage in specific parts of the structure such 

as the cables of a bridge (Farreras-Alcover et al., 2015). The local approach could 

be seen as the next step of the global-based SHM stage, where the first step is to 

detect damage and the second step to locate and quantify such damage (Sharma 

& Sen, 2018; Tibaduiza, Mujica, & Rodellar, 2011). 

The table in Appendix 1 summarizes some studies on the topic of SHM, 

highlighting the common practices and algorithms that have been used recently 

to support them. These studies are supported by three main types of data. The 

first will be called virtual data approach and relies on using a virtual simulated 

structure to generate data from an undamaged and damaged state. Another, 

called virtual damage data approach, refers to the use of a real-life structure to 

record data in an undamaged state and then simulate the same structure virtually 

with damage to gather new data. Finally, there is the situation in which both 

undamaged and damaged state data come from a real-life structure. This is called 

physical data approach. 
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Example of studies following a virtual data approach are: (Dunia & Qin, 1998; 

Kim, Ryu, Cho, & Stubbs, 2003; Kromanis & Kripakaran, 2013; Neves et al., 2018; 

Posenato, Lanata, Inaudi, & Smith, 2008; Slišković, Grbić, & Hocenski, 2012; Yan, 

Kerschen, De Boe, & Golinval, 2005). In this approach, the insertion of damage in 

the structure is easier and without any real-life danger. This approach also 

promotes consistency on the data since the method of data collection in the 

undamaged and the damaged state is the same. However, some real-world 

variables may not be encompassed in it, making the models that come from this 

data less reliable. These models usually do not involve independent variables, 

being the principal component analysis the most used technique in this setting. 

However, the variables considered when modelling are generally different 

between studies. 

All studies analyzed that adopt a virtual damage data approach (Tomé et al., 

2019; Tomé, Pimentel, & Figueiras, 2020; Wipf, Phares, Doornink, Greimann, & 

Wood, 2007), use a real bridge to record data in an undamaged state. This allows 

for close view of the reality, resulting in models that have an accurate base to 

incorporate the behavior of the bridge in question.  

When it comes to a physical data approach, there is a need to divide this 

approach in two categories. The first category uses a small structure to replicate 

the real structure (Barthorpe, 2010; Cross, Worden, & Chen, 2011; Farrar, 

Doebling, & Nix, 2001; Kesavan, John, & Herszberg, 2008; Pandey, Thostenson, 

& Heider, 2013; Park & Inman, 2007; Phares, Lu, Wipf, Greimann, & Seo, 2013; 

Rosales & Liyanapathirana, 2017; Tibaduiza et al., 2011; Yan et al., 2005). In this 

category, several models are used for SHM purposes. Some examples are 

principal component analysis and linear regression. Despite the different 

variables used in these models, the most frequent are strain and vibration. The 

second category refers to the studies that use a real structure to record both data 

in an undamaged and damaged states (Da Silva, 2017; Farreras-Alcover et al., 
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2015; Reynders, Wursten, & de Roeck, 2014; Worden et al., 2012). It is rare to have 

the opportunity to record data of a bridge with damage in a controlled way, 

making these studies have a high value added when considering the accuracy 

that SHM systems can have. In this setting, the most common variables used to 

support the models are both temperature and vibration. The principal 

component is the most popular method in this branch of the literature. 

Overall, the literature reveals a clear preference for the use of techniques that 

do not accommodate independent variables, i.e. other techniques than the 

explanatory ones. The most used one is principal component analysis (Cross et 

al., 2011; Da Silva, 2017; Dunia & Qin, 1998; Posenato et al., 2008; Reynders et al., 

2014; Slišković et al., 2012; Tibaduiza et al., 2011; Tomé et al., 2019; Yan et al., 

2005) and cointegration (Dao, 2013; Tomé et al., 2019, 2020; Worden et al., 2012). 

Meanwhile, only a third of the studies presented use machine learning, 

prioritizing the use of linear regression (Farreras-Alcover et al., 2015; Phares et 

al., 2013), autoregressive models with exogeneous inputs (Park & Inman, 2007; 

Rosales & Liyanapathirana, 2017) and neural networks (Da Silva, 2017; Neves et 

al., 2018). Regarding the variables monitored by the SHM systems, the most 

widely adopted variables are vibration, then strain and finally temperature.
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Chapter 2 
Methodology and Data 

This study uses a real-life structure to support the development of two SHM 

models, i.e. one explanatory model, supported by machine learning techniques, 

and another based on time series analysis, supported by cointegration. In the next 

section it is detailed the data collected and the methodology proposed. 

1. Structure 

As mentioned before, a real structure is used to support this study and is 

consequently used to gather undamaged and damaged state datasets. This 

structure is a partial representation of a bridge, formed by two iron beams with 

the lower being thicker (see Figure 1). The structure is equipped with several 

sensors, such as an electrical resistance extension meters, accelerometers, 

inclinometers, displacement transducers, GPS and thermometers. These sensors 

collect data at a predetermined interval of time. Every sensor writes data every 

15 minutes, which in turn generates 96 observations every 24 hours. These 

sensors enabled the collection of data from the end of April 2018 until the 

beginning of April 2019. 
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Figure 1: Visual representation of the structure 

Throughout this period, the structure was exposed to two different situations 

(please refer to Figure 2). A period in which the structure is just being influenced 

by its dynamic and static properties which will therefore be used as a reference 

(between 27/04/2018 and 10/09/2018), and then a second state where some degree 

of damage is induced (from 10/09/2018 until the end of April 2019). The damage 

was induced by attaching a steel cable to the structure and connect it to the 

building where it is planted. The building is made of concrete and has an 

expansion joint. The cable is connected to the segment of the building that the 

structure is not placed. Since the cable is connected to the other segment of the 

building, a different response will be registered due to the different displacement 

caused by thermal contraction and expansion. Therefore, throughout the period, 

different tensions will be stimulated through the cable and these anomalies will 

be considered a case where the structure is under damage. 
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Figure 2: The two conditions the structure was subjected to 

2. Data cleaning process 

Since the accelerometers collect data only thrice per day, they were discarded 

from the dataset. This results in four group of variables being collected, i.e.: 

thermometers (7 sensors), strain gauge (4 sensors), displacement transducer (2 

sensors) and inclinometer (3 sensors). 

Due to the use of sensors, there will be inevitably some outliers that will need 

to be treated. Firstly, the dataset was divided into two, one containing the data 

that concerns the undamage period (stored in the DataUD object) and the other 

that refers to the damage period (stored in the DataD object). Only the former 

was considered in the data cleaning process. This was an attempt to mimic a real 

case scenario where there is access to data that is sure to be undamaged and then 

have data that may have outliers due to the existence of damage. In the case of 

data representing the damage period, having a data cleaning process could result 

in removing observations reflecting the damage and not anomalies in the sensors. 

To identify outliers that should be removed from the undamage period, some 

techniques were tested. The process that provided better results was a procedure 

based on the absolute difference between past and future observations. First, the 

absolute difference between an observation and the previous observation was 

computed as well as the absolute difference between that observation and the 

subsequent observation. These two differences in the values of the variables 

monitored correspond to deviations observed in intervals of 15 minutes. If these 

27/04/2018

• No cable attached

• Undamaged state

10/09/2018

• Structure connected with a 
8m steel cable

• Damaged state
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two differences were greater than the mean of the differences plus three standard 

deviations, the observation was removed. This procedure was also conducted for 

differences of 30 minutes, 45 minutes and so on, until an observation was 

compared to the homologous observation of the day before (96 observations 

before) and the homologous observation of the day after (96 observations after). 

A visual representation of this procedure can be found in Figure 3 where a 

random observation in green is first compared to the observations 15 minutes 

before and after in red, then compared to the observations 30 minutes before and 

after in blue, and thirdly compared to the observation 45 minutes before and after 

in orange. 

 

Figure 3: Sample of temperature data to demonstrate the outlier removal procedure 

This procedure allowed the thoroughly detection and removal of outliers 

present in the dataset. Users interested in how this procedure was coded in R 

should follow Appendix 2.1. where an explanation of its mechanics is there fully 

described. 

After computing the differences and classify them as being above or not the 

mean plus three standard deviations, they can finally be removed from the 

dataset altogether (see Appendix 2.2.). As mentioned before, this process was 

applied only to the data referring to the undamage period of the bridge. When it 

comes to the rest of the data, in the process of inserting damage, the data suffered 
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a shift in the recorded variables. The value of the shift was assumed to be equal 

to the difference between the mean of the last 672 observations of the undamage 

period and the mean of the first 672 observations of the damage period. This 

value was then applied to the damage data, removing the effect of the shift. The 

group of 672 observations considered was picked to represent a week of values. 

3. Explanatory and Time series models 

After a time consuming data processing stage, the data was used to support 

the damage detection system. In the development of the SHM system, two types 

of approaches were used and compared in order to define which model can 

better understand the data in question.  

First, explanatory models were adopted, using both the structure and ambient 

temperature to predict the structure characteristics. In this case, several machine 

learning techniques were tested. Having the predictions of the structure 

characteristics, it is possible to evaluate whether the actual characteristics are 

deviating from what was expected to happen, i.e. it is possible to detect an 

abnormal behavior. 

Concerning the time series analysis, the cointegration properties were used to 

draw the relationships between the variables regarding the structure 

characteristics. These relationships come in the form of linear cointegration 

vectors that can be used to generate cointegration residuals. Since these residuals 

represent the relationship between the variables, any abrupt changes in them 

should indicate a change in this relationship and therefore an anomaly. 

3.1 Explanatory models 
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Foremost, the explanatory and dependent variables need to be defined. On 

this case, the temperature related variables will be used as explanatory variables, 

while the variables coming from the other three groups of sensors will be used 

as dependent variables independently. This is, an explanatory model will be 

created for each variable related to strain gauge, displacement transducer and 

inclinometer, resulting in a total of 9 models. 

The temperature related variables that came from the 7 thermometers were 

chosen as the explanatory variables with the assumption that the temperature 

will affect the variables representing the structure, since it is part of its dynamic 

properties.  

By creating these explanatory models, there is the ability to predict the 

expected values of the variables in a regular condition, and likewise compare 

them to the observed values. The difference between the predicted and observed 

values is the error or residual. The error can also be seen as the part that the 

temperature cannot explain. Following this line of thought, the residuals 

produced by these models are the true behavior of the variables without the 

influence of the temperature. Finally, by using the residuals as the input of the 

Hotelling T2 control chart, it is possible to detect when there is damage in the 

structure (Dunia & Qin, 1998; Slišković et al., 2012; Tibaduiza et al., 2011; Tomé 

et al., 2019, 2020). Thus, for the damage period, the model should predict values 

significantly different than the ones observed since this data reflect an abnormal 

behavior, which was not observed before. On the other hand, for the period 

without damage, the predictions are expected to be similar to the observed 

values. 

The model proposed should detect anomalies but should not flag false positive 

situations, i.e. situations in which there is not a damage and the model classifies 

as an abnormal period. Therefore, both the data that refers to the damage period, 

as well as the undamage test period that consists on the last month of the 
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undamaged period were considered to evaluate the ability of the model 

proposed to detect a damage when it happened. This means that only the data 

referring to the period before the undamage test period was used to verify the 

ability of the SHM model. This period of data was considered to train (calibration 

period) and test (validation period) the four machine learning techniques used 

for prediction purposes. In Figure 4, a representation of the data division is 

illustrated. These machine learning algorithms were linear regression, random 

forests, support vector machines and neural networks. The respective parameters 

for each algorithm were computed and tested in unseen data. The parameters of 

the models were then tuned using a grid search approach and the final 

performance of the models was tested in unseen data. 

 

 

Figure 4: Visual representation of the data division for explanatory models 

The model creation process went through randomly dividing the data in the 

undamage period, except for the undamage test period data, into two folds with 

the same number of observations (see Appendix 2.3.). Thereafter the cross-

validation technique was used to evaluate the accuracy of the model and try to 

avoid overfitting problems. The first fold (stored in object DataVal) was divided 

into ten random samples, from which the algorithm takes nine of those and then 

tests its performance one the sample that was left out. This is done ten times, each 

time leaving a different sample out, and computing the ten sets of parameters. 
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Firstly, the linear regression was embraced. Although this is a simple 

algorithm, it has its advantageous for its low computational needs with the 

ability to create great predictive models (see Appendix 2.4. and 2.5.). Secondly, 

the Random Forest algorithm was used by referring to 1000 decision trees in 

order to create the regression parameters and decide how many variables are 

necessary to predict accurately (see Appendix 2.6. and 2.7.). Thirdly, the data was 

fed to a Support Vector Machine model with a variant cost and gamma parameter 

(see Appendix 2.8. and 2.9.). Finally, the Neural Network model was used with 

changes to the size and decay parameters (see Appendix 2.10. and 2.11.). 

With the parameters estimated, they are to be applied to the second fold 

created earlier (stored in object DataCal). This fold will be referred as the 

validation period from now on. The validation period was also handled in a 

cross-section manner to avoid overfitting problems. The results that come from 

the validation period should already mirror what would be expected in the 

undamage period and will be applied to the undamage test and damage period 

(both stored in object DataNew). As said earlier, applying these parameters 

should wield an accurate prediction in the undamage test period but not to the 

in the damage period. 

The performance metrics chosen to verify the performance of the machine 

learning models were the following: coefficient of determination (R2), root mean 

square deviation (RMSE), mean absolute error (MAE) and mean absolute 

percentage error (MAPE). 

Regarding the control charts, as mentioned before, the Hotelling T2 control 

chart was used. This control chart can be used in multivariate settings and 

consequently can evaluate simultaneously whether the values of the strain 

gauge, displacement transducer and inclinometer variables reflect an anomaly.  

In short, the Hotelling T2 control chart considers the mean of each individual 

residual and a matrix of the covariance between each pair of residuals (Santos-
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Fernández, 2012). This means that changes in the mean and variance of the 

residuals should result in a greater Hotelling T2. An Upper Control Limit (UCL) 

is calculated and any values above of the UCL are out of control and represent 

an abnormal behavior in comparison to the rest of the data.  

The Hotelling T2 control chart is a two phased quality control chart. This 

means that in phase I one dataset is used to set a base mean and covariance 

matrix, while on phase II the mean and covariance matrix of the phase I are used 

as input along with a second dataset (Harris & Harris, 1995). In practice (see 

Appendix 2.12.), the validation period data is used for the Hotelling T2 control 

chart in phase I, while both the undamage test and damage period data are used 

as input for the phase II. 

3.2 Time series models 

Time-series models take a set of observations ordered in a time order, 

registered in a defined pattern, and try to find a trend to fit it. These models do 

not accept datasets with missing values since it will violate the rule of being 

registered in a defined pattern, on this case every 15 minutes. In order to bypass 

this, there is a need to infer some missing values. This obviously has drawbacks 

since it will try to replicate the normal behavior of the series while the original 

data may have been abnormal. Nonetheless, it is a necessary step that should be 

taken into consideration when analyzing the results. 

To interpolate the missing values, the Kalman filter was chosen. In simple 

terms, by feeding the algorithm a dataset and specifying the seasonal period, it 

will predict the missing value by replicating the trend of the series. For further 

details, please refer to Rudolf E. Kalman (Kalman, 1960, 1963; Kalman & Bucy, 

1961). The process of interpolating the missing values in R is documented in the 

appendix (Appendix 2.13.). 



 32 

Cointegration is a property of the time-series that defines the relationship 

between several variables. Variables are only said to be cointegrated if there is a 

linear relationship between them. This linear relationship can only be determined 

if the variables themselves are stationary. For a variable to be stationary, its 

parameters such as mean and variance cannot change over time (Chatfield, 1975). 

In case one or more variables are not stationary, the difference between an 

observation and p observations before must be done (Harris & Harris, 1995). 

Considering p to be 1, it is computed the difference between an observation and 

the one before, in this case it would be the differences in 15 minutes. 

To check for stationarity, stationarity statistic test needs to be used, such as the 

augmented dickey-fuller (Dickey & Fuller, 1979, 1981). Nonetheless, before 

applying a stationarity test, the number of lags (p) need to be determined. To 

determine the optimal number of lags (p) some vectors autoregressive need to be 

created considering different p’s and then compared, using some model selection 

criteria like AIC, HQ, SC, FPE (Liew, 2004, 2006). 

After the series is deemed stationary, it is possible to explore the cointegration 

properties, computing the relationships between variables present in the series. 

In this work, the linear relationships between variables will be computed using 

the Johansen test (Johansen, 1988). The number of linear relationships that come 

from it can be at minimum zero and at maximum the number of variables minus 

one. If the number of linear relationships is zero, then the series are not 

cointegrated. The number of linear relationships is also tested in the Johansen 

test. 

The determination of the optimal number of lags, the application of 

stationarity tests and the discovery of the cointegration vectors is present in the 

appendix (see Appendix 2.14.).  

The parameters that define the relationships are called cointegration vectors, 

while the series produced by the cointegration vectors are called cointegration 
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residuals. Although the cointegration residuals values do not represent anything 

per se, any anomalies in them translates into a shift in the relationships between 

the variables. This shift is expected to signal a change in the behavior of the 

structure and the presence of damage. Therefore, by monitoring the cointegration 

residuals, it is possible to detect the presence of damage. For monitoring, an X-

bar control chart is used, where the upper and lower limit are the mean plus or 

minus 3 standard deviations, respectively, in reference to the validation test 

period (Appendix 2.15.).
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Chapter 3 
Results 

1. Explanatory models 

In order to validate the use of explanatory models to detect anomalies, it is 

important to evaluate the performance of the predictive models proposed. This 

was performed in the calibration period. Moreover, the usage of different 

machine learning algorithms leads to different results. Thus, Table 1 shows the 

performance of each model supported by Neural Networks model. Appendix 3 

presents the results for Linear Regression, Random Forest and Support Vector 

Machine models. Comparing the metrics, the models supported by Neural 

Networks seem to perform better, producing an average R2 of 84% with a 

relatively low error variance in comparison the other models. Although the 

Random Forest model had some similar values, both the Linear Regression and 

Support Vector Machine Models had a worse overall performance. Based on 

these results, the neural networks were the algorithm adopted to perform the 

predictions. 
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Neural Networks (error metrics) 

 
Strain 

F1 

Middle 

Strain 

F2 

Middle 

Strain 

F1 

Lower 

Strain 

F2 

Lower 

LVDT 

Upper 

LVDT 

Middle 

Inclinometer 

Upper 

Inclinometer 

Middle 

Inclinometer 

Lower 

R2 0,84 0,79 0,85 0,87 0,87 0,70 0,92 0,89 0,88 

RMSE 5,37 6,54 5,40 8,51 0,13 0,07 7,96 6,95 6,70 

MAE 4,05 4,88 4,14 6,19 0,10 0,6 5,59 5,30 5,35 

MAPE 0,02 0,03 0,02 0,18 0,10 0,65 0,00 0,00 0,00 

Table 1: Error metrics for the Neural Network Model 

Focusing on the Inclinometer Upper variable, the model provides accurate 

predictions. This can be verified in Figure 5, in particular when comparing the 

observed values in dark and the predicted values in blue. For the same period, 

the error observed in Figure 6 also empathizes the quality of the predictions.  

Having validated the performance of the neural networks in what regards 

their prediction ability in this setting, it is important to verify whether they are 

able to detect anomalies and whether they do not signal situations in which no 

anomaly occurred. Thus, it can be observed in green the predictions for a regular 

period (undamage test period) and conclude that the predictions seem to be 

aligned with observed values. The error for this same period also seems to be 

reasonable given the past error.  

However, as soon as the damage is introduced (damage period), represented 

after the red line, the behavior of the structure changes and the model can no 

longer encompass it. This is also shown in the residuals, in Figure 6, which start 

to fluctuate a lot more. In fact, there is a significant change between the observed 

and predicted observations, from the moment the damage occurred, which is 

mirrored in the residual values. From this, an alarm system can be developed to 

detect this change automatically and more robustly.  

 While only the Inclinometer Upper variable was presented here, the 

graphics of the other variables can be found in the Appendix 4. The pattern 
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observed for Inclinometer Upper variable is similar to that observed for the other 

variables. 

 

 

Figure 5: Observed and Predicted observations from the Neural Network model. Black dots refer 

to the observed values; Blue dots refer to the predicted values for the validation period; Green 

dots refer to the predicted values for the undamaged test period; Red dots refer to the predicted 

values for damage period 

 

Figure 6: Difference between the Observed and Predicted observations from the Neural Network 

model 

As a way to develop a tool that combines the residuals of the whole set of 

variables that are used to evaluate the condition of the structure, the Hotelling T2 

control chart is adopted. Looking at Figure 7, the validation period used to 

calibrate de control chart, only few values are above the control limit, more 

precisely 0,71% of the values. The same occurs for the undamage test period (see 

Figure 8) with 2,5% of the values above the UCL. As for the damage period (see 

Figure 9), there are much more values above the limit where 42,62% of the values 

are out of control, highlighting an abnormal behavior. 
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Figure 7: Hotelling T2 control chart for the validation period 

 

Figure 8: Hotelling T2 control chart for the validation and undamaged test period. Vertical line 

separates these two periods 

 

Figure 9: Hotelling T2 control chart for the calibration and damage period. Vertical line separates 

these two periods 
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The number of successive observations out of the control limits was also 

analyzed. Thus, sets of 96 observations out of control were considered, in the 

sense that if in a period of 24h there were only values out of control, then there 

was with no doubt some damage in the structure. This approach showed to be 

promising, as this only occurred in the damage period. A similar analysis was 

developed considering only 2 hours and this revealed to be a better approach, as 

in case 8 observations in a row are out of control, there is a 100% confidence that 

there is something wrong with the structure in question (Appendix 2.16.). With 

this method false positives are completely removed, false negatives do not exist 

and the damage detection system is quicker. 

The described procedure is illustrated in Figure 10. In this figure each dot 

represents a set of 8 consequent observations. If all the observations in a set are 

out of control, then Alarm equals 1. Observing the validation and undamage test 

period, it never happens to have 8 out of control observations for 2 hours straight. 

In the damage period, 12% of the sets include solely out of control observations 

which is quite alarming on itself. Nonetheless, the first damaged situation is 

flagged after 20h30m of damage being implemented. Also, as time passes, not 

only the number of sets where Alarm is 1 increase but the number of sets without 

any out of control observation decreases. 

 

 

Figure 10: Graphical representation of which sets of 8 observations include only out of control 

observations 
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2. Time series analysis 

After the data cleaning process referred in Section 2.3., the series started to 

have some missing values, meaning that it was not possible to apply any kind of 

time series analysis. Therefore, as mentioned before, some values were 

interpolated with the Kalman filter. An example of interpolated values can be 

seen in Figure 11. After the missing values were interpolated, the series is finally 

complete in the sense that it can be used in time series analysis without violating 

any assumption. The data is then divided into 3 different datasets. In Figure 12 

it can be seen the data division, while Table 2 presents the differences between 

this division and the one referred in Section 3.1. for the explanatory models. 

 

 
Figure 11: Sample of Temperature F2 Lower, where the values between the green lines have been 

interpolated using the Kalman Filter 

 

Figure 12: Visual representation of the data division for time series analysis 
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Explanatory models Time series analysis 

Calibration period Calibration and Validation 

period Validation period 

Undamage test period Undamage test period 

Damage period Damage period 

Table 2: Differences in the data division done for the explanatory models and time series analysis 

As stated before, a stationarity test needs to be used. To do so, several vectors 

autoregressive were created for the validation period, considering p to be 

anything between 1 and 300. After doing so, the AIC, HQ, SC, FPE criteria were 

used. The optimal number of lags that resulted from them were 56, 15, 4 and 56 

respectively. Therefore, the number of lags chosen was 56 since 2 different 

criterions suggested it. 

Having the number of lags selected, it was possible to apply the augmented 

dickey-fuller test which states that the series is not stationary. This was expected 

since it is known the temperature affects the variables from the exploratory 

models and the temperature itself is not stationary. By differencing the series 

with 56 lags and test it once again for stationarity, the series is now stationary 

and therefore a series of order I(1) is enough. 

After making sure the data in the calibration and validation period is 

stationary, the Johansen test was used to know how many cointegration vectors 

there were, and then to compute them. From this, 8 different cointegration 

vectors were calculated. 

Afterwards, the data in the undamage test and damage period were also tested 

for stationary. By considering the data without integration, both series were not 

stationary. However, by differencing the series with 56 lags they started to 

present stationarity. 
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Since all the series present stationarity, they were all once again compiled into 

one. From these, the cointegration vectors computed for the calibration and 

validation period were applied to the whole series, generating 8 cointegration 

residuals. The first set of residuals is seen in Figure 13. By focusing on the 

calibration and validation period, an X-bar control chart was developed. 

 

 

Figure 13: Cointegration residuals computed from the first cointegration vector. The horizontal 

lines relate to the upper and lower limits defined by the mean plus or minus 3 standard 

deviations, respectively, referenced to the calibration and validation period. The first vertical line 

divides the calibration and validation from the undamaged test period, while the second divides 

the undamaged test and damage period 

Once again, both in the calibration and validation and the undamage test 

period, there are observations that fall outside the limits defined. To avoid this 

problem the method described in Section 3.1 is adopted. This time, instead of 

testing for 2 hours of values outside of the control limits, it is possible to be more 

restrictive and consider only 45 minutes (see Appendix 2.17.). Doing so, allows 

this method to detect damage only in the damage period as seen Figure 14. 

Nonetheless, this system is only capable of flagging about 1% of the sets of 

observations in this period. Even so, this method is able detect damage 5 hours 

after the damage is introduced. 
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Figure 14: Graphical representation of which sets of 3 observations include only out of control 

observations
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Conclusion 

Keeping in mind the increase importance of a reliable SHM system nowadays, 

this work focused on the development of a system capable of detecting damage 

autonomously. The system should be robust enough to avoid false positives, 

while being sensitive enough to detect damage in a structure. 

In the development of this system, a real-life partial experimental model of a 

bridge was used as case study. This structure was subjected to a period of free 

action and a period of damage. This allowed for very rich data capable to mirror 

what a real-life behavior would be, which in turn made the system that depend 

on the data more reliable. 

The developed system took advantage of two different methods to test if it 

was possible to produce a model that could encompass the behavior of the 

structure. The first method relied on the use of machine learning algorithms 

(linear regression, random forest, support vector machine and neural network) 

to build explanatory models. While the second took advantage of time series 

analysis to draw the cointegration properties of the structure. 

Finally, control charts were used to detect anomalies. By feeding the control 

charts data of a structure in a normal condition, they could detect atypical 

behaviors that signal damage. In the case of the explanatory models, the residuals 

that came from the difference between the predicted and observed values were 

used as input of Hotelling T2 based control chart. Nevertheless, regarding time 

series analysis, the cointegration residuals were used in the development of a X-

bar based control chart. 

The creation of the control charts revealed that explanatory models have a 

greater damage detection capability than the results that come from time series 

analysis. While both these methods enabled the detection of damage only in the 
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damage period, their sensitivity difference is clear.  Considering only the damage 

period, the cointegration residuals allowed for 1% of the observations to be 

correctly detected as damage, while the system developed around the 

explanatory models was capable of flagging 12% of the observations. 

Although the explanatory model system is more reliable in damage detection, 

when it comes to how quickly a damage is detected the roles swap. Despite the 

explanatory model system detects a damage situation after 20 hours and 30 

minutes of damage being induced in the structure, the cointegration approach 

signals damage only 5 hours after. 

 Even though there is a significant difference between the two systems 

developed, it should be considered that the one based on the cointegration 

properties of the series had some values interpolated, which could hinder its 

performance.
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Appendix 

Appendix 1 – Studies summary 

 
Damage 

Location 
Structure Undamaged State  

Structure Damaged 

State 
Variables   

Article Global Local Physical 
Virtual 

Simulation 
Material Physical 

Virtual 

Simulation 

Independent 

Variable(s) 

Dependent 

Variables(s) 
Model Damage Detection Algorithm 

Dunia 1998  x  

process with 

reboilers and 

pre-heaters 

with control 

valves 

x  x  flow Principal Component Analysis 
SPE and the T2 indices (control 

charts) 

Farrar 2001 x  Columns  concrete x   vibration 
Auto-regressive estimation (linear 

predictive coding) 
Fisher's discriminant 

Kim 2003  x  beams 
concrete and 

steel 
 x  

strain 

Finite element models 

frequency-based damage detection 

(damage index) 

mode shapes 
mode-shape-based damage 

detection (damage index) 

Yan 2005 x  

 bridge concrete  x 

 vibration Principal Component Analysis Mahalanobis distance 
wooden 

bridge 
 wood x  
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Damage 

Location 
Structure Undamaged State  

Structure Damaged 

State 
Variables   

Article Global Local Physical 
Virtual 

Simulation 
Material Physical 

Virtual 

Simulation 

Independent 

Variable(s) 

Dependent 

Variables(s) 
Model Damage Detection Algorithm 

Omenzetter 

2006 
x  

Singapore-

Malaysia 

Second Link 

 

concrete and 

reinforced 

steel 

x   strain 
ARIMA (moving coefficients) with 

extended Kalman filter 

Analysis of level shifts in coefficient 

values 

Posenato 

2008 
 x  beam concrete  x  displacement 

Moving Principal Component 

Analysis 
eigenvector analysis 

Moving correlation analysis correlation analysis 

Instance-based method distance-from-training-set analysis 

Short-term Fourier transform frequency and modulus analysis 

Continuous wavelet transform coefficient analysis 

Wipf 2007  x US 30 bridge  

steel, concrete 

and 

reinforced 

concrete 

 x  strain 

Extrema event analysis 

(relationship between target and 

non-target sensors) 

Analysis of % of values above or 

below manually set control limits 

Park 2007  x walls  
reinforced 

concrete 
x  frequency impedance 

Modified frequency-domain 

autoregressive model with 

exogenous inputs (ARX) 

analysis of: outlier damage metric 

based on extreme value statistics 

and root mean square deviation 

damage metric 

Kesavan 

2008 
 x 

T-joint 

specimens 
 glass fiber x   strain 

Global Neural network Algorithm 

for Sequential Processing of 

Internal sub Networks 

(GNAISPIN), which uses multiple 

ANNs in conjunction with a 

modified DRAT (Damage 

Relativity Analysis Technique) 

delamination comparisson 
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Damage 

Location 
Structure Undamaged State  

Structure Damaged 

State 
Variables   

Article Global Local Physical 
Virtual 

Simulation 
Material Physical 

Virtual 

Simulation 

Independent 

Variable(s) 

Dependent 

Variables(s) 
Model Damage Detection Algorithm 

Barthorpe 

2010 
x  

aluminium 

aicraft wing 
 

aluminium 

baseplate 
x   vibration 

Mahalanobis squared distance 

(MSD) 
ROC curve and AUC value 

Support vector machines 

percentage of correctly classified, 

incorrectly classified and 

unclassified 

Tibaduiza 

2011 
 x 

Aircraft 

turbine blade 

 

similar to 

titanium 
x 

  

vibration 

time based 

signals and 

piezoelectric 

transducers 

Principal Component Analysis 

Self Organizing Maps (SOM) and 

the following indexes: Q-index (or 

SPE-index), the Hotelling’s T2-

statistic (D - statistic), Phi and I2 
Aluminium 

plate 

smooth-raw 

aluminium 
x 

Cross 2011 x  
composite 

panel 
 

carbon fibre-

reinforced 

plastic 

x   
Lamb-wave 

signals 
Principal Component Analysis 

Multivariate outlier analyses of 

novelty index based on mean, 

covariance matrix and feature 

samples 

Worden 

2012 
x  footbridge  concrete x   

structure 

local slope 
Cointegration X-bar chart (control charts) 

Slišković 

2012 
 x  liquid storage x  x  

input flow, 

flow and 

output flow 

Principal Component Analysis and 

ICA 

Hotelling's (T2), I2 and Q (SPE) 

(control charts) 

Kromanis 

2013 
x   

girder found in 

highway 

bridges 

reinforced 

concrete 
 x temperature Strain Support vector regression 

moving fast Fourier transform 

(MFFT) 
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Damage 

Location 
Structure Undamaged State  

Structure Damaged 

State 
Variables   

Article Global Local Physical 
Virtual 

Simulation 
Material Physical 

Virtual 

Simulation 

Independent 

Variable(s) 

Dependent 

Variables(s) 
Model Damage Detection Algorithm 

Pandey 

2013 
x  

ASTM D3039 

tensile 

specimens 

 
E-glass fibers 

and resin 
x  

dielectric 

constant and 

impedance 

strain 

Equation based on material 

dielectric and magnetic properties, 

specimen geometry and 

transmission line width 
Impedance change measurements 

Analysis Dielectrostriction phenomenon 

linear relationship 

Linear dependence of the dielectric 

constant on strain 

Phares 2013  x 

specimens 

that replicate 

the US 30 

bridge 

 

steel, concrete 

and 

reinforced 

concrete 

x  
strain range 

of a sensor 

strain range 

of another 

sensor 

Linear regression X-bar chart (control charts) 

Dao 2013 x  plates  aluminium x   
Lamb-wave 

signals 
Cointegration 

analysis of the adf t-statistic value of 

variables and cointegration vectors 

Reynders 

2014 
x  Z24 bridge  concrete x   vibration 

Linear and kernel Principal 

Component Analysis 

visual analysis of the prediction 

error (not the focus of this work) 

Alcover 

2015 
x  

Great Belt 

Bridge 

(Denmark) 

 steel (doesn’t have) 

daily-

averaged 

pavement 

temperatures 

daily-

aggregated 

heavy traffic 

counts) and 

a strain-

based 

performance 

indicator 

Weighted least squares regression 
Analysis of stress range residuals 

(control chart) 
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Damage 

Location 
Structure Undamaged State  

Structure Damaged 

State 
Variables   

Article Global Local Physical 
Virtual 

Simulation 
Material Physical 

Virtual 

Simulation 

Independent 

Variable(s) 

Dependent 

Variables(s) 
Model Damage Detection Algorithm 

Rosales 

2015 
 x 

Small three 

story building 

representation 
 

aluminium 

baseplate 
x  

force from 

the shaker 
vibration 

Autoregression (AR) model; 

Autoregressive with Exogeneous 

(ARX) Inputs 

Mahalanobis distance 

Silva 2017 

x 

 

z-24 bridge 

 

concrete x 

  

temperature, 

vibration 

Linear Principal Componetne Analysis, 

Auto-Associative Neural Network, 

Mahalanobis squared distance, 

Gaussian mixture models 

Number and percentage of Type I/II 

errors 
x Tamar Bridge 

concrete and 

steel 
x 

tensions on 

stays, 

vibration, 

wind velocity, 

temperature, 

deflection and 

tilt 

Neves 2018 x   
single-track 

railway bridge 

concrete and 

steel 
 x train speed 

vibration and 

axle loads 
Artificial Neural Networks 

Receiver Operating Characteristic 

curves 

Tomé 2019  x Corgo Bridge  concrete  x 
concrete 

temperatures 

stay-cable 

forces 

Cointegration ratio between the mean values of the 

T2 statistic in the damaged and 

undamaged states; ratio between the 

mean values of the T2 statistic in the 

damaged state and the UCL 

Multilinear Regression and Principal 

Component Analsysis (MLR-PCA) 

Tomé 2020  x Corgo Bridge  concrete  x  vibration Cointegration 

ratio between the mean values of the 

T2 statistic in the damaged and 

undamaged states; ratio between the 

mean values of the T2 statistic in the 

damaged state and the UCL 

Table 3: SHM related studies summary 
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Appendix 2 – Code 

Note: DataUD refers to the undamaged data. This data has a total of 17 

columns. The first has the time when the observation was recorded while the 

other 16 are in a numeric form. 

2.1. Outlier detection 

To do this in R, the data had to be first prepared for it. First, two variables were 

created. The first was an id variable, while the second was a binary one to 

determine if the observation at some point was detected as outlier and therefore 

not to be considered in the next difference. After, some objects were created to be 

later used. 

When calculating the time difference between two observations in R, there 

needs to be extra attention. While a 15-minute difference is considered 15, an 

hour difference is 1 instead of 60. Also, if the time between two observations is 

one day, the result is 1 instead of 24. In order to work around this problem, three 

different loops were constructed in a way to be missing value proof. The first 

loop is designed to calculate the differences between 15, 30 and 45-minutes, the 

mean and standard deviation of the respective differences and finally compare 

the differences computed to the mean plus three standard deviations. The second 

loop is the same but designed for differences of 1 hour until differences of 23 

hours and 45 minutes. Lastly, the third loop is used exclusively for differences of 

24 hours. 

When it comes to naming variables, the computed differences were stored and 

named B if they were being compared with the previous observations and named 

A if they were taking future observations into account. Also, in naming, all the 

time differences were considered in minutes. 
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If at any time, an observation had both differences above the mean plus three 

standard deviations, the variable look was set to 0. At the end of each loop, it is 

counted and stored in object Difs how many observations were removed so that 

the number outliers found in each time difference is known. In order to be 

missing value proof, the time difference between observations were computed 

and tested every loop to verify the right differences were being calculated. 

 

 

Prepare data for the data cleaning process 

DataUD$id <- 1:nrow(DataUD) 

DataUD$id[1:9] <- paste("0000",DataUD$id[1:9],sep="") 

DataUD$id[10:99] <- paste("000",DataUD$id[10:99],sep="") 

DataUD$id[100:999] <- paste("00",DataUD$id[100:999],sep="") 

DataUD$id[1000:9999] <- paste("0",DataUD$id[1000:9999],sep="") 

DataUD$look <- 1 #if 1 the observation is not an outlier and should be 

considered in the computation of the Mean + 3*SD. 

 

shift <- c(0) 

MeanSDB <- list() 

MeanSDA <- list() 

for (i in 1:96){ 

  MeanSDB[[i]] <- c(0,0) 

  MeanSDA[[i]] <- c(0,0) 

} 

Difs <- c(0,0) 
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Compare differences between 15, 30 and 45 minutes 

for (t in 1:3){ 

   

#create names for the differences: B for before and A for after 

  for (i in c(2:17)) { #c(2:17) refers to the variables in the dataset 

    name=paste(colnames(DataUD)[round(i)],"Dif",t*15,"B",sep="") 

    DataUD$name <- 0 

    colnames(DataUD)[grep("name",colnames(DataUD))] <- name 

  } 

  name=paste("Time",t*15,"B",sep="") 

  DataUD$name <- 0 

  colnames(DataUD)[grep("name",colnames(DataUD))] <- name 

  for (i in c(2:17)) { 

    name=paste(colnames(DataUD)[round(i)],"Dif",t*15,"A",sep="") 

    DataUD$name <- 0 

    colnames(DataUD)[grep("name",colnames(DataUD))] <- name 

  } 

  name=paste("Time",t*15,"A",sep="") 

  DataUD$name <- 0 

  colnames(DataUD)[grep("name",colnames(DataUD))] <- name 

   

  #Compute the differences 

  for (i in 1:(nrow(DataUD)-t)) { #loop to compute the time difference between 

observations 

    DataUD[i+t,(ncol(DataUD)-17)] <- DataUD$Time[i+t] - DataUD$Time[i] 

  } 
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  for (k in 2:17){ #loop to compute the absolute differences for the observations 

before 

    DataUD[,(k-49+67*t)] <- c(shift, abs(DataUD[-c(1:t),k] - DataUD[-

c((nrow(DataUD)-t+1):nrow(DataUD)),k] ) ) 

  } 

  for (i in (-47+67*t):(-31+67*t)){ #loop to compute the absolute differences for the 

observations after 

    DataUD[,i+17] <- c(DataUD[-c(1:t),i],shift) 

  } 

   

  #create variables to know if the differences are above or below the Means + 

3*SD (binary) 

  names <- 

c("TempInfF2","TempIntF1","TempIntF2","IncInf","IncInt","IncSup","LVDTInt","

LVDTSup","SF1Inf","SF2Inf","SF1Int","SF2Int","TempSupF1","TempSupF2","Tem

pSupF2Despro","TempAmb") 

  for (i in 1:16) { 

    DataUD$name <- 0 

    colnames(DataUD)[grep("name",colnames(DataUD))] <- 

paste("Dif",t*15,"B",names[i],sep="") 

  } 

  for (i in 1:16) { 

    DataUD$name <- 0 

    colnames(DataUD)[grep("name",colnames(DataUD))] <- 

paste("Dif",t*15,"A",names[i],sep="") 

  } 
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  #Compute Mean + 3*SD and classify the differences as 1 is above the Mean + 

3*SD 

  for (i in 2:17){ #differences Before 

    MeanSDB[[t]] <- rbind(MeanSDB[[t]],c((mean(DataUD[DataUD$look==1 & 

DataUD[,(-31+67*t)]==(t*15),(i-49+67*t)])+3*sd(DataUD[DataUD$look==1 & 

DataUD[,(-31+67*t)]==(t*15),(i-49+67*t)])),(mean(DataUD[DataUD$look==1 & 

DataUD[,(-31+67*t)]==(t*15),(i-49+67*t)])-3*sd(DataUD[DataUD$look==1 & 

DataUD[,(-31+67*t)]==(t*15),(i-49+67*t)])))) 

    look.for <- c((DataUD[DataUD$look==1 & DataUD[,(-31+67*t)]==(t*15) & 

DataUD[,(i-49+67*t)]>MeanSDB[[t]][i,1],(i-49+67*t)]),(DataUD[DataUD$look==1 

& DataUD[,(-31+67*t)]==(t*15) & DataUD[,(i-49+67*t)]<MeanSDB[[t]][i,2],(i-

49+67*t)])) 

    DataUD[DataUD[,(i-49+67*t)] %in% look.for,(i-15+67*t)] <- 1 

  } 

   

  for (i in 2:17){ #differences After 

    MeanSDA[[t]] <- rbind(MeanSDA[[t]],c((mean(DataUD[DataUD$look==1 & 

DataUD[,(-14+67*t)]==(t*15),(i-32+67*t)])+3*sd(DataUD[DataUD$look==1 & 

DataUD[,(-14+67*t)]==(t*15),(i-32+67*t)])),(mean(DataUD[DataUD$look==1 & 

DataUD[,(-14+67*t)]==(t*15),(i-32+67*t)])-3*sd(DataUD[DataUD$look==1 & 

DataUD[,(-14+67*t)]==(t*15),(i-32+67*t)])))) 

    look.for <- c((DataUD[DataUD$look==1 & DataUD[,(-14+67*t)]==(t*15) & 

DataUD[,(i-32+67*t)]>MeanSDA[[t]][i,1],(i-32+67*t)]),(DataUD[DataUD$look==1 

& DataUD[,(-14+67*t)]==(t*15) & DataUD[,(i-32+67*t)]<MeanSDA[[t]][i,2],(i-

32+67*t)])) 

    DataUD[DataUD[,(i-32+67*t)] %in% look.for,(i+1+67*t)] <- 1 

  } 
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  #Create a variable to classify an observation if both differences (Before and 

After) are above the Mean + 3*SD. Variable is set to 1 if both differences are 

abnormal and “look” is set to 0 

  name=paste("Dif",t*15,sep="") 

  DataUD$name <- 0 

  colnames(DataUD)[grep("name",colnames(DataUD))] <- name 

  for (i in 1:nrow(DataUD)){ 

    for (k in 2:17){ 

      if(sum(DataUD[i,(k-15+67*t)])>0 & sum(DataUD[i,(k+1+67*t)])>0){ 

        DataUD$look[i] <- 0 

        DataUD[i,ncol(DataUD)] <- 1 

      } 

    } 

  } 

   

   

  Difs <- rbind(Difs,c(sum(DataUD[,ncol(DataUD)]),sum(DataUD$look))) #Table 

that records how many observations are left out for 15, 30 and 45 minute 

differences 

  shift <- rbind(shift,c(0)) 

  print(t) 

} 

 

colnames(Difs) <- c("Observations Removed","Observations considered when 

computing MeanSD") 
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Compare differences between 1 hour and 23h45 

The code is the same as above. The only differences are: 

 

Differences between 15, 30 and 45 minutes Differences between 1 hour and 23h45 

for (t in 1:3){ for (t in 4:95){ 

==(t*15) ==(t/4) 

Table 4: Code difference between the loop designed for 15, 30 and 45 minutes differences and the 

loop designed for differences between 1 hour and 23h45 

Compare differences for 24 hours 

The code is the same as the first. The only differences are: 

Differences between 15, 30 and 45 minutes Differences between 24 hours 

for (t in 1:3){ for (t in 96){ 

==(t*15) ==round(t*15/1440,4) 

Table 5: Code difference between the loop designed for 15, 30 and 45 minutes differences and the 

loop designed for differences between 24 hours 

2.2. Remove Outliers and correct shift in damage 

period data 

DataUD <- DataUD[DataUD$Dif15==0 & DataUD$Dif30==0 & 

DataUD$Dif45==0 & DataUD$Dif60==0 & DataUD$Dif75==0 & 

DataUD$Dif90==0 & DataUD$Dif105==0 & DataUD$Dif120==0 & 

DataUD$Dif135==0 & DataUD$Dif150==0 & DataUD$Dif165==0 & 

DataUD$Dif180==0 & DataUD$Dif195==0 & DataUD$Dif210==0 & 

DataUD$Dif225==0 & DataUD$Dif240==0 & DataUD$Dif255==0 & 

DataUD$Dif270==0 & DataUD$Dif285==0 & DataUD$Dif300==0 & 
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DataUD$Dif315==0 & DataUD$Dif330==0 & DataUD$Dif345==0 & 

DataUD$Dif360==0 & DataUD$Dif375==0 & DataUD$Dif390==0 & 

DataUD$Dif405==0 & DataUD$Dif420==0 & DataUD$Dif435==0 & 

DataUD$Dif450==0 & DataUD$Dif465==0 & DataUD$Dif480==0 & 

DataUD$Dif495==0 & DataUD$Dif510==0 & DataUD$Dif525==0 & 

DataUD$Dif540==0 & DataUD$Dif555==0 & DataUD$Dif570==0 & 

DataUD$Dif585==0 & DataUD$Dif600==0 & DataUD$Dif615==0 & 

DataUD$Dif630==0 & DataUD$Dif645==0 & DataUD$Dif660==0 & 

DataUD$Dif675==0 & DataUD$Dif690==0 & DataUD$Dif705==0 & 

DataUD$Dif720==0 & DataUD$Dif735==0 & DataUD$Dif750==0 & 

DataUD$Dif765==0 & DataUD$Dif780==0 & DataUD$Dif795==0 & 

DataUD$Dif810==0 & DataUD$Dif825==0 & DataUD$Dif840==0 & 

DataUD$Dif855==0 & DataUD$Dif870==0 & DataUD$Dif885==0 & 

DataUD$Dif900==0 & DataUD$Dif915==0 & DataUD$Dif930==0 & 

DataUD$Dif945==0 & DataUD$Dif960==0 & DataUD$Dif975==0 & 

DataUD$Dif990==0 & DataUD$Dif1005==0 & DataUD$Dif1020==0 & 

DataUD$Dif1035==0 & DataUD$Dif1050==0 & DataUD$Dif1065==0 & 

DataUD$Dif1080==0 & DataUD$Dif1095==0 & DataUD$Dif1110==0 & 

DataUD$Dif1125==0 & DataUD$Dif1140==0 & DataUD$Dif1155==0 & 

DataUD$Dif1170==0 & DataUD$Dif1185==0 & DataUD$Dif1200==0 & 

DataUD$Dif1215==0 & DataUD$Dif1230==0 & DataUD$Dif1245==0 & 

DataUD$Dif1260==0 & DataUD$Dif1275==0 & DataUD$Dif1290==0 & 

DataUD$Dif1305==0 & DataUD$Dif1320==0 & DataUD$Dif1335==0 & 

DataUD$Dif1350==0 & DataUD$Dif1365==0 & DataUD$Dif1380==0 & 

DataUD$Dif1395==0 & DataUD$Dif1410==0 & DataUD$Dif1425==0 & 

DataUD$Dif1440==0,1:17] 

rownames(DataUD) <- NULL 
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#Remove shift in damage data 

for (i in c(5:13)) { 

  DataD[,i] <- DataD[,i] + (mean(DataUD[(nrow(DataUD)-672):nrow(DataUD),i]) 

- mean(DataD[,i][1:672])) 

} 

2.3. Fold creation (Calibration and Validation 

data) 

DataUD$id <- 1:nrow(DataUD) 

DataUD$id[1:9] <- paste("0000",DataUD$id[1:9],sep="") 

DataUD$id[10:99] <- paste("000",DataUD$id[10:99],sep="") 

DataUD$id[100:999] <- paste("00",DataUD$id[100:999],sep="") 

DataUD$id[1000:7159] <- paste("0",DataUD$id[1000:7159],sep="") 

 

DataD$id <- 1:nrow(DataD) 

DataD$id[1:9] <- paste("0000",DataD$id[1:9],sep="") 

DataD$id[10:99] <- paste("000",DataD$id[10:99],sep="") 

DataD$id[100:999] <- paste("00",DataD$id[100:999],sep="") 

DataD$id[1000:9999] <- paste("0",DataD$id[1000:9999],sep="") 

 

DataUDT <- DataUD[(nrow(DataUD)-2879):nrow(DataUD),] 

DataNew <- rbind(DataUDT,DataD) 

DataCalVal <- DataUD[1:(nrow(DataUD)-2880),] 

 

library(caret) 

set.seed(13) 
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folds <- createFolds(DataCalVal$id, k=2) 

DataCal <- DataCalVal[folds[[1]],] 

DataVal <- DataCalVal[folds[[2]],] 

 

set.seed(14) 

folds_train <- createFolds(DataCal$id, k=10) 

set.seed(15) 

folds_test <- createFolds(DataVal$id, k=10) 

2.4. Linear regression for calibration period data 

The code below refers solely to one of the dependent variables 

(Strain_F1_Middle). This should be done as many times as dependent variables 

there are. 

 

library(Metrics) 

 

feats <- colnames(DataUD[c(2:4,14:17)]) # c(2:4,14:17) refers to the independent 

variables 

f <- paste(feats,collapse=' + ') 

f <- paste('Strain_F1_Middle ~',f) #“Strain_F1_Middle” refers to the name of the 

dependent variable 

f <- as.formula(f) #Convert to formula 

 

#Train 

results_reg_sf1int <- data.frame() 

predictions_summary <- data.frame() 

fitsummary <- list() 
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for (k in 1:10){ #loop to compute the parameters and save the predictions 

  fit <- lm(f, data=DataCal[-folds_train[[k]],]) 

  fitsummary[[k]] <- summary(fit) 

  prediction <- predict(fit, newdata=DataCal[folds_train[[k]],]) 

  predictions_summary <- rbind(predictions_summary, 

data.frame(Time=DataCal[folds_train[[k]],'Time'], 

y=DataCal$Strain_F_Middle[folds_train[[k]]], prediction)) 

} 

 

#Save metrics 

R2 <- cor(predictions_summary$y, predictions_summary$prediction) 

RMSE <- rmse(predicted = predictions_summary$prediction, actual = 

predictions_summary$y) 

MAE <- mae(predicted = predictions_summary$prediction, actual = 

predictions_summary$y) 

MAPE <- mape(predicted = predictions_summary$prediction, actual = 

predictions_summary$y) 

results_reg_sf1int=rbind(results_reg_sf1int,data.frame(R2, RMSE, MAE, 

MAPE)) 

RegTrain_sf1int <- results_reg_sf1int 

RegTrain_sf1int 

 

for (i in 1:10){print(fitsummary[[i]])} #the variables that, on average, have a p-

value above 0.01 should be removed by changing the feats object at the start, 

until all variables are significative 
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2.5. Linear regression for validation, undamaged 

test and damage period data 

The code below refers solely to one of the dependent variables 

(Strain_F1_Middle). This should be done as many times as dependent variables 

there are. 

 

feats <- colnames(DataUD[c(2:4,14,17)]) 

f <- paste(feats,collapse=' + ') 

f <- paste('Strain_face1_intermedio ~',f) 

f <- as.formula(f) #Convert to formula 

 

predictions_summaryregsf1int <- data.frame() 

results_reg_sf1int <- data.frame() 

 

for (k in 1:10){ 

  fit <- lm(f, data=DataVal[-folds_test[[k]],]) 

  fitsummary[[k]] <- summary(fit) 

  prediction <- predict(fit, newdata=DataVal[folds_test[[k]],]) 

  predictions_summaryregsf1int <- rbind(predictions_summaryregsf1int, 

data.frame(Time=DataVal[folds_test[[k]],'Time'], 

y=DataVal$Strain_face1_intermedio[folds_test[[k]]], pred=prediction)) 

} 

 

#Save metrics for testing data 

R2 <- cor(predictions_summaryregsf1int$y, 

predictions_summaryregsf1int$pred) 
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RMSE <- rmse(predicted = predictions_summaryregsf1int$pred, actual = 

predictions_summaryregsf1int$y) 

MAE <- mae(predicted = predictions_summaryregsf1int$pred, actual = 

predictions_summaryregsf1int$y) 

MAPE <- mape(predicted = predictions_summaryregsf1int$pred, actual = 

predictions_summaryregsf1int$y) 

results_reg_sf1int=rbind(results_reg_sf1int,data.frame(R2, RMSE, MAE, 

MAPE)) 

results_reg_sf1int 

 

fit <- lm(f, data=DataVal) 

predictionsf1int <- predict(fit, newdata=DataNew) 

predictions_summaryregsf1int$dif <- predictions_summaryregsf1int$y - 

predictions_summaryregsf1int$pred 

predictions_summaryregsf1int <- 

rbind(predictions_summaryregsf1int,data.frame(Time=DataNew$Time,y=Data

New$Strain_face1_intermedio,pred=predictionsf1int,dif=DataNew$Strain_face1

_intermedio-predictionsf1int)) 

 

#Undamage Test period 

R2 <- cor(predictions_summaryregsf1int$y[3221:6100], 

predictions_summaryregsf1int$pred[3221:6100]) 

RMSE <- rmse(predicted = predictions_summaryregsf1int$pred[3221:6100], 

actual = predictions_summaryregsf1int$y[3221:6100]) 

MAE <- mae(predicted = predictions_summaryregsf1int$pred[3221:6100], actual 

= predictions_summaryregsf1int$y[3221:6100]) 

MAPE <- mape(predicted = predictions_summaryregsf1int$pred[3221:6100], 

actual = predictions_summaryregsf1int$y[3221:6100]) 
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results=rbind(results,data.frame(R2, RMSE, MAE, MAPE)) 

 

#Damage period 

R2 <- cor(predictions_summaryregsf1int$y[6101:28354], 

predictions_summaryregsf1int$pred[6101:28354]) 

RMSE <- rmse(predicted = predictions_summaryregsf1int$pred[6101:28354], 

actual = predictions_summaryregsf1int$y[6101:28354]) 

MAE <- mae(predicted = predictions_summaryregsf1int$pred[6101:28354], 

actual = predictions_summaryregsf1int$y[6101:28354]) 

MAPE <- mape(predicted = predictions_summaryregsf1int$pred[6101:28354], 

actual = predictions_summaryregsf1int$y[6101:28354]) 

 

RegTest_sf1int=rbind(results_reg_sf1int,data.frame(R2, RMSE, MAE, MAPE)) 

rownames(RegTest _sf1int) <- c("Validation Data","Undamage Test 

Data","Damage Data") 

 

#plot 

library(ggplot2) 

gridExtra::grid.arrange(ggplot(predictions_summaryregsf1int) + 

geom_point(aes(Time,y)) + 

geom_point(data=predictions_summaryregsf1int[1:3220,], aes(Time, pred), 

colour = "blue") + geom_point(data=predictions_summaryregsf1int[3221:6100,], 

aes(Time, pred), colour = "green") + 

geom_point(data=predictions_summaryregsf1int[6101:28354,], aes(Time, pred), 

colour = "red") + geom_vline(xintercept = 

predictions_summaryregsf1int$Time[3220], colour = "green") + 

geom_vline(xintercept = predictions_summaryregsf1int$Time[6101], colour = 

"red") + labs(title="Linear Regression Model (Strain F1 Middle)") + 
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ylab("Strain"), ggplot(predictions_summaryregsf1int) + 

geom_point(aes(Time,dif)) + ylab("Residuals"),  nrow = 2) 

2.6. Random Forest for calibration data 

The code below refers solely to one of the dependent variables 

(Strain_F1_Middle). This should be done as many times as dependent variables 

there are. 

 

library(Metrics) 

library(randomForest) 

 

feats <- colnames(Dados[c(2:4,14:17)]) 

f <- paste(feats,collapse=' + ') 

f <- paste('Strain_face1_intermedio ~',f) 

f <- as.formula(f) #Convert to formula 

 

results_forest<-data.frame() 

 

for(i in c(2:7)){ #loop to compute the parameters and save the predictions 

considering groups of 2 to 7 variables 

  predictions_summarysf1int<-data.frame() 

   

  for (k in 1:10){  

    fit <- randomForest(f, data=DataCal[-folds_train[[k]],], mtry=i, ntree=1000) 

    prediction <- predict(fit, newdata=DataCal[folds_train[[k]],]) 
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    predictions_summarysf1int <- rbind(predictions_summarysf1int, 

data.frame(Time=DataCal[folds_train[[k]],'Time'], 

y=DataCal$Strain_face1_intermedio[folds_train[[k]]], prediction)) 

  } 

   

  variables=i 

   

  #Save metrics 

  R2 <- cor(predictions_summarysf1int$y, 

predictions_summarysf1int$prediction) 

  RMSE <- rmse(predicted = predictions_summarysf1int$prediction, actual = 

predictions_summarysf1int$y) 

  MAE <- mae(predicted = predictions_summarysf1int$prediction, actual = 

predictions_summarysf1int$y) 

  MAPE <- mape(predicted = predictions_summarysf1int$prediction, actual = 

predictions_summarysf1int$y) 

  results_forest=rbind(results_forest,data.frame(R2, RMSE, MAE, MAPE, 

variables)) 

} 

ForestTrainsf1int <- results_forest 

2.7. Random Forest for testing, validation and 

damaged data 

The code below refers solely to one of the dependent variables 

(Strain_F1_Middle). This should be done as many times as dependent variables 

there are. 
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feats <- colnames(Dados[c(2:4,14:17)]) 

f <- paste(feats,collapse=' + ') 

f <- paste('Strain_face1_intermedio ~',f) 

f <- as.formula(f) #Convert to formula 

 

variables=ForestTrainsf1int[which.max(ForestTrainsf1int$R2),5] #tendo em 

conta os valores obtidos 

 

predictions_summaryrfsf1int <- data.frame() 

results_forest <- data.frame() 

 

for (k in 1:10){ #loop to compute the parameters and save the predictions 

considering the optimal number of variables 

  fit <- randomForest(f, data=DataVal[-folds_test[[k]],],mtry=variables, 

ntree=1000) 

  fit$importance 

  prediction <- predict(fit, newdata=DataVal[folds_test[[k]],]) 

  predictions_summaryrfsf1int <- rbind(predictions_summaryrfsf1int, 

data.frame(Time=DataVal[folds_test[[k]],'Time'], 

y=DataVal$Strain_face1_intermedio[folds_test[[k]]], pred=prediction)) 

} 

 

#Save metrics for testing data 

R2 <- cor(predictions_summaryrfsf1int$y, predictions_summaryrfsf1int$pred) 

RMSE <- rmse(predicted = predictions_summaryrfsf1int$pred, actual = 

predictions_summaryrfsf1int$y) 



 75 

MAE <- mae(predicted = predictions_summaryrfsf1int$pred, actual = 

predictions_summaryrfsf1int$y) 

MAPE <- mape(predicted = predictions_summaryrfsf1int$pred, actual = 

predictions_summaryrfsf1int$y) 

results_forest=rbind(results_forest,data.frame(R2, RMSE, MAE, MAPE, 

variables)) 

results_forest 

 

#Save metrics 

fit <- randomForest(f, data=DataVal,mtry=variables, ntree=1000) 

predictionsf1int <- predict(fit, newdata=DataNew) 

predictions_summaryrfsf1int$dif <- predictions_summaryrfsf1int$y - 

predictions_summaryrfsf1int$pred 

predictions_summaryrfsf1int <- 

rbind(predictions_summaryrfsf1int,data.frame(Time=DataNew$Time,y=DataN

ew$Strain_face1_intermedio,pred=predictionsf1int,dif=DataNew$Strain_face1_i

ntermedio-predictionsf1int)) 

 

#Undamage Test period 

R2 <- cor(predictions_summaryrfsf1int$y[3221:6100], 

predictions_summaryrfsf1int$pred[3221:6100]) 

RMSE <- rmse(predicted = predictions_summaryrfsf1int$pred[3221:6100], 

actual = predictions_summaryrfsf1int$y[3221:6100]) 

MAE <- mae(predicted = predictions_summaryrfsf1int$pred[3221:6100], actual 

= predictions_summaryrfsf1int$y[3221:6100]) 

MAPE <- mape(predicted = predictions_summaryrfsf1int$pred[3221:6100], 

actual = predictions_summaryrfsf1int$y[3221:6100]) 

results=rbind(results,data.frame(R2, RMSE, MAE, MAPE, variables)) 
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#Damage period 

R2 <- cor(predictions_summaryrfsf1int$y[6101:28354], 

predictions_summaryrfsf1int$pred[6101:28354]) 

RMSE <- rmse(predicted = predictions_summaryrfsf1int$pred[6101:28354], 

actual = predictions_summaryrfsf1int$y[6101:28354]) 

MAE <- mae(predicted = predictions_summaryrfsf1int$pred[6101:28354], actual 

= predictions_summaryrfsf1int$y[6101:28354]) 

MAPE <- mape(predicted = predictions_summaryrfsf1int$pred[6101:28354], 

actual = predictions_summaryrfsf1int$y[6101:28354]) 

 

RFTest_sf1int=rbind(results_rf_sf1int,data.frame(R2, RMSE, MAE, MAPE, 

variables)) 

rownames(RFTest _sf1int) <- c("Data Teste","Data Validation","Data Damaged") 

 

#plot 

library(ggplot2) 

gridExtra::grid.arrange(ggplot(predictions_summaryrfsf1int) + 

geom_point(aes(Time,y)) + 

geom_point(data=predictions_summaryrfsf1int[1:3220,], aes(Time, pred), colour 

= "blue") + geom_point(data=predictions_summaryrfsf1int[3221:6100,], 

aes(Time, pred), colour = "green") + 

geom_point(data=predictions_summaryrfsf1int[6101:28354,], aes(Time, pred), 

colour = "red") + geom_vline(xintercept = 

predictions_summaryrfsf1int$Time[3220], colour = "green") + 

geom_vline(xintercept = predictions_summaryrfsf1int$Time[6101], colour = 

"red") + labs(title="Random Forest Model (Strain F1 Middle)") + ylab("Strain"), 
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ggplot(predictions_summaryrfsf1int) + geom_point(aes(Time,dif)) + 

ylab("Residuals"),  nrow = 2) 

2.8. Support Vector Machine for testing, 

validation and damaged data 

The code below refers solely to one of the dependent variables 

(Strain_F1_Middle). This should be done as many times as dependent variables 

there are. 

 

library(e1071) 

library(Metrics) 

library(randomForest) 

 

feats <- colnames(Dados[c(2:4,14:17)]) 

f <- paste(feats,collapse=' + ') 

f <- paste('Strain_face1_intermedio ~',f) 

f <- as.formula(f) #Convert to formula 

 

performance_metrics <- data.frame() 

results_train_SVM_g=data.frame() 

 

for (cost in 2^(seq(-5,15, by=2))){ #loop to compute the parameters and save the 

predictions with varying cost and gamma 

   

  for (gamma in 2^(seq(-15,3, by=2))){ 

    predictions_summary <- data.frame() 
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    for (k in 1:10){  

      svm.model <- svm(f, DataCal[-folds_train[[k]],], kernel="linear", type="eps-

regression", scale=TRUE, cost=cost, gamma=gamma) 

      prediction <- predict(svm.model, newdata=DataCal[folds_train[[k]], ]) 

      predictions_summary<-rbind(predictions_summary, 

data.frame(Time=DataCal[folds_train[[k]],'Time'], 

y=DataCal$Strain_face1_intermedio[folds_train[[k]]], prediction)) 

    } 

     

    R2 <- cor(predictions_summary$y, predictions_summary$prediction) 

    RMSE <- rmse(predicted = predictions_summary$prediction, actual = 

predictions_summary$y) 

    MAE <- mae(predicted = predictions_summary$prediction, actual = 

predictions_summary$y) 

    MAPE <- mape(predicted = predictions_summary$prediction, actual = 

predictions_summary$y) 

     

    cost=cost 

    gamma=gamma 

     

    results_train_SVM_g=rbind(results_train_SVM_g,data.frame(R2, RMSE, 

MAE, MAPE, cost, gamma)) 

     

     

  } 

} 
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#Save metrics 

results_train_SVM_g 

SVMTrainsf1int <- results_train_SVM_g 

unique(SVMTrainsf1int$cost) 

unique(SVMTrainsf1int$R2) 

2.9. Support Vector Machine for training data 

The code below refers solely to one of the dependent variables 

(Strain_F1_Middle). This should be done as many times as dependent variables 

there are. 

 

feats <- colnames(Dados[c(2:4,14:17)]) 

f <- paste(feats,collapse=' + ') 

f <- paste('Strain_face1_intermedio ~',f) 

f <- as.formula(f) #Convert to formula 

 

results=data.frame() 

predictions_summarysvmsf1int <- data.frame() 

performance_metrics <- data.frame() 

cost=SVMTrainsf1int[which.max(SVMTrainsf1int$R2),5] 

 

for (k in 1:10){ #loop to compute the parameters and save the predictions 

considering the optimal cost and gamma 

  svm.model <- svm(f, DataVal[-folds_test[[k]],], kernel="linear", type="eps-

regression", scale=TRUE, cost=cost, gamma=gamma) 

  prediction <- predict(svm.model, newdata=DataVal[folds_test[[k]], ]) 
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  predictions_summarysvmsf1int<-rbind(predictions_summarysvmsf1int, 

data.frame(Time=DataVal[folds_test[[k]],'Time'], 

y=DataVal$Strain_face1_intermedio[folds_test[[k]]], pred=prediction)) 

} 

 

R2 <- cor(predictions_summarysvmsf1int$y, 

predictions_summarysvmsf1int$pred) 

RMSE <- rmse(predicted = predictions_summarysvmsf1int$pred, actual = 

predictions_summarysvmsf1int$y) 

MAE <- mae(predicted = predictions_summarysvmsf1int$pred, actual = 

predictions_summarysvmsf1int$y) 

MAPE <- mape(predicted = predictions_summarysvmsf1int$pred, actual = 

predictions_summarysvmsf1int$y) 

 

results=rbind(results,data.frame(R2, RMSE, MAE, MAPE, cost, gamma)) 

results 

 

fit <- svm(f, DataVal, kernel="linear", type="eps-regression", scale=TRUE, 

cost=cost, gamma=gamma) 

predictionsf1int <- predict(fit, newdata=DataNew) 

predictions_summarysvmsf1int$dif <- predictions_summarysvmsf1int$y - 

predictions_summarysvmsf1int$pred 

predictions_summarysvmsf1int <- 

rbind(predictions_summarysvmsf1int,data.frame(Time=DataNew$Time,y=Data

New$Strain_face1_intermedio,pred=predictionsf1int,dif=DataNew$Strain_face1

_intermedio-predictionsf1int)) 

 

#Undamage Test period 
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R2 <- cor(predictions_summarysvmsf1int$y[3221:6100], 

predictions_summarysvmsf1int$pred[3221:6100]) 

RMSE <- rmse(predicted = predictions_summarysvmsf1int$pred[3221:6100], 

actual = predictions_summarysvmsf1int$y[3221:6100]) 

MAE <- mae(predicted = predictions_summarysvmsf1int$pred[3221:6100], 

actual = predictions_summarysvmsf1int$y[3221:6100]) 

MAPE <- mape(predicted = predictions_summarysvmsf1int$pred[3221:6100], 

actual = predictions_summarysvmsf1int$y[3221:6100]) 

results=rbind(results,data.frame(R2, RMSE, MAE, MAPE, variables)) 

 

#Damage period 

R2 <- cor(predictions_summarysvmsf1int$y[6101:28354], 

predictions_summarysvmsf1int$pred[6101:28354]) 

RMSE <- rmse(predicted = predictions_summarysvmsf1int$pred[6101:28354], 

actual = predictions_summarysvmsf1int$y[6101:28354]) 

MAE <- mae(predicted = predictions_summarysvmsf1int$pred[6101:28354], 

actual = predictions_summarysvmsf1int$y[6101:28354]) 

MAPE <- mape(predicted = predictions_summarysvmsf1int$pred[6101:28354], 

actual = predictions_summarysvmsf1int$y[6101:28354]) 

 

SVMTest_sf1int=rbind(results_svm_sf1int,data.frame(R2, RMSE, MAE, MAPE, 

variables)) 

rownames(SVMTest _sf1int) <- c("Data Teste","Data Validation","Data 

Damaged") 

 

#plot 

library(ggplot2) 
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gridExtra::grid.arrange(ggplot(predictions_summarysvmsf1int) + 

geom_point(aes(Time,y)) + 

geom_point(data=predictions_summarysvmsf1int[1:3220,], aes(Time, pred), 

colour = "blue") + geom_point(data=predictions_summarysvmsf1int[3221:6100,], 

aes(Time, pred), colour = "green") + 

geom_point(data=predictions_summarysvmsf1int[6101:28354,], aes(Time, 

pred), colour = "red") + geom_vline(xintercept = 

predictions_summarysvmsf1int$Time[3220], colour = "green") + 

geom_vline(xintercept = predictions_summarysvmsf1int$Time[6101], colour = 

"red") + labs(title="Support Vector Machine Model (Strain F1 Middle)") + 

ylab("Strain"), ggplot(predictions_summarysvmsf1int) + 

geom_point(aes(Time,dif)) + ylab("Residuals"),  nrow = 2) 

2.10. Neural Networks for training data  

The code below refers solely to one of the dependent variables 

(Strain_F1_Middle). This should be done as many times as dependent variables 

there are. 

 

library(nnet) 

library(Metrics) 

library(randomForest) 

 

learning_rate=0 

hidden_layers=0 

 

feats <- colnames(Dados[c(2:4,14:17)]) 

f <- paste(feats,collapse=' + ') 
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f <- paste('Strain_face1_intermedio ~',f) 

f <- as.formula(f) #Convert to formula 

 

NeuralTrainsf1int=data.frame() 

set.seed(13) 

performance_metrics <- data.frame() 

 

for(H in seq(10,80,10)){ #loop to compute the parameters and save the 

predictions with varying decay and size 

   

  for(L in 10^seq(-3, 0, length = 10)){ 

    predictions_summary <- data.frame() 

     

    for (k in 1:10){ 

      nn <- nnet(f,data=DataCal[-folds_train[[k]],],size=H, decay=L, linout=TRUE, 

trace = FALSE, maxit=100, MaxNWts=7000) 

      prediction <- predict(nn,DataCal[folds_train[[k]],]) 

      predictions_summary <- rbind(predictions_summary, 

data.frame(Time=DataCal[folds_train[[k]],'Time'],  

y=DataCal$Strain_face1_intermedio[folds_train[[k]]], prediction)) 

    } 

     

    decay=L 

    size=H 

     

    R2 <- cor(predictions_summary$y, predictions_summary$prediction) 

    RMSE <- rmse(predicted = predictions_summary$prediction, actual = 

predictions_summary$y) 
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    MAE <- mae(predicted = predictions_summary$prediction, actual = 

predictions_summary$y) 

    MAPE <- mape(predicted = predictions_summary$prediction, actual = 

predictions_summary$y) 

    NeuralTrainsf1int=rbind(NeuralTrainsf1int,data.frame(R2, RMSE, MAE, 

MAPE, decay, size)) 

  } 

} 

 

#Save metrics 

NeuralTrainsf1int 

NeuralTrainsf1int[which.max(NeuralTrainsf1int$R2),] 

2.11. Neural Networks for testing, validation and 

damaged data 

The code below refers solely to one of the dependent variables 

(Strain_F1_Middle). This should be done as many times as dependent variables 

there are. 

 

size=NeuralTrainsf1int[which.max(NeuralTrainsf1int$R2),6] 

decay=NeuralTrainsf1int[which.max(NeuralTrainsf1int$R2),5] 

 

feats <- colnames(Dados[c(2:4,14:17)]) 

f <- paste(feats,collapse=' + ') 

f <- paste('Strain_face1_intermedio ~',f) 

f <- as.formula(f) #Convert to formula 
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results=data.frame() 

predictions_summarynnsf1int <- data.frame() 

performance_metrics <- data.frame() 

 

for (k in 1:10){ 

  nn <- nnet(f,data=DataVal[-folds_test[[k]],], size=size, decay=decay, 

linout=TRUE, trace = FALSE, maxit=100, MaxNWts=7000) 

  prediction <- predict(nn,DataVal[folds_test[[k]],]) 

  predictions_summarynnsf1int <- rbind(predictions_summarynnsf1int, 

data.frame(Time=DataVal[folds_test[[k]],'Time'],  

y=DataVal$Strain_face1_intermedio[folds_test[[k]]], pred=prediction)) 

} 

predictions_summarynnsf1int$dif <- predictions_summarynnsf1int$y - 

predictions_summarynnsf1int$pred 

 

R2 <- cor(predictions_summarynnsf1int$y, predictions_summarynnsf1int$pred) 

RMSE <- rmse(predicted = predictions_summarynnsf1int$pred, actual = 

predictions_summarynnsf1int$y) 

MAE <- mae(predicted = predictions_summarynnsf1int$pred, actual = 

predictions_summarynnsf1int$y) 

MAPE <- mape(predicted = predictions_summarynnsf1int$pred, actual = 

predictions_summarynnsf1int$y) 

results=rbind(results,data.frame(R2, RMSE, MAE, MAPE, size, decay)) 

 

fit <- nnet(f, data=DataVal, size=size, decay=decay, linout=TRUE, trace = FALSE, 

maxit=100, MaxNWts=7000) 

validationsf1int <- predict(fit, newdata=DataNew) 



 86 

validation_summarynn <- 

data.frame(Time=DataNew$Time,y=DataNew$Strain_face1_intermedio,pred=v

alidationsf1int,dif=DataNew$Strain_face1_intermedio-validationsf1int) 

predictions_summarynnsf1int <- 

rbind(predictions_summarynnsf1int,validation_summarynn) 

 

#Undamage Test period 

R2 <- cor(predictions_summarynnsf1int$y[3221:6100], 

predictions_summarynnsf1int$pred[3221:6100]) 

RMSE <- rmse(predicted = predictions_summarynnsf1int$pred[3221:6100], 

actual = predictions_summarynnsf1int$y[3221:6100]) 

MAE <- mae(predicted = predictions_summarynnsf1int$pred[3221:6100], actual 

= predictions_summarynnsf1int$y[3221:6100]) 

MAPE <- mape(predicted = predictions_summarynnsf1int$pred[3221:6100], 

actual = predictions_summarynnsf1int$y[3221:6100]) 

results=rbind(results,data.frame(R2, RMSE, MAE, MAPE, size, decay)) 

 

#Damage period 

R2 <- cor(predictions_summarynnsf1int$y[6101:28354], 

predictions_summarynnsf1int$pred[6101:28354]) 

RMSE <- rmse(predicted = predictions_summarynnsf1int$pred[6101:28354], 

actual = predictions_summarynnsf1int$y[6101:28354]) 

MAE <- mae(predicted = predictions_summarynnsf1int$pred[6101:28354], 

actual = predictions_summarynnsf1int$y[6101:28354]) 

MAPE <- mape(predicted = predictions_summarynnsf1int$pred[6101:28354], 

actual = predictions_summarynnsf1int$y[6101:28354]) 
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NNTest_sf1int=rbind(results_nn_sf1int,data.frame(R2, RMSE, MAE, MAPE, 

size, decay)) 

rownames(NNTest_sf1int) <- c("Data Teste","Data Validation","Data Damaged") 

 

#plot 

library(ggplot2) 

gridExtra::grid.arrange(ggplot(predictions_summarynnsf1int) + 

geom_point(aes(Time,y)) + 

geom_point(data=predictions_summarynnsf1int[1:3220,], aes(Time, pred), 

colour = "blue") + geom_point(data=predictions_summarynnsf1int[3221:6100,], 

aes(Time, pred), colour = "green") + 

geom_point(data=predictions_summarynnsf1int[6101:28354,], aes(Time, pred), 

colour = "red") + geom_vline(xintercept = 

predictions_summarynnsf1int$Time[3220], colour = "green") + 

geom_vline(xintercept = predictions_summarynnsf1int$Time[6101], colour = 

"red") + labs(title="Neural Network Model (Strain F1 Middle)") + ylab("Strain"), 

ggplot(predictions_summarynnsf1int) + geom_point(aes(Time,dif)) + 

ylab("Residuals"),  nrow = 2) 

2.12. Hotelling T2 Control chart 

library(MSQC) 

library(qcc) 

library(MASS) 

 

#Data preparation 

"Validation Period" <- 

data.frame(cbind(predictions_summarynnsf1int$dif[1:3220],predictions_summ
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arynnsf2int$dif[1:3220],predictions_summarynnsf1inf$dif[1:3220],predictions_s

ummarynnsf2inf$dif[1:3220],predictions_summarynnLVDTSup$dif[1:3220],pre

dictions_summarynnLVDTInt$dif[1:3220],predictions_summarynnIncSup$dif[1

:3220],predictions_summarynnIncInt$dif[1:3220],predictions_summarynnIncInf

$dif[1:3220])) 

colnames(`Validation Period`) <- 

c("SF1int","SF2Int","SF1Inf","SF2Inf","LVDTSup","LVDTInt","IncSup","IncInt","In

cInf") 

"Undamage Test Period" <- 

data.frame(cbind(predictions_summarynnsf1int$dif[3221:6100],predictions_su

mmarynnsf2int$dif[3221:6100],predictions_summarynnsf1inf$dif[3221:6100],pr

edictions_summarynnsf2inf$dif[3221:6100],predictions_summarynnLVDTSup$

dif[3221:6100],predictions_summarynnLVDTInt$dif[3221:6100],predictions_su

mmarynnIncSup$dif[3221:6100],predictions_summarynnIncInt$dif[3221:6100],p

redictions_summarynnIncInf$dif[3221:6100])) 

colnames(`Undamage Test Period`) <- 

c("SF1int","SF2Int","SF1Inf","SF2Inf","LVDTSup","LVDTInt","IncSup","IncInt","In

cInf") 

"Damage Period" <- 

data.frame(cbind(predictions_summarynnsf1int$dif[6101:28354],predictions_su

mmarynnsf2int$dif[6101:28354],predictions_summarynnsf1inf$dif[6101:28354],

predictions_summarynnsf2inf$dif[6101:28354],predictions_summarynnLVDTS

up$dif[6101:28354],predictions_summarynnLVDTInt$dif[6101:28354],predictio

ns_summarynnIncSup$dif[6101:28354],predictions_summarynnIncInt$dif[6101:

28354],predictions_summarynnIncInf$dif[6101:28354])) 

colnames(`Damage Period`) <- 

c("SF1int","SF2Int","SF1Inf","SF2Inf","LVDTSup","LVDTInt","IncSup","IncInt","In

cInf") 
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#T2-Hotelling# 

rob <- cov.rob(`Validation Period`) 

 

#Phase I 

q <- mqcc(`Validation Period`, type = "T2.single", confidence.level = 

0.9999999999999999, plot=TRUE, center = rob$center, cov = rob$cov) 

summary(q) 

(length(q$statistics[q$statistics>q$limits[2]])/nrow(Before))*100 

 

#Phase II (Validation) 

qval <- mqcc(`Validation Period`, type = "T2.single", confidence.level = 

0.9999999999999999, newdata = `Undamage Test Period`, plot=TRUE, center = 

rob$center, cov = rob$cov) 

summary(qval) 

(length(qval$newstats[qval$newstats>qval$limits[2]])/nrow(Validation))*100 

 

#Phase II (Damage) 

qq <- mqcc(`Validation Period`, type = "T2.single", confidence.level = 

0.9999999999999999, newdata = `Damage Period`, plot=TRUE, center = 

rob$center, cov = rob$cov) 

summary(qq) 

2.13. Missing values interpolation  

The present dataset registered the hour, minute and second of when an 

observation was recorded. Since there were some intervals where the system 

stopped recording observations, the data had to be normalized. This was done 



 90 

by first considering the observations were always recorded at zero seconds. Next, 

the minute part had to be either 0, 15, 30 or 45. To do so, every observation 

recorded between minute 0 and minute 14 was to be considered recorded in 

minute 0. This leads to the Time variable to only be presented in the xxh00m00s, 

xxh15m00s, xxh30m00s and xxh45m00s. 

After normalizing the data a sequence of time in multiples of 15 minutes from 

27-04-2018 14h15m00s to 23-05-2019 07h00m00s was created. From these a match 

was made from this sequence and the dataset.  

Next the Kalman filter was used. Applying it to the whole series creates object 

DataTS1 which has very good results except for the last day of the undamaged 

data. To correct this, in parallel, the Kalman filter was used feeding it only the 

undamaged data creating DataTS2. From this, a new dataset is created (DataTS3), 

considering the observations in DataTS1 and the day of observations in DataTS2. 

From this, the process of removing the shift after the insertion of damage is also 

dealt with. 

 

#Tranform time to always be in multiples of 15 minutes 

DataTS <- rbind(DataCalVal,DataD) 

DataTS$Hour <- substr(DataTS$Time,15,16) 

DataTS$Hour <- replace(DataTS$Hour, DataTS$Hour > 0 & DataTS$Hour < 15, 

"00") 

DataTS$Hour <- replace(DataTS$Hour, DataTS$Hour > 15 & DataTS$Hour < 30, 

15) 

DataTS$Hour <- replace(DataTS$Hour, DataTS$Hour > 30 & DataTS$Hour < 45, 

30) 

DataTS$Hour <- replace(DataTS$Hour, DataTS$Hour > 45 & DataTS$Hour < 60, 

45) 

library(lubridate) 
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DataTS$Time <- 

ymd_hm(paste(substr(DataTS$Time,1,14),DataTS$Hour,sep="")) 

DataTS$Hour <- NULL 

 

#Create a sequence of time in multiples of 15 minutes from 27-04-2018 

14h15m00s to 23-05-2019 07h00m00s 

allDates <- seq(ISOdate(2018,4,27,14,15), ISOdate(2019,5,23,7,0), by = "15 min") 

DataTS <- merge(data.frame(Time=allDates),DataTS,all.x=TRUE) 

rownames(DataTS) <- NULL 

 

DataTS$id <- 1:nrow(DataTS) 

DataTS$id[1:9] <- paste("0000",DataTS$id[1:9],sep="") 

DataTS$id[10:99] <- paste("000",DataTS$id[10:99],sep="") 

DataTS$id[100:999] <- paste("00",DataTS$id[100:999],sep="") 

DataTS$id[1000:9999] <- paste("0",DataTS$id[1000:9999],sep="") 

 

library(imputeTS) 

 

DataTS1 <- DataTS 

DataTS1[,-c(1,18,19)] <- na_seasplit(DataTS[,-c(1,18,19)], algorithm = "kalman", 

find_frequency=TRUE, type="level") 

 

DataTS2 <- DataTS 

DataTS2[1:13079,-c(1,18,19)] <- na_seasplit(DataTS[1:13079,-c(1,18,19)], 

algorithm = "kalman", find_frequency=TRUE, type="level") 

DataTS2[13080:37508,-c(1,18,19)] <- na_seasplit(DataTS[13080:37508,-c(1,18,19)], 

algorithm = "kalman", find_frequency=TRUE, type="level") 
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DataTS3 <- 

rbind(DataTS1[1:13017,],DataTS2[13018:13979,],DataTS1[13980:37508,]) 

 

DataCalVal <- DataTS3[1:13079,c(1:17,19)] 

DataD <- DataTS3[13080:37508,c(1:17,19)] 

 

#Correct shift in damage period data 

for (i in c(5:13)) { 

  DataD[,i] <- DataD[,i] + (mean(DataCalVal[12408:13079,i],na.rm=TRUE) - 

mean(DataD[,i][1:671],na.rm=TRUE)) 

} 

 

DataTS <- rbind(DataCalVal,DataD) 

2.14. Cointegration  

library(tseries) 

library(forecast) 

library(urca) 

library(vars) 

library(tsDyn) 

 

#Data Undamage#### 

IncInf <- ts(DataCalVal[,5], start=1.15625, frequency=96) 

IncInt <- ts(DataCalVal[,6], start=1.15625, frequency=96) 

IncSup <- ts(DataCalVal[,7], start=1.15625, frequency=96) 

LVDTInt <- ts(DataCalVal[,8], start=1.15625, frequency=96) 

LVDTSup <- ts(DataCalVal[,9], start=1.15625, frequency=96) 
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sf1Inf <- ts(DataCalVal[,10], start=1.15625, frequency=96) 

sf2Inf <- ts(DataCalVal[,11], start=1.15625, frequency=96) 

sf1Int <- ts(DataCalVal[,12], start=1.15625, frequency=96) 

sf2Int <- ts(DataCalVal[,13], start=1.15625, frequency=96) 

 

#Create dataset and select the number of lags (data test) 

DataCalValT <- 

(data.frame((IncInf[1:10199]),(IncInt[1:10199]),(IncSup[1:10199]),(LVDTInt[1:101

99]),(LVDTSup[1:10199]),(sf1Inf[1:10199]),(sf2Inf[1:10199]),(sf1Int[1:10199]),(sf2I

nt[1:10199]))) 

VARselect <- VARselect(DataCalValT, lag.max=300)$selection #optimal number 

of lags=56 

 

#Verify the stationarity of the series before and after integration of order 1: I(1) 

ur.df(IncInf[1:10199], type = "none", lags=56 ,selectlags = "Fixed") %>% 

summary() 

ur.df(diff(IncInf[1:10199],lag=56), type = "none", lags=56, selectlags = "Fixed") 

%>% summary() 

ur.df(IncInt[1:10199], type = "none", lags=56 ,selectlags = "Fixed") %>% 

summary() 

ur.df(diff(IncInt[1:10199],lag=56), type = "none", lags=56, selectlags = "Fixed") 

%>% summary() 

ur.df(IncSup[1:10199], type = "none", lags=56 ,selectlags = "Fixed") %>% 

summary() 

ur.df(diff(IncSup[1:10199],lag=56), type = "none", lags=56, selectlags = "Fixed") 

%>% summary() 

ur.df(LVDTInt[1:10199], type = "none", lags=56 ,selectlags = "Fixed") %>% 

summary() 
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ur.df(diff(LVDTInt[1:10199],lag=56), type = "none", lags=56, selectlags = "Fixed") 

%>% summary() 

ur.df(LVDTSup[1:10199], type = "none", lags=56 ,selectlags = "Fixed") %>% 

summary() 

ur.df(diff(LVDTSup[1:10199],lag=56), type = "none", lags=56, selectlags = 

"Fixed") %>% summary() 

ur.df(sf1Inf[1:10199], type = "none", lags=56 ,selectlags = "Fixed") %>% 

summary() 

ur.df(diff(sf1Inf[1:10199],lag=56), type = "none", lags=56, selectlags = "Fixed") 

%>% summary() 

ur.df(sf2Inf[1:10199], type = "none", lags=56 ,selectlags = "Fixed") %>% 

summary() #sai 

ur.df(diff(sf2Inf[1:10199],lag=56), type = "none", lags=56, selectlags = "Fixed") 

%>% summary() 

ur.df(sf1Int[1:10199], type = "none", lags=56 ,selectlags = "Fixed") %>% 

summary() 

ur.df(diff(sf1Int[1:10199],lag=56), type = "none", lags=56, selectlags = "Fixed") 

%>% summary() 

ur.df(sf2Int[1:10199], type = "none", lags=56 ,selectlags = "Fixed") %>% 

summary() 

ur.df(diff(sf2Int[1:10199],lag=56), type = "none", lags=56, selectlags = "Fixed") 

%>% summary() 

 

 

#Johansen Test 

jotest=ca.jo(DataCalValT, type="trace", K=56, ecdet="none", spec = 'longrun') 

summary(jotest) 
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#Generate Cointegration residuals for Validation data 

BeforeV1 <- 

as.numeric(jotest@V[1,1]*diff(IncInf[1:10199],lag=56)+jotest@V[2,1]*diff(IncInt[1:

10199],lag=56)+jotest@V[3,1]*diff(IncSup[1:10199],lag=56)+jotest@V[4,1]*diff(LV

DTInt[1:10199],lag=56)+jotest@V[5,1]*diff(LVDTSup[1:10199],lag=56)+jotest@V[6

,1]*diff(sf1Inf[1:10199],lag=56)+jotest@V[7,1]*diff(sf2Inf[1:10199],lag=56)+jotest@

V[8,1]*diff(sf1Int[1:10199],lag=56)+jotest@V[9,1]*diff(sf2Int[1:10199],lag=56)) 

BeforeV2 <- 

as.numeric(jotest@V[1,2]*diff(IncInf[1:10199],lag=56)+jotest@V[2,2]*diff(IncInt[1:

10199],lag=56)+jotest@V[3,2]*diff(IncSup[1:10199],lag=56)+jotest@V[4,2]*diff(LV

DTInt[1:10199],lag=56)+jotest@V[5,2]*diff(LVDTSup[1:10199],lag=56)+jotest@V[6

,2]*diff(sf1Inf[1:10199],lag=56)+jotest@V[7,2]*diff(sf2Inf[1:10199],lag=56)+jotest@

V[8,2]*diff(sf1Int[1:10199],lag=56)+jotest@V[9,2]*diff(sf2Int[1:10199],lag=56)) 

BeforeV3 <- 

as.numeric(jotest@V[1,3]*diff(IncInf[1:10199],lag=56)+jotest@V[2,3]*diff(IncInt[1:

10199],lag=56)+jotest@V[3,3]*diff(IncSup[1:10199],lag=56)+jotest@V[4,3]*diff(LV

DTInt[1:10199],lag=56)+jotest@V[5,3]*diff(LVDTSup[1:10199],lag=56)+jotest@V[6

,3]*diff(sf1Inf[1:10199],lag=56)+jotest@V[7,3]*diff(sf2Inf[1:10199],lag=56)+jotest@

V[8,3]*diff(sf1Int[1:10199],lag=56)+jotest@V[9,3]*diff(sf2Int[1:10199],lag=56)) 

BeforeV4 <- 

as.numeric(jotest@V[1,4]*diff(IncInf[1:10199],lag=56)+jotest@V[2,4]*diff(IncInt[1:

10199],lag=56)+jotest@V[3,4]*diff(IncSup[1:10199],lag=56)+jotest@V[4,4]*diff(LV

DTInt[1:10199],lag=56)+jotest@V[5,4]*diff(LVDTSup[1:10199],lag=56)+jotest@V[6

,4]*diff(sf1Inf[1:10199],lag=56)+jotest@V[7,4]*diff(sf2Inf[1:10199],lag=56)+jotest@

V[8,4]*diff(sf1Int[1:10199],lag=56)+jotest@V[9,4]*diff(sf2Int[1:10199],lag=56)) 

BeforeV5 <- 

as.numeric(jotest@V[1,5]*diff(IncInf[1:10199],lag=56)+jotest@V[2,5]*diff(IncInt[1:

10199],lag=56)+jotest@V[3,5]*diff(IncSup[1:10199],lag=56)+jotest@V[4,5]*diff(LV
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DTInt[1:10199],lag=56)+jotest@V[5,5]*diff(LVDTSup[1:10199],lag=56)+jotest@V[6

,5]*diff(sf1Inf[1:10199],lag=56)+jotest@V[7,5]*diff(sf2Inf[1:10199],lag=56)+jotest@

V[8,5]*diff(sf1Int[1:10199],lag=56)+jotest@V[9,5]*diff(sf2Int[1:10199],lag=56)) 

BeforeV6 <- 

as.numeric(jotest@V[1,6]*diff(IncInf[1:10199],lag=56)+jotest@V[2,6]*diff(IncInt[1:

10199],lag=56)+jotest@V[3,6]*diff(IncSup[1:10199],lag=56)+jotest@V[4,6]*diff(LV

DTInt[1:10199],lag=56)+jotest@V[5,6]*diff(LVDTSup[1:10199],lag=56)+jotest@V[6

,6]*diff(sf1Inf[1:10199],lag=56)+jotest@V[7,6]*diff(sf2Inf[1:10199],lag=56)+jotest@

V[8,6]*diff(sf1Int[1:10199],lag=56)+jotest@V[9,6]*diff(sf2Int[1:10199],lag=56)) 

BeforeV7 <- 

as.numeric(jotest@V[1,7]*diff(IncInf[1:10199],lag=56)+jotest@V[2,7]*diff(IncInt[1:

10199],lag=56)+jotest@V[3,7]*diff(IncSup[1:10199],lag=56)+jotest@V[4,7]*diff(LV

DTInt[1:10199],lag=56)+jotest@V[5,7]*diff(LVDTSup[1:10199],lag=56)+jotest@V[6

,7]*diff(sf1Inf[1:10199],lag=56)+jotest@V[7,7]*diff(sf2Inf[1:10199],lag=56)+jotest@

V[8,7]*diff(sf1Int[1:10199],lag=56)+jotest@V[9,7]*diff(sf2Int[1:10199],lag=56)) 

BeforeV8 <- 

as.numeric(jotest@V[1,8]*diff(IncInf[1:10199],lag=56)+jotest@V[2,8]*diff(IncInt[1:

10199],lag=56)+jotest@V[3,8]*diff(IncSup[1:10199],lag=56)+jotest@V[4,8]*diff(LV

DTInt[1:10199],lag=56)+jotest@V[5,8]*diff(LVDTSup[1:10199],lag=56)+jotest@V[6

,8]*diff(sf1Inf[1:10199],lag=56)+jotest@V[7,8]*diff(sf2Inf[1:10199],lag=56)+jotest@

V[8,8]*diff(sf1Int[1:10199],lag=56)+jotest@V[9,8]*diff(sf2Int[1:10199],lag=56)) 

BeforeV <- 

cbind(BeforeV1,BeforeV2,BeforeV3,BeforeV4,BeforeV5,BeforeV6,BeforeV7,Befor

eV8) 

 

 

#Data Undamaged (Undamage Test period) 

#Generate cointegration residuals 
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BeforeUT1 <- 

as.numeric(jotest@V[1,1]*diff(IncInf[10200:13079],lag=56)+jotest@V[2,1]*diff(IncI

nt[10200:13079],lag=56)+jotest@V[3,1]*diff(IncSup[10200:13079],lag=56)+jotest@V

[4,1]*diff(LVDTInt[10200:13079],lag=56)+jotest@V[5,1]*diff(LVDTSup[10200:130

79],lag=56)+jotest@V[6,1]*diff(sf1Inf[10200:13079],lag=56)+jotest@V[7,1]*diff(sf2I

nf[10200:13079],lag=56)+jotest@V[8,1]*diff(sf1Int[10200:13079],lag=56)+jotest@V[

9,1]*diff(sf2Int[10200:13079],lag=56)) 

BeforeUT2 <- 

as.numeric(jotest@V[1,2]*diff(IncInf[10200:13079],lag=56)+jotest@V[2,2]*diff(IncI

nt[10200:13079],lag=56)+jotest@V[3,2]*diff(IncSup[10200:13079],lag=56)+jotest@V

[4,2]*diff(LVDTInt[10200:13079],lag=56)+jotest@V[5,2]*diff(LVDTSup[10200:130

79],lag=56)+jotest@V[6,2]*diff(sf1Inf[10200:13079],lag=56)+jotest@V[7,2]*diff(sf2I

nf[10200:13079],lag=56)+jotest@V[8,2]*diff(sf1Int[10200:13079],lag=56)+jotest@V[

9,2]*diff(sf2Int[10200:13079],lag=56)) 

BeforeUT3 <- 

as.numeric(jotest@V[1,3]*diff(IncInf[10200:13079],lag=56)+jotest@V[2,3]*diff(IncI

nt[10200:13079],lag=56)+jotest@V[3,3]*diff(IncSup[10200:13079],lag=56)+jotest@V

[4,3]*diff(LVDTInt[10200:13079],lag=56)+jotest@V[5,3]*diff(LVDTSup[10200:130

79],lag=56)+jotest@V[6,3]*diff(sf1Inf[10200:13079],lag=56)+jotest@V[7,3]*diff(sf2I

nf[10200:13079],lag=56)+jotest@V[8,3]*diff(sf1Int[10200:13079],lag=56)+jotest@V[

9,3]*diff(sf2Int[10200:13079],lag=56)) 

BeforeUT4 <- 

as.numeric(jotest@V[1,4]*diff(IncInf[10200:13079],lag=56)+jotest@V[2,4]*diff(IncI

nt[10200:13079],lag=56)+jotest@V[3,4]*diff(IncSup[10200:13079],lag=56)+jotest@V

[4,4]*diff(LVDTInt[10200:13079],lag=56)+jotest@V[5,4]*diff(LVDTSup[10200:130

79],lag=56)+jotest@V[6,4]*diff(sf1Inf[10200:13079],lag=56)+jotest@V[7,4]*diff(sf2I

nf[10200:13079],lag=56)+jotest@V[8,4]*diff(sf1Int[10200:13079],lag=56)+jotest@V[

9,4]*diff(sf2Int[10200:13079],lag=56)) 
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BeforeUT5 <- 

as.numeric(jotest@V[1,5]*diff(IncInf[10200:13079],lag=56)+jotest@V[2,5]*diff(IncI

nt[10200:13079],lag=56)+jotest@V[3,5]*diff(IncSup[10200:13079],lag=56)+jotest@V

[4,5]*diff(LVDTInt[10200:13079],lag=56)+jotest@V[5,5]*diff(LVDTSup[10200:130

79],lag=56)+jotest@V[6,5]*diff(sf1Inf[10200:13079],lag=56)+jotest@V[7,5]*diff(sf2I

nf[10200:13079],lag=56)+jotest@V[8,5]*diff(sf1Int[10200:13079],lag=56)+jotest@V[

9,5]*diff(sf2Int[10200:13079],lag=56)) 

BeforeUT6 <- 

as.numeric(jotest@V[1,6]*diff(IncInf[10200:13079],lag=56)+jotest@V[2,6]*diff(IncI

nt[10200:13079],lag=56)+jotest@V[3,6]*diff(IncSup[10200:13079],lag=56)+jotest@V

[4,6]*diff(LVDTInt[10200:13079],lag=56)+jotest@V[5,6]*diff(LVDTSup[10200:130

79],lag=56)+jotest@V[6,6]*diff(sf1Inf[10200:13079],lag=56)+jotest@V[7,6]*diff(sf2I

nf[10200:13079],lag=56)+jotest@V[8,6]*diff(sf1Int[10200:13079],lag=56)+jotest@V[

9,6]*diff(sf2Int[10200:13079],lag=56)) 

BeforeUT7 <- 

as.numeric(jotest@V[1,7]*diff(IncInf[10200:13079],lag=56)+jotest@V[2,7]*diff(IncI

nt[10200:13079],lag=56)+jotest@V[3,7]*diff(IncSup[10200:13079],lag=56)+jotest@V

[4,7]*diff(LVDTInt[10200:13079],lag=56)+jotest@V[5,7]*diff(LVDTSup[10200:130

79],lag=56)+jotest@V[6,7]*diff(sf1Inf[10200:13079],lag=56)+jotest@V[7,7]*diff(sf2I

nf[10200:13079],lag=56)+jotest@V[8,7]*diff(sf1Int[10200:13079],lag=56)+jotest@V[

9,7]*diff(sf2Int[10200:13079],lag=56)) 

BeforeUT8 <- 

as.numeric(jotest@V[1,8]*diff(IncInf[10200:13079],lag=56)+jotest@V[2,8]*diff(IncI

nt[10200:13079],lag=56)+jotest@V[3,8]*diff(IncSup[10200:13079],lag=56)+jotest@V

[4,8]*diff(LVDTInt[10200:13079],lag=56)+jotest@V[5,8]*diff(LVDTSup[10200:130

79],lag=56)+jotest@V[6,8]*diff(sf1Inf[10200:13079],lag=56)+jotest@V[7,8]*diff(sf2I

nf[10200:13079],lag=56)+jotest@V[8,8]*diff(sf1Int[10200:13079],lag=56)+jotest@V[

9,8]*diff(sf2Int[10200:13079],lag=56)) 
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BeforeUT <- 

cbind(BeforeUT1,BeforeUT2,BeforeUT3,BeforeUT4,BeforeUT5,BeforeUT6,Befor

eUT7,BeforeUT8) 

 

 

#Data Damage#### 

IncInfD <- ts(DataD[,5], start=1.7083333, frequency=96) 

IncIntD  <- ts(DataD[,6], start=1.7083333, frequency=96) 

IncSupD  <- ts(DataD[,7], start=1.7083333, frequency=96) 

LVDTIntD  <- ts(DataD[,8], start=1.7083333, frequency=96) 

LVDTSupD  <- ts(DataD[,9], start=1.7083333, frequency=96) 

sf1InfD  <- ts(DataD[,10], start=1.7083333, frequency=96) 

sf2InfD  <- ts(DataD[,11], start=1.7083333, frequency=96) 

sf1IntD  <- ts(DataD[,12], start=1.7083333, frequency=96) 

sf2IntD  <- ts(DataD[,13], start=1.7083333, frequency=96) 

 

#Generate cointegration residuals 

After1 <- 

as.numeric(jotest@V[1,1]*diff(IncInfD,lag=56)+jotest@V[2,1]*diff(IncIntD,lag=56)

+jotest@V[3,1]*diff(IncSupD,lag=56)+jotest@V[4,1]*diff(LVDTIntD,lag=56)+jotest

@V[5,1]*diff(LVDTSupD,lag=56)+jotest@V[6,1]*diff(sf1InfD,lag=56)+jotest@V[7,1

]*diff(sf2InfD,lag=56)+jotest@V[8,1]*diff(sf1IntD,lag=56)+jotest@V[9,1]*diff(sf2In

tD,lag=56)) 

After2 <- 

as.numeric(jotest@V[1,2]*diff(IncInfD,lag=56)+jotest@V[2,2]*diff(IncIntD,lag=56)

+jotest@V[3,2]*diff(IncSupD,lag=56)+jotest@V[4,2]*diff(LVDTIntD,lag=56)+jotest

@V[5,2]*diff(LVDTSupD,lag=56)+jotest@V[6,2]*diff(sf1InfD,lag=56)+jotest@V[7,2
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]*diff(sf2InfD,lag=56)+jotest@V[8,2]*diff(sf1IntD,lag=56)+jotest@V[9,2]*diff(sf2In

tD,lag=56)) 

After3 <- 

as.numeric(jotest@V[1,3]*diff(IncInfD,lag=56)+jotest@V[2,3]*diff(IncIntD,lag=56)

+jotest@V[3,3]*diff(IncSupD,lag=56)+jotest@V[4,3]*diff(LVDTIntD,lag=56)+jotest

@V[5,3]*diff(LVDTSupD,lag=56)+jotest@V[6,3]*diff(sf1InfD,lag=56)+jotest@V[7,3

]*diff(sf2InfD,lag=56)+jotest@V[8,3]*diff(sf1IntD,lag=56)+jotest@V[9,3]*diff(sf2In

tD,lag=56)) 

After4 <- 

as.numeric(jotest@V[1,4]*diff(IncInfD,lag=56)+jotest@V[2,4]*diff(IncIntD,lag=56)

+jotest@V[3,4]*diff(IncSupD,lag=56)+jotest@V[4,4]*diff(LVDTIntD,lag=56)+jotest

@V[5,4]*diff(LVDTSupD,lag=56)+jotest@V[6,4]*diff(sf1InfD,lag=56)+jotest@V[7,4

]*diff(sf2InfD,lag=56)+jotest@V[8,4]*diff(sf1IntD,lag=56)+jotest@V[9,4]*diff(sf2In

tD,lag=56)) 

After5 <- 

as.numeric(jotest@V[1,5]*diff(IncInfD,lag=56)+jotest@V[2,5]*diff(IncIntD,lag=56)

+jotest@V[3,5]*diff(IncSupD,lag=56)+jotest@V[4,5]*diff(LVDTIntD,lag=56)+jotest

@V[5,5]*diff(LVDTSupD,lag=56)+jotest@V[6,5]*diff(sf1InfD,lag=56)+jotest@V[7,5

]*diff(sf2InfD,lag=56)+jotest@V[8,5]*diff(sf1IntD,lag=56)+jotest@V[9,5]*diff(sf2In

tD,lag=56)) 

After6 <- 

as.numeric(jotest@V[1,6]*diff(IncInfD,lag=56)+jotest@V[2,6]*diff(IncIntD,lag=56)

+jotest@V[3,6]*diff(IncSupD,lag=56)+jotest@V[4,6]*diff(LVDTIntD,lag=56)+jotest

@V[5,6]*diff(LVDTSupD,lag=56)+jotest@V[6,6]*diff(sf1InfD,lag=56)+jotest@V[7,6

]*diff(sf2InfD,lag=56)+jotest@V[8,6]*diff(sf1IntD,lag=56)+jotest@V[9,6]*diff(sf2In

tD,lag=56)) 

After7 <- 

as.numeric(jotest@V[1,7]*diff(IncInfD,lag=56)+jotest@V[2,7]*diff(IncIntD,lag=56)
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+jotest@V[3,7]*diff(IncSupD,lag=56)+jotest@V[4,7]*diff(LVDTIntD,lag=56)+jotest

@V[5,7]*diff(LVDTSupD,lag=56)+jotest@V[6,7]*diff(sf1InfD,lag=56)+jotest@V[7,7

]*diff(sf2InfD,lag=56)+jotest@V[8,7]*diff(sf1IntD,lag=56)+jotest@V[9,7]*diff(sf2In

tD,lag=56)) 

After8 <- 

as.numeric(jotest@V[1,8]*diff(IncInfD,lag=56)+jotest@V[2,8]*diff(IncIntD,lag=56)

+jotest@V[3,8]*diff(IncSupD,lag=56)+jotest@V[4,8]*diff(LVDTIntD,lag=56)+jotest

@V[5,8]*diff(LVDTSupD,lag=56)+jotest@V[6,8]*diff(sf1InfD,lag=56)+jotest@V[7,8

]*diff(sf2InfD,lag=56)+jotest@V[8,8]*diff(sf1IntD,lag=56)+jotest@V[9,8]*diff(sf2In

tD,lag=56)) 

After <- cbind(After1,After2,After3,After4,After5,After6,After7,After8) 

2.15. X-bar Control chart – time series analysis 

CointResiduals <- as.data.frame(rbind(BeforeV,BeforeUT,After)) 

CointResiduals <- cbind(c(1:nrow(CointResiduals)),CointResiduals) 

colnames(CointResiduals) <- 

c("Observation","Residual1","Residual2","Residual3","Residual4","Residual5","R

esidual6","Residual7","Residual8") 

 

library(ggplot2) 

ggplot(CointResiduals) + 

geom_point(data=CointResiduals,aes(Observation,Residual1)) + 

  geom_vline(xintercept=nrow(BeforeV),linetype="dashed",color="green") + 

  

geom_vline(xintercept=(nrow(BeforeV)+nrow(BeforeUT)),linetype="dashed",col

or="green") + 
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  geom_hline(yintercept = mean(CointResiduals$Residual1[1:nrow(BeforeV)])-

3*sd(CointResiduals$Residual1[1:nrow(BeforeV)]), colour = "green") + 

  geom_hline(yintercept = 

mean(CointResiduals$Residual1[1:nrow(BeforeV)])+3*sd(CointResiduals$Resid

ual1[1:nrow(BeforeV)]), colour = "green") + 

  ylab("Value") + labs(title="Cointegration Residual1", caption="Vertical lines 

separate validation, undamaged test and damage period ; Horizontal lines are 

mean+-3*sd limits based on the validation period") 

2.16. Hotelling T2 based Control chart – 

explanatory models 

#Phase I 

t2I <- as.data.frame(q$statistics) 

t2I$UCL <- 0 

t2I$UCL[t2I$`q$statistics`>q$limits[2]] <- 1 

t2I$L8 <- 0 

for (i in 8:3220){ 

  t2I$L8[i] <- sum(t2I$UCL[(i-7):i]) 

} 

length(t2I$L8[t2I$L8==8]) 

 

 

#Phase II (Validation) 

t2Val <- as.data.frame(qval$newstats) 

t2Val$UCL <- 0 

t2Val$UCL[t2Val$`qval$newstats`>qval$limits[2]] <- 1 
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t2Val$L8 <- 0 

for (i in 8:2880){ 

  t2Val$L8[i] <- sum(t2Val$UCL[(i-7):i]) 

} 

length(t2Val$L8[t2Val$L8==8]) 

 

#Phase II (Damage) 

t2II <- as.data.frame(qq$newstats) 

t2II$UCL <- 0 

t2II$UCL[t2II$`qq$newstats`>qq$limits[2]] <- 1 

t2II$L8 <- 0 

for (i in 8:22254){ 

  t2II$L8[i] <- sum(t2II$UCL[(i-7):i]) 

} 

length(t2II$L8[t2II$L8==8])-4 

(length(t2II$L8[t2II$L8==8])-4)/22254 

 

#plot 

T28 <- as.data.frame(c(t2I$L8,t2Val$L8,t2II$L8)) 

T28 <- cbind(c(1:28354),T28) 

colnames(T28) <- c("Observation","Frequency") 

library(ggplot2) 

ggplot(T28) + geom_point(data=T28,aes(Observation,Frequency)) + 

  geom_vline(xintercept=nrow(t2I),color="green") + 

geom_vline(xintercept=(nrow(t2I)+nrow(t2Val)),color="green") + 

  scale_y_continuous(breaks = seq(0, 8, len = 5)) 

 

T28$Alarm <- 0 
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T28$Alarm[T28$Frequency==8] <- 1 

ggplot(T28) + geom_point(data=T28,aes(Observation,Alarm)) + 

  geom_vline(xintercept=nrow(t2I),color="green") + 

geom_vline(xintercept=(nrow(t2I)+nrow(t2Val)),color="green") + 

  scale_y_continuous(breaks = seq(0, 1)) + 

  xlab(“Sets of 8 Observations”) 

2.17. X-bar based Control chart – time series 

analysis  

XbarI <- as.data.frame(CointResiduals[,1:2]) 

XbarI$CL <- 0 

XbarI$CL[XbarI$Residual1>mean(CointResiduals$Residual1[1:nrow(BeforeV)])

+3*sd(CointResiduals$Residual1[1:nrow(BeforeV)])] <- 1 

XbarI$CL[XbarI$Residual1<mean(CointResiduals$Residual1[1:nrow(BeforeV)])

-3*sd(CointResiduals$Residual1[1:nrow(BeforeV)])] <- 1 

XbarI$OC <- 0 

for (i in 3:37340){ 

  XbarI$OC[i] <- sum(XbarI$CL[(i-2):i]) 

} 

 

XbarOC <- XbarI[,c(1,4)] 

colnames(XbarOC) <- c("Observation","Frequency") 

 

library(ggplot2) 

ggplot(XbarOC) + geom_point(data= XbarOC,aes(Observation,Frequency)) + 
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  geom_vline(xintercept=nrow(BeforeV),linetype="dashed",color="green") + 

geom_vline(xintercept=(nrow(BeforeV)+nrow(BeforeUT)),linetype="dashed",col

or="green") + 

  scale_y_continuous(breaks = seq(0, 3, len = 4)) 

 

XBAROC$Alarm <- 0 

XBAROC$Alarm[XBAROC$Frequency==3] <- 1 

ggplot(XBAROC) + geom_point(data=XBAROC,aes(Observation,Alarm)) + 

  geom_vline(xintercept=nrow(BeforeV),linetype="dashed",color="green") + 

geom_vline(xintercept=(nrow(BeforeV)+nrow(BeforeUT)),linetype="dashed",col

or="green") + 

  scale_y_continuous(breaks = seq(0, 1)) + 

  xlab("Sets of 3 Observations") 
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Appendix 3 – Explanatory Models Results 

 Linear Regression 

 Strain F1 

Middle 

Strain F2 

Middle 

Strain F1 

lower 

Strain F2 

lower 

LVDT 

upper 

LVDT 

middle 

Inclinometer 

upper 

Inclinometer 

middle 

Inclinometer 

lower 

R2 0,76 0,69 0,77 0,82 0,53 0,62 0,90 0,85 0,87 

RMSE 6,45 7,70 6,65 9,99 0,22 0,08 9,06 8,16 6,92 

MAE 5,07 5,96 5,20 7,55 0,16 0,06 6,56 6,16 5,53 

MAPE 0,03 0,04 0,03 0,20 0,16 0,80 0,01 0,01 0,00 

Table 6: Error metrics for the Linear Regression Model 

 Random Forest 

 Strain F1 

Middle 

Strain F2 

Middle 

Strain 

F1 

lower 

Strain 

F2 

lower 

LVDT 

upper 

LVDT 

middle 

Inclinometer 

upper 

Inclinometer 

middle 

Inclinometer 

lower 

R2 0,81 0,75 0,83 0,85 0,82 0,62 0,88 0,86 0,87 

RMSE 5,88 7,04 5,83 9,10 0,15 0,8 9,90 7,88 6,91 

MAE 4,45 5,24 4,41 6,68 0,10 0,06 6,38 5,76 5,51 

MAPE 0,02 0,03 0,02 0,19 0,11 0,79 0,01 0,00 0,00 

Table 7: Error metrics for the Random Forest Model 

 Support Vector Machine 

 Strain F1 

Middle 

Strain F2 

Middle 

Strain F1 

lower 

Strain F2 

lower 

LVDT 

upper 

LVDT 

middle 

Inclinometer 

upper 

Inclinometer 

middle 

Inclinometer 

lower 

R2 0,76 0,69 0,77 0,82 0,80 0,62 0,90 0,84 0,87 

RMSE 6,47 7,75 6,67 9,98 0,15 0,08 9,13 8,22 6,94 

MAE 5,06 5,93 5,19 7,52 0,12 0,06 6,53 6,12 5,52 

MAPE 0,03 0,04 0,03 0,20 0,12 0,77 0,01 0,01 0,00 

Table 8: Error metrics for the Support Vector Machine Model 

  



 107 

Appendix 4 - Neural Network Model Prediction 

 

 

Figure 15: Top graph refers to Observed and Predicted observations from the Neural Network 

model. Black dots refer to the observed values; Blue dots refer to the predicted values for the 

validation period; Green dots refer to the predicted values for the undamaged test period; Red 

dots refer to the predicted values for damage period. Bottom graph represents the difference 

between the Observed and Predicted observations 

 

 

Figure 16: Top graph refers to Observed and Predicted observations from the Neural Network 

model. Black dots refer to the observed values; Blue dots refer to the predicted values for the 

validation period; Green dots refer to the predicted values for the undamaged test period; Red 

dots refer to the predicted values for damage period. Bottom graph represents the difference 

between the Observed and Predicted observations 
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Figure 17: Top graph refers to Observed and Predicted observations from the Neural Network 

model. Black dots refer to the observed values; Blue dots refer to the predicted values for the 

validation period; Green dots refer to the predicted values for the undamaged test period; Red 

dots refer to the predicted values for damage period. Bottom graph represents the difference 

between the Observed and Predicted observations 

 

 

Figure 18: Top graph refers to Observed and Predicted observations from the Neural Network 

model. Black dots refer to the observed values; Blue dots refer to the predicted values for the 

validation period; Green dots refer to the predicted values for the undamaged test period; Red 

dots refer to the predicted values for damage period. Bottom graph represents the difference 

between the Observed and Predicted observations 
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Figure 19: Top graph refers to Observed and Predicted observations from the Neural Network 

model. Black dots refer to the observed values; Blue dots refer to the predicted values for the 

validation period; Green dots refer to the predicted values for the undamaged test period; Red 

dots refer to the predicted values for damage period. Bottom graph represents the difference 

between the Observed and Predicted observations 

 

 

Figure 20: Top graph refers to Observed and Predicted observations from the Neural Network 

model. Black dots refer to the observed values; Blue dots refer to the predicted values for the 

validation period; Green dots refer to the predicted values for the undamaged test period; Red 

dots refer to the predicted values for damage period. Bottom graph represents the difference 

between the Observed and Predicted observations 
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Figure 21: Top graph refers to Observed and Predicted observations from the Neural Network 

model. Black dots refer to the observed values; Blue dots refer to the predicted values for the 

validation period; Green dots refer to the predicted values for the undamaged test period; Red 

dots refer to the predicted values for damage period. Bottom graph represents the difference 

between the Observed and Predicted observations 

 

 

Figure 22: Top graph refers to Observed and Predicted observations from the Neural Network 

model. Black dots refer to the observed values; Blue dots refer to the predicted values for the 

validation period; Green dots refer to the predicted values for the undamaged test period; Red 

dots refer to the predicted values for damage period. Bottom graph represents the difference 

between the Observed and Predicted observations 

 

 


