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Resumo 

 

A estratégia Betting Against Beta (BAB) oferece retornos ajustados ao risco 

muito altos, superando outras estratégias baseadas em fatores como o mercado, 

tamanho, valor, momentum, entre outros. A recente literatura (Barroso & Maio, 

2018) constata que a gestão de risco da estratégia BAB (Risk-managed BAB) 

possibilita um ganho substancial em Sharpe ratio. No entanto, ao contrário da gestão 

de risco da estratégia momentum, a gestão de risco da estratégia BAB apresenta um 

elevado potencial de perda. Nesta dissertação, o objetivo é melhorar o perfil risco-

retorno da estratégia BAB, reduzindo, principalmente, o seu potencial de perda. Com 

isto em mente, concentramo-nos na construção de uma estratégia BAB otimizada. 

Pela primeira vez na literatura de estratégias BAB, usamos informação implícita nos 

preços de opções sobre um índice acionista de referência (S&P500) acerca da 

correlação esperada dos retornos dos seus constituintes. Na linha do recente 

trabalho (Nogueira & Faria, 2017) acerca de estratégias momentum, usamos uma 

média móvel a 2 meses como um proxy da estrutura temporal dessas expectativas. 

Propomos uma nova estratégia, a estratégia Dynamic BAB, que tem um desempenho 

substancialmente melhor que a versão original. Em particular, otimiza a exposição 

ao potencial de ganho do BAB, minimizando a exposição ao potencial de perda. Além 

disso, para aumentar ainda mais a exposição ao potencial de ganho, combinamos a 

Dynamic BAB com a estratégia de gestão de risco de (Barroso & Maio, 2018) (Risk-

managed BAB). Denominamos a estratégia resultante de Hybrid BAB. Ao testar a sua 

robustez, é de notar que a Hybrid BAB pode ser implementada em tempo real, 

usando apenas informação disponível no momento do trading. Além disso, a 

estratégia mostra-se robusta a mudanças nos pesos do fator. A estratégia Hybrid 

BAB oferece retornos com o dobro do Sharpe ratio da estratégia BAB original, 

permitindo concluir que, à semelhança do reportado em (Nogueira & Faria, 2017) 

para estratégias de momentum, também existe informação relevante a ser explorada 

nos preços de opções sobre índices acionistas de referência que contribuem para o 

desenho e implementação de estratégias BAB. 

Palavras-chave: Betting Against Beta; Expectativas de Correlação Ímplícita 

em preços de opções; Risco de perdas  
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Abstract 

 

The Betting Against Beta (BAB) strategy offers very high risk-adjusted 

returns, outperforming other strategies based on factors as the market, size, value, 

momentum, and others. Recent literature of (Barroso & Maio, 2018) finds that 

managing the risk of the BAB strategy ( Risk-managed BAB) allows a substantial gain 

in Sharpe ratio. However, unlike Risk-managed momentum, Risk-managed BAB has 

a large downside risk. In this dissertation, the objective is to improve the BAB 

strategy risk-return profile, particularly by reducing its downside risk. With that in 

mind, we focus on the construction of an optimized BAB strategy. For the first time 

in the BAB related strategies literature, we use implied information on the S&P500 

index option-implied correlation of its constituents returns. In line with the recent 

work (Nogueira & Faria, 2017) about momentum strategies, we use a 2-month 

moving average as a proxy for the term structure of expected correlations in the 

S&P500 index. We propose a new strategy, Dynamic BAB strategy, that has a 

substantially better performance than the original version. Particularly, it optimizes 

the exposure to the BAB upside risk, reducing the exposure to its downside risk. 

Additionally, to increase even more the upside potential, we combine the Dynamic 

BAB strategy with the Risk-managed BAB strategy of (Barroso & Maio, 2018). We 

denominate the resulting strategy Hybrid BAB strategy. Testing for its robustness, 

the Hybrid strategy can be implemented in real-time, only using available 

information in the moment of the trading. Moreover, the strategy is robust to 

changes in the weights.  The Hybrid BAB strategy provides returns with a Sharpe 

ratio that almost doubles one of the original BAB, allowing to conclude that, similarly 

with the reports in (Nogueira & Faria, 2017) for the momentum strategies, there is 

also relevant information to be explored in the option prices of equity indexes that  

contribute to build and implement BAB strategies. 

Keywords: Betting Against Beta; Option-Implied Correlation; Downside Risk 
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Introduction 

 

"Buffet bets against beta as Fisher Black believed one should"  

(Frazzini & Pedersen, 2014) 

The capital asset pricing model (CAPM) of (Sharpe, 1964) and (Lintner, 1965) is 

the most used asset pricing model in finance, used to evaluate investments and 

measure portfolio performance (Damodaran, 2012; Fama & French, 2004). It relies 

on the premise that the beta of an asset can be a measure of its risk. As a result, there 

is a positive relationship between the beta of an asset and its expected returns. This 

relationship is often represented as the security market line (SML) and implies that 

the higher the beta of an asset, the higher its expected returns. However, empirical 

evidence from (Black, Jensen, & Scholes, 1972) finds that the SML is flatter than 

initially thought, leading the finding of the beta anomaly. 

BAB is a strategy that exploits the beta anomaly (Black et al., 1972). The beta 

anomaly is known as one of the most puzzling anomalies in finance because it 

questions the risk-return parity. The strategy consists of buying low-beta stocks and 

shorting high-beta ones (Frazzini & Pedersen, 2014). While investing in this 

strategy, investors expect low-beta stocks to have positive risk-adjusted returns and 

high-beta stocks to have negative risk-adjusted returns, allowing them to obtain 

profitable payoffs. Tested in, at least, 20 countries and in diverse asset classes 

(Frazzini & Pedersen, 2014), the strategy generates robust positive returns in the 

long-run, competing and outperforming the strategies based on the market, value, 

size, and even momentum factors. However, there is empirical evidence in (Barroso 

& Maio, 2018) that non-market risk-factors explain a substantial part of the strategy 

mystery, almost causing the death of the anomaly. Nevertheless, (Barroso & Maio, 

2018) find a "hidden puzzle" in BAB, resurrecting, in some way, the idea of the 

existence of an anomaly. Nevertheless, the new strategy proposed by (Barroso & 

Maio, 2018) has substantial downside risk.  

This dissertation adds novelty to the latest BAB related literature by focusing on 

the construction of an optimized BAB strategy. We propose to answer the following 

question: Is it possible to obtain an optimized strategy that combines the strategy 
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proposed by (Barroso & Maio, 2018) and a strategy that efficiently manages the 

downside risk of the BAB strategy? 

Firstly, we aim to build a strategy that dynamically exposes our portfolio to the 

BAB factor. We want to overexpose our portfolio to the BAB factor in "good" periods, 

i.e. periods during which the BAB factor is delivering positive returns, and 

underexpose our portfolio to the BAB factor in "bad" periods, i.e. periods during 

which the BAB factor is delivering negative returns. 

Recent work about momentum strategies using option-implied correlations 

(Nogueira & Faria, 2017) find that using information related to the term structure 

in the equity market provides useful information to adjust a portfolio exposure to 

the momentum factor dynamically. We extend this analysis for a hypothetical 

portfolio exposed to the BAB factor, assessing if and how the S&P500 index option-

implied correlation information can be useful to drive its exposure to the BAB factor. 

The first outcome of our analysis is a strategy we denominate by Dynamic BAB. 

The strategy uses the 2-month moving average of the spread between the S&P500 

option-implied correlation for 365 days and the S&P500 option-implied correlation 

for 30 days, which we use as a proxy of the implied correlation term structure. This 

strategy is found to outperform the plain-vanilla BAB strategy.  

Then, we combine the Dynamic BAB strategy with the Risk-managed strategy 

from (Barroso & Maio, 2018). We denominate this strategy as Hybrid strategy. The 

Hybrid strategy will increase the upside potential of the Dynamic strategy by taking 

leverage positions in “good” moments, while, at the same time, decreasing the 

downside risk, by short selling, in “bad” moments. All information used is publicly 

available, allowing any investor to replicate it. 

In summary, the Hybrid strategy substantially outperforms the plain-vanilla BAB, 

with a Sharpe ratio that almost doubles the original strategy (1.04 vs. 0.55, 

respectively), providing lower downside risk for higher upside. Moreover, the 

strategy is robust in different weighting settings and real-time trading, reasons why 

we consider the strategy to be an effective improvement versus the original BAB. 

 

 



3 

 

Chapter 2 

Literature Review 

 

In their seminal empirical contribution, (Black et al., 1972) show that low-beta 

stocks tend to have positive risk-adjusted returns, and high-beta stocks tend to have 

negative risk-adjusted returns. The authors call it the beta anomaly, which 

resolutely defies the Capital Asset Pricing Model (CAPM). Other authors also 

investigate the anomaly, such as (Blume & Friend, 1973; Fama & French, 1993; Fama 

& MacBeth, 1973) and, more recently, (Fama & French, 2006) show that controlling 

by size and book-to-market, the anomaly increased. Also, (Ang, Bekaert, & Wei, 

2008; Blitz & Van Vliet, 2007) show that low-volatility stocks generate higher 

returns than high-volatility stocks. 

(Frazzini & Pedersen, 2014) propose a strategy that exploits the beta anomaly. 

The authors are the pioneers behind the construction and dissemination of the 

betting-against-beta strategy. They take advantage of the fact that low-beta stocks 

have higher alphas and Sharpe ratios than high-beta stocks, as documented in (Black 

et al., 1972). To do so, they build a strategy that buys low-beta stocks and shorts 

high-beta stocks. The returns provided by the strategy are robustly positive and 

economically and statistically significant, competing with the value, size, and 

momentum factors, reasons that justify its current popularity in the asset 

management world.  

Furthermore, (Novy-Marx & Velikov, 2014) study beta and total volatility sorted 

portfolios, finding that returns are flat across volatility and beta quintiles, revealing 

almost the same findings as (Frazzini & Pedersen, 2014). (Auer & Schuhmacher, 

2015; Buchner & Wagner, 2016) in similar studies obtain similar results. 

(Frazzini & Pedersen, 2014) also addresses behavioral explanations of the beta 

anomaly and, consequently, the reason for the viability of the betting-against-beta 

strategy. As in (Black et al., 1972), (Frazzini & Pedersen, 2014) empirically shows 

that the security market line (SML) is flatter than what CAPM shows. In fact, unlike 

CAPM, (Frazzini & Pedersen, 2014) assumes that investors have a leverage limit. As 

a result, the slope of the SML, which is the difference in returns of high-beta stocks 
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and low-beta stocks, depends on the investor's leverage constraints tightness. The 

tighter the leverage constraints, the tighter the SML. 

Furthermore, they also show that it does not only happen for U.S. equities, but 

also in other international markets, in Treasury markets, in corporate bonds sorted 

by maturity and rating, and in future markets. They associate the sentiment of this 

strategy with leverage-constrained investors that bid up the price of high-beta 

stocks for their embedded leverage, leading to negative risk-adjusted returns. As a 

result, being long on low-beta assets and short on high-beta assets generates 

positive risk-adjusted returns. They give the example of leveraged buyout funds and 

Berkshire Hathaway, that consistently invest in low-beta stocks. Since Berkshire 

Hathaway has full access to leverage, it invests the leverage in safe stocks. As a result, 

they beneficiate with the BAB effect, caused by leverage constrained investors 

taking the opposite position. In the end, the leverage constrained investors are the 

ones that hold riskier assets in their portfolios.  

There is very diverse literature with different approaches to the BAB strategy. 

We start by analyzing the literature that tries to explain the outstanding 

performance of the strategy economically. The leading theory for the anomaly in the 

literature also defended in the original paper of (Frazzini & Pedersen, 2014), is the 

leverage constraints theory, a borrowing restriction explanation. This theory tries 

to explain the betting-against-beta performance, reporting that investors with 

leverage constraints bid up the price of the high-beta stocks because of the 

embedded leverage. As a result, high-beta stocks start to generate negative risk-

adjusted returns. There are empirical studies that support the leverage constraints 

theory by providing empirical results from factors that shape the SML. Some 

empirical studies are (Antoniou, Doukas, & Subrahmanyam, 2016; Black et al., 1972; 

Blitz et al., 2007; Boguth & Simutin, 2018; Cohen, Polk, & Vuolteenaho, 2005; 

Frazzini & Pedersen, 2014; Hedegaard, 2018; Hong & Sraer, 2016; Huang, Lou, & 

Polk, 2015; JylhÄ, 2018; Modigliani & Cohn, 1979; Savor & Wilson, 2014). There are 

also empirical studies that support a constrained version of CAPM, giving strength 

to the (Frazzini & Pedersen, 2014) model, such as (Barber, Huang, & Odean, 2016; 

Berk & van Binsbergen, 2015). (Chen & Lu, 2019) even refined the BAB factor by 

picking stocks that are more exposed to funding conditions, thus increasing the 

anomaly and, consequently, the strategy returns. 
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An essential contribution to the leverage constraints theory is from (Boguth & 

Simutin, 2018),  that find that the exposure to leverage constraints has essential 

consequences for asset prices. It builds on (Brunnermeier & Pedersen, 2009) that 

suggests that there is a relationship between the time-varying tightness of leverage 

constraints and the pricing kernel. It empirically shows, using a proposed measure 

for the "tightness" of leverage constraints, that when mutual funds want to take 

more leverage, but face leverage restrictions, they invest in high-beta stocks to take 

advantage of its embedded leverage.  

Another significant contribution to the leverage constraints theory is from 

(Hedegaard, 2018) that empirically confirms the possibility to predict BAB returns 

using past market returns. When there is an outward shift in investor's demand 

functions, the prices increase, and the investors are more constrained, meaning that 

future BAB returns are going to increase. In summary, it reports that the BAB 

strategy has a better performance in periods when past market returns have been 

high.   

Regarding the conditional behavior of the beta anomaly, (Cohen et al., 2005) find 

that the low-beta anomaly is more present in periods of high inflation caused by the 

presence of money illusion in the stock market. Also, (Antoniou et al., 2016) find that 

beta anomaly is more present in periods of optimism. They attribute the increase in 

the anomaly due to amateur investors who enter the stock market in times of 

increased optimism. Amateur investors are usually overconfident regarding their 

experience and tend to cause the mispricing of beta. Other authors also study the 

psychological overconfidence factor as an explanation for the anomaly, namely 

(Baker, Bradley, & Wurgler, 2011; Kaustia & Perttula, 2012). 

Additionally, (Bali, Brown, Murray, & Tang, 2018) propose that the BAB 

phenomenon has origin in demand for lottery-like stocks, an empirical explanation 

documented by (Bali, Cakici, & Whitelaw, 2011). Much like the original paper of 

(Frazzini & Pedersen, 2014), the explanation is that there is an intense upwards 

pressure in high-beta stock prices. However, in this case, the cause is lottery 

demand. They conclude that the abnormal returns generated by a portfolio that buys 

low-beta stocks and shorts high-beta ones are only caused by the demand for 

lottery-like stocks, explaining why so many studies fail to find a positive relationship 
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between market beta and stock returns. They report that, if we control for lottery-

demand, the BAB phenomenon disappears. 

There are other alternative explanations for the betting-against-beta strategy 

performance, including explanations related with the non-standard choices of 

(Frazzini & Pedersen, 2014) in the BAB construction ( e.g. (Novy-Marx & Velikov, 

2019)), with CAPM not capturing risk well (e.g. (Buchner & Wagner, 2016)), with 

liquidity risk (Malkhozov, Mueller, & Vedolin, 2017), with benchmarking (e.g. 

(Baker et al., 2011)), decentralized investment approach (e.g.(Blitz & Van Vliet, 

2007)), representativeness (e.g. (Kaustia, Laukkanen, & Puttonen, 2009)) and limits 

to arbitrage (e.g. (Kaplan, Sensoy, & StrÖmberg, 2009)). 

Lastly, there is literature that reports the viability of betting-against-beta strategy 

in several other countries (e.g. (Agarwalla, Jacob, Varma, & Vasudevan, 2014; 

Frazzini & Pedersen, 2014)) and in different asset classes, for example, the bond 

markets (e.g. (Durham, 2016)). 

There is literature that approaches BAB from a different perspective, namely 

volatility management. This literature investigates the time-varying volatility of 

BAB and analyzes the results to understand the anomaly better. This stream of 

literature builds on the literature that documents the time-varying risk of the stock 

market (Bollerslev, 1987; Schwert, 1989) and the benefits of timing its volatility 

(Fleming, Kirby, & Ostdiek, 2001). More recently, (Moreira & Muir, 2017) show that 

volatility management produces abnormal returns, explaining that it might be due 

to the slow response of prices to volatility.  

Furthermore, (Barroso & Maio, 2018) show that BAB's returns volatility has 

extraordinary predictive power for strategy performance. It reports a Sharpe ratio 

of 1,97 after low-volatility months vs. a Sharpe ratio of 0.23 after high-volatility 

months. Consequently, the authors build a strategy that exploits the predictive 

volatility predictive power of the strategy performance by investigating the time-

varying volatility of BAB. They find support for the leverage constraints theory and 

multidimensional explanations, reporting that the beta anomaly can be well 

explained in periods when the volatility is high, but it is more puzzling when 

volatility is low. These findings follow the leverage constraints theory and meet the 

findings of (Hedegaard, 2018) that embedded leverage is more valuable when the 

volatility is low, increasing the anomaly, thus leading to higher risk-adjusted returns 
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for BAB. In summary, (Barroso & Maio, 2018) report that risk-management 

increases BAB gains and resurrects the beta anomaly. However, the tail risk of 

portfolios that include the Risk-managed BAB is still very high, showing that Risk-

managed BAB has significant downside risk.  

In this dissertation, we work on this stream of literature, making use of the Risk-

managed BAB strategy of (Barroso & Maio, 2018). Our objective is to optimize the 

plain-vanilla BAB strategy by managing its downside risk while, at the same time, 

increasing its upside potential.  

More concretely, the main novelty of this dissertation is the application, for the 

first time in the BAB-related literature, of equity option-implied information to scale 

the exposure of a portfolio to the plain-vanilla BAB factor. As a result, we propose a 

strategy that dynamically weights the exposure of a portfolio to the BAB factor 

regarding the information provided by the dynamics of the S&P500 index option-

implied correlation term structure.  

Our work relates to the literature that studies the option implied expectations of 

future correlations in equity markets or, more generally, the correlation risk. There 

exists diverse and recent literature about correlation risk. (Buraschi, Trojani, & 

Vedolin, 2014; Driessen, Maenhout, & Vilkov, 2009) find that report that correlation 

risk premium explains a big part of the variance risk premium. Additionally, some 

economic models explain why correlation risk should carry a risk premium, such as 

(Ehling & Heyerdahl-Larsen, 2017; Piatti, 2014). Empirically, some studies show 

that stochastic correlation can be a good predictor of market returns, studies that 

use options data (Buraschi et al., 2014; Buss, Schoenleber, & Vilkov, 2017; Driessen 

et al., 2009) and hedge fund return data (Buraschi et al., 2014). Lastly, (Faria, 

Kosowski, & Wang, 2018) show that it is possible to obtain a global correlation risk 

factor priced in international option markets. Concretely, in this dissertation, we 

build on the dynamics of the option-implied correlation risk and its term structure. 

The information contained in the term structure for different maturities reflects the 

market expectations of future correlations, which is very useful to build a strategy 

that predicts the state of the financial markets. (Nogueira & Faria, 2017) show that 

the S&P500 index option-implied correlation can be efficiently used to improve the 

risk-adjusted performance of a portfolio exposed to the momentum factor. In this 

dissertation, we use data provided by (Faria & Kosowski, 2014) to build a strategy 
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that efficiently manages the downside risk of BAB, resulting in a total novelty in the 

BAB-related literature.  

 

 

Chapter 3 

Data Description and Methodology 

 

3.1. Data Description 

 

We use daily and monthly data from July 1967 to December 2016, for the returns 

of long/short equity BAB factor. The portfolios we use are an updated and extended 

version of the equity portfolios used in (Frazzini & Pedersen, 2014), long in low-beta 

stocks, and shorting high-beta stocks, for U.S. equities and 23 international equity 

markets. This set of data is from AQR Capital Management's data library1. 

Additionally, we use daily and monthly data from July 1967 to December 2016 for 

the excess return on the market (RM-RF), the Small Minus Big (SMB), the High Minus 

Low (HML), the Robust Minus Weak (RMW), the Conservative Minus Aggressive 

(CMA) and the momentum factor (MOM). This set of data is from Kenneth R. 

French's data library2. 

The main innovation of this dissertation is the optimization of the plain-vanilla 

BAB strategy by dynamically adjusting the exposure of our portfolio to the BAB 

factor, using S&P500 index option-implied information. Namely, we use the model-

free expectations of future correlation of returns of the S&P500 implied in the 

S&P500 index options for different maturities (30,60,91,182 and 365 days). 

Therefore, we use daily and monthly time series of the S&P500 index option-implied 

correlations for different maturities, from January 1996 to January 2013, as in (Faria 

& Kosowski, 2016)3. This set of data is crucial to our dissertation, and it has 

fundamental properties. The data is publicly available because it is based on 

tradable options. The options are from a benchmark for global equity markets, the 

 
1 https://www.aqr.com/Insights/Datasets 
2 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Research 
3 The time series of expected correlations start at January 1996 due to option data availability. 

https://www.aqr.com/Insights/Datasets
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Research
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S&P500. Moreover, since it is option-implied, the computation is forward-looking, 

as well as model-free. Most importantly, when working with option-implied 

correlations and its term structure, we can obtain information related to market 

timing and market conditions as stated in (Buraschi et al., 2014; Driessen et al., 

2009; Faria & Kosowski, 2016). 

 

3.2. Methodology 

 

We rebalance the BAB strategy every month, after the last trading day of each 

month. Since, we rebalance the strategy at the end of month t-1, the holding period 

of the rebalanced portfolio is the following month t.  

The underlying data can differ from (Frazzini & Pedersen, 2014), since it is 

updated and refreshed monthly to utilize the best available data, and data sources 

can differ to allow for continuous updating. The data AQR Capital Management uses 

for portfolio construction is from the union of the CRSP tape and the 

Computstat/XpressFeed Global database. Domestic data include all available 

common stocks in the merged CRSP/XpressFeed data. International data include all 

available common stocks on the Computstat/XpressFeed Global database for 23 

developed markets. They rank all securities in a country in ascending order based 

on their estimated beta and assign the ranked securities to one of the two portfolios: 

low-beta and high-beta. They weight securities by their ranked betas. Lower-beta 

securities have larger weights in the low-beta portfolio, and higher-beta securities 

have larger weights in the high-beta portfolio. They rebalance portfolios every 

month and rescale them to have a beta of one at portfolio formation, i.e. both 

portfolios have a beta of one. The plain-vanilla BAB is a self-financing zero-beta 

portfolio that is long in the low-beta portfolio and short in the high beta portfolio. In 

this dissertation, we propose two BAB strategies (Dynamic and Hybrid) obtained by 

adjusting the exposure to the BAB strategy by considering the option-implied 

correlation.  

The S&P500 option-implied correlation and its application to dynamically adjust 

the exposure of our portfolio to the BAB factor is the main novelty of this 

dissertation. As a result, we find it useful to review (Faria & Kosowski, 2016) 
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methodology to estimate the risk-neutral expectation of average pairwise 

correlation for the period (t, T), 𝐸𝑡
𝑄(𝑅𝐶𝑡,𝑇), using option prices. 

Starting by estimating the index and index constituents synthetic variance swap 

rates, which are an approximation of the risk-neutral expectations of future 

variance, 𝑆𝑉𝑡,𝑇
𝐼  and 𝑆𝑉𝑡,𝑇

𝑖 , respectively, from listed vanilla option prices. (Faria & 

Kosowski, 2016) use market prices of out-of-the-money (OTM) European calls and 

puts to obtain the synthetic variance swap rates 𝑆𝑉𝑡,𝑇 computed as below: 

 

𝑆𝑉𝑡,𝑇 = ∫ [
2(1 − ln (

𝐾
𝑆𝑡

)

𝐾2 ]

∞

𝑆𝑡

𝐶(𝑡, 𝑇 − 𝑡; 𝐾)𝑑𝐾 +  ∫ [
2(1 + ln (

𝑆𝑡
𝐾𝑡

)

𝐾2 ] 𝑃(𝑡, 𝑇 − 𝑡; 𝐾)

𝑆𝑡

0

𝑑𝐾, (1) 

 

Where 𝐶(𝑡, 𝑇 − 𝑡; 𝐾) and 𝑃(𝑡, 𝑇 − 𝑡; 𝐾) are the European calls market prices and puts 

market prices at time t, with time to maturity of (T-t), and strike price K. This method 

generates an estimation of the option-implied integrated variance until the option's 

maturity, if the prices are continuous and the volatility stochastic, as referred by (Faria & 

Kosowski, 2016). Additionally, they use interpolated implied volatility surfaces for different 

maturities and option deltas from IvyBD (Optionmetrics) to get the option prices.  

After these steps, the risk-neutral expectation of average pairwise correlation for the 

period (t,T), 𝐸𝑡
𝑄(𝑅𝐶𝑡,𝑇) also denominated as the Implied Correlation rate, is computed 

as follows: 

 

𝐼𝐶𝑡,𝑇 =
𝑆𝑉𝑡,𝑇

𝐼 − ∑ 𝑊𝑖
2𝑆𝑉𝑡,𝑇

𝑖𝑛
𝑖=1

∑ 𝑤𝑖𝑤𝑗√𝑆𝑉𝑡,𝑇
𝑖 𝑆𝑉𝑡,𝑇

𝑗
𝑖≠𝑗

, (2) 

 

Where 𝑆𝑉𝑡,𝑇
𝐼  and 𝑆𝑉𝑡,𝑇

𝑖  are the index and single stock synthetic swap variance rates 

over the period (t,T), and 𝑤𝑖 is the market capitalization of stock i.  

In this dissertation, we use the spread between the expected correlation for the 

longest maturity (365 days) and the shortest maturity (30 days) each computed as 

in equation (2) as a proxy for the option-implied correlation term structure. 
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3.3. Empirical Evidence: S&P500 Term Structure 

 

We use data on option-implied correlation expectations to adjust a portfolio's 

exposure to the BAB factor dynamically. We expect that the information provided 

by the data allows overexposing the portfolio in "good" periods and underexposing 

it in "bad" periods. In this section, we document a piece of empirical evidence about 

the dynamics of the implied correlation of the S&P500 index constituents returns 

for different maturities and its term structure (Faria & Kosowski, 2016). We pretend 

to explain the motivation for using this set of data, particularly, what is the economic 

pattern that makes the information valuable to predict the market conditions. 

 

 

Figure 1: S&P500 Implied Correlation (IC) 2-month moving average for 30, 60, 91, 182, and 365 

days. ICs are computed as in equation (2), using daily observations for the period between 1996:01 

and 2013:01. 

 

First, let us look at the S&P500 Implied Correlation (IC) 2-month moving average 

dynamics for different maturities. From Figure 1, we can conclude that expected 

correlations increase with maturity, but also change substantially around periods of 

increased uncertainty, e.g., the 2007/2008 financial crisis. Moreover, around the 

periods of increased uncertainty, the expected correlation for shorter maturities 

tend to increase more than the expected correlation for longer maturities. As a 

result, the 2-month moving average of the spread between the S&P500 Implied 
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Correlation with the more extended maturity (365 days), and the S&P500 Implied 

Correlation with the shortest maturity (30 days) will not also change with time, but 

also become close to zero or even negative in periods of increased uncertainty, as it 

is clear in Figure 2.  

 

 

Figure 2: 2-month moving average of the spread between the S&P500 Implied Correlation (IC) for 

365 days and the IC for 30 days. ICs are computed as in equation (2), using daily observations for the 

period between 1996:01 and 2013:01. 

 

Since the 2-month moving average of the spread between the I.C. (365d) and the 

I.C. (30d) represents our S&P500 IC term structure, we can infer from Figure 2 that 

most of the time the term structure is positive and, in periods of increased 

uncertainty, the I.C. term structure becomes close to zero or even negative. We can 

give as examples the instability in the U.S. equity market between 2002 and 2003, 

the subprime crisis that started in 2007, worsening in 2008 with the collapse of the 

Lehman Brothers. (Faria & Kosowski, 2016) study a structural explanation for the 

empirical evidence about the flattening of the I.C. term structure, using a general 

equilibrium Lucas tree model.  

Based on this empirical evidence of the dynamic of the I.C. term structure, we are 

motivated by a pattern that may be crucial in our objective of reducing the downside 

risk of the BAB strategy: that in periods on enhanced uncertainty in financial 

markets, expected correlations for longer maturities increase less than expected 
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correlations for shorter maturities, causing a flattening of the I.C. term structure. In 

summary, we see an opportunity to use this pattern and overexpose our portfolio to 

the BAB strategy in "good" periods, when the I.C. term structure is positive, and 

underexpose our portfolio to the BAB strategy in "bad" periods, when the I.C. term 

structure is negative. As a result, we propose the Dynamic BAB strategy, as we 

explore in Chapter 5. 
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Chapter 4 

Profiling BAB 

 

In this chapter, we present the summary statistics of BAB, Fama and French 5 

(RMRF; SMB; HML; RMW; CMA) and momentum (MOM) portfolios for the period of 

July 1967 to December 2016, computed using monthly data. 

 

 

Table 1: Summary statistics of RMRF (excess return of the market portfolio), SMB (Small Minus Big 

portfolio), HML (High Minus Low portfolio), RMW (Robust Minus Weak portfolio), CMA 

(Conservative Minus Aggressive portfolio), MOM (momentum or winners minus losers portfolio), 

BAB ( Betting Against Beta portfolio). We compute the statistics using monthly observations from 

1967:07 to 2016:12. The mean, standard deviation, and Sharpe ratio are annualized.  

 

We can observe that BAB offers an average yearly return of 10.92%, which is 

considerably higher than the second-highest average yearly return (the momentum 

portfolio factor (MOM), with an average yearly return of 7.72%) and almost double 

the third-highest (the market portfolio factor (RMRF), with an average yearly return 

of 6.01%). Furthermore, BAB has an 11.81% yearly standard deviation, meaning 

Portf. Mean 

(%) 

Standard 

Deviation 

(%) 

Max. 

(%) 

Min. 

(%) 

Kurt. Skew. Sharpe 

Ratio 

RMRF 6.01 15.69 16.10 -23.24 1.83 -0.52 0.38 

SMB 2.13 10.76 21.70 -16.86 5.71 0.53 0.20 

HML 4.47 10.02 12.87 -11.18 1.98 0.06 0.45 

RMW 3.32 7.80 13.33 -18.33 11.86 -0.33 0.43 

CMA 4.19 7.00 9.56 -6.86 1.58 0.33 0.60 

MOM 7.72 14.97 18.36 -34.39 10.37 -1.34 0.52 

BAB 10.92 11.81 15.39 -15.68 4.07 -0.53 0.92 
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that its average yearly return does not depend on a high yearly standard deviation. 

Factors with the same or close standard deviations (the small minus big portfolio 

factor (SMB), with a yearly standard deviation of 10.76% and the high minus low 

portfolio factor (HML), with a yearly standard deviation of 10.02%) have a way 

lower average yearly return (2.13% and 4.47%, respectively). Even portfolios with 

higher yearly standard deviations have a lower average yearly return (the 

momentum portfolio with a yearly standard deviation of 14.97% and an average 

yearly return of 7.72%), leading us to the inevitable conclusion that BAB has the 

highest Sharpe ratio(0.92), much higher than the second-highest (the conservative 

minus aggressive portfolio factor (CMA) with a Sharpe ratio of 0.60).  

Furthermore, it is possible to observe that BAB has a kurtosis of 4.07, which 

predicts fatter tails than a normal distribution, and negative skewness of -0.53, 

which suggests that the left tail is more substantial than the right tail. Although these 

numbers are not very worrisome, the BAB strategy still has considerable downside 

risk.  

Recently, Antoniou, Doukas, and Subrahmanyam (2015) showed that optimism 

attracts unsophisticated and overconfident investors causing the mispricing of beta 

and increasing the beta anomaly. So, what should we expect of the beta anomaly in 

pessimistic periods?  For a better perception, we selected two turbulent periods and 

tested the cumulative returns performance of the BAB strategy using the market as 

a benchmark.  
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Figure 3: Betting Against Beta (BAB) and Market (RMRF) factors performance between 1997:01 and 

1999:12. 

 

Figure 3 shows the cumulative returns performance of the strategies based on 

the BAB and the RMRF (market) portfolios around the burst of the Asian Financial 

Crisis (1997/1998).  A practical exercise shows that an investor that invested 1 

monetary unit in a BAB strategy on the first trading day of January 1997 would end 

up with only get 0.82 monetary units on the last trading day of 1999, suffering a loss 

of 18%. To receive his initial investment, the investor would have to wait until March 

2001, that means, 1 year and 3 months later. 
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Figure 4: Betting Against Beta (BAB) and Market (RMRF) factors performance between 2007:01 and 

2009:12. 

 

Figure 4 shows the cumulative returns performance of the strategies based on 

the BAB and RMRF portfolios around the Subprime crisis and the Lehman Brothers 

collapse (2007/2008). In this case, an investor that invested 1 monetary unit in a 

BAB strategy on the first trading day of January would end up with 0.68 monetary 

units on the last trading day of 2009, suffering a loss of 32% of portfolio value. 

Overall, in both sub-samples considered, the BAB strategy clearly underperforms a 

strategy exposed to the market risk factor. 
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CAPM  FF3  FF5 + MOM 

α (%) 9.48 
(6.76) 

7.56 
(5.64) 

3.12 
(2.50) 

βRM -0.07 
(-2.42) 

0.00 
(-0.15) 

0.10 
(3.51) 

ΒSMB  0.01 
(0.22) 

0.16 
(3.71) 

βHML  0.41 
(8.69) 

0.34 
(5.65) 

βMOM   0.18 
(6.33) 

βRMW   0.56 
(9.48) 

βCMA   0.34 
(3.89) 

R2 0.98 12.35 30.84 

 

Table 2: Ordinary Least Squares (OLS) regression of the BAB (Betting Against Beta portfolio) on the 

CAPM ( RMRF, which represents the market portfolio), the Fama and French 3 factors (RMRF, which 

represents the market portfolio, SMB, which represents the Small Minus Big portfolio and the HML, 

which represents the High Minus Low portfolio) and the FF5+MOM (FF3 factors plus the RMW, which 

represents the Robust Minus Weak portfolio, and the CMA, which represents the Conservative Minus 

Aggressive portfolio + the MOM, which represents momentum portfolio).  

 

In table 2, we examine the ability of other risk factors to explain the returns of 

BAB, so we regress the BAB factor on other risk factors through the OLS method, 

using monthly data between July 1967 and December 2016. In our first regression, 

we conclude that the market factor does not explain the returns of BAB and that the 

strategy has an annualized CAPM alpha of 9.48%, which is quite high, with a t-

statistic of 6.76. The fact that the beta of the market factor is close to zero shows that 

the objective of having an ex-ante beta of zero, on average, is achieved ex-post, as 

already seen in (Barroso & Maio, 2018). If we move to the second regression, we can 
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conclude that the size and value factors explain more than 20% (1-(7.56/9.48)) of 

the CAPM-alpha of the strategy, which means that BAB is very exposed to those 

sources of risk, more concretely, the value factor, which has a beta of 0.41. Moving 

to the last regression, we have an annualized alpha of 3.12% with a t-statistic of 2.50, 

which means it is statistically significant ( at the 5% level). We conclude that, with 

the factors under analysis, we can explain two-thirds of the BAB strategy returns 

and there is a positive relationship between the BAB and the other risk factors, even 

if some of them are not statistically significant at the 5% level.  

In conclusion, if we analyze the empirical evidence for the extended period in 

question, BAB outperforms by far the other portfolios. It has a higher Sharpe ratio, 

a smaller kurtosis, and a smaller negative skewness. However, one third of BAB 

returns is not captured by the risk factors analyzed.  

In summary, BAB is a high-performance portfolio that significantly outperforms 

the market and the other well-known factors portfolios. However, the considerable 

downside risk has motivated the work of (Barroso, & Maio, 2018), who try to 

manage the downside risk of the BAB strategy by using its volatility, which has 

extraordinary predictive power of the strategy performance. The work consists of 

creating a Risk-managed version of BAB. The Risk-managed BAB outperforms the 

original BAB in every aspect, and it shows to be more profitable than the original. 

However, unlike Risk-managed momentum (Barroso & Santa Clara, 2015), Risk-

managed BAB still has considerable downside risk. 

In this dissertation, we build on the recent literature that use the S&P500 index 

Implied Correlation information to optimize the exposure to the momentum 

strategy (Nogueira & Faria, 2017). Concretely, we use, for the first time, the 

information contained in the S&P500 index Implied Correlation to manage the 

downside risk exposure of the BAB strategy.  

Furthermore, we build on the recent literature of (Barroso & Maio, 2018) and use 

the Risk-managed strategy to increase the upside potential of the strategy. In 

Chapter 5 the proposed strategies and corresponding performance are reported. 
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Chapter 5  

Dynamic and Hybrid BAB Strategies 

 

5.1. Dynamic BAB strategy 

 

Building on (Nogueira & Faria, 2017) Dynamic strategy, we construct a strategy 

that also uses the S&P500 Implied Correlation to manage the portfolio exposure to 

the BAB factor. However, our strategy has different objectives and different 

mechanisms.  

We represent BAB's monthly returns as {𝑟𝐵𝐴𝐵,𝑡}
𝑡=1

𝑇
, where {𝑑} corresponds to the 

last trading day of month t-1, and {𝑑𝑡}𝑡=1
𝑇  represents the time series of the last 

trading days of all months in the data. 

We use daily data about the S&P500 Implied Correlation (I.C.) with different 

maturities, from January 1996 to January 2013, to compute the 2-month moving 

average (M.A.) of the spread between the S&P500 IC for 365 days (I.C. (365d)) and 

the S&P500 IC for 30 days (I.C. (30d)), for each trading day. We use the 2-month M.A. 

as a proxy of the S&P500 index I.C. term structure, which is computed in the last 

trading day of each month t-1, as follows: 

 

2𝑀𝐴(𝑆𝑝𝑟𝑒𝑎𝑑)𝑑 = ∑ [𝐼𝐶(365𝑑) − 𝐼𝐶(30𝑑)]41
𝑗=0 d-j/42, (3) 

 

We assume each month to have 21 trading days. Consequently, we assume 2 

months to have 42 trading days.  

For further analyzis, we obtain the Spread Percentile 15 from the 2 M.A. of the ICs 

spread, denoted in the rest of the chapters as "Spread Percentile 15". 
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Indicator Percentile 15 

S&P500 IC Spread -1.16 

 

Table 3: Percentile 15 of the spread between the S&P500 Implied Correlation (IC) for 365 days and 

the S&P500 Implied Correlation (IC) for 30 days. IC is computed as in equation (2). The values are 

based on daily data from 1996:01 to 2013:01. 

 

The Dynamic BAB strategy, BAB', adjusts the portfolio exposure to the BAB 

strategy, using information contained in the S&P500 IC term structure, as follows. 

The return of the BAB' strategy in month t is given by: 

 

𝑟𝐵𝐴𝐵′,𝑡 = 𝑤𝑡
′ × 𝑟𝐵𝐴𝐵,𝑡, (4) 

 

Where 𝑟𝐵𝐴𝐵,𝑡 is the return of the BAB strategy in month t, and 𝑤𝑡
′ is the weight 

computed in the BAB' strategy in month t, which determines the portfolio exposure 

to the BAB strategy. We compute the Dynamic strategy weight as follows: 

 

𝑤𝑡
′ = {

100%; 𝑖𝑓 2𝑀𝐴(𝑆𝑝𝑟𝑒𝑎𝑑)𝑑 >  𝑆𝑝𝑟𝑒𝑎𝑑 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 15
−50% ; 𝑖𝑓 2𝑀𝐴(𝑆𝑝𝑟𝑒𝑎𝑑)𝑑 ≤ 𝑆𝑝𝑟𝑒𝑎𝑑 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 15

, (5) 

 

When the 2-month moving average of the spread between the S&P500 IC for 365 

days and the S&P500 option I.C. for 30 days, in the last trading day of month t-1, is 

higher than the Spread Percentile 15, the BAB' strategy replicates the original BAB 

strategy. On the other hand, when the 2-month moving average of the spread 

between the S&P500 IC for 365 days and the S&P500 option I.C. for 30 days, in the 

last trading day of month t-1, is equal or lower than the Spread Percentile 15, the 

BAB' strategy shorts the original BAB strategy by 50%. In this scenario, we leverage 

the underexposure of the portfolio towards the BAB strategy. 
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Figure 5: Weight of the Dynamic Strategy (BAB’) on the BAB factor, as computed in equation (5), and 

plain-vanilla BAB returns, between 1996:03 and 2013:02. 

 

In Figure 5, we can compare the weight of the dynamic strategy with the BAB 

returns. We can infer that most of the time, when BAB returns are positive, the 

weight of the BAB' strategy is 100%, fully exposing the portfolio to the BAB strategy. 

Moreover, in periods when BAB returns are negative, the weight of the BAB' strategy 

tends to be negative, -50%, leveraging the underexposure of the portfolio to the BAB 

strategy. However, the strategy does not always behave as it should. It is the case of 

the period between 1997 and 1998 when BAB returns are negative. 
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Figure 6: 2-month moving average of the Spread between the S&P500 IC(365d) and IC(30d), its 

Spread Percentile 15, and plain-vanilla BAB returns between 1996:03 and 2013:02. 

 

The results we present in Figure 6, follow the empirical results presented by 

(Faria & Kosowski, 2014). On the one hand, in more stable periods, implied 

correlations for longer maturities are higher than implied correlations for shorter 

maturities, leading to a positive spread. On the other hand, in more turbulent 

periods, implied correlations for longer maturities increase less than implied 

correlations for shorter matures, leading to a decrease in the spread, which can even 

become negative, resulting in the I.C. term structure flattening.  

However, this does not always happen. Concretely, in periods of increased 

turbulence such as the Asian Financial Crisis (1997 to 2000), the 2-month M.A. of 

the I.C. Spread is very high. As a result, our portfolio continues overexposed to the 

BAB strategy in a period where it posts a negative performance. So, the BAB' 

strategy does not allow consistent management of the BAB strategy downside risk. 

This lag-effect between the BAB and BAB' dynamics can have origin in the fact we 

compute the weight based on a moving average, or due to the intrinsic properties of 

option-implied correlation metrics, as explained in (Faria & Kosowski, 2014). 
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Figure 7: Plain-vanilla Betting Against Beta returns (BAB) and Dynamic Betting Against Beta returns 

(BAB’) as computed in equation (4), between 1996:03 and 2013:02. 

 

In Figure 7, we can compare the returns of both strategies. We notice that BAB', 

in specific periods, manages the downside risk. There are several periods when BAB' 

strategy shorts the BAB strategy negative returns, obtaining positive returns. For 

instance, in the period between June 2001 and March 2002, BAB' converts a BAB 

negative monthly return of -7.42% in a positive monthly return of 3.21%. 

Additionally, in the period between March 2002 and December 2002, BAB' converts 

a BAB negative monthly return of -14.26% in a positive monthly return of 7.13%. 

However, as pointed before BAB' is far from perfect, as we can see by the way it 

manages the downside risk between November 2002 and November 2008. The 

summary statistics of BAB and BAB' strategies are provided in Table 4. 

 

 

 

 

 

 

 

 

 

-20,00%

-15,00%

-10,00%

-5,00%

0,00%

5,00%

10,00%

15,00%

20,00%

M
ar

-9
6

N
o

v-
9

6

Ju
l-

9
7

M
ar

-9
8

N
o

v-
9

8

Ju
l-

9
9

M
ar

-0
0

N
o

v-
0

0

Ju
l-

0
1

M
ar

-0
2

N
o

v-
0

2

Ju
l-

0
3

M
ar

-0
4

N
o

v-
0

4

Ju
l-

0
5

M
ar

-0
6

N
o

v-
0

6

Ju
l-

0
7

M
ar

-0
8

N
o

v-
0

8

Ju
l-

0
9

M
ar

-1
0

N
o

v-
1

0

Ju
l-

1
1

M
ar

-1
2

N
o

v-
1

2

BAB returns BAB' returns



25 

 

Factor BAB BAB' 

Maximum 15.39 15.39 

Minimum -15.68 -15.68 

Mean 8.89 11.93 

Standard Deviation 16.14 14.60 

Kurtosis 2.01 2.85 

Skewness -0.34 -0.38 

Sharpe ratio 0.55 0.82 

 

Table 4: Dynamic Betting Against Beta strategy (BAB’) and plain-vanilla Betting Against Beta 

strategy (BAB) summary statistics. The statistics are computed using monthly observations between 

1996:03 and 2013:02. The mean, standard deviation, and Sharpe ratio are annualized.  

 

The results we present in Table 4 show that BAB' outperforms BAB with the 

Sharpe ratio increasing from 0.55 to 0.82. In Figures 8, 9, and 10, we identify specific 

periods where the strategy gained advantage compared with the BAB.  

 

 

Figure 8: Dynamic Betting Against Beta strategy (BAB’) and plain-vanilla BAB strategy (BAB) 

performance between 2001:01 and 2003:12. 

 

If we look at a three years' time frame around 9/11, a period of increased 
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December 2003, would end up with 1.96 monetary units at the end of the holding 

period. On the contrary, an investor that invested 1 monetary unit in the BAB' 

strategy, during the same period, would end up with 2.59 monetary units at the end 

of the holding period. 

 

 

Figure 9: Dynamic Betting Against Beta strategy (BAB’) and plain-vanilla BAB strategy (BAB) 

performance between 2007:01 and 2009:12. 

 

Additionally, looking at a three years' time period around the Subprime Crisis and 

the Lehman Brothers collapse (2007), an investor that invested 1 monetary unit in 

the BAB strategy on the first trading day of January 2007,  and continued invested 

until December 2009, would end up with 0.68 monetary units at the end of the 

holding period, representing a loss of 32% of portfolio value. Alternatively, an 

investor that invested 1 monetary unit in the BAB' strategy, during the same period, 

would end up with 0.82 monetary units at the end of the holding period, 

representing a loss of 18% of portfolio value. 
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Figure 10: Dynamic Betting Against Beta strategy (BAB’) and plain-vanilla BAB strategy (BAB) 

performance between 2010:01 and 2013:12. 

 

Lastly, if we look at a three years' time period around the European Sovereign 

debt crisis and U.S. downgrade (2011), a period of enhanced turbulence, an investor 

that invested 1 monetary unit in the BAB strategy on the first trading day of January 

2010, and continued invested until February 2013, would end up with 1.36 

monetary units at the end of the holding period. An investor that invested in the 

BAB' strategy, during the same period, would end up with 1.48 monetary units at 

the end of the holding period. 
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Figure 11: Dynamic Betting Against Beta strategy (BAB’) and plain-vanilla BAB strategy (BAB) 

performance between 1996:03 and 2013:02. 

 

In Figure 11, we have the cumulative returns for the entire period under analysis. 

An investor that invested 1 monetary unit in the BAB strategy on the first trading 

day of March 1996, and continued invested until February 2013, would end up with 

3.61 monetary units at the end of the holding period. An investor that invested 1 

monetary in the BAB' strategy on the first trading day of March 1996 and continued 

invested until February 2013, would end up with 6.29 monetary units at the end of 

the holding period. 

In conclusion, the BAB' clearly outperforms the BAB strategy during the period 

under analysis, reflecting an improvement in terms of the strategy risk management 

by using option-implied correlation information. However, we can find that it is 

easily possible to improve the efficiency of the BAB strategy downside risk. This is 

done through the Hybrid BAB strategy presented in the following subchapter 5.2 
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5.2. Hybrid BAB strategy 

 

The BAB' strategy has a better performance than the original BAB strategy due to 

its capability of managing the BAB downside risk in turbulent periods. However, 

there are specific periods when the BAB' strategy cannot manage the downside risk 

of the BAB strategy. With this in mind, we build on (Barroso & Maio, 2018), and 

combine their proposed strategy, Risk-managed BAB, denominated BAB*, with the 

Dynamic Strategy, BAB'. The main objective is to increase the upside potential by 

overexposing the portfolio to the BAB strategy in “good” times, and, simultaneously 

improving the management of the downside risk of the BAB' strategy. 

(Barroso & Maio, 2018) extend from the Risk-managed version of momentum 

(with some differences in the computation), constructed by (Barroso & Santa-Clara, 

2015), to the BAB factor. The strategy weights are inversely proportional to the 

realized volatility of BAB past returns. The higher the realized volatility, the less the 

Risk-managed BAB is exposed to the BAB strategy. 

To construct the strategy of (Barroso & Maio, 2018), we start by computing the 

daily returns realized variance RVF,t of the 21 days of month t-1 (assuming that each 

month has 21 trading days). We represent the daily returns by {𝑟𝑑}𝑑=1
𝐷  and the time 

series of the dates of last trading sessions of each month by {𝑑𝑡}𝑡=1
𝑇 , computing the 

realized variance of factor F in month t as follows:  

 

𝑅𝑉𝐹,𝑡 = ∑ 𝑟𝐹,𝑑𝑡−𝑗

2
20

𝑗=0
, (6) 

 

Then, we square root the realized variance to obtain the realized volatility, 𝜎̂𝐹,𝑡. 

The underlying objective is to use the realized volatility as a forecast of the next 

month's real volatility. Then, as in (Barroso & Maio, 2018), we use the realized 

volatility to scale the returns, dividing an ad hoc given target (12% annualized), 

represented by 𝜎𝑡 arg 𝑒𝑡, by the realized volatility 𝜎̂𝐹,𝑡 . Resulting from this 

computation is the weight of the BAB* strategy, 𝑤𝑡
∗: 

 

𝑤𝑡
∗ = 𝜎𝑡 arg 𝑒𝑡/𝜎̂𝐹,𝑡, (7) 
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Lastly, we multiply the obtained weight by the returns of BAB, to obtain the 

returns of the BAB* strategy,  𝑟𝐵𝐴𝐵∗,𝑡 , as follows:  

 

𝑟𝐵𝐴𝐵∗,𝑡 = 𝑤𝑡
∗ × 𝑟𝐵𝐴𝐵,𝑡, (8) 

 

Where, 𝑟𝐵𝐴𝐵,𝑡 is the return of BAB strategy in month t, and 𝑤𝑡
∗ is the weight of the 

BAB* strategy in month t.  

We present the summary statistics of (Barroso & Maio, 2018) Risk-managed BAB 

returns, BAB*, during our sample period (March 1996 to February 2013). However, 

unlike (Barroso & Maio, 2018), we assumed that investors are not unconstrained, so 

we limited the short-selling to -50% and leverage to 150%.  

 

Factor BAB BAB' BAB* 

Maximum 15.39 15.39 13.41 

Minimum -15.68 -15.68 -15.21 

Mean 8.89 11.93 11.83 

Standard Deviation 

16.14 14.60 15.17 

Kurtosis 2.01 2.85 1.24 

Skewness -0.34 -0.38 -0.41 

Sharpe ratio 0.55 0.82 0.78 

 

Table 5: Risk-managed Betting Against Beta strategy (BAB*), Dynamic Betting Against Beta strategy 

(BAB’), and plain-vanilla Betting Against Beta strategy (BAB) summary statistics. The statistics are 

computed using monthly observations between 1996:03 and 2013:02. The mean, standard deviation, 

and Sharpe ratio are annualized. 

 

Comparing the summary statistics of BAB with the Risk-managed BAB, we notice 

that the Sharpe ratio is higher, provided by the higher mean and lower standard 

deviation. The returns of the Risk-managed strategy have lighter tails, providing 

returns with fewer outliers. However, it also has a slightly bigger left tail, hurting the 

strategy performance. 
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Figure 12: Risk-managed Betting Against Beta returns (BAB*), Dynamic Betting Against Beta returns 

(BAB’), and plain-vanilla Betting Against Beta returns (BAB), between 1996:03 and 2013:02. 

 

In Figure 12, we notice that BAB* returns are different from BAB returns and 

BAB' returns. One explanation is that the realized volatility used to scale BAB* 

returns captures different kinds of information than that captured by the S&P500 

IC, for the same periods. If it is the case, there is an opportunity to combine the two 

sources of information. This motivates merging the two strategies, leading to the 

proposed Hybrid strategy, henceforth represented by BAB’’. 

To construct the Hybrid strategy, first, we need to compute the realized volatility 

Percentile 50, from the daily realized volatility, which we denote by 

𝜎̂𝑡 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 50, calculated using the same method as (Barroso & Maio, 2018).  

 

Indicator Percentile 50 

BAB returns forecasted volatility 2.26 

 

Table 6; Percentile 50 of the Betting Against Beta (BAB) returns forecasted volatility. The values are 

based on daily observations from 1996:01 to 2013:01.  

 

The 𝜎̂𝑡 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 50 is a threshold. Below this limit, we expect to correspond to 

favorable moments in the market, when we want to expose our portfolio to the BAB 

strategy as much as possible. Above this limit, we expect to correspond to turbulent 
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periods in the market, when we want to underexpose the portfolio to the BAB 

strategy as much as possible.  

As a result, the BAB" strategy filters the weights obtained in the Dynamic BAB 

strategy (𝑤𝑡
′), and the weights obtained in the Risk-managed BAB strategy, (𝑤𝑡

∗). As 

a result, the weight of the BAB" strategy for month t, w" t, is given by: 

 

𝑤𝑡
′′ = {

𝑀𝑎𝑥𝑖𝑚𝑢𝑚(𝑤𝑡
′; 𝑤𝑡

∗) ; 𝑖𝑓 𝜎̂𝑡 <  𝜎̂𝑡 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 50

𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑤𝑡
′; 𝑤𝑡

∗) ; 𝑖𝑓  𝜎̂𝑡 >  𝜎̂𝑡 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 50
, (9) 

 

Where 𝑤𝑡
′ denotes the weight of the Dynamic strategy (BAB'), in month t, 𝑤𝑡

∗ 

denotes the weight of the Risk-managed strategy (BAB*), in month t, and 𝜎̂𝑡 denotes 

the BAB return volatility forecast in month t, based on the BAB returns from the 

previous 21 trading days. 

To compute the return granted by the BAB" strategy in month t, 𝑟𝐵𝐴𝐵′′,𝑡, we use 

the following equation: 

 

𝑟𝐵𝐴𝐵′′,𝑡 = 𝑤𝑡
′′ × 𝑟𝐵𝐴𝐵,𝑡, (10) 

 

Where 𝑤𝑡
′′ denotes the weight of the Hybrid strategy (BAB") in month t, and 𝑟𝐵𝐴𝐵,𝑡 

is the return of the original BAB strategy in month t.  
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Figure 13: Weights of the Dynamic Strategy (BAB’) on the BAB factor and Weights of the Hybrid 

Strategy (BAB’’) on the BAB factor, as computed in equation (5) and (9), respectively, between 

1996:03 and 2013:02. 

 

Figure 13 shows that the weights of the Hybrid strategy (BAB") are very different 

from the weights of the Dynamic Strategy (BAB'). On the one hand, BAB" strategy 

exposes the portfolio, to the BAB strategy, by 150%, while BAB' only exposed the 

portfolio at a maximum of 100%, by design. Furthermore, since BAB" strategy has 

the contribution of the Risk-managed strategy weights, it is not a binary strategy as 

BAB' (that only takes -50% or 100% positions). It takes very different weights 

depending on the values provided by the BAB returns forecasted volatility. In 

summary, BAB" has a more efficient upside exposure and slightly better downside 

risk management, as we can see in Figure 14. 
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Figure 14: Dynamic Betting Against Beta returns (BAB’), and Hybrid Betting Against Beta returns 

(BAB’’), between 1996:03 and 2013:02. 

 

In table 7, are reported the summary statistics of the BAB strategy (BAB), the 

Dynamic BAB strategy (BAB'), the Risk-managed BAB strategy (BAB*) (adjusted to 

the sample period), and the Hybrid BAB strategy (BAB").  

 

Factor BAB BAB' BAB* BAB" 

Maximum 15.39 15.39 13.41 12.92 

Minimum -15.68 -15.68 -15.21 -12.75 

Mean 8.89 11.93 11.83 14.28 

Standard 

Deviation 16.14 14.60 15.17 13.74 

Kurtosis 2.01 2.85 1.24 1.21 

Skewness -0.34 -0.38 -0.41 -0.28 

Sharpe ratio 0.55 0.82 0.78 1.04 

 

Table 7: Hybrid Betting Against Beta strategy (BAB’’), Risk-managed Betting Against Beta strategy 

(BAB*), Dynamic Betting Against Beta strategy (BAB’), and plain-vanilla Betting Against Beta 

strategy (BAB) summary statistics. The statistics are computed using monthly observations between 

1996:03 and 2013:02. The mean, standard deviation, and Sharpe ratio are annualized. 
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BAB" outperforms the rest of the strategies. It has the highest mean and lowest 

standard deviation. Consequently, it has the highest Sharpe ratio. Even though the 

strategy has the lowest maximum, it also has the lowest minimum. The kurtosis and 

the skewness are the lowest, too. Since we aimed to reduce the downside risk, these 

values are an essential indicator of the strategy performance.  

  

 

Figure 15: Hybrid Betting Against Beta strategy (BAB’’), Risk-managed Betting Against Beta strategy 

(BAB*), Dynamic Betting Against Beta strategy (BAB’), and plain-vanilla BAB strategy (BAB) 

performance between 1996:03 and 2013:02. 

 

We compute the cumulative returns of the four strategies for the entire sample 

period, between March 1996 and February 2013, and the results are plotted in 

Figure 15.  

An investor that invested 1 monetary unit in BAB, BAB', BAB* and BAB'' strategies 

on the first trading day of March 1996, and continued invested until February 2013, 

would end up with either 3.61, 6.09, 6.29 and 9.53 monetary units, respectively, at 

the end of the holding period. In summary, an investor that invested in BAB", would 

not only receive a higher payoff for the same investment but also be less exposed to 

the downside risk.  
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Chapter 6 

Robustness Checks 
 

6.1. Real-Time Information 
 

In this chapter, our objective is to evaluate the performance of the strategy if used 

in real-time trading. For this purpose, we do not use ex-post information to compute 

the weights in equation 4. Assume we only have information until December 2002. 

We make use of the data from January 1996 to December 2002 and apply the BAB'’ 

strategy from January 2003 to February 2013, simulating a real-time trading 

scenario. 

The first step is to compute the Spread Percentile 15 for the sample period of 

March 1996 to December 2002, as requested by the BAB' strategy. The second step 

is to compute the 𝜎̂𝑡 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 50, as requested by the BAB* strategy, for the same 

sample period. These two variables are the only ones that differ in a real-time 

situation. Although we could update these critical values and dynamically adjust the 

weight computation as time goes by, we decided not to do it, to implement an 

extreme version of this robustness test.  

 

 
Table 8: Percentile 15 of the spread between the S&P500 Implied Correlation (IC) for 365 days and 

the S&P500 Implied Correlation (IC) for 30 days. IC is computed as in equation (2). The values are 

based on daily data from 1996:01 to 2002:12. Percentile 50 of the Betting Against Beta (BAB) returns 

forecasted volatility. The values are based on daily observations from 1996:01 to 2002:12. 

 

We refer to this real-time strategy by BAB' (I). We present the summary statistics 

in Table 9, using the sample period between January 2003 and February 2013. 

 

 

 

Indicator Percentile 15 Percentile 50 

S&P500 IC Spread -0.64  

BAB returns forecasted 

volatility 

 3.09 
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Factor BAB BAB' BAB* BAB" BAB" (I) 

Maximum 11.91 9.10 9.41 9.41 9.41 

Minimum -9.10 -9.10 -7.12 -6.95 -6.95 

Mean 5.89 8.92 10.42 12.50 11.19 

Standard 

Deviation 10.57 8.91 10.65 9.95 10.38 

Kurtosis 2.66 2.89 0.89 1.13 0.96 

Skewness -0.18 -0.53 -0.13 -0.02 -0.15 

Sharpe ratio 0.56 1.00 0.98 1.26 1.08 

 

Table 9: Real-Time Hybrid Betting Against Beta strategy (BAB’’(I)), Hybrid Betting Against Beta 

strategy (BAB’’), Risk-managed Betting Against Beta strategy (BAB*), Dynamic Betting Against Beta 

strategy (BAB’) and plain-vanilla Betting Against Beta strategy (BAB) summary statistics. The 

statistics are computed using monthly observations between 2003:01 and 2013:02. The mean, 

standard deviation, and Sharpe ratio are annualized. 

 

The statistics show that there is no substantial difference between the 

performance of the Hybrid strategy (BAB'’) and the performance of the Hybrid 

strategy in real-time (BAB' (I)). There is an expected decrease in the Sharpe ratio 

from 1.26 to 1.08, but it is still much higher than the plain vanilla BAB strategy for 

this sample period. In conclusion, the results allow us to say that the strategy works 

in a real-time situation, with a performance similar to the non-real-time strategy. As 

presented in Figure 16, an investor that invested 1 monetary unit in a strategy based 

in the BAB’' (I) strategy in the first trading day of January 2002, would end up with 

2.94 monetary units in the last trading day of February 2013, almost the double than 

he would get if he based his strategy in a plain vanilla BAB. 
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Figure 16: Real-Time Hybrid Betting Against Beta strategy (BAB’’(I)), Hybrid Betting Against Beta 

strategy (BAB’’), Risk-managed Betting Against Beta strategy (BAB*), Dynamic Betting Against Beta 

strategy (BAB’) and plain-vanilla BAB strategy (BAB) performance between 2003:01 and 2013:02. 
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6.2. Limited Weights 

 

In our BAB’’ strategy, we decided to limit the weights between -50% and 150%, 

because not every investor can take a high leverage position or an aggressive short 

position. We test the robustness of obtained results by analyzing the performance 

of the proposed strategy BAB'' in four additional scenarios on top of the base case 

scenario that we designated as (A) -weights between -50% and 150%; (B) – weights 

between -50% and 100%; (C)- weights between 0% and 150%; (D)- weights 

between 0% and 100%; (E)- unlimited weights. As a result, we present the summary 

statistics of each scenario in Table 10. 

 

Factor BAB’’(A) BAB’’(B) BAB’’(C) BAB’’(D) BAB’’(E) 

Maximum 12.92 12.92 12.92 12.92 18.78 

Minimum -12.75 -12.75 12.75 -12.75 -12.75 

Mean 14.28 10.80 13.32 9.85 19.44 

Standard 

Deviation 13.74 12.29 13.31 11.79 16.24 

Kurtosis 1.21 2.17 1.60 2.84 1.14 

Skewness -0.28 -0.41 -0.20 -0.35 0.10 

Sharpe ratio 1.04 0.88 1.00 0.84 1.20 

 

Table 10: Four additional scenarios for the implementation of the Hybrid strategy BAB’’. Scenario 

with maximum weight 150% and minimum weight -50% (A), Scenario with maximum weight 100% 

and minimum weight -50% (B), Scenario with maximum weight 150% and minimum weight 0% (C), 

Scenario with maximum weight 100% and minimum weight 0% (D), Scenario with maximum weight 

unlimited and minimum weight -50% (E) summary statistics. The statistics are computed using 

monthly observations between 1996:03 and 2013:02. The mean, standard deviation, and Sharpe 

ratio are annualized. 

 

It is possible to infer that the results of the four additional scenarios are 

substantially different. The scenario (B) and scenario (D) are the scenarios with no 

leveraging of the portfolio and with the worst performance. On the contrary, 

scenario (C) and scenario (E) are the ones with the higher amount of leverage and 
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with the best performance. As a result, we notice the importance of leveraging the 

portfolio for strategy performance.  

The strategy that puts no limits to leverage is the one with the best performance, 

by far. BAB(E) strategy has a Sharpe ratio of 1.20 and, for the first time, a positive 

skewness. Although these results are hard to obtain by real investors with leverage 

constraints, the results are still very encouraging.  

In summary, the BAB" strategy is very robust towards changes in the weight 

constraints. 

To highlight the robustness of the BAB’’ strategy, we compare the cumulative 

returns of the BAB’’(D) strategy, the one with the worst performance, and the BAB 

strategy cumulative returns. If an investor invested 1 monetary unit in the BAB 

strategy on the first trading day of March 1996 and continued invested until 

February 2013, it would end up with monetary 3.61 units at the end of the holding 

period. On the contrary, an investor that invested 1 monetary unit in the BAB" (D) 

strategy on the first trading day of March 1996, and continued invested until 

February 2013, would end up with monetary 4.72 units at the end of the holding 

period, as plotted in Figure 17. It is clear that BAB"(D), the most weight limited BAB" 

strategy, performs substantially better than the original BAB, without even short-

selling or taking leverage. Moreover, as we can see in Figure 17, it manages the 

downside risk in periods such as March 2002 to July 2003 and March 2008 to July 

2009. 
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Figure 17: Hybrid strategy BAB’’ with a maximum weight of 100% and minimum weight 0% (D), and 

plain-vanilla Betting Against Beta strategy performance between 1996:03 and 2013:02. 

 

To visualize the payoff of our best strategy, BAB" (E), we can do the same practical 

exercise. If an investor invested 1 monetary unit in the BAB" (E) strategy on the first 

trading day of March 1996 and continued invested until February 2013, he would 

end up with 21.38 monetary units at the end of the holding period, as we can see in 

Figure 18. This strategy has a payoff 7x higher than the original BAB strategy.  

 

 

Figure 18: Scenario with maximum weight unlimited and minimum weight -50%, and Betting 

Against Beta strategy performance between 1996:03 and 2013:02.  
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Conclusion 

 

The beta anomaly is not only present in the U.S. equity market, but also in ,at least, 

twenty other countries and diverse asset classes (Frazzini & Pedersen, 2014). The 

BAB portfolio is a high-performance portfolio, that outperforms other portfolios 

based on the market, value, size and momentum factors.  

In this dissertation, we use, for the first time in the Betting Against Beta (BAB) 

related literature, information contained in the option-implied correlations, to 

manage the exposure of a portfolio towards the BAB factor. Namely, we propose two 

BAB strategies that expose our portfolio to the BAB factor dynamically, depending 

on the information provided by the dynamics of the S&P500 index option-implied 

correlation term structure.  

In the first strategy, which we denominate by Dynamic BAB strategy, we use the 

2-month moving average of the spread between the S&P500 Implied Correlation for 

365 days and the S&P500 Implied Correlation for 30 days as a market indicator. The 

indicator allows increasing the portfolio exposure to the BAB original strategy when 

we consider that the market is “good” and underexpose our portfolio when we 

consider that the market is “bad”. This strategy provides a better performance by 

increasing the upside potential while decreasing the downside risk of the strategy.  

Furthermore, we combine the Dynamic BAB strategy with the Risk-managed BAB 

strategy of (Barroso & Maio, 2018), intending to increase the upside potential of the 

strategy. We denominate this strategy as Hybrid strategy. We expect that the 

information contained in the forecasted volatility of BAB’s returns is useful as a 

market indicator.  The Hybrid BAB strategy generates higher returns, with a lower 

standard deviation, leading to a Sharpe ratio that almost doubles one of the original 

strategy. The strategy works in a real-time trading situation and is robust in 

different weight constraints scenarios, meaning that it does not lose its performance 

when we place constraints in leverage or short sell.  

This dissertation shows that the use of option-implied correlation information 

helps to improve the performance of a portfolio exposed to the BAB factor. In future 

research, it might be interesting to analyze whether other option-implied 
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information, such as option-implied skewness and crash-risk, is useful for the 

construction of BAB related strategies.  
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