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Parameter Description Units
a Absorptivity -
A Total surface area of the reactor m?
Aconw Calibrated convection experimental coefficient -
Acvap Calibrated evaporation experimental coefficient -
Qs Solar distributed factor that represents the -
shadow projection on the perpendicular axis of
the reactor walls
Aol Surface of the reactor in contact with the ground m?
B Pre-exponential factor for pH influence on -
photosynthesis rate
B> Pre-exponential factor for pH influence on -
photosynthesis rate
Bevap Calibrated evaporation experimental coeflicient -
Beeonv Calibrated convection experimental coefficient —
C1 Activation energy factor of the Arrhenius model -
Co Activation energy factor of the Arrhenius model -
Cy Biomass concentration gm™3
Cp Specific heat capacity of the culture Jkg=teCct
A Symmetric Send On Delta amplitude tolerance -
for the error deadband
Ahmaz Maximum culture depth increment cm
DO Dissolved oxygen %
DOy nazag | Microalgae maximum dissolved oxygen growth %
value
DOs Dissolved oxygen culture value %
e Water emissivity -
E, Evaporation rate m st
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Ey—daytime

Number of events for event-based control during
daytime period

Eyfnighttime

Number of events for event-based control during
night-time period

Gas Carbon dioxide consumption performance index m?
Gasdaytime | Carbon dioxide consumption during daytime m?
period
Gasnighttime | Carbon dioxide consumption during night-time m?
period
h culture depth m
HT Hydrogen ions concentration g m™3
Reonw Convection transfer coefficient W m2°C!
hevap Evaporation exchange coefficient ms ! Pa~!
hyg Latent heat of vaporization J kg1
honaz Maximum culture depth cm
Ronin Minimum culture depth cm
Rsoil Heat transfer coefficient for the polyethylene | W m=2 °C~!
layer under the reactor
Iy Solar irradiance on an horizontal surface pE m=2 57!
I1AFE Integral Absolute Error -
TAEqaytime | Integral Absolute Error during daytime period —
TAFE,ighttime| Integral Absolute Exrror during night-time period —
Loy Light availability pE m—2 g1
I, Global (direct+diffuse) solar irradiance W m—?2
Iy, Minimum light needed by microalgae to achieve | pE m~2 g~!
maximum photosynthesis
I,.., Maximum light needed by the microalgae to stop | pE m=2 s}
photosynthesis and start the respiration
1T Injection time performance index min
ITqaytime Injection time performance index during min
daytime period
ITighttime | Injection time performance index during night- min

time period
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K, Microalgae extinction coefficient m? g~}
K cayg Microalgae inhibition constant for carbon g m~3
K71.p0s,ag | Microalgae inhibition constant for dissolved g m3
oxygen
K1 po,mnit | Nitrifying bacteria inhibition constant for gm™3
dissolved oxygen
K1 NHyag | Microalgae inhibition constant on ammonium gm3
K1 NOs,alg | Microalgae inhibition constant on nitrate gm3
Kgs Bsom het | Heterotrophic bacteria half-saturation constant gm™3
for biodegradable soluble organic matter
Ks cuyg Microalgae half-saturation constant for carbon gm™3
K o nit Nitrifying bacteria half-saturation constant for gm3
carbon
Ks po, het | Heterotrophic bacteria half-saturation constant g m—?
for dissolved oxygen
Ks po,nit | Nitrifying bacteria half-saturation constant for g m—3
dissolved oxygen
Ks NH,alg | Microalgae  half-saturation  constant on g m3
ammonium
Kg Nm, het | Heterotrophic bacteria half-saturation constant gm3
for ammonium
Ks Nuynie | Nitrifying bacteria half-saturation constant for g m~3
ammonium
K NOs,ag | Microalgae half-saturation constant on nitrate gm™3
Kool Calibration parameter of conduction transfer | W m~! °C™!
coefficient for the polyethylene layer
Ks poyag | Microalgae  half-saturation = constant  on gm™3
phosphate
Kg poy,net | Heterotrophic bacteria half-saturation constant gm™3
for phosphate
Kgs poynit | Nitrifying bacteria half-saturation constant for gm3
phosphate
b Lower depth limit cm




m Endogenous respiration day—!
mMpo Form parameter —
Mmaz,alg Microalgae maximum respiration rate day_1
Momin,alg Microalgae minimum respiration rate day !

my Form factors for the exponential function of -
average irradiance
Halg Microalgae specific growth rate day—!
Halg,maz Microalgae maximum specific growth rate day_1
Ttaig(CO2) | Microalgae carbon dioxide limitation growth -
model
Ttalg(DO) | Microalgae dissolved oxygen limitation growth -
model or microalgae dissolved oxygen index
tratg(Law) Microalgae light limitation growth model day !
Traig(N Hy) | Microalgae ammonium limitation growth model -
Ttaig(NO3) | Microalgae nitrate limitation growth model -
Ttaig(pH) | Microalgae pH limitation growth model or -
microalgae pH index
Ttaig(POy4) | Microalgae phosphate limitation growth model -
Traig(Tw) Microalgae temperature limitation growth -
model or microalgae temperature index
Mhet Heterotrophic bacteria specific growth rate day !
Hhet, maz Heterotrophic bacteria maximum growth rate day !
Thet(BSOM) Heterotrophic bacteria BSOM limitation growth -
model
Ihet(DO) | Heterotrophic — bacteria  dissolved — oxygen -
limitation growth model or heterotrophic
dissolved oxygen index
Thet(NHy) | Heterotrophic bacteria ammonium limitation -
growth model
Thet (PH) Heterotrophic bacteria pH limitation growth -
model or heterotrophic pH index
Ihet(POy4) | Heterotrophic bacteria phosphate limitation -
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Tihet(Tw) Heterotrophic bacteria temperature limitation -
growth model or heterotrophic temperature
index
Hnit Nitrifying bacteria specific growth rate day !
Hnit,maz Nitrifying bacteria maximum growth rate day !
TImit(CO2) | Nitrifying bacteria carbon dioxide limitation -
growth model
Init(DO) | Nitrifying bacteria dissolved oxygen limitation -
growth model or nitrifying dissolved oxygen
index
Iinit(N Hy) | Nitrifying bacteria ammonium limitation growth -
model
Tmit(pH) Nitrifying bacteria pH limitation growth model -
or nitrifying pH index
Tnit(POy) | Nitrifying bacteria phosphate limitation growth -
model
Tinit(Tw) Nitrifying bacteria temperature limitation -
growth model or nitrifying temperature index
n Form parameter -
NCOs,alg Microalgae form parameter for carbon -
NN Hy,alg Microalgae form parameter for ammonium -
NNOs,alg Microalgae form parameter for nitrate -
Nresp Respiration form parameter -
I Vapor pressure of the air at ambient temperature Pa
b, Biomass productivity gm~2 day~!
Po, Photosynthesis rate day !
Po, 10w Maximum photosynthesis rate day !
PHpaz,alg | Microalgae maximum pH growth value -
PH oz et | Heterotrophic bacteria maximum pH growth -
value
PHpmaz nit Nitrifying bacteria maximum pH growth value -

pHmz'n,alg

Microalgae minimum pH growth value
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PHpnin het | Heterotrophic bacteria minimum pH growth -
value
PHmin nit Nitrifying bacteria minimum pH growth value -
PHopt alg Microalgae optimum pH growth value -
DPH opi het Heterotrophic bacteria optimum pH growth -
value
PHopt nit Nitrifying bacteria optimum pH growth value -
pH,y, pH culture value -
Quq Inlet flow rate or dilution flow rate m?3 7!
Qn Outlet flow rate or harvesting flow rate m?3 7!
RH Relative humidity %
P Density of the culture kg m™3
Ro, Respiration constant phenomenon day~!
o Stefan-Boltzmann constant Wm2 K™
Tomb Ambient temperature °C
Tdew Dew point temperature °C
Taz Maximum optimization temperature °C
Trnaz,alg Microalgae maximum temperature growth value °C
Tnaz het Heterotrophic bacteria maximum temperature °C
growth value
Tinaz,nit Nitrifying bacteria maximum temperature °C
growth value
Tovin Minimum optimization temperature °C
Tonin,alg Microalgae minimum temperature growth value °C
Tinin, het Heterotrophic bacteria minimum temperature °C
growth value
Toninnit Nitrifying bacteria minimum temperature °C
growth value
to Optimization time sec
Toptimum Optimum optimization temperature °C
Topt,alg Microalgae optimum temperature growth value °C
Topt het Heterotrophic bacteria optimum temperature °C

growth value
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Topt nit Nitrifying  bacteria  optimum  temperature °C
growth value
Tipy Equivalent temperature of the sky K
Teoil Soil temperature °C
tsolar Number of hours after solar midnight -
Tw Culture temperature °C
TV, Total Variation performance index -
ub Upper depth limit cm
W Wind speed ms~!
XBsom,n | Inlet biodegradable soluble organic matter g m—3
concentration
XBsom,out | Outlet biodegradable soluble organic matter gm™3
concentration
Xco, Carbon dioxide concentration gm3
XHCOS Bicarbonate concentration gm™3
Xhet,in Inlet heterotrophic bacteria concentration gm™3
Xhet,out Heterotrophic bacteria concentration inside de gm™3
reactor
XNH, Ammonium concentration in the reactor gm™3
XNHyin Inlet ammonium concentration gm3
XNH, out Outlet ammonium concentration gm™3
Xnit,in Inlet nitrifying bacteria concentration gm™3
Xnit out Outlet nitrifying bacteria concentration gm™3
XNoy Nitrate concentration in the reactor gm™3
XNOs,in Inlet nitrate concentration g m—3
XNOs,0ut Outlet nitrate concentration g m—3
Xpo, Phosphate concentration in the reactor gm3
XPOy,,in Inlet phosphate concentration g m—3
XPoy,out Outlet phosphate concentration g m—3
Tsoil Distance between the bottom of the reactor and m
the buried temperature probe
Yeon [B*ZZM Biodegradable soluble organic matter | €Bson Shet |

consumption rate from heterotrophic bacteria
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Y.on ]\(; g‘l Ammonium consumption rate from microalgae ENH, galg_l
NH . . 1
Yeon [ heﬂ Ammonium consumption rate from ENH; Shet

heterotrophic bacteria

Yeon [NH‘l] Ammonium consumption rate from nitrifying ENH, gmt_l

nit
bacteria
Y.on ]\é 273 Nitrate consumption rate from microalgae ENO; galg_l
Yeon %094 Phosphate consumption rate from microalgae gPro, gal{f1
Yeon [i(e)ﬂ Phosphate consumption rate from heterotrophic gPro, ghet_l
bacteria

Yeon [P 04} Phosphate consumption rate from nitrifying PO, gm-fl
bacteria

Ygen {B SOM J Biodegradable soluble organic matter generation | gpsons galg*1
rate from microalgae

Yien [BSOM] Biodegradable soluble organic matter generation | ggsonr Shet
rate from heterotrophic bacteria

Yoen [B SOM ] Biodegradable soluble organic matter generation | gpsom gmt_l
rate from nitrifying bacteria

Yyen [M] Nitrate generation rate from nitrifying bacteria ENO; gmt_l




Acronyms and Abbreviations

API

ASM
BSOM
CALRESI

DO
FOPDT
GAOT
GPC
IFAPA

IT
ODE
PAR
PDE

PID
PI-SSOD
PLC
QFT
RMSE
SABANA
SCADA
SIMC
SOD
SSOD
SSOD-PI

Application Programming Interfaces

Activated Sludge Models

Biodegradable Soluble Organic Matter

Modelado y Control del proceso combinado de produccién de microALgas
y tratamiento de aguas RESIduales con reactores industriales
(Modeling and control of the combined process of microalgae
production and wastewater treatment with industrial reactors)
Dissolved Oxygen

First-Order-Plus-Dead-Time

Genetic Algorithm Optimization Toolbox

Generalize Predictive Controller

Instituto Andaluz de Investigacion y Formacion Agraria,
Pesquera, Alimentaria y de la Produccion Ecolégica

Injection Time

Ordinary Differential Equation

Photosynthetic Active Radiation

Partial Differential Equation

Proportional-Integral-Derivative
Proportional-Integral-Symmetric-Send-On-Delta
Programmable Logic Controller

Quantitative Feedback Theory

Root Mean Square Error

Sustainable Algae Biorefinery for Agriculture aNd Aquaculture
Supervisory Control and Data Acquisition System
Simple-Internal-Model-Control

Send-On-Delta

Symmetric-Send-On-Delta
Symmetric-Send-On-Delta-Proportional-Integral
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Abstract

Research on microalgae is gaining importance due, fundamentally, to the
advantages of its cultivation and the diversity of applications that
biomass has. Among its many uses, microalgae biomass can be used in
commercial applications to obtain products of high added value with
applications in human nutrition and health, aquaculture, cosmetics and
biofertilizers. Furthermore, other promising application that are
currently in improving is the use of microalgae biomass for energy
purposes, mainly to obtain biofuel. In addition, during their growth,
microalgae capture carbon dioxide, contributing to carbon mitigation,
and its production can even be combined with wastewater treatment.

To achieve economic viability and environmental sustainability, it is
necessary to significantly reduce production costs and environmental
impacts, while improving the productivity of the systems.  These
processes can be combined in such a way that the produced synergies
increase the overall sustainability of the production processes.

This thesis presents different approaches, dealing both with modeling
and control, related to the microalgae biomass production process. The
main objective of the work carried out has been to improve the biomass
productivity in the operation of raceway reactors. This improvement
focuses on the development of models that serve for the simulation and
estimation of characteristic parameters, such as culture temperature and
growth rate, as well as temperature and pH control techniques to
maintain optimal conditions during cultivation.
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Sommario

La ricerca sulle microalghe sta acquisendo importanza grazie,
fondamentalmente, ai vantaggi della sua coltivazione e alla diversita di
applicazioni che la biomassa ha. Tra i suoi molteplici usi, la biomassa di
microalghe puo essere utilizzata in applicazioni commerciali per ottenere
prodotti ad alto valore aggiunto con applicazioni nella nutrizione e salute
umana, acquacoltura, cosmetici e biofertilizzanti. Un’altra promettente
applicazione attualmente in fase di miglioramento ¢ I'uso della biomassa
di microalghe a fini energetici, principalmente per ottenere biocarburanti.
Inoltre, durante la loro crescita, le microalghe catturano 1’anidride
carbonica, contribuendo alla mitigazione del carbonio, e la sua
produzione pud anche essere combinata con il trattamento delle acque
reflue.

Per raggiungere la redditivita economica e la sostenibilita ambientale,
é necessario ridurre in modo significativo i costi di produzione e gli impatti
ambientali, migliorando nel contempo la produttivita dei sistemi. Questi
processi possono essere combinati in modo tale da produrre sinergie che
aumentano la sostenibilita complessiva dei processi produttivi.

Questa tesi presenta diversi approcci, sia modellistici che di controllo,
relativi al processo di produzione della biomassa di microalghe.
L’obiettivo principale del lavoro svolto é stato quello di migliorare la
produttivita della biomassa mnel funzionamento dei reattori a
canalizzazione aperta. Questo miglioramento si concentra sullo sviluppo
di modelli che servono per la simulazione e la stima di parametri
caratteristici, come la temperatura di coltura e il tasso di crescita, nonché
le tecniche di controllo della temperatura e del pH per mantenere
condizioni ottimali durante la coltivazione.
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Resumen

La investigaciéon con microalgas estd ganando importancia debido,
fundamentalmente, a las ventajas de su cultivo y la diversidad de
aplicaciones que tiene la biomasa obtenida. Entre sus multiples usos, la
biomasa de microalgas puede utilizarse en aplicaciones comerciales para
obtener productos de alto valor anadido con aplicaciones en nutricién y
salud humana, acuicultura, cosmética y biofertilizantes. Ademaés, otra
aplicacién prometedora que se estd mejorando actualmente es el uso de
biomasa de microalgas con fines energéticos, principalmente para la
obtencién de biocombustible. Por otro lado, durante su crecimiento, las
microalgas capturan diéxido de carbono, contribuyendo a la mitigacion
del carbono, y su producciéon puede incluso combinarse con el
tratamiento de aguas residuales.

Para lograr la viabilidad econémica y la sostenibilidad ambiental, es
necesario reducir significativamente los costes de produccién y los
impactos ambientales, al tiempo que se mejora la productividad de los
sistemas. Estos procesos pueden combinarse de tal manera que las
sinergias producidas aumenten la sostenibilidad global de los procesos de
produccién.

Esta tesis presenta diferentes enfoques, tanto de modelado como de
control, relacionados con el proceso de produccion de biomasa de
microalgas. El principal objetivo del trabajo realizado ha sido mejorar la
productividad de la biomasa en la operacién de reactores de canalizacion.
Esta mejora se centra en el desarrollo de modelos que sirvan para la
simulacién y estimacién de parametros caracteristicos, como temperatura
de cultivo y tasa de crecimiento, asi como técnicas de control de
temperatura y pH para mantener condiciones 6ptimas durante el cultivo.






Preface

Microalgae are microscopic organisms that live in aqueous environments
and have the ability to perform photosynthesis. Through this process,
the microalgae consume carbon dioxide and nutrients contained in the
culture medium to produce oxygen and grow. The objective of
microalgae cultivation is the production of biomass in photobioreactors
for its subsequent treatment and use in different applications. Depending
on the type of strain and its composition, it is possible to use microalgae
biomass for human consumption or as animal feed, and even obtain high
value products for the chemical or pharmaceutical industries.

Moreover, environmental sustainability has motivated a large effort in
the development of renewable energy systems like those based on wind,
sunlight, etc. In this field, microalgae have recently become very popular
because of their great potential to be used for biofuel production.
Certain strains of microalgae contain high amount of lipids, so their
biomass can be treated in order to obtain biofuel. The cultivation of
microalgae in open reactors does not need fertile soil and its maintenance
is relatively simple. This is an interesting alternative to the methods
commonly used for the production of biofuel, such as energy crops, which
require a large area of fertile land and increase thus the price in the
market. However, it is recognized that the cost of production, separation,
purification and conversion to fuel is a rather expensive and energy
intensive process suggesting that significant advances are needed before
the technology can be considered for fuel production

Recently, the use of wastewater as medium is allowing the development
of new combined applications such as water treatment and purification
together with the production of biomass in a single reactor. As a result of
this process, it is possible to obtain clean water for discharge or used in
agriculture, while generating microalgae biomass and reducing the costs of
these processes compared to the case of their individual implementation.

For the cultivation of microalgae in photobioreactors, it is necessary to
keep certain variables at optimal values. The most important are the pH



Preface

and dissolved oxygen, which are controlled by injecting carbon dioxide and
air into the reactor, respectively. The contribution of carbon dioxide can
come even from industrial flue gases, which contributes to environmental
carbon mitigation, further motivating the implantation of photobioreactors
at industrial level.

Under this approach, the results discussed in this thesis have been
achieved within the framework of the CALRESI project, whose purpose
is the study and application of modeling and control strategies for the
optimization of the microalgae biomass production process, combined
with the wastewater treatment process, in large-scale industrial
photobioreactors.

Hence, this thesis aims to address challenges related to improve the
efficiency, productivity, design and optimization of large-scale raceway
microalgae production processes cultivated in outdoor conditions by
means of using adequate modeling and control strategies. Thus, the three
main objectives of the research project are:

e Development and proposal of strategies for modeling, estimation
and identification for the biomass production process on raceway
photobioreactors. The resulting models will be used for reactor
design and control design purposes.

e Development and proposal of different control strategies for the
efficient biomass production in raceway photobioreactors looking
for reducing costs and mitigation of environmental pollution.

e Implementation and validation of the developed modeling and
control approaches in different experimental plants with clear
industrial relevance.

The issues that are specifically addressed in this thesis are the modeling
and control related with the microalgae biomass production process, in
terms of maximizing the productivity. The proposed developments are
focused on the design of applications and new operation techniques for
raceway reactors, which serve to reduce costs and increase profits.

As an introduction, Chapter presents the motivation for the
development of this thesis and the state of the art related to the
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modeling and control techniques related to these processes. Likewise, this
chapter describes the microalgae growth rate model, which is the basis
for estimating biomass production in a photobioreactor and the biomass
production process. Chapter [2] describes the CALRESI project and the
facilities where the experimental tests have been carried out, and more
specifically, the raceway reactors used for experimentation purposes.

The models used and developed that are related to microalgae processes
are presented in Chapter 3| This chapter presents a consortia model for the
biomass production process combined with wastewater treatment, where
bacteria are also present in the reactor. In addition, a model has been
developed to estimate the temperature of the culture inside the reactor,
which directly affects its growth and productivity. Therefore, it serves as
a design tool and to carry out feasibility studies when cultivating different
types of strains.

Open raceway reactors are exposed to disturbances caused by solar
radiation and ambient temperature. The control of these conditions
requires the incorporation of elements that can suppose a considerable
extra cost in the production of microalgae biomass, becoming unviable.
Chapter {] presents a study on the influence of temperature and liquid
depth on the growth of microalgae, based on the temperature model
developed in the previous chapter. In addition, a simple method for
temperature regulation is presented, based on the optimization of the
volume in the reactor, without the need to incorporate any additional
element in to the operation.

The pH control carried out in the raceway reactor is discussed in
Chapter [0, where the different control approaches that have been
developed are compared with respect to the classical operation of the
reactor. The different control architectures are based on the use of PI
controllers and event-based control to keep the culture pH at optimal
values. In this way, biomass productivity and resource consumption are
improved.

The developed modeling and control architectures have been
experimentally tested in industrial-scale raceway reactors, located at the
IFAPA research center, in Almeria (Spain).






CHAPTER 1

Introduction

Although the biomass production from microalgae started some time ago,
it is a research field that is constantly developing and expanding. There are
many products and benefits that can be obtained from their cultivation,
without counting the positive impact it generates on the environment, due
to carbon dioxide (CO3) mitigation and its low maintenance cost.

This introductory chapter is structured as follows: First, the motivation
behind the development of this thesis is presented in Section [I.I], while an
introduction on microalgae growth kinetics is presented in Section
Section describes the microalgae biomass production process, the state
of the art regarding the modeling and control of these processes is described
in Section and finally, the contributions that have been made from the
results obtained in the development of the research activity are presented
in Section

1.1 Motivation

The advantages in the cultivation of microalgae have allowed the
increment of their use in the last years, being a very innovative research
field with a multitude of application branches. The biomass production
in photobioreactors is carried out in a sustainable way with the
environment. Their operation contributes to CO2 mitigation (which can
come from industrial flue gases) and through high value products that
can be obtained from microalgae biomass. Furthermore, the combination
of this process with others, such as wastewater treatment or biofuel
production, allows for the expansion of new market niches and reduction
of production costs, while generating new research opportunities.
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Because the system is made up of living organisms, the dynamics and
operating conditions are highly changeable. This nonlinear behaviour in
the process raises a series of modeling and control challenges that must be
adequately addressed to achieve the proposed objectives.

The development of the activities presented in this work has required
a deep understanding of the functioning and operation of the microalgae
reactors, as well as the process of microalgae growth and biomass
production.  The knowledge acquired on the processes related to
microalgae allows a greater understanding in the aspects related to their
control and modeling, with many expectations in the development of
future applications.

1.2 Microalgae growth kinetics

Microalgae (and in general unicellular phototops) are fast-growing
microorganisms, or more precisely, fast-duplicating organisms with great
potential to generate biomass at a much higher rate compared to other
types of pluricelular photosynthetic organisms, such as macroalgae (see
Figure . This is due to the simplicity of microalgae to reproduce,
being the most important characteristic of these organisms, the high
growth rate. They are naturally present in a range of aquatic habitats,
including lakes, pounds, rivers, oceans, and even wastewater. The culture
is identified as the population of cultivated microalgae, while the medium
represents the liquid without microalgae that is added as a habitat for its
growth.

The growth of microalgae can be expressed mathematically from the
relationship between biomass concentration and time. The biomass
concentration of the culture describes de amount of microalgae biomass
per unit of culture volume in the reactor. Figure represents the high
exponential growth on microalgae biomass compared to other macroalgae
species.

Although microalgae growth rate is very fast, there is a point where
the growth stops and the culture becomes nutrient-limited. A microalgae
culture evolves through a series of phases [45], which can be seen in Figure
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Figure 1.1: Microalgae and macroalgae duplication examples.

Figure 1.2: Microalgae biomass growth over time compared to other
macroalgae species.

and are detailed below:

e The lag phase is typically observed when a culture has just been
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started and the microoganisms are adapting to the new
environmental conditions.

e The exponential phase is characterized by unlimited rapid growth
and frequent cell division.

e Declining relative growth phase normally occurs in cultures when
either a specific requirement for cell division is limiting or something
else is inhibiting reproduction.

e During the stationary phase, the cell division slows due to the lack
of resources necessary for growth.

e Finally, in the death phase,the environment degradates and the death
rate increases equal to the growth rate and even becomes larger.

Figure 1.3: Microalgae growth phases.

The microalgae specific growth rate model has been used extensively
in literature [8, I7] and its formulation depends on the different nutrient
limitation influencing the growth, as can be seen in [85].
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The most common used model states that the microalgae growth rate,
Halg, is made up of four factors that depend on photosynthetically active
radiation and light availability inside the culture (I, ), culture temperature
(T), the pH, and the dissolved oxygen (DO) in the reactor. The specific
growth model is described by the following equation:

tatg = talg(Lav) - Tralg(Tw) - Tatg(PH ) - Tlatg(DO) —m (1.1)

The specific growth rate ji4;4 is mainly a function of light availability
inside the reactor summarized by the average irradiance inside the
culture I, [52] and modified by the influence of temperature, pH and
dissolved oxygen on culture growth. Moreover, the endogenous
respiration m represents the autoxidation of microalgae, where they
metabolize their own cellular material.

The main limiting nutrient that is characteristic of microalgae is light
limitation. The equations relating the microalgae growth rate p4, and the
solar irradiance I are called light limitation growth models. This influence
has been characterized by various authors in the literature to describe the
different profiles that microalgae strains can acquire [5, [17), 50, 51, 53] 87,
92].

In general, the incidence of solar irradiance on the culture does not
occur in a homogeneous way, but some layers of the culture receive more
light than others. To unify this phenomenon, the light availability I,
is used to analyze the light-limited growth of microalgae throughout the
microalgae culture.

Taking the model described by Molina et al. in [51], the light limitation
growth model can be expressed as follows:

I n
Nalg(fav) = (Malg,maac : <M>) (1.2)

where fla1g.max [day—1] is the maximum growth rate, I, [uE m~2 s71] is
the light availability inside the reactor summarized by the average
irradiance inside the culture, I [pE m™2 s7!] is the minimum light
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needed by the microalgae to achieve maximum photosynthesis and n [-] is
a form parameter.
The endogenous respiration term can be expressed as follows:

B Iavn'r'csp 1
m= mminvalg - mmaxvalg ’ Ik; Nresp + I Nresp ( 3)
resp av

where Myin alg and Mz a1y [day '] represent the minimum and maximum
respiration rates, I, [#E m~2 s7!| is the maximum light needed by the
microalgae to stop photosynthesis and start the respiration process and

Nresp |-| 1s the form parameter for respiration.

For a specific geometry, the average irradiance I, is a function of the
light path inside the culture, the biomass concentration and the extinction
coefficient of the biomass. The specific growth rate hyperbolically increases
with the average irradiance up to achieve the maximum specific growth
rate flqlgmaz for the selected strain. Whatever the microalgae strains, a
fix specific growth rate is achieved for any operational conditions, being
higher or lower according to the optimal value of other cultures parameters
such as temperature, pH and dissolved oxygen among others. The average
irradiance is expressed as follows:

IO —K.,-Ci-h
Loy = oo (1 7R ) 1.4
K, -Cy h © (1.4)

where Iy [uE m™2 s7!] is the solar irradiance on a horizontal surface,
K, [m? g7!] is the microalgae extinction coefficient, Cj [g¢ m~3] is the
microalgae biomass concentration and h [m] is the culture depth in the
reactor.

The influence of temperature, pH and dissolved oxygen affecting
microalgae growth in are normalized factors which values vary
between 0 and 1. Therefore, when these three terms (fiqg(Tw), faig(PH)
and fiqg(DO)) are optimal and have a value of 1, the specific growth rate
only depends on solar radiation and would have the maximum possible
value. However, if any of these terms is not optimal, it would have a
direct negative impact on the growth rate. As for light limitation, the
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influence of these factors on microalgae growth is expressed by various
authors [15] 64] and represent the microalgae limitation growth models
for temperature, pH and dissolved oxygen.

The temperature index fiqi4 (T ), expressed by Bernard et al. in [15], is
a term that represents the influence of temperature on microalgae growth,
directly related to biomass growth, where 1 means the maximum yield due
to an optimal temperature of the culture. The biomass growth performance
can be diminished by the effect of the temperature, therefore a temperature
above or below the characteristic limits of the microalgae would result in
null growth. For example, a strain that does not exceed a temperature
index of 0.5 in a location means that at most, it is not capable of reaching
half its maximum growth rate. So, it would be limited to a great extent
due to temperature conditions. The temperature index can be expressed
as follows:

Nul T
,Ualg(Tw) = TgT
ag7

where

Nalg,T - (Tw - Tma:ﬂ,alg) . (Tw - TnLin,alg)2
Dalg,T = (Topt,alg - min,alg) : ((Topt,alg - Tmin,alg) : (Tw - Topt,alg)_

_(Topt,alg - maa:,alg) . (Topt,alg + Tmimalg -2 Tw))
(1.5)

As for the temperature index, the pH index fiqq(pHy) is a term that
represents the influence of pH on the microalgae culture. This factor has
limit values (minimum and maximum) in which growth decreases until it
stops, even becoming harmful for microalgae. Furthermore, the optimal
value represents the pH that maximizes biomass production, being a key
value for the control of this variable. It can be expressed as follows:
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Naig prr

/ffalg(pr) = Datonil
atg,p.

where

Nalg,pH = (pr - pHmax,alg) : (pr - pHmin,alg)2
Dalg,pH = (pHopt,alg - pH771in,alg) ' ((pHopt,alg - pH771in,alg) : (pr - pHopt,alg)f
7(pHopt,alg - pHma:Jc,alg) . (pHopt,alg + pHmin,alg -2 'pr)
(1.6)

The dissolved oxygen index fig,(DO) depends on a maximum value,
determined by the strain, which represents the amount of oxygen that
can be accumulated in the culture without being detrimental to
microalgae growth. The dissolved oxygen index is expressed as the
following equation [20]:

_ DO2,w mpo
where mpo [-] is a form parameter.

These indexes depend on the maximum (Trezalgy PHmaz,alg,
DOQ,max,alg)a minimuim (Tmin,algy pHmin,alg) and Optimum (Topt,algy
PHopt.alg) values of the microalgae strain, in addition to the temperature
of the culture (T}, [°C]), the pH of the culture (pH [-]) and the dissolved
oxygen of the culture (DO [%]), respectively.

The biomass productivity P, has been one of the indicators on
microalgae growth more used in literature [10, 11l 25, B5]. This term
reflects the amount of biomass generated in the unit time and per unit of
culture volume, but it can be also expressed as the biomass generated per
unit area and time. It can be used to analyze the differences in growth
for different activities developed, such as control approaches. The

biomass productivity is expressed as:

Py = g - Cy - h (18)
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where P, [¢ m~2 day~!| is the biomass productivity, Cj is the biomass
concentration and h is the culture depth.

1.3 Biomass production process

Biomass production is the process by which organic matter is obtained
from microalgae and is processed for its subsequent use. There are
multitude of products that can be obtained from microalgae biomass
with diverse applications in industrial sectors such as agriculture,
aquaculture, and food production, among others [27, 44]. Depending on
the type of strain and its properties, the purpose of the product may
vary, such as strains that contain proteins or Omega-3, which serve as
food for human consumption or as animal feed. On the other hand,
strains that contain a high amount of lipids can be used to produce
biofuel [82, [05], as an alternative to energy crops to be used as clean
energy. Furthermore, the combination with other processes such as
wastewater treatment allows reducing costs and opens the door to new
fields of research and innovation [4]. Microalgae large-scale production is
still limited by the specific requirements for each microalgae strain, and a
multitude of considerations must be taken into account, such as the
adequate design of the photobioreactors, the maintenance and control of
the cultivation conditions and the optimal supply of nutrients. [I]

There are mainly two types of photobioreactors 58], 65] (or commonly
named, reactors): closed reactors and open reactors, as can be seen in
Figure [1.4 On the one hand, closed reactors (left) allow precise control
of operating conditions and are focused on high-value microalgae that are
susceptible to contamination. From this type, tubular reactors are the
most commonly used, where quality is more important than production
volume. On the other hand, open reactors (right) are characterized by
higher biomass production volumes and are oriented to resistant
microalgae strains, since it is not possible to control all the variables that
affect the microalgae growth. The most extended and widespread open
reactors are the raceway reactors, which are more economical and simpler
to maintain than closed reactors. Another type of open reactor that is
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a) Closed tubular reactor [19]. b) Open raceway reactor.

Figure 1.4: Microalgae photobioreactor types.

currently generating a lot of interest are thin layer reactors, which are
characterized by operating at a shallow culture depth to maximize the
effect of photosynthesis. However, the production volume is small. In
order to carry out the experimental tests designed from the strategies
developed in this thesis, two open raceway-type reactors have been used,
described later in Section

The raceway reactors are mainly composed of three parts, which can
be seen in Figure [1.5] Point 1 represents the channel through which the
culture flows, which has bands to improve hydrodynamic circulation. It
is the area where the phenomenon of photosynthesis and cell growth of
microalgae occurs. Point 2 represents the paddlewheel that drives the
culture. It must always be in motion, to prevent the water from stagnating
and the microalgae from precipitating to the bottom. The speed at which
the paddlewheel is operated is usually constant and its movement allows
the culture to be mixed to improve cell distribution on the surface and
microalgae rotation to perform photosynthesis. Point 3 represents the pit
or sump, a deep and unlit area where air (or oxygen) and COs are bubbled
in to control dissolved oxygen and pH levels in the culture, respectively.

From the photosynthesis process, microalgae consume COg2 from the
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Figure 1.5: Schematic of a raceway reactor [6].

culture and generate oxygen (O3). This process acidifies the liquid
culture in the reactor and changes the carbonate-bicarbonate equilibrium,
increasing the pH value. If this parameter reaches a limit value for a long
period of time, it can be detrimental to the state of the microalgae and
limit their growth. Each microalgae strain has an optimal pH value that
maximizes growth, as well as lower and upper limits, where growth stops,
or can even negatively affect microalgae health. To reduce it, CO3 is
bubbled in the sump, taking into account that the pH cannot fall below a
certain lower limit. Due to this behavior, the pH in the culture maintains
an oscillating dynamics, which requires adequate control to keep this
parameter close to an optimal value. Injections of COg in the culture
regulate the balance between ions and anions, lowering the pH value.

In parallel, the oxygen generated during the daytime by the
photosynthesis process accumulates inside the reactor and can reach high
values.  This parameter does not pose any risk for the growth of
microalgae, except if it exceeds an upper limit value, in which the
biomass productivity declines and there is risk of cell damage. To avoid
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this situation, air is bubbled through the sump, which breaks up the
oxygen molecules and releases them out of the liquid contained in the
reactor.

During normal operation of the reactor, dissolved oxygen and pH
control are usually performed in industry with an On/Off control applied
to a valve, where COs or air is bubbled into the sump when the pH or
dissolved oxygen levels exceed a certain value. This control is normally
carried out automatically during the daytime period and is deactivated
at night due to the inactivity of the microalgae, so it is a process that
does not require frequent maintenance. On the other hand, the dilution
and harvesting processes are those that are responsible for extracting the
microalgae biomass from the reactor, and are usually carried out
manually. Harvesting is the process by which culture is removed from the
reactor through a pipe, for further treatment and processing. On the
other hand, dilution is the process by which fresh water with fertilizers or
another type of culture medium (such as wastewater or salt water) is
added. During the dilution process with fresh water, the necessary
nutrients are added to allow the growth of microalgae. These nutrients
have a lower pH than the culture pH of the reactor, which causes
disturbances during dilution.

Generally, temperature control is not carried out in open reactors at
industrial level, due to their high energy and investment related costs.
However, the volume variation in the reactor through the harvesting and
dilution processes affects the dynamic evolution of the culture temperature.
Through the use of optimal control of these processes is possible to regulate
the temperature of the culture in order to improve the productivity of the
microalgae.

Each day, the biomass in the reactor is harvested by removing a certain
percentage of liquid in the reactor. The volume amount removed from the
reactor is determined depending on the month, taking into account that
the concentration of microalgae biomass at the end of the day must be
the same as at the beginning of the same day, that is, the decrease that
occurs in the biomass concentration can be compensated. The growth
varies depending on the month, therefore, the amount harvested will also
change depending on the month. As the harvest flow rate is fixed, the
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duration of this process is variable, between 1 and 2 hours. Afterwards,
new medium is added to restore the volume in the reactor to its initial
depth level. Likewise for harvesting, the dilution flow rate is fixed, so this
process also lasts between 1 and 2 hours. As a result of the harvesting
process, wet biomass is obtained. The wet biomass is collected and stored
to be subsequently centrifuged at high speed, which removes much of the
water and becomes a thick paste. Once the compact biomass is obtained, it
is heated in an oven for hours to completely remove residual moisture. As a
result, a block of microalgae is obtained, which is subsequently pulverized
until obtaining a fine powder, thus ending the process. This pulverized
microalgae biomass is the final result of the whole process and can be used
for all the applications mentioned above, such as the elaboration of food
for human consumption or animal feed.

1.4 State of art

Biotechnology and bioprocesses are considered as one of the emerging areas
in the automatic control community. The complexity of these processes
and the challenging modeling and control problems open a huge number
of research topics in this field. Among them, wastewater treatment, food
engineering, and biomass production are current research lines with special
attention.

Biological microalgae models can help to estimate and maximize
biomass productivity [II], as well as characteristic parameters that can
be used in control systems to maximize biomass production [20} 26, 61].
It is possible to find in the literature multiple models that represent the
behavior of microalgae. For example, in [29] a descriptive model of the
production of microalgae biomass in tubular reactors is presented, which
was later adapted to raceway reactors in [3I]. However, although there
exist some studies combining the microalgae productivity and culture
temperature [15, 42|, most existing biological models do not take the
culture temperature into account, that is a limiting factor in the analysis
of the microalgae productivity results [39, 43| 67, 8I]. Beéchet et al.
presented a universal temperature model for open reactors [9)], which
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makes use of dimensionless parameters for heat transfer and evaporation
phenomena. The evaporation phenomenon is a complex process and
difficult to estimate. In [I13] a comparison of different evaporation models
is presented. On the other hand, in [46], a dynamic model for the
cultivation of microalgae is developed where an empirical temperature
model based on thermal energy balances suggested in [83] is included.
These studies demonstrated the importance of temperature on
microalgae growth and the complexity of accurately estimate its value.
The combination of a temperature model with the current microalgae
growth models would allow a greater improvement in the representation
of the microalgae behaviour. Due to this combination, better control
architectures for biomass production and associated applications could be
developed.

The influence of temperature in a microalgae-based process is a
crucial aspect, not only in biomass production but also in the choice of
production areas, since it can negatively affect the crop when
temperature exceeds certain limits [67]. Therefore, multiple results and
studies can be found about the effect of temperature on growth rate and
biomass production for algae and cyanobacteria [8I]. In [56], a study of
the effect of temperature, ranging from 9°C to 32°C', on growth rate and
biomass production in a composition of 26 algae species from 5 different
functional groups is presented. On the other hand, the effect of
temperature on the microalgae Tetraselmis sp. is analyzed in [21], where
the effect of light is considered independent of temperature. The effect of
high temperatures has been shown to be more detrimental to biomass
production, as described in [I2], where the impact of high temperatures
on algae activity and viability is modeled. On the other hand, low
temperatures reduce growth until it stops, but without negatively
affecting its health. That is why high temperatures are more critical.

It is possible to find multiple examples of models in the literature where
both the incident light in the reactor and its temperature are taken into
account. One of these cases can be found in [I0], where a review of the
state of the art in this topic is carried out, exposing which are the most
promising or viable models. In [§], the variations in culture conditions
in an open thin-layer were studied, both in terms of position inside the
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reactor and time of the daylight cycle. A comprehensive model developed
for microalgae growth in outdoor ponds under fluctuating light intensity
and temperature conditions is presented in [39]. In [15], a simple model for
the influence of light and temperature on the growth of algae is developed,
estimating their production outdoors, based on the growth model presented
in [I7]. A new alternative for modeling the effect of temperature on growth
has been recently presented in [64]. These models have been widely used
to develop new biomass growth models [85]. All these different models
can be used as design tools coupled with productions models, which allow
the estimation of the process behaviour based on environmental conditions.
Moreover, these models can be used to determine the suitability of a certain
area for the production of microalgae biomass.

Despite the fact that the influence of temperature on the outdoor
production of biomass is widely analyzed and studied in the literature,
temperature control techniques are scarce [34]. It is possible to find some
studies of temperature control in closed photobioreactors, as in [91], since
it is possible to install heat exchangers in the bubble column. In [93], a
particular design of the reactor is proposed to minimize the diurnal and
seasonal temperature fluctuations, but based on an unconventional design
and adapted to a specific area of Arizona. On the other hand, recently, in
[40], a heat exchanger based on wasted heat from flue gases is proposed
to heat the reactor volume up for temperature regulation purposes.
However, although this solution is available from a technical point of
view, it requires a complex and expensive installation. Moreover, the
proposed system does not allow cooling of the reactor, being a critical
aspect for the cultivation of microalgae in warm areas. One of the most
interesting techniques is presented in [23], where an optimization strategy
is used based on a microalgae productivity prediction model together
with weather forecasts. In this study, the fresh medium injection and
culture removal rates are controlled to maintain the biomass
concentration and pond temperature at their optimal values at two
locations in France. Later, this strategy was used in [24] to analyze the
improvement in productivity in the operation of the reactor. This
optimization has recently been improved in [25], together with a study of
the influence of weather variables on the growth of microalgae and the
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inaccuracy of weather forecast.

On the other hand, the combined biomass production process coupled
with wastewater treatment and bacteria groups a series of processes that
must be evaluated and characterized. In the literature, it is possible to
find different models and approaches that describe the processes related
to the growth of the species. In [76] the variations and the impact of
environmental conditions in the cultivation of microalgae and bacteria in
a thin layer reactor are analyzed, for the treatment of wastewater. On
the other hand, in [I8], a new model (ALBA) describing the
algae-bacteria ecosystem evolution in an outdoor raceway for wastewater
treatment is presented by Bernard el al.. In addition, innovative
techniques such as neural networks and fuzzy logic control are being used
to characterize processes related to wastewater treatment, as presented in
[55]. Moreover, a dynamic model considering the main environmental
variables (light intensity, temperature, pH, and dissolved oxygen) which
influence on microalgae and bacteria growth is presented by Sanchez
Zurano et al. in [78]. This model is based on the equation stated in the
BIO ALGAE model described by Solimeno in [86], where an integral
mechanistic model describing the complex interactions in mixed
algal-bacterial systems is presented. In addition, in [77], a new
photo-respirometry method for determining the rates of the main
metabolic processes of microalgae-bacteria consortia in microalgae-based
wastewater treatment processes has been developed and tested. These
combined processes present changing dynamics depending on the type of
medium and its composition. So, it is difficult to have models that
faithfully adjust to its evolution. The need for models that allow
adjusting to the changing characteristics of the culture or calibration
methods of certain parameters belonging to the process whose value is
known in a certain range is evident.

Related to pH and dissolved oxygen control, some approach examples
using Proportional-Integral-Derivative (PID) controllers have been
proposed in the literature, as they are widely used in industry with
satisfactory results and can be used for this type of processes. An
example of a linear Proportional-Integral (PI) controller with feedforward
compensation for pH control in tubular photobioreactors can be found in
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[29]. In [37], a robust PID controller for pH in raceway reactors based on
Quantitative Feedback Theory (QFT) is used. Recently, a PI for pH
control in raceway reactor based on Wiener models is presented in [63].
On the other hand, event-based control is gaining a great interest for this
kind of processes. Concerning this type of control, in [59], a controller
with a sensor deadband achieves a considerable reduction of COsy losses
in a microalgae tubular photobioreactor. Another example can be seen in
[60], where an event-based Generalize Predictive Controller (GPC) with a
disturbance compensation approach is used for the effective use of COq in
a raceway reactor. Subsequently, this GPC scheme was improved in [61]
and combined with a selective control for dissolved oxygen. A simulation
study using Proportional-Integral (PI) and GPC controllers plus a
feedforward compensator in raceway reactors is presented in [62]. More
recently, in [38], a predictive linear control law for pH in a raceway
reactor is wused to design a GPC based on a simplified
First-Order-Plus-Dead-Time (FOPDT) model of the reactor. It should
be noted that event-based pH control has great potential due to the low
computational cost and characteristics of the process, in addition to
considerably reducing CO» injection due to the fact that it is not carried
out continuously. Furthermore, most of the control approaches proposed
in the literature are carried out exclusively during the daytime period, so
there are no references of control architectures during the whole day. An
approach that encompasses both daytime and night-time control would
be really interesting, since it could control the pH fluctuations that occur
during the night due to variations in the carbonate-bicarbonate
equilibrium.

1.5 Contributions

The results discussed in this thesis have been presented in the following
scientific publications:
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CHAPTER 2

Framework and facilities

This chapter is structured as follows: Section introduces the research
project where this thesis was carried out and Section describes the
research center and the raceway reactors used for the experimental tests.

2.1 The CALRESI project

The project CALRESI (Modelado y Control del proceso combinado de
produccién de microALgas y tratamiento de aguas RESIduales con
reactores industriales — Modeling and control of the combined process of
microalgae production and wastewater treatment with industrial
reactors) deals with the analysis, study and application of modeling and
control strategies for the optimization of the process of wastewater
treatment and biomass production of microalgae in large scale industrial
photobioreactors. This project aims to achieve optimal working
conditions that allow an efficient synergy of the combined process of
optimal microalgae growth and wastewater treatment, trying to achieve
an appropriate balance between the energy required for such a process,
the injection of COq for the maximization of microalgae production, and
cost recovery through the derived products. Microalgae use nutrients
from wastewater (carbon, nitrogen and phosphorus), thus avoiding the
use of chemical fertilizers. The appropriate combination of microalgae
with wastewater will allow the achievement of an energy balance for this
type of processes and, at the same time, contributing to carbon
mitigation of emissions to the environment.

It is relevant to stress that the presence of microalgae, bacteria and
organic matter makes such systems to have highly complex and nonlinear
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dynamics. As a result, there are different modeling and control tasks to
be achieved along this project:

e Development and proposal of strategies of modeling, estimation and
identification for the combined process of the production of
microalgae and treatment of wastewater in raceway reactors.

e Development and proposal of different control strategies for the
efficient production of biomass and wastewater in order to
contribute to the reduction of costs and environmental impact.

e Implementation and validation of modeling and control strategies
developed in two industrial large scale raceway photobioreactors.

The focus of this project will address issues that are related to
improve the efficiency, productivity, design and optimization of
large-scale raceway combined wastewater treatment and microalgae
production processes cultivated in outdoor conditions by means of using
adequate modeling and control strategies. The implementation of these
strategies will contribute in better reproducible conditions with
competitive market costs by analysing/simulating new photobioreactor
designs, compensating for the permanent non-stationary behaviour of the
processes, the presence of disturbances, taking advantage of nutrients
provided by wastewater to the culture (mainly carbon, nitrogen, oxygen
and phosphorous), removing any toxic metabolic products (e.g. COgq
mitigation), and controlling important internal cellular parameters (e.g.
temperature, pH), in order to optimize the biomass production.

2.2 1IFAPA research center

The research activities carried out during the period of the doctoral
program have been carried out in facilities located in the IFAPA research
center, near the University of Almeria, in Spain.

The Andalusian Institute for Agricultural, Fisheries, Food and
Ecological Production Research and Training (IFAPA) bases its creation
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to respond to the demands of the Andalusian agricultural, fishing,
aquaculture and food sectors.

IFAPA aims to be an agile and efficient instrument in its operation,
realistic and pragmatic in its action programs, and focused on promoting
research, technological innovation and training in the field of agriculture,
fisheries and the food industries.

This center has many facilities for the cultivation and production of
microalgae biomass, with multiple photobioreactors both closed tubular
and raceway of different sizes. In addition, it has laboratories and
equipments to analyze the status of microalgae culture and other
parameters related to their growth.

2.2.1 Raceway reactors

For the development of the models and approaches presented in this thesis,
two identical raceway reactors located at the IFAPA center have been used.
These reactors are found in Figure [2.1] and their main objective is the
biomass production establishing comparisons between both reactors, such
as tests with different control architectures or different culture medium.
The reactors have a total surface of 80 m? and are composed of two 40
m long channels, connected by a 1 m wide U-shaped bends. The channel
walls are made of low density polyethylene of 3 mm thickness while the
curves and sump walls are made of high density polyethylene of 3 mm
thickness. The mixing of the culture inside the reactors is made by a
paddlewheel of aluminum blades with a diameter of 1.5 m, driven by an
electric motor (W12 35 kW, 1500 rpm, Ebarba, Barcelona, Spain), with
gear reduction (WEB Ibérica S.A., Barcelona, Spain). The control of the
paddlewheel is performed with a frequency inverter (CFW 08 WEB Ibérica,
S.A., Barcelona, Spain) at a constant velocity of 0.2 m/s. Carbonation is
performed inside a sump located 1.8 m downstream of the paddlewheel,
which dimensions are 1.0 m depth, 0.65 m length and 1.0 m width. In
this sump, CO2 gas or air can be injected through three plate membrane
diffusers at the bottom of the sump (AFD 270, EcoTec, Spain).

The measurements of the climatic conditions are obtained from a
meteorological station, while the reactors have different probes for pH,
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dissolved oxygen and temperature. Table shows the sensors used to
take measurements of all the variables related to the developed control
architectures. The sampling period for all the measurements is one
second.

Figure 2.1: Raceway reactors located at IFAPA research center.

Measure Sensors
Wind speed Anemometer Thies Clima 4.3400.30.000
Global solar irradiance Pyranometer Kipp & Zonen CM 6B

Anbient temperature Delta Ohm HD 9008TRR
and relative humidity

Culture temperature Pt100 transducer
Culture pH Crison 5330
Dissolved oxygen Mettler Toledo InPro 6050
Culture depth Ultrasonic Wenglor UMD402U035

Table 2.1: Description for the raceway sensors.
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2.2.2 Laboratory scale photobioreactors

Experiments concerning biomass production with wastewater treatment
were performed at laboratory scale in four stirred-tank reactors presented
in Figure They are made with polymethylmethacrylate (0.08 m in
diameter, 0.2 m in height and with a 1 L capacity) operated in the
laboratory but simulating outdoor raceway reactors.

Figure 2.2: Laboratory scale photobioreactors.

These reactors were filled with sewage taken directly after primary
treatment from the wastewater treatment plant in Roquetas de Mar
(Almeria) and 20% of Scenedesmus almeriensis inoculum. First, they
were operated in batch mode for 6 days to achieve a high biomass
concentration, next they being operated in continuous mode by replacing
20% of the culture volume with fresh wastewater daily, until the steady
state is reached, after 10 days. To prevent the adverse effect of excessive
dissolved oxygen accumulation, the dissolved oxygen was controlled
below 200% of saturation by supplying air on demand; COs was also
injected on demand to control the pH at a value of 8. Concerning
illumination, the reactors were artificially illuminated using eight 28 W



30 Chapter 2. Framework and facilities

fluorescent tubes (Philips Daylight T5) on a simulated solar cycle. The
maximum photosynthetic active radiation (PAR) inside the reactors in
the absence of cells was 1000 yE m~2 g1
spherical quantum sensor (Walz GmbH, Effeltrich, Germany). The
culture temperature was kept at 25°C by controlling the temperature of

, measured using an SQS-100

the culture chamber in which the reactors were located. Regarding pH
and dissolved oxygen control, it is carried out through an On/Off control,
injecting carbon dioxide or air when the established setpoints are
exceeded, respectively.

2.2.3 Microalgae strain

Despite the fact that the characteristic parameters of different strains
have been used during the development of the activities presented in this
thesis, the microalgae strain that has been cultivated in the physical
reactor corresponds to Scenedesmus almeriensis (CCAP 276/24) species.
This strain can be used for animal and / or human consumption, and
produces high amounts of carotenoids, especially lutein and
beta-carotene. It is especially suitable for the production of carotenoids
for application in the treatment of ocular macular disorders. It has been
chosen for its cultivation because it is an autochthonous strain of the
research location and its cultivation conditions are adequate. A detailed
study about its characteristic parameters and conditions related to pH,
dissolved oxygen and temperature can be found in [§8]. The pH value
ranges from 3 up to 10, but the net photosynthesis rate is close to the
maximal value around 8. Regarding the temperature, the value ranges
from 12 to 46 °C, but the optimum range is around 30 °C. The culture
medium used in the growth of the microalgae has been freshwater and
Mann & Myers medium prepared using fertilizers (0.14 g L= K(POy)s,
0.18 g L=! Mg(SOy4)2, 0.9 g L~! NaNOj3, 0.02 mL L~ Welgro, and 0.02 g
L~! Kalentol) as described in [30].

2.2.4 Supervisory Control and Data Acquisition System

Both reactors have pH control, dissolved oxygen control, harvest and
dilution control, and culture depth control. These control algorithms are
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implemented in a Supervisory Control and Data Acquisition System
(SCADA) tool, where it is possible to monitor all the measurable
variables associated with the control of the reactors. Figure 2.3]shows the
main screen of the SCADA tool, which contains the control and displays
windows.

Figure 2.3: SCADA tool to control raceway reactors.

Data collection is done through a Schneider brand Programmable Logic
Controller (PLC), model M241 TM241CE24T. Communication between
the PLC and the SCADA tool is carried out through the OPC protocol
using the UaExpert software tool.

On the other hand, the SCADA tool is designed using the LabVIEW
software, developed by National Instruments. From its main screen, it
is possible to view the measured variables of the reactors, as well as to
activate the different actuators, such as COa, air or harvesting and dilution
injection valves. In addition, all data are saved daily in a file for further
processing.

The IFAPA research center, in addition to the raceway reactors
presented above, has more facilities for the cultivation of microalgae. The
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monitoring and control of these facilities is carried out through another
SCADA tool belonging to the SABANA project (Sustainable Algae
Biorefinery for Agriculture aNd Aquaculture). Figure shows the main
screen of this tool, designed in DAQfactory by Azeotech.

This tool allows the control and monitoring of the harvesting and
dilution processes of all the facilities, in addition to recording the data
measured from two weather stations, one outside and the other inside a
greenhouse. Among the controlled facilities are: bubble columns with the
inoculums of the microalgae strains, a greenhouse with three tubular
photobioreactors and three raceway reactors, two external thin-layer
reactors and a large raceway reactor (500 m?3).

Figure 2.4: SABANA project SCADA tool.



CHAPTER 3

Modeling approaches

The modeling of the processes related to microalgae biomass production
is a fundamental aspect to understand the operation of these systems and
analyze their behavior. Because they are living organisms, their dynamics
are nonlinear and changing. So, it is necessary to develop models that
faithfully describe these dynamics.

This chapter is structured as follows: Section details the
developed temperature model for raceway reactors. The combined model
of microalgae growth and wastewater treatment is presented in Section
The changes made to a descriptive model for raceway reactors is
showed in Section Finally, conclusions are stated in Section [3.4]

3.1 Temperature modeling

In this section, a new simple temperature model is presented [68, [74],
based on a review of the empirical relationships defined by Béchet et al.
and Slegers et al. in [0, B3], and adapted to a raceway reactor. The
culture temperature is calculated from a thermal balance in the reactor,
taking into account all available environmental variables. This model
allows the estimation of the culture temperature in the reactor for certain
environmental conditions. In this way, the model could estimate
parameters of interest, such as the time for harvesting or anticipate risk
temperatures that can negatively affect the culture. In addition, the
model may be used to analyse the temperature impact on biomass
production for different locations. Therefore, design tools could be
developed to study the viability of the microalgae production zones to
determine the most suitable cultivation strains. Moreover, the
temperature model can be used to improve existing microalgae
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estimation models or biomass growth models, such as those presented in
[30] and [34]. Also, the temperature model can be used when there is a
lack of temperature measurements in the reactor, being useful as a
temperature estimator. Furthermore, the model can be used for optimal
control purposes, where knowledge of the evolution of the controlled
variables is essential to develop control approaches.

3.1.1 Thermal balance

The thermal balance described in this section is based on first principles
and empirical equations defined for the transfer of energy due to solar
irradiance, long wave radiation, evaporation, convection, and conduction.
Based on the models described in [9, 83|, the energy balances that
affect the culture have been analized and established, and a new thermal
balance has been developed to estimate the culture temperature in the
reactor from measurable variables. The solar irradiance input comes from
data measured by the global (direct + diffuse) irradiance sensor
mentioned in Table 2.I] Long-wave radiation losses are calculated by the
Stefan-Boltzmann Law [28]. There are different methodologies in the
literature to obtain the evaporation flow [9]. In this case, the energy
balance by evaporation is calculated from the evaporation rate obtained
from an experimental evaporation exchange coefficient. Convection is
expressed by Newton’s Law of cooling, and finally, conduction is
expressed as the heat transfer between the mass of the culture in the
reactor and the polyethylene layer that insulates the reactor from the
ground. The dilution and harvesting processes affect the temperature of
the culture due to the removal of volume or the injection of medium at
different temperatures. As a result of the introduced energy balances, the
thermal balance is expressed by the following equation (Q; in W):

Qaccumulated = Qirradiance + Qradiation + Qevaporation+
+ Qconvection + Qconduction + Qharvesting + Qdilution

where Quccumulated 1S the heat accumulated in the reactor, Qjrradiance
represents the heat flow from sunlight, Qrqdiation is the long-wave
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radiation heat flow, Qecvaporation accounts for the heat flow produced by
the evaporation process, Qconvection 1S the heat flow caused by convection,
Qconduction Trepresents the heat flow between the reactor and the
polyethylene layer under it through a conduction process, Qparvesting
represents the heat flow due to volume loss by harvesting, and Qgijution
describes the heat flow by the difference of new medium added into the
reactor.

Accumulated heat flow

The heat accumulated in the reactor represents the sum of all energy terms
that affect the reactor, and it is expressed as:

dT,

accumulate =h-A-Cp-p-—— 3.2
Q lated LT (3.2)

where h [m] is the culture depth, A [m?] is the surface of the reactor, C,
[J kg=! °C~1] is the specific heat capacity of the culture, p [kg m~3] is
the density of the culture, and T, [°C] is the culture temperature in the
reactor.

Heat flow due to the effect of solar irradiance

The heat flow due to incident solar irradiance on the reactor surface
represents the main heat input into the reactor. It is expressed as:

Qirradiance = Ig ca-A (33)
where I, [W m™2] is the global (direct + diffuse) solar irradiance, a [-] is
the absorptivity, and A [m?] represents the total area of the reactor.
Radiation heat losses

The reactor emits thermal energy as long-wave radiation. The flow of
radiated energy between the reactor and the sky is calculated as:
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Oradiation = 0 - A - ¢ - (Tsky4 (T + 273.15)4) (3.4)

where o [W m~2 K~4] is the Stefan-Boltzmann constant, e [-] is the water
emissivity and Ty, [K] is the equivalent temperature of the sky, expressed
as [28]:

Taky = (273.15 + Tpn) (0.711 + 0.0056 - Ty, - 0.000073 - T2

dew

+0.13 - cos (15 - tgoiar))*2 (3.5)

where T, [°Cl is the ambient temperature, Tye,, [°C| the dew point
temperature, and tgoqr [-] represents the number of hours after midnight.

Evaporation heat flow

The evaporation process represents the main source of heat loss in the
reactor and depends on the shape of the reactor, the evaporation rate and
the latent heat of vaporization, as presented in [66]. The evaporation heat
flow is determined as:

Qevaporation =A- Ep P hfg (36)

where E, [m s™!] is the evaporation rate and hy, [J kg™!] is the latent
heat of vaporization, expressed as follows:

hfe = (2494 — 2.2 - T,) - 1000 (3.7)

The evaporation rate can be calculated as an empirical equation which
depends on the difference in vapour pressures between the ambient air and
the reactor culture mass |66l [80], in addition to an evaporation exchange
coefficient which depends on wind speed Wi:

RH -p/
Ep = <100A - pi4> . hevap (38)
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where RH [%)] is the relative humidity, p’, [Pa] is the vapor pressure of
the air at ambient temperature and heyqp [m s™! Pa~!] is an evaporation
exchange coefficient, obtained experimentally from the following equation:

hevap = Aevap + Bevap : Ws (39)

where W [m s7!] is the wind speed and Acvap || and Beyap [-] are
evaporation experimental coefficients that must be calibrated (with
adequate units).

For the calculation of the vapour pressure of the environment at
ambient temperature p'; [Pal, the Tetens equation [54] [89] has been used:

17.27 - Tomp
'\ =0.61078 - —= 4™ ). 1000 3.10
Pa erp (Tamb 12373 (3.10)

Convection heat flow

The phenomenon of convection occurs between the mass of water in the
reactor and the air in the environment, resulting in a positive or negative
balance depending on the moment of the day and the ambient temperature.
The convection balance is represented as:

Qconvection = hconv CA- (Tamb - Tw) (311)

where heony |[W m~2 OCfl] is the convection transfer coeflicient, obtained
experimentally as previously done for the evaporation:

hCO'I’L’U = ACO?’L’U + BCOTL’U ' WS (312)

with Acony [-] and Beonw || experimental coefficients that must be
calibrated.
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Heat flow by conduction

The thermal conduction balance represents the thermal exchange between
the reactor and the surface under it. Notice that polyethylene was the
material used for the construction of the bottom of the reactor. So, the
following equation represents the conduction balance:

Qconduction = hsoil . Asoil ' (Tsoil - Tw) (313)

where hg; [W m™2 °C7!] is the heat transfer coefficient for the
polyethylene layer under the reactor, A [mz] is the surface of the
reactor in contact with the ground and T, [°C| represents the
temperature under the polyethylene layer of the reactor. The transfer
coeflicient hg,;; can be expressed as:

Ksoil

Lsoil

hisoil = (3.14)

where Ky; [W m~! °C71] is the conduction transfer coefficient for the
polyethylene layer (calibration parameter) and zg,; |[m| represents the
distance between the bottom of the reactor and the buried temperature
probe.

Harvesting heat flow

The harvesting process removes a certain amount of volume from the
reactor, decreasing the total net heat and modifying the volume of the
reactor. This flow depends on the harvesting flow rate determined by the
pump and the temperature of the culture Ti,. The balance is described
as:

Qharvesting = _Qh P Cp : Tw (315)

where Qj, [m® s71| is the harvesting pump flow rate.
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Dilution heat flow

The dilution process introduces medium into the reactor, increasing its
volume. In addition, the medium is at a different temperature, so it
influences the culture temperature. This balance depends on the dilution
flow rate and the temperature of the dilution medium. It is expressed as:

Qdilution = Qd P C1p . Tm (316)

where Qg [m? s7!] is the dilution pump flow rate and T, [°C] is the
temperature of the dilution medium.

3.1.2 Temperature model

The model depends on a series of environmental input variables that are
solar irradiance, ambient temperature, relative humidity and wind speed.
Other input variables are culture depth, harvesting and dilution rates,
soil temperature and dilution medium temperature, which can be easily
estimated or approximated, instead of measured. Specifically, the culture
depth can be set to its common value, the harvesting and dilution rate
usually are constant values, and the temperature of the soil under the
reactor and the dilution medium can be estimated or set to constant values,
based on approximations with ambient temperature or historical data. In
this way, only the measurements of the environmental variables would be
needed to run the model and use it as a temperature estimator.

The dynamic evolution of culture temperature is obtained from ,
based on the thermal balances described and reformulated as:

dTw _ Qtotal
it h-A-Cp-p

where

Qtotal = Qi’r‘radiance + Qradiation + Qevaporation + Qconvection+

+Qconduction + Qharvesting + Qdilution
(3.17)
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Table contains the description and the values of all the
parameters used in the thermal balance of the temperature model,

separated in constant and variable parameters.

Parameter ‘ Description Value Unit
Parameters
A Surface of the reactor 80 m?
Cp Specific heat capacity of the culture 4184 Jkg=lec!
p Density of the culture 1000 kg m~3
a Absorptivity 0.7 -
o Stefan Boltzmann constant 5.6697 -107% | Wm=2 K~
e Water emissivity 0.9 -
Acvap Evaporation experimental coefficient A 1.20 -107 1 -
Beyap Evaporation experimental coefficient B 4.67 -10712 -
Aconn Convection experimental coefficient A 4.78 -
Beonw Convection experimental coefficient B 6.83 -
Koit Conduction transfer coefficient for the polyethylene layer 0.43 W m~!°C—!
Tsoil Thickness of the polyethylene layer of the reactor 0.02 m
Asoil Surface of the reactor in contact with the ground 80 m?
Qn Harvesting pump flow rate 0.66 -1073 m? 5!
Qm Dilution pump flow rate 0.82 1073 m3 g1
Variables
h Medium depth - m
Tw Temperature of the culture - °C
1y Global solar irradiance - W m—2
Tsky Temperature of the sky - °C
Tamb Ambient temperature - °C
Tiew Dew point temperature - °C
tsolar Number of hours after midnight - -
htg Latent heat of vaporization - J kg™!
E, Evaporation rate - ms!
RH Relative humidity - %
Py Vapor pressure of the air at ambient temperature - Pa
hevap Evaporation exchange coefficient - ms ! Pa!
Wy Wind speed - m s !
Rconv Convection transfer coefficient - Wm—2°C!
Tsoil Soil temperature - °C
T Dilution medium temperature - °C

Table 3.1: Temperature model parameters description.
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3.1.3 Results and discussion

The results are presented in two parts: first, the calibration process is
shown, and second, the results for the validation stage are presented.

Calibration

The temperature model equation makes use of a series of parameters
whose exact values are unknown, or the values are known in a defined
range. The uncertainty of these parameters shows the need for a
calibration process, which has been carried out through genetic
algorithms. Calibration using genetic algorithms results in an useful and
reliable method in the estimation of uncertain parameters, since it allows
optimizing a certain cost function that measures the deviation of the
output of the model from that of the real system by modifying the
parameter values between the established limits. The range of the
estimated parameters has been obtained from the cited literature, as well
as from the experience in the design of the installation.

The calibration process using genetic algorithms has been implemented
in Matlab using the Genetic Algorithm Optimization Toolbox (GAOT),
based on [36], with an initial population of 50 phenotypes (solutions) and a
termination condition of 50 generations. This method starts with an initial
set of calibration parameters and runs the model to obtain the error. The
cost function is computed as the Root Mean Square Error (RMSE) between
the simulated temperature and the real culture temperature, expressed as
the following equation:

N . .
I=3 (Tm(z)]; Lu(®) (3.18)

i=1

where T, [°C| is the estimated temperature, T,, [°C] is the real culture
temperature in the reactor and IV represents the size of the data vector.

The method modifies the calibration parameters in each iteration of the
genetic algorithm in the simulation as new population generations, within
established limits, until the error cost function is minimized.
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Three consecutive days from every month from August to December
2019 (15 days in total) have been used by the genetic algorithm to
estimate the values of the calibration parameters trying to capture the
different season dynamics. The measured data used for calibration
purposes, which represent the input variables for the model (solar
irradiance, ambient temperature, soil temperature, wind speed, the
relative humidity and the culture depth), are shown in Figure and
separated by colours for each different month. As can be seen, there exist
a large variability in the climatic data. Notice that the temperature of
the dilution medium is not represented. This is due to the lack of
measurement sensors in the reservoir used as fresh medium, so the mean
value of ambient temperature will be used as the temperature of the
dilution medium.

Table presents the values of the calibration parameters obtained
using the calibration data set. The evaporation (Aeyqp and Beyep) and
convection (Acony and Beony) calibration parameters are related to
evaporation and convection transfer coefficients, respectively.  The
conduction coefficient (Ko [W m~! °C~1]) ranges from 0.33 to 0.50 due
to the polyethylene thermal conduction coefficient.

Symbol | Parameter Value Unit

Aevap | Evaporation coefficient parameter A | 1.20 -10~ ! -

Bevap Evaporation coefficient parameter B | 4.67 10712 -

Aconw Convection coefficient parameter A 4.78 -
Beonw Convection coefficient parameter B 6.83 -
Koon Conduction coefficient 0.43 W m!eCc!

Table 3.2: Calibration parameters for the temperature model.

The calibration results are shown in Figure [3.2] where the results of
each month are individually plotted in different colors for better
visualization. The differences between the temperature from one month
to another are clearly visible, and the model is able to capture the
temperature dynamics during the whole day, in addition to adjust to the
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Figure 3.2: Temperature calibration results. Each individual color plot
represents three consecutive days for the selected months from August to
December. Dashed lines represent real reactor temperature while solid
lines represent estimated temperature.

ranges of each month. The RMSE value obtained is 0.97 °C, while the
mean temperature error is 0.85 °C, which is a satisfactory result. A
maximum temperature error of 2.36 °C occurs during night-time periods
on November.

When the results of each month are analyzed, it can be seen that the
dynamics of the model resembles the real temperature in the raceway
reactor during all months. Although the dynamics and the maximum and
minimum temperatures of each month vary, the model fits the real
evolution in all cases, estimating the temperature properly. For the
months of August, September and October, the model correctly estimates
the culture temperature in the reactor, with an average error of 0.6 °C.
However, for the cold months of November and December, the model
presents slightly larger errors, especially at night, with an average error
of 1.1 °C for those months. Anyway, the relevant dynamics of the
temperature variable is captured and the errors are small for the model
purposes.
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Validation

For the validation of the model, a set of 50 days has been used, belonging
to the months from August to December 2019. This data set, presented
in Figure [3.3] shows the entire range of temperatures that can occur in
the year, from the high values of August to the low ones on December.
Due to the scarcity of data and the fact that the temperature maintains
a similar evolution for each day (corresponding to the solar radiation
bell), it has been decided to use a data set for validation that is greater
than the calibration data set. The input data is grouped in 5 months
with 10 consecutive days each, presented in different colors for a better
visualization. The temperature differences are perfect to check the
adaptability of the temperature model and verify that it faithfully
represents the dynamics of the system, regardless of the month. Figure
shows the validation results for the temperature model, where each
month is represented individually following the same than for the
calibration results. The model follows the dynamics of the culture
temperature in the reactor, with a maximum error of 3.9 °C and an
average error of 0.86 °C. For the entire data set, an RMSE value of 1.03
°C has been obtained.

As in the calibration results shown in Figure the estimated
temperature for the months of August and September adequately
resembles the real temperature of the reactor, with a mean error of 0.5
°C. The results for the month of October during the daytime period are
very satisfactory. However, during the night-time there are certain
discrepancies, increasing the mean error to 0.95 °C. These errors, as the
last plotted day of October, may be due to errors in the measurements of
the input variables or isolated punctual phenomena that affect the
temperature of the reactor. On the other hand, the months of November
and December have a greater error (mean error of 1.15 °C) in the
estimation, although the dynamics resembles the real temperature and
the results are adequate.
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Figure 3.4: Temperature validation results. Every individual color plot
represents ten consecutive days for the selected months from August to
December. Solid line represents estimated temperature while dashed line
represents real reactor temperature.

Discussion

The error obtained in Figures and denotes a promising accuracy
in the model obtained from thermal balances. From the biological point
of view, the error related to the estimated and the actual temperature
would not be a problem according to the global process dynamics. The
model is able to accurately represent the temperature during the whole
day. However, notice that in some days the error is larger than in others.
These mismatches may be due to the existence of non-measurable terms
or disturbances that have not been contemplated in the thermal balances,
such as punctual errors in the measurements, irregular operations in the
reactor or the temperature of dilution medium. On the other hand, the
calibration by means of genetic algorithms allows to obtain specific values
of parameters used in the equations that are subjected to uncertainty, as
they are in lumped-parameters representations of balances that should
require distributed parameter representations and, thus, are usually
difficult to obtain from tables. In general, the results obtained have been
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positive and notable for the use of the model in the development of
microalgae growth models where its dynamics and other parameters such
as productivity, performance, consumption of COs, and evolution of pH
are estimated.

The environmental conditions depend on the weather and can be very
different from one season to another. This fact has been taken into account
in the calibration of the model so that it can adjust to all the environmental
conditions of each month, without changing the parameters or increasing
the model complexity. On the other hand, being a model designed for
all months of the year, there are certain errors due to a generalization of
parameters, but a tradeoff between performance and complexity has been
found.

The temperature estimation is really useful in the microalgae
production process. The temperature model can be combined with
existing microalgae biomass production models to add the effect of
temperature on growth and thus making more accurate and complete
microalgae production models. On the other hand, temperature
estimation can be used as a design tool when installing a reactor in a
determined location. From the growth productivity model and the
environmental conditions, it is possible to estimate the temperature of
the culture for a reactor in that area and establish its maximum biomass
productivity or the microalgae strain viability. In this way, it is possible
to assess the suitability to install a raceway reactor in any specific area or
establish different microalgae cultures depending on the season.
Moreover, it can also be used to design control algorithms to optimize the
reactor temperature.

3.2 Combined microalgae biomass production
process and wastewater treatment

The combination of microalgae biomass production processes and
wastewater treatment is an innovative goal that poses several challenges.
On the one hand, wastewater has a number of components that affect
microalgae growth. On the other hand, in addition to microalgae, new
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microorganisms are introduced into the reactor, such as nitrifying and
heterotrophic bacteria, which compete for the consumption of some
common nutrients.

That is why the study and analysis of the behavior of each species in
this new process, as well as the control of the nutrients on it, becomes
evident. The diversity in the composition of the wastewater and the
difficulty in measuring bacterial populations are the main obstacles to
overcome [7§].

In collaboration with a researcher from the IFAPA center and using a
biomass growth and production model for this combined process, a
calibration of its characteristic parameters has been carried out [79]. This
model represents the influence of the nutrients and compounds present in
the wastewater on the growth of microalgae and bacteria. The model is
made up of a series of parameters, some of which are known for their
value in a certain range. This fact highlights the need for an adequate
calibration process to determine the value of these parameters. From
experimental data and through genetic algorithm calibration, the value of
the model parameters has been determined, making it possible to use it
in the estimation of all the compounds that form the combined biomass
production and wastewater treatment process.

3.2.1 Photosynthesis process

The combined process of production of microalgae biomass with
wastewater treatment introduces the bacteria as new organisms present
in the photobioreactor. Bacteria grow independently of microalgae and
are related in various processes, especially in the consumption of
nutrients present in wastewater. Microalgae and bacteria growth depends
on solar irradiance, temperature, pH, dissolved oxygen and nutrients
present in the culture medium. Figure presents a diagram of the
photosynthesis process on a laboratory scale.

During the photosynthesis process, the microalgae grow, fixing
inorganic carbon (CO2 and HCOg3), consuming substrates present in the
wastewater (NHy, NO3, POy and SO4) and producing oxygen. On the
other hand, from the oxygen produced by the microalgae, the
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Figure 3.5: Microalgae and bacteria photosynthesis process scheme.

heterotrophic bacteria (Xggr) oxidize the biodegradable soluble organic
matter (BSOM) and the nitrifying bacteria (Xyrr) carry out the
nitrification process.

As a result of the activities of the microalgae, the concentration of
hydroxide anions (OH™) and the pH increase. Due to this process, the
bicarbonate-carbonate equilibrium shifts, increasing the production of
carbonate (COs), which causes the volatilization of ammonium (NHy)
and the precipitation of phosphorus.

Moreover, during the oxidation of organic matter, the carbon dioxide
(CO2) produced is used for the photosynthesis and nitrification processes.
The nitrification process consists of two phases: first, ammonium oxidizing
bacteria convert ammonium to nitrite (NOg), and then nitrite oxidizing
bacteria convert nitrite to nitrate (NOs). This transformation releases
hydrogen ions in the process. Both species are considered as a group of
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nitrifying bacteria.

In darkness, both bacteria and microalgae release COgy through
oxidation of organic matter and endogenic respiration, respectively. This
release of COq increases the concentration of hydrogen ions (H'), which
causes a drop in pH and the bicarbonate-carbonate balance shifts in the
opposite direction, converting carbonate into bicarbonate (HCO3).

3.2.2 Combined specific growth rate model

The combined biological model for wastewater treatment has been
developed considering the main microalgal and bacterial processes which
occur simultaneously in the microalgae-based wastewater treatment.

This model, which is based on the initial dynamic models presented
in [78], has been evaluated and validated from two sets of experimental
data considering the effects of the different elements on the growth rate
and respiration of microalgae-bacteria consortium, distinguishing between
the activity of microalgae, the activity of heterotrophic bacteria and the
activity of nitrifying bacteria, considering the methodology set out by
Sanchez Zurano et al. in [77].

This biological model was improved considering the influence of the
CO4 and nutrients (NHy, NOs, PO4 and biodegradable soluble organic
matter) in the microalgae and bacteria growth. The influence of these
nutrients has been analyzed in collaboration with a researcher from the
IFAPA center. The combined specific growth model adds new normalized
terms to the specific growth rate model described in Section

The parameters of the model related with the microalgae processes
have been determined experimentally [77], while the bacterial parameters
were obtained from the Activated Sludge Models (ASM). Figure shows
the inputs and outputs of the simulation model developed to estimate the
concentration of the different elements involved in the reactor.

The nutrients present in the culture medium affect the growth of the
different species in the reactor. Therefore, the growth rate model for the
two species of bacteria treated in the reactor is presented.
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Figure 3.6: Inputs and outputs of the model.

Microalgae

The microalgae specific growth rate described in Section depends on
PH (Jiaig(pH)), dissolved oxygen (figy(DO)) and temperature (fiqg(Tw)).
With fresh water and fertilizers as a culture medium, nutrients are always
in excess, so they do not limit growth. However, when using wastewater
as the culture medium, the nutrient concentrations change depending on
the type of wastewater and the growth of microalgae and bacteria in the
reactor. That is why it is necessary to include the influence of nutrients as
a limiting factor on microalgae growth. Specifically, the influence of COq
(Faig(CO2)), ammonium (figy (N Hy)), nitrate (fiqg(NOs)) and phosphate
(fraig(PO4)). The complete growth rate of microalgae is described as:

Halg = HMalg (Iav) ' MTlg(TUI) ! MTlg(pH) : /’LTlg(DO) ' uTlg(COQ) : HTlg(NH4)
“ Tlalg(POy)
(3.19)

If ammonium is present in the medium, the microalgae will consume the
nitrogen from the ammonium first. When there is no ammonium present
in the medium, the microalgae consume the nitrogen from the nitrate, so
the specific growth rate would be represented as:
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Halg = ,u/a,lg(lav) . MT/_(](TU)) . IU/T[g(pH) : /’LT]g(DO> . IU/T[g(COQ) . :U/Tlg(NOS)
 Plalg(PO4)
(3.20)

The new factors introduced to the specific growth rate equation are
normalized terms whose value is between 0 and 1. Each term represents
the influence of the element on the microalgae growth. The influence of
carbon dioxide (CO2) is described as:

Xco, + XHcOo,

Kscag+ Xco, + Xucos +

Traig(CO9) = (3.21)

n
X002 COg,alg

Ki,calg

where Xco, [g m™3] is the carbon dioxide concentration in the reactor,
Xucos g m*3] is the bicarbonate concentration in the reactor, Kg c alg
[g m™3] is the microalgae half-saturation constant for carbon, K ¢y g
m 3] is the microalgae inhibition constant for carbon, and NCO,,alg 1S the
microalgae form parameter for carbon.

The influence of ammonium (NHy) is represented as:

XnH,

Tty (N Hy) = (3.22)

n
XNH4 NHy,alg

XNHy + Ks NHyalg + TKiNtyae

where Xnp, [g m™3] is the ammonium concentration in the reactor,
KsNHyalg |8 m~3] is the microalgae half-saturation constant on
ammonium, K7 N#, g |8 m~3] is the microalgae inhibition constant on
ammonium, and Ny, g is the microalgae form parameter for
ammonium.

The influence of nitrate (NOgs) is represented as:

X
Falg(NO3) = NOs

XNognNOSvalg (323)

XNos + KS’N03"119 + K1 ,NOg,alg
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where Xyo, [¢ m~3] is the nitrate concentration in the reactor,
K3 NOsalg |8 m~3] is the microalgae half-saturation constant on nitrate,
K1 NOs,alg [8 m~3] is the microalgae inhibition constant on nitrate, and
NNOs,alg Tepresents the microalgae form parameter for nitrate.

The influence of phosphate (POy,) is represented as:

X
Tlalg(POs1) = o (3.24)

Xpo, + Ks,po,,alg

where Xpo, [g m™3] is the phosphate concentration in the reactor and
K35 poyalg g m*3] is the microalgae half-saturation constant on phosphate.

Heterotrophic bacteria

The specific growth rate for heterotrophic bacteria pupe; has the same
structure as for microalgae, with the difference that it starts from a
maximum base value (fthet maz), that is modified by a series of terms that
represent the influence of the nutrients present in the culture medium on
the growth of heterotrophic bacteria. Specifically, the elements that
affect the growth of hetrotrophic bacteria are temperature (fine: (7)), pH
(Fhet(pH)), dissolved oxygen (finer(DO)), ammonium (fine (N Hy)),
phosphate (Jine;(PO4)) and biodegradable soluble organic matter
(Thet(BSOM)). The specific growth rate for heterotrophic bacteria is
expressed as:

Hhet = Hhet,max W(Tw) ' M(pH> ' %(DO) ' W(NHZL)
*Fhet(PO4) - [inet(BSOM)
(3.25)

where  fihet maz [day~!] is the maximum specific growth rate for
heterotrophic bacteria.
The temperature and pH factors are based on a cardinal model, so

they are identical to those expressed for microalgae in (1.5) and (1.6).
These factors depend on the maximum (Trezhet and pHyap het),
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minimum (Tynin het and pHopin het) and optimal (Topener and pHopt pet)
values of temperature and pH for heterotrophic bacteria:

_ Nhet,T

T ) =
:U'het( w) Dhet,T

where

Nhet,T = (Tw - Tmaw,het) : (Tw - Tmin,het)2
Dhet,T = (Topt,het - Tmin,het) : ((Topt,het - Tmm,het) : (Tw - Topt,het)_

_(Topt,het - Tma:p,het) : (Topt,het + Tmin,het -2 Tw))
(3.26)

and

Nhetptt

het(PH) =
l’l’ et( ) Dhet’pH

where

Nhetprr = (PH — pHunag het) - (PH — DPHyin het)?
Dhyet,prr = (PHopt,het — PHmin het) - (0Hopt het — PHminhet) - (PH — pHopt het) —
—(PHopt,het — PHmaz,het) - (PHopt het + PHomin het — 2 - DH))
(3.27)

The influence of dissolved oxygen (DO2) is expressed as:

DOy
K5 Doy het + D02

Lhet(DO) = (3.28)
where Kg po, het |8 m~3] is the heterotrophic bacteria half-saturation
constant for dissolved oxygen.

The influence of ammonium (NHy) is represented as:

. XNH,
T (NHy) = 3.29
Finet ) XNHy + K5 NH, het (3.29)
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where Kg NH, het |8 m~3] is the heterotrophic bacteria half-saturation
constant for ammonium.
The influence of phosphate (POy) is represented as:

XPO4
Xpo, + Ks.poy het

Fhet(PO4) = (3.30)

where Kg po, het |8 m~3] is the heterotrophic bacteria half-saturation
constant for phosphate.

The influence of biodegradable soluble organic matter (BSOM) is
represented as:

XBsom
XBsom + Ks BSOM,het

Thet(BSOM) = (3.31)

where Kg psom het |8 m~3] is the heterotrophic bacteria half-saturation
constant for the biodegradable soluble organic matter.

Nitrifying bacteria

The specific growth rate of nitrifying bacteria png, as heterotrophic
bacteria, depends on a maximum growth rate value (nitmas), Which is
modified by different factors. These terms represent the influence of the
elements on the growth of nitrifying bacteria, which are temperature
(Finit(Tw)), PH (Fnit(pH)), dissolved oxygen (finiz(DO)), carbon dioxide
(Tinit(CO2)), ammonium (fi,(NHy)) and phosphate (fin;(POy4)). The
following equation represents the nitrifying specific growth rate:

Hnit = Hnit,max M(Tw) : W(pH) M(DO) M(Coz)

Tt (N Hy) » Tinig (POy)
(3.32)

where fnit max [day—!] is the maximum specific growth rate for nitrifying
bacteria.
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The influence of temperature and pH is the same as for microalgae and
heterotrophic bacteria. These factors depend on the maximum (Ty,4z nit
and pHmam,nit)y minimum (Tmin,nit and pHmm,m't) and optimal (Topt,nit
and pHopt nit) values of temperature and pH for nitrifying bacteria. They
can be expressed as:

Nyt T

he T; =
H t( U) Dm’t,T

where

Nopit,r = (T — Trnawnit) - (T — Trninnit)?
Dyt = (Toptmit — Tminnit) - (Toptnit — Tminnit) - (Tw — Topt,nit) —
—(Toptmit — Trmaz,nit) - (Toptnit + Tminmit — 2 - Tw))
(3.33)

and

Nnit,pH
Dyt pr

Fet(pH) =

where

Nyitprr = (PH — pHuaz nit) - (PH — pHomin nit)*
Dyt prr = (PHopt nit — PHminmit) - (0Hopt,nit — PHminnit) - (0H — pHopt,nit)—
—(pHoptnit — PHmaznit) - (0Hoptnit + PHminnit — 2 - pH))
(3.34)

On the other side, the influence of dissolved oxygen (DOgz) is
represented as:

DO,
(DO2 + Ks,005,nit) - (1 + g7mo>—)

2,nit

Tmit(DO) = (3.35)

where Kgpo,nit |2 m~3] is the nitrifying bacteria half-saturation
constant for dissolved oxygen and Ky po,nit |8 m~3| is the nitrifying
bacteria inhibition constant for dissolved oxygen.
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The influence of carbon dioxide (CO2) is expressed as:

Xco, + XHCO,

Tt (CO9) =
Auir(CO2) Ks cnit + Xco, + XHCO,

(3.36)

where Kgcnit [g m~3] is the nitrifying bacteria half-saturation constant
for carbon.
The influence of ammonium (NHy) is represented as:

XNH,
XNHy + Ks NH, it

Prit(N Hy) = (3.37)

where Kg NH, nit |8 m 3] is the nitrifying bacteria half-saturation constant
for ammonium.
The influence of phosphate (POy) is represented as:

XPO4
Xpo, + Ks,poy nit

Hnit(POy4) = (3.38)

where Kg po, nit | m~3] is the nitrifying bacteria half-saturation constant
for phosphate.

Table of parameters

Tables and list all the parameters described for the growth
rates developed above. The values of these parameters have been obtained
experimentally and from the literature [84] [86].

3.2.3 Biomass production process mass balances

All the mass balances involved in the reactor during the biomass
production process are described below, using wastewater as culture
medium. These balances have been used as a model to estimate the
concentrations of each element present in the reactor.
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Parameter Description Value Unit
Microalgae
Halg,maz Maximum specific growth rate 1.591 day~!
I Minimum light needed by the microalgae 168 JE 2 s
to achieve maximum photosynthesis
n Form parameter 1.640
Trnaz,alg Maximum microalgae temperature 48.960 °C
Tonin,alg Minimum microalgae temperature 3.370 °C
Topt,alg Optimum microalgae temperature 25 °C
PHpmazalg | Maximum microalgae pH 12.900 -
PHpnin,alg Minimum microalgae pH 1.800 -
PHoptalg Optimum microalgae pH 8.500 -
DO2maz,alg | Maximum dissolved oxygen 356 %
m Dissolved oxygen form parameter 4.150 -
K, Dissolved oxygen form parameter 0.100 m? g1
Mimaz,alg Maximum microalgae respiration rate 0.276 day~!
Momin,alg Minimum microalgae respiration rate 0.010 day~!
Tk Maximum light needed by the microalgae to achieve 134 JE m? 51
maximum photosynthesis during respiration
Nres Form respiration parameter 1.390 -
Kscalg Microalgae half-saturation constant for carbon 0.004 gm™3
Kicaly Microalgae inhibition constant for carbon 120 gm™3
nCalg Microalgae form parameter for carbon 2 gm™3
Kgs NHyalg | Microalgae half-saturation constant for ammonium 1.540 g m~3
K7 NH,ag | Microalgae inhibition constant for ammonium 571 g m™3
NN Hy,alg Microalgae form parameter for ammonium 2 g m3
K5 N0s,a1g | Microalgae half-saturation constant for nitrate 2.770 gm™3
K1 NOs,alg | Microalgae inhibition constant for nitrate 386.600 gm™3
NNOs,alg Microalgae form parameter for nitrate 2 gm™3
K po,,alg | Microalgae half-saturation constant for phosphate 0.430 gm™3

Table 3.3: Specific growth rate nutrients model parameters for microalgae.
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Parameter Description Value | Unit

Heterotrophic bacteria

Hhet,maz Maximum heterotrophic bacteria specific growth rate 1.235 (lay"l
Tnaz het Maximum heterotrophic bacteria temperature 47 °C
Tonin, het Minimum heterotrophic bacteria temperature 9 °C
Topt,het Optimum heterotrophic bacteria temperature 36 °C
PH oz het Maximum heterotrophic bacteria pH 12 _
PHpmin het Minimum heterotrophic bacteria pH 6
PHopt het Optimum heterotrophic bacteria pH 9 -
K poyhet | Heterotrophic bacteria half-saturation constant for dissolved oxygen | 1.980 | g m~3
Ks NHy het Heterotrophic bacteria half-saturation constant for ammonium 0.050 | g m~3
K5 POy, het Heterotrophic bacteria half-saturation constant for phosphate 0.010 | gm™3

Heterotrophic bacteria half-saturation constant . _3
K Bsom—het ) ) 20 | gm™
for biodegradable soluble organic matter

Table 3.4:  Specific growth rate nutrients model parameters for
heterotrophic bacteria.

Parameter Description Value | Unit

Nitrifying bacteria

Hnitmaz Maximum nitrifying bacteria specific growth rate 0.730 day~!
Tnaz nit Maximum nitrifying bacteria temperature 49 °C
Toninnit Minimum nitrifying bacteria temperature 0 °C
Topt,nit Optimum nitrifying bacteria temperature 33.600 °C
PHmaz,nit Maximum nitrifying bacteria pH 13.500
PHoin it Minimum nitrifying bacteria pH 2 -
PHopt mit Optimum nitrifying bacteria pH 9.700 -
Kgs po,nit | Nitrifying bacteria half-saturation constant for dissolved oxygen 1.080 | gm™3
K1,p0,mit | Nitrifying bacteria inhibition constant for dissolved oxygen 104.900 | g m—3
Ks cnit Nitrifying bacteria half-saturation constant for carbon 0.500 | gm™3
Ks NH,nit | Nitrifying bacteria half-saturation constant for ammonium 1 gm™3
Ks poynit | Nitrifying bacteria half-saturation constant for phosphate 0.010 | gm™3

Table 3.5:  Specific growth rate nutrients model parameters for
heterotrophic bacteria.
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Microalgae

Microalgae biomass grows inside the reactor and it is not present in the
inlet wastewater medium. The evolution of the microalgae biomass
concentration within the reactor is described as:

dCy
V‘Cb.ﬂalg:Qh.Cb—"_V‘W (339)
where V' [m?] is the volume in the reactor, C, [g m~3] is the microalgae
biomass, falg [day~1] is the specific growth rate for microalgae and Qj, [m3

s71] is the outlet flow rate or harvesting flow rate.

Heterotrophic bacteria

Heterotrophic bacteria consume organic matter and are present both in
the reactor and in the inlet wastewater medium. Its evolution is expressed
as:

dXhet,out

Qa- Xhet,z'n +V- X}Let,out het = Qp Xhet,out +V- dt

(3.40)
where Q4 [m? s71] is the inlet medium flow rate or dilution flow rate, Qp,
[m3 s~!] represents the outlet flow rate or harvesting flow rate, Xhet,in
[g m™3] is the inlet heterotrophic bacteria concentration, Xper our [g m ™3]
is the outlet heterotrophic bacteria concentration and ppe [day 1] is the
specific growth rate for heterotrophic bacteria.

Nitrifying bacteria

Nitrifying bacteria are responsible for nitrification, that is the conversion
of ammonium to nitrate.  These microorganisms are composed of
ammonium oxidizing bacteria and nitrate oxidizing bacteria. They are
produced by aerobic growth and are present both in the reactor and in
the inlet wastewater medium. The evolution of the nitrifying biomass is
described as:
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anit,out

Qd . Xnit,in +V- Xnit,out * Uit = Qh : Xm't,out +V- dt

(3.41)
where Xpitin | m~3] is the inlet nitrifying bacteria concentration, Xnit,out
[g m~3] is the outlet nitrifying bacteria concentration and g, [day '] is
the specific growth rate for nitrifying bacteria.

Ammonium nitrogen

The ammonium nitrogen (NHy) enters with the wastewater inlet medium
and is consumed by the nitrifying bacteria. Also, it is assimilated during
the growth of microalgae and heterotrophic bacteria. The evolution of
ammonium within the reactor is expressed as:

NH,
Qad - XNHyin = Qn - XNHyout +V - (Cb * falg - Yeon { alg ] +
NH4} ) v dXNH4 out

nit

NHy
het

+ Xhet,out * Hhet * Yeon [ :| + th out * Mnit * Yeon [

(3.42)

where Xnp, in |8 m~3| is the inlet ammonium concentration, XNHy out
[g m~3] is the outlet ammonium concentration, Y., [1\;{; ] lent, Satg™ ']

is the ammonium consumption rate from microalgae, Ycon [?ﬂ lenm,
Ehet 1] is the ammonium consumption rate from heterotrophic bacteria,
and Y., [ mt‘*] l[enm, gnit '] is the ammonium consumption rate from
nitrifying bacteria.

Nitrate nitrogen

Nitrate nitrogen (NOgs) is produced by nitrifying bacteria during
nitrification, and 1is assimilated by microalgae in the absence of
ammonium. It can enter the reactor from inlet wastewater medium, but
in small concentrations. The evolution is described as:
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NOs
} Qn - XNO3,out+
nit

N03 dXNO3 out
i) V. A Ysout
alg }) + dt

Qa- XNOg,in +V. XNOg,out  Mnit - }/gen |:

+V- <Cb * Halgae * Yeon |:
(3.43)

where X N0, in (g m ™3| is the inlet nitrate concentration X Nog,out [g m~?
is the outlet nitrate concentration, Yy, [ it ] lgNOs nit™ ] is the nitrate

generation rate from nitrifying bacteria, and Y, [%Og?’} [gnvo, galgil] is

the nitrate consumption rate from microalgae.

Phosphate

Phosphate phosphorus (POy4) enters into the reactor from inlet
wastewater medium and is assimilated during growth of microalgae,
heterotrophic bacteria and nitrifying bacteria. The evolution of
phosphate can be expressed as:

PO
Qd . XPO4,in = Qh . XPO4,out +V. (Cb * Halg * YPCO” {794} +
POy PO, V. m

+ Xhet,out * Hhet * Y;:on l: :l + th Jout * Hnit * Y—con |:

(3.44)
where Xpo, in g m~3] is the inlet phosphate concentration, X PO4out |8
m~3] is the outlet phosphate concentration, Yeon [P;TO;} lgro, galg_l] is

the phosphate consumption rate from microalgae, Yc(m[ het] lgro,
ghet 1| is the phosphate consumption rate from heterotrophic bacteria,
and Y., [ mt} lgPo, 8nit 1] is the phosphate consumption rate from
nitrifying bacteria.

Biodegradable soluble organic matter

The biodegradable soluble organic matter (BSOM) is the fraction of the
soluble organic matter directly available for biodegradation by the
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heterotrophic bacteria. It is generated by the death of microorganisms in
the culture and from the inlet wastewater medium. Its evolution can be
described as:

Q4 XBsomyn +V - <Cb “ talg - Ygen {

BSOM
het

BSOM
alg

BSOM
:| + X'rLit,ou,t Mgt * Ytqen |: . :| >
nit

BSOMDH/.M

+ Xhet.,out * Mhet * Ygen [

= Qh . XBSO]\I,out +V- <Xhet,out * Mhet * Yeon |:

het dt
(3.45)
where Xpson,in [8 m_3] is the inlet BSOM concentration, Yy [B*ZZOQM}

leBsom galg_l] is the BSOM generation rate from microalgae,

Ygen [B*ng] l[gBsonm Eret '] is the BSOM generation rate from

heterotrophic bacteria, Ygen [B%%M] [eBsom gnit '] is the BSOM
generation rate from nitrifying bacteria, Xpsonout |8 m~3| is the outlet
BSOM concentration, and Y, [B“Z%] l[eBson gret '] is the BSOM

consumption rate from heterotrophic bacteria.

Carbon dioxide and bicarbonate

Carbon dioxide and bicarbonate are in equilibrium in the reactor.
Carbon dioxide is generated by respiration of microalgae, in addition to
being injected into the reactor to control the pH and exchanged with the
atmosphere. It is consumed by microalgae and nitrifying bacteria. The
following equilibrium constants between carbon dioxide, carbonate and
bicarbonate are defined as:

_ XucosJ[H] 0 s3s
K= Xoo,] =10 (3.46)
Ky = [Xcos][H+] — 106381 (3_47)

[(XrCcO0s]
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where H [g¢ m™3] is the concentration of hydrogen ions, which can be
obtained from the pH in the reactor by means of the following formula:

H* =10"PH (3.48)

Assuming a total inorganic carbon concentration (X¢.) of 100 [g m~3]
in the reactor, the concentration of bicarbonate and carbon dioxide can be
obtained from the following equations:

Xnco; = U Xe)
(Ky + H+ + H+?) (3.49)
Xco, = (Knco, HT)
Ky

3.2.4 Calibration and validation results

Although the equations of the growth rate model for all organisms are
well defined, the consumption and generation parameters of nutrients
associated with each species present some uncertainty. The cultivation of
microalgae using wastewater as a medium presents diverse variability in
the model parameters. Depending on the type of wastewater and its
components, the generation and consumption parameters associated with
microalgae and bacteria may vary. This fact raises the need for a model
that allows adapting its parameters for each situation. Therefore, a
calibration method is presented using genetic algorithms that is capable
of estimating the characteristic parameters of the model from
experimental data measured in the reactor.

Calibration

As for the temperature model described in Section [B.17, the genetic
algorithms implemented in Matlab have been used to calibrate the model
parameters. The initial population has been of 50 phenotypes, with a
condition of completion of 50 generations. The cost function is computed
as the Root Mean Square Error (RMSE) between the simulated organism
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and nutrients (total biomass, ammonium, nitrate, phosphate and BSOM)
and the real measured values, expressed as the following equation:

(\Ji st~ it >>2) . (Ji (Xt (i) X, i )>2> N

i=1 i=1

+ (\j i (X]\()s z( ) NXN()Zamat(i))Q) " (J il (XP()A,est(i) NXPO'erl(Z‘))Q) .
+ (\j ZA: (XB5OM.. (1) NXBSOWT az(l))2>

(3.50)

where Cbiotar,., [& m™>] is the estimated total biomass concentration
(microalgae + heterotrophic bacteria + nitrifying bacteria), Cbiotai,.,, |8
m~3] is the experimental total biomass concentration measured. The
other parameters also describe the difference between the estimated
concentration and the experimentally measured one for each element. N
represents the size of the data vector.

The estimated calibration parameters are related to the maximum
growth rates for each microorganism and the coefficients of generation
and nutrient consumption. Table lists the description of all the
calibration parameters, as well as the values obtained as a result of the
calibration process.

In addition to the parameters described in the table, through this
calibration process, it is possible to estimate the percentages of each
species in the reactor. The experimental measurement of the
concentration for the species of bacteria is something complex to carry
out and highlights the need for a simple way of being able to estimate the
percentages of each species within the reactor. Therefore, for both the
calibration and validation data, the genetic algorithm method will be
used to determine the initial percentages of each species. In this way, the
calibration process acts as a tool to estimate the percentages of
microalgae and bacteria involved in the reactor from the measurements of
total biomass and nutrients in it.

The data used during the calibration process correspond to the
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experimental measurements taken for a 0.7 L laboratory scale reactor for
14 consecutive days. The reactor operating conditions are equivalent to
the operation of a raceway reactor,
In addition, pH and dissolved oxygen are
Figure represents the

experimental data measured, which correspond to measurements of

with light and dark cycles
representing day and night.
controlled by injecting COg and air.
irradiance, pH, dissolved oxygen and temperature. Moreover,
measurements of total biomass dry weight (microalgae, heterotrophic
of nutrients

bacteria and nitrifying bacteria) and measurements

(ammonium, nitrate, phosphate and BSOM) are represented.

Symbol Parameter Value Unit
alg,maz Microalgae maximum growth rate 1.591 day ™!
het,maz Heterotrophic bacteria maximum growth rate 1.235 day™!
it maz Nitrifying bacteria maximum growth rate 0.730 day~!
Mimin,alg Microalgae endogenous respiration minimum rate 0.010 day ™!
Mmaz,alg Microalgae endogenous respiration maximum rate 0.276 day™!
Yeon AZLZ“ Ammonium consumption rate from microalgae 0.369 SNH, g,llg_l
Yeon % Nitrate consumption rate from microalgae 0.214 ENO3 gu/g_l
Yeon I:%‘ Phosphate consumption rate from microalgae 0.008 gPO, galg‘l
Ygen [B‘ZgM ] BSOM generation rate from microalgae 0.148 | gesom g,,lg_l
Yeon [\}’LZ"} Ammonium consumption rate from heterotrophic bacteria | 0.299 SNH, Shet !
Yeon [ };E } Phosphate consumption rate from heterotrophic bacteria 0.017 PO, ghef]
Ygen [B‘ZS 1 } BSOM generation rate from heterotrophic bacteria 0.153 | gBSOM Zhet *
Yeon [ 52 } BSOM consumption rate from heterotrophic bacteria 0.478 | gBSOM Zhet *
Yeon [AWZ } Ammonium consumption rate from nitrifying bacteria 3.224 SNHy g,,,,;f]
Ygen [Z\L(L)ﬂ Nitrate generation rate from nitrifying bacteria 0.355 gNOs Cnit L
Yeon [F: ;,%1} Phosphate consumption rate from nitrifying bacteria 0.182 N St -
Ygen [BqutM} BSOM generation rate from nitrifying bacteria 0.149 | gBsoM Znit

Table 3.6:

Calibration parameters for the combined microalgae and

bacteria model.

Figure

independent graphs that represent different variables estimated in the

represents
estimation of the model variables.

the calibration results

obtained

in the
This figure is made up of six
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model. Figure [3.8la shows the percentages of each species of
microorganisms within the reactor. Figure [3.8|b represents the biomass
concentration for each organism in the reactor (microalgae, heterotrophic
bacteria and nitrifying bacteria), in addition to the total biomass
concentration, expressed as the sum of the individual concentrations and
the representation of the experimental measured points. Figure [3.8|c
represents the estimated phosphate concentration and the experimental
measured points. Figure [3.8ld shows the estimated ammonium
concentration and the experimental measurements points taken. Figure
[3-8le represents the estimated nitrate concentration and the experimental
measured points. Finally, Figure [3.8lf represents the estimated
biodegradable soluble organic matter concentration, compared with the
experimental measurements points taken.

As a result of the calibration, initial percentages of 82.1% for
microalgae, 13.2% for heterotrophic bacteria and 4.7% for nitrifying
bacteria have been established. Looking at Figures [3.8la and [3.8]b, it is
observed how the concentration of microalgae decreases until reaching a
steady state. On the other hand, the concentration of heterotrophic
bacteria grows slightly, consuming ammonium and organic matter, while
the concentration of nitrifying bacteria remains practically constant. The
sum of the concentrations of each species represents the total biomass
concentration (dashed line), which properly adjust to the points
measured experimentally in the reactors described in Section [2.2.2]

Although the experimental data for nutrients (phosphate, ammonium,
nitrate and BSOM) are very scattered, a certain trend is observed for them.
The estimated values for each element represented in Figures [3.8|c, [3.8]d,
B-8le and [3.8]f fit correctly within the range that make up the experimental
data.

Validation

The validation data used to verify the value of the parameters obtained
during the calibration process come from the experimental measurements
of another vessel reactor, operated in parallel with the vessel used for
calibration. These data collect the experimental measurements for 14 days,
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represented in Figure|3.9]

For the validation process, calibration using genetic algorithms has
been used to determine the initial percentages of microorganisms in the
reactor. In this way, it is possible to estimate the starting point for the
concentration of microalgae and bacteria. In this case, the initial
percentages obtained were 85% for microalgae, 12.6% for heterotrophic
bacteria and 2.4% for nitrifying bacteria, very similar to the percentages
obtained during the calibration test. From this initial point, the
concentration of all the elements in the reactor has been estimated and
compared with the points measured experimentally, represented in Figure
B.10

Figures [3.10}a and B.I0[b represent a trend in biomass concentrations
similar to those obtained during calibration. The concentration of
microalgae decreases to steady state, while the heterotrophic bacteria
grow slightly and the nitrifying bacteria remain constant. The total
concentration correctly resembles the trend shown by the measured
experimental points.

The estimation of the phosphate concentration (Figure[3.10]¢) shows an
increasing trend, slightly away from the center of the measurement points.

However, the estimation is within the range of the experimental values.
The concentration of ammonium (Figure [3.10]d) maintains a good trend
within the established range, as does the estimated nitrate concentration
(Figure [3.10]e). Finally, the BSOM estimation (Figure [3.10}f) shows a
trend similar to the calibration results, within the experimental points.

Discussion

The results obtained from the comparison between the estimated values
with respect to the measured experimental data have been satisfactory.
The concentrations of the elements are adjusted within the range formed
by the measurement points, despite being scattered data. The percentages
of microalgae and bacteria within the reactor over time show values close
to those obtained in the literature.

The complexity in measuring individual concentrations of each species
highlights the need for a reliable estimation method. Due to the calibration
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using genetic algorithms, it is possible to estimate the percentages of each
microorganism in the reactor. From experimental data, the model allows
the determination of the initial percentages of each element and estimate
its evolution over time. In this way, the model can act as a simulator to
predict the behavior of organisms based on the concentrations of nutrients
present in the reactor medium. This model and the calibration parameters
obtained will serve as the basis for the development of simulation models
where the production of microalgae biomass is combined with wastewater
treatment.

3.3 Raceway reactor model improvement

For the simulation results developed in Chapter (Section , a
dynamic model of microalgae production in raceway reactors has been
used. It was originally developed by Fernandez et al. in [31]. The model
is based on fundamental principles instead of empirical equations and
takes into account mass balances, thermodynamic relationships and
biological phenomena. This model can be used to predict the evolution of
the main reactor variables, such as biomass concentration, pH and
dissolved oxygen. It has been -calibrated and wvalidated wusing

2 pilot-scale raceway reactor. As an

experimental data from a 100 m
improvement to this model, various changes have been made to the

equations and balances it contains. Two main changes stand out:

e Modification of the photosynthesis rate model to reflect the latest
contributions presented in the literature [15] 85].

e Implementation of the temperature model described in Section
to add the effect of temperature on the growth of microalgae.

e Implementation improvements that make the simulation flow 10
times faster.
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3.3.1 Photosynthesis rate update

The microalgae culture growth is modelled as a function of the
photosynthesis rate, that represents the production of oxygen per unit of
biomass. The main parameter that determines the photosynthesis rate is
the available light (presented in ((1.4])), which is based on different
parameters such as solar irradiance, culture characteristic, and reactor
design [2]. The photosynthesis rate is modelled with the available light
by the following equation [41]:

Pou(t)— (1 ). - Fomma Tanl0)" .(1 ([DOﬂ(t))mDo). .

. Ike(lm,(t)-m,]) + Iav(t)n KIA,DO%alg
(5rchy) (355)
.(Bl.e PH(t) fBZ.e PH(t) )fO[S.RO2

where Pp, [day!] is the photosynthesis rate, as [-] is a solar distributed
factor that represents the shadow projection on the perpendicular axis of
the reactor walls, Po, ... [day~1] is the maximum photosynthesis rate for
microalgae under culture conditions, I, [pE m~2 s71] is the light
availability inside the reactor, n [-] is the form exponent, I}, [uE m~2 s7]
is the minimum light needed by the microalgae to achieve maximum
photosynthesis, m; [-] is a form factor for the exponential function of
average irradiance, DOy [%)] is the percentage of dissolved oxygen in the
reactor, K1 po,.alg |8 m~3] represents an inhibition microalgae constant
for dissolved oxygen and mpo |[-] is a dissolved oxygen form parameter.
Furthermore, By [-] and By [-] are pre-exponential factors for the pH
influence on the photosynthesis rate, and C; [-] and Cy [-] are the
activation energies of the Arrhenius model. Rp, [day~!] is a respiration
constant that represents the respiration phenomenon.

The initial formulation for the photosynthesis rate was made from
calibration and from parameters that represent the influence of pH and
oxygen on the growth of microalgae, in addition to a solar distributed
factor. New models have emerged to represent the photosynthesis rate, as
is the case of the model described by Solimeno et al. or Bernard et al. in
[15] 85]. As an improvement of the biomass production model in raceway
reactors, the initial photosynthesis rate has been changed for a more
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updated version, represented by the following formula:

Fo, = Fo,(lav) - Fo,(Tw) - Fo,(pH) - Po,(DO) (3.52)

The photosynthesis rate has the same structure as the specific growth
rate described in Section [I.2] being equivalent representing the growth of
microalgae biomass. The oxygen production rate (Po,(I4)) represents
the production of oxygen based on solar irradiance. The temperature
(Po,(Tw)), pH (Po,(pH)) and dissolved oxygen (Po,(DO)) factor terms
are the same as those described in , and , and are
equivalent to Tigiy(Tw), flaig(PH) and figy(DO). The photosynthesis rate
is directly related to the specific growth rate from a coefficient of relation
between the production of oxygen and the biomass, expressed as follows:

P02 (Iav) = Halg - Y, (353)

where Pp, [day™!| is the photosynthesis rate, pq, [day™!] is the specific
growth rate and Y, = 1.33 [] is the relation between the production of
oxygen per unit of biomass.

The oxygen production rate (Po,(Iav)) can be expressed as in (1.2),
but using the maximum value of the photosynthesis rate (Po,,,..),
instead of the maximum specific growth rate (fmqeza1g). This is due to
the relationship between oxygen production and growth rate, because
biomass growth is expressed by the Monod model [51]:

I n
POQ = POQ,'maz ’ (W) (354)
av

In addition to the new photosynthesis rate model, the temperature
model for raceway reactors described in Section has been
implemented, so that the culture temperature can be estimated and
applied to the temperature index Po,(Ty,)-
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3.4 Conclusions and contributions

In this chapter, different modeling approaches related to the microalgae
growth have been developed, such as a temperature estimation model for
raceway reactors and a new growth model where the concentrations of
nutrients in the microalgae and bacteria culture are taken into account.
The objective of these models is to improve the dynamic models of biomass
production so that they faithfully represent the processes carried out within
the reactor. In this way, models can be made that act as simulators or
estimators of the parameters involved in the process.

The description of the combined model of biomass production and
wastewater treatment has been introduced. The calibration carried out
by means of genetic algorithms opens the door to a simple method of
adjusting the various parameters that make up the model, so that it can
be recalibrated from experimental measurements of different medium and
culture scenarios, since the concentration of nutrients varies from one
type of medium to another.

On the other hand, the results of the dynamic temperature evolution
obtained from the temperature model show satisfactory performance that
closely resemble the actual temperature values, measured in the reactor.
The great impact of temperature on the productivity of microalgae has
been demonstrated in the literature and, therefore, this type of models has
a fundamental role in the development of new and more complete models
of microalgae that allow us to fully understand all the parameters that
affect its growth.

The use of industrial scale models that take into account all the
variables affecting the microalgae growth is scarce in practice, and thus,
this temperature model aims to complement the use of more complete
models that allow the development of precise evaluation applications in
the field of microalgae, such as optimal reactor control, variable impact
studies, performance improvement or parameter estimation.






CHAPTER 4
Indirect regulation of
temperature

Temperature and irradiance are the two most relevant factors determining
the performance of microalgae cultures in raceway reactors. Moreover,
inadequate temperature strongly reduces the biomass productivity in these
systems even if enough sunlight is available. Controlling the temperature
directly in large raceway reactors is considered unaffordable because of the
large amount of required energy. This chapter presents a study of the
influence of temperature and culture depth on biomass productivity, in
addition to an indirect method for temperature regulation in microalgae
raceway reactors by optimizing the culture depth.

The structure of this chapter is as follows: Section shows the effect
of the liquid depth on the culture temperature inside the reactor. The
optimization control problem approach is detailed in Section .2 while
simulation and experimental results are presented in Sections and
Finally, conclusions are drawn in Section

4.1 Temperature and depth studies on microalgae
growth

The temperature of the culture in the reactor is a very important factor
in the microalgae biomass productivity. It is possible to find in the
literature multiple studies and tests regarding the characterization of
various microalgae and bacteria strains under different temperature
conditions.

This section presents various studies on the influence of temperature on
the growth of microalgae and their biomass productivity. In addition, the
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variation of the culture temperature is shown as a function of the depth
of the culture, which affects the volume of liquid in the reactor. These
studies serve as design and evaluation tools to analyze different strains
and locations in order to determine the suitability for biomass production.

4.1.1 Culture temperature influence on microalgae growth

Using the temperature model developed in Section an analysis on
how temperature influences on microalgae growth has been carried out for
five different microalgae strains. For this issue, the temperature-effect on
growth model presented by Bernard et al. in [I5] and described in (1.5]
has been used together with the temperature model described, establishing
a culture depth of 15 cm during the entire analyzed period.

The analysis has been done with representative data of 8 days of each
seasonal period over a year at Almeria, in Spain, characterized by
moderate temperatures in summer and in winter. The climate in Almeria
is considered a local steppe climate, with little rainfall. During the course
of the year, the temperature generally varies from 8°C to 30°C and rarely
drops below 6°C or rises above 35°C. The objective has been to verify
the influence of temperature on microalgae cultivation for five different
species of microalgae throughout an annual period in this location. These
microalgae species correspond to Dunaliella tertiolecta, Nannochloropsis
oceanica, Chlorella pyrenoidosa and Spirulina platensis, being commonly
used for biomass production at industrial scale, in addition to
Scenedesmus almeriensis, the strain used in the raceway reactor studied
in this thesis. Table presents the characteristic temperature
parameters for each microalgae strain, applied to the temperature index
model and obtained from the literature [8, 5] and experimental tests in
our research group. Despite the fact that the microalgae used in the
reactor is Scenedesmus almeriensis, the temperature model is
independent of the type of strain used, because it is a model to estimate
the culture temperature of a mass of water. The characteristic
temperature parameters for each strain are necessary in the cardinal
model , which in combination with the temperature model, allows to
analyzing its influence for any microalgae strain.
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Microalgae strain Tmin [°Cl  Topt [°Cl  Trmaa [°C]
Scenedesmus almeriensis 12 27 46
Dunaliella tertiolecta 5 32.6 38.9
Nannochloropsis oceanica -0.2 26.7 33
Chlorella pyrenoidosa 5.2 38.7 45.8
Spirulina platensis 7.7 37 50.6

Table 4.1: Microalgae characteristic temperatures for the feasibility study.

Figure represents the analysis carried out for the five types of
microalgae during 8 days for each season of the year. The first five
graphs represent the temperature indexes for each strain, that affects the
microalgae growth. The last graph at the bottom represents the
estimated culture temperature in the raceway reactor for the entire data
set using the temperature model with a fixed culture depth of 15 c¢m.
From the results obtained in the figure, it is possible to establish different
conclusions. The ideal seasons to cultivate the microalgae Scenedesmus
almeriensis, used in the reactor described in Section [2] are the last half of
spring, the summer and the first half of autumn. However, during winter,
the temperature index is practically 0, which denotes zero growth. The
Dunaliella tertiolecta strain is resistant to medium/high temperatures
and with a good temperature index late spring, summer and early
autumn, while its performance can be diminished by the low
temperatures of winter. The microalgae Nannochloropsis oceanica would
not resist the summer period but it shows good results during the rest of
the year, especially in winter, where the temperature index exceeds the
other strains analyzed.  Both Chlorella pyrenoidosa and Spirulina
platensis strains show a good temperature index during the summer
period, together with late spring and the early autumn, as for Dunaliella
tertiolecta, in contrast to practically no growth in winter due to low
temperatures. The results obtained show a clear relationship with the
characteristic values of each strain represented in Table allowing an
estimation of the viability of each strain for the studied location.

The results of the temperature analysis for the cultivation of
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microalgae in Almeria using the temperature model for raceway reactors
have determined that Scenedesmus almeriensis and Dunaliella tertiolecta
microalgae are suitable for production during most part of the year,
especially during summer, due to its high temperature index. Both
Chlorella pyrenoidosa and Spirulina platensis strains are also suitable for
cultivation during the spring, summer and autumn periods, due to a
good temperature index behaviour but less suitable than those described
above. On the other hand, the microalgae Nannochloropsis oceanica is
not capable of withstanding the temperatures reached during late spring
and summer periods, being a microalgae difficult to cultivate in these
periods, but being the most suitable for cultivation in autumn and winter
because it shows the highest temperature index of all the strains for this
seasonal period.

4.1.2 Liquid depth effect on culture temperature

From the dynamic evolution of the temperature described in (|3.17)
(Section [3.1)), it follows that it is possible to indirectly modify the culture
temperature by varying the depth of the liquid in the raceway reactor.
Furthermore, from the specific biomass growth rate model described in
(1.1) (Section , it is assumed that the pH and dissolved oxygen are
controlled at their optimal values all the time. This is possible if
adequate design and operation of the reactor is performed |7} 22] 47, 48].
Therefore, the growth rate only depends on the solar radiation, which
cannot be controlled, and on the culture temperature, which can be
modified by varying the volume of the culture in the reactor.

Figures [4.2] and [£.3] show the variations of the culture temperature on
the reactor as a result of (3.17)), the normalized temperature factor from
, and the biomass productivity from , for different culture
depths and for winter and summer seasons, respectively. The culture
depth was varied from 5 cm to 30 cm. These culture depth ranges have
been considered due to the physical and operating characteristics of the
reactor. Due to the paddlewheel that propels liquid inside the reactor,
the liquid depth cannot be less than 5 cm. On the other hand, reactors,
in general, are operated between 13 - 30 cm, so it has been chosen to take
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30 cm as the maximum depth. As observed, the microalgae growth is
highly affected based on the culture depth modifications. In the figures,
the maximum biomass productivity considering all cardinal factors in
for pH, dissolved oxygen and temperature equal to one is
represented by the dashed line. On the other hand, the estimated
biomass productivity by modifying the temperature factor according to
the culture depth variations and keeping the pH and dissolved oxygen
factors equal to one is represented by solid lines. Table shows the
initial biomass concentration used for each culture depth case, where
these values represent the optimal biomass concentration to operate a
microalgae raceway reactor in continuous mode at different culture
depths. The biomass concentration represents the grams of biomass for
each liter of medium in the reactor, while the biomass productivity will
be used as an indicator to analyze the differences using different
cultivation depths.

Figure 4.2: Temperature and biomass productivity differences by liquid
depth on January. Upper plot corresponds to the culture temperature on
the reactor by . Middle plot represents the temperature index stated
by . Bottom plot refers to the biomass productivity.

Figure represents one day of January, as representative of the
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winter season. The maximum temperature profile is reached with a
culture depth of 5 cm, being the closest to the optimum temperature
(27°C such as described in Table [f.1). In this way, with this culture
depth, the maximum value is reached during the daytime period for the
temperature index and, therefore, the highest value of biomass
productivity. On the contrary, a culture depth of 30 ¢m maintains a
temperature profile with less amplitude, reaching the lowest temperature
value during the daytime period, decreasing the temperature index and,
therefore, the biomass productivity.

Culture [cm| | Biomass concentration [g L™!]
depth January August

5 0.97 2.25

10 0.48 1.12

15 0.32 0.75

20 0.24 0.56

25 0.19 0.45

30 0.16 0.37

Table 4.2: Initial biomass concentration for each culture depth.

Figure represents one day of August, as representative of the
summer season. Unlike Figure 4.2 in this case, the maximum
temperature profile, which occurs also with a culture depth of 5 cm, has
a temperature value above the optimal temperature growth value. For
this reason, the temperature index in this case is the lowest one, causing
a decrease in the biomass productivity. On the other hand, a culture
depth of 30 cm keeps a lower temperature profile, with values closer to
the optimal value, increasing so the temperature index and the biomass
productivity.

These figures demonstrate how the liquid depth affects the culture
temperature on the reactor and, consequently, the growth rate and
biomass productivity. The maximum and minimum values depend on the
season, but they can be modified in a range by changing the culture
depth in the reactor. Thus, an interesting approach results in the
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Figure 4.3: Temperature and biomass productivity differences by liquid
depth on August. Upper plot corresponds to the culture temperature on
the reactor by . Middle plot represents the temperature index stated
by . Bottom plot refers to the biomass productivity.

modification of the liquid volume in the reactor during the daytime
period in order to regulate its temperature and maximize the
temperature index in the biomass productivity, through increasing the

specific growth rate (see (1.1))).

4.1.3 Feasibility study on biomass productivity

From the temperature model described in Section and the
characterization of four new strains, an analysis of the influence of the
culture depth on biomass productivity has been carried out [75]. This
study has focused on four types of microalgae strains that correspond to
Chlorella wvulgaris, Isochrysis galbana, Nannochloropsis gaditana and
Spirulina platensis. The characterization of each strain has been carried
out at the IFAPA center by the research staff, using specific material for
analysis. These strains are commonly grown on an industrial level and
are characterized by a high optimum growing temperature. Table
presents the characteristic parameters obtained experimentally for the
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four types of microalgae strains. These parameters describe the
characteristic temperatures of each strain (Tinaz, Tmin, Topt) and the
characteristic growth parameters: the maximum productivity PO2 mqz,
the form factor n and the minimum irradiance to reach the maximum
photosynthesis rate Ij.

Parameter Chlore1.1a Isochrysis Nannoc.hloropsis Spirulir}a Units
vulgaris galbana gaditana platensis
Traz 49.7 46.1 41.0 50.6 °C
Tonin 6.6 9.7 4.6 7.7 °C
Topt 33.1 33.0 32.0 37.0 °C
PO maz 301 305 139 218 gm~2 day~!
n 2 2 2 2 -
I 228 77 151 110 pEm=2 g1

Table 4.3: Characteristic microalgae strain parameters.

A feasibility simulation study has been carried out with
environmental data, corresponding to all seasons, for each strain of
microalgae presented. The simulation has been based on the dimensions
of an 80 m? raceway reactor, corresponding to that described in Section
Under this approach, 8 characteristic days of each season have
been taken throughout a year, with the aim of analyzing the temperature
and biomass productivity under different cultivation depths, ranging
from 5 c¢cm to 30 cm. For each value of culture depth, the optimal
biomass concentration associated with each season has been used, as
shown in Table £4

Chlorella vulgaris

The Chorella wvulgaris strain is characterized by a high optimum
temperature and high productivity. Its main applications are as a dietary
supplement due to its antioxidant and probiotic properties. Furthermore,
in the industrial field, it shows promising opportunities for biofuel and as
a natural food coloring agent. Figures [4.5] and [4.7) represent the
results obtained for this strain during spring, summer, autumn and
winter, respectively. All the figures are divided into four graphs: a)
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Culture [cm] | Biomass concentration [g L™!]

depth Spring  Summer  Autumn  Winter
5 1.92 2.60 1.29 0.97
10 0.96 1.30 0.65 0.48
15 0.64 0.87 0.43 0.32
20 0.48 0.65 0.32 0.24
25 0.38 0.52 0.26 0.19
30 0.32 0.43 0.22 0.16

Table 4.4: Optimum biomass concentration dependent on culture depth.

Culture temperature, where the culture temperature is represented for
each depth; b) Temperature index, where the temperature index
calculated with is represented; c¢) Ozygen production rate, which
represents radiation-dependent oxygen production (see (3.54)); and d)
Biomass productivity, which represents the biomass productivity
depending on culture depth.

In Figure it can be seen that for cold days, such as the first ones
in spring, the maximum biomass productivity is reached with shallow
depth (5 cm), although it can be detrimental as the temperature
increases throughout the season, as can be seen in the last days, where
biomass productivity decreases. This effect is very representative looking
at the temperature index (Figure d.4]b). From Figure [l.4]c, it can be
seen that all the curves are superimposed one on top of the other. This is
because when the optimal concentration associated with the culture
depth is used, the oxygen production rate is the same, being independent
of the depth at which the reactor is operated.

Summer (see Figure is a critical period for the cultivation of
microalgae, due to possible overheating in the culture, resulting in their
death. In Figure [f.5]a, it can be seen how the culture temperature range
oscillates around the optimum temperature value. With depths of 5 cm,
high temperatures are reached, which decrease biomass productivity. On
the other hand, a cultivation depth of 30 cm keeps the temperature close
to optimal, increasing productivity.
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In autumn, represented in Figure [4.6] the reactor temperature is not
capable of reaching the optimum temperature. So, a 5 cm operation will
raise the culture temperature to the maximum possible, increasing biomass
productivity.

Winter (see Figure is the worst season for the cultivation of
microalgae, due to the low temperatures, which reduce the temperature
index and the biomass productivity considerably. That is why, as in
autumn, a depth of 5 cm increases the temperature, with the subsequent
increase in productivity.

Isochrysis galbana

The microalgae strain [Isochrysis galbana is characterized by a high
optimum temperature, with resistance to high temperatures. However,
its minimum characteristic temperature is also high, making it difficult to
cultivate in cold seasons. Its cultivation is very widespread as feed in the
aquaculture industry. Figures and represent the results
obtained with the depth analysis for the four seasons.

In Figure [4.8] during spring, it can be seen that a culture depth of 5 cm
results in high temperatures, close to the optimum temperature. However,
as the season approaches summer, the temperature increases, and greater
depths increase productivity.

In summer (see Figure , shallow culture depths raise the
temperature above the optimal, reducing biomass productivity. In
contrast, high cultivation depths improve productivity.

During autumn, represented in Figure .10 shallow depths of culture
increase the temperature in the reactor, which does not reach the optimum
temperature, but increases productivity.

During winter (see Figure , as with the rest of the strains, the low
temperatures do not favor the proper cultivation of microalgae. Still, a
shallow depth of 5 cm maximizes productivity at this season.

Nannochloropsis gaditana

For the microalgae strain Nannochloropsis gaditana, despite its high
optimum temperature, its maximum temperature is close to the optimal.
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So, it can be difficult to cultivate in very warm periods or locations. Its
main application is as feed for fish and mollusks. Figures [4.12] [4.13] @.14]
and represent the results obtained with the depth analysis for the
four seasons.

During spring, represented in Figure the behavior is similar to the
rest of the strains. At the beginning of the season, a shallow depth favors
productivity, but as summer approaches, productivity decreases and depth
needs to be increased.

This strain of microalgae is the one with the lowest maximum
temperature of those studied. During the summer period (see Figure
, it is observed how a low culture depth causes such high
temperatures that they result in zero productivity, even being harmful to
the microalgae.

During the autumn and winter (see Figures and4.15)), the behavior
is the same as for the rest of the strains studied. Shallow depths cause high
temperatures that maximize biomass productivity.

Spirulina platensis

The microalgae strain Spirulina platensis is known worldwide for its
multiple applications, being the most widespread for human
consumption. Among other applications are the production of plastics
and alcohols. It is a strain resistant to high temperatures, its optimum
cultivation temperature being also high, which makes it difficult to reach

its maximum productivity. Figures [4.16] [4.17] [1.18] and [4.19] represent the
results obtained with the depth analysis for the four seasons.

This strain is the one with the highest optimal cultivation
temperature. Therefore, for the spring, autumn and winter periods

(represented in Figures [4.16] {.18 and [4.19| respectively), the maximum
productivity is reached with shallow depth (5 cm). On the other hand, in
summer (see Figure , a shallow cultivation depth is also necessary to
increase productivity, but not as low as in the rest of the seasons.
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Discussion

Table shows the average productivity values for each season and
culture depth, obtained for each microalgae strain analyzed, in addition
to the average temperature index during daytime, the period in which
microalgae perform photosynthesis. In red colour, the maximum values
associated with the culture depth are highlighted. Observing the biomass
productivity data, it is noted that the highest values are obtained in
summer, being the ideal time to cultivate this type of strains. On the
other hand, during winter, productivity is very low, being a difficult
period for its cultivation, even lowering the depth in the reactor. It is
possible to appreciate a direct relationship between the temperature
index and biomass productivity, since the maximum values for both
variables occur almost at the same culture depths. Because the optimal
temperatures for all microalgae strains have high values, the highest
average productivity during spring, autumn and winter is reached with
shallow depths of 5 cm. On the other hand, during the summer, the
maximum productivity is reached with depths between 25 and 30 cm,
due to the high temperatures that are reached in this period.

A characteristic fact that can be obtained by checking the maximum
values (represented in red) is that the optimum cultivation depth is almost
5 cm for all seasons except summer. From this result, it can be intuited that
the cultivation of these strains in open thin-layer reactors (where culture
depths are around 2 c¢m) would allow a much higher productivity than
their cultivation in raceway reactors, during spring, autumn and winter.

Feasibility study

From the previous analysis presented on the microalgae strains with
different culture depth, a comparison of the biomass productivity has
been carried out, throughout the four seasons, differentiating between the
operation of the reactor with a fixed depth of 15 cm and the operation
with the optimal depth for each period. The objective is to demonstrate
that the use of the optimal culture depth increases biomass productivity.

Figure .20 represents the feasibility study for Chlorella vulgaris strain.
Following the results of Table[d.5] culture depths of 5 cm have been chosen
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Average productivity [day ! Temperature index
Culture depth [cm] Spring S%lmmer Autuym[n yW]inter Spring Summer Autumn[ ]Winter

5 127.817  123.470 62.540 18.017 0.890 0.903 0.726 0.318

10 123.432  129.484 56.289 13.873 0.862 0.930 0.666 0.257

Chlorella 15 118.788  132.097 51.624 10.870 0.833 0.945 0.622 0.208
vulgaris 20 115.004  132.972 48.706 8.894 0.809 0.952 0.595 0.173
25 111.855  133.165 47.248 7.593 0.792 0.955 0.578 0.150

30 110.090  133.156 46.397 6.796 0.779 0.957 0.568 0.134

5 194.174  238.829 86.185 15.799 0.805 0.841 0.649 0.244

10 186.727  253.774 75.662 11.164 0.781 0.881 0.574 0.183

Isochrysis 15 178.743  262.518 67.276 7.746 0.752 0.907 0.518 0.130
galbana 20 172.166  265.453 61.959 5.516 0.727 0.920 0.483 0.094
25 165.871  266.990 59.702 4.064 0.709 0.928 0.461 0.070

30 163.478  266.256 58.498 3.181 0.694 0.932 0.448 0.055

5 71.178 53.759 34.460 12.326 0.858 0.742 0.691 0.272

10 69.998 71.547 30.603 9.560 0.843 0.833 0.624 0.222

Nannochloropsis 15 67.544 80.979 27.615 7.594 0.814 0.886 0.574 0.183
gaditana 20 65.177 84.696 25.743 6.348 0.786 0.914 0.542 0.156
25 62.952 86.298 24.900 5.568 0.764 0.929 0.522 0.138

30 61.875 86.807 24.435 5.069 0.747 0.937 0.510 0.126

5 114.994  161.123 18.574 9.546 0.763 0.908 0.552 0.183

10 107.215  158.921 41.749 7.040 0.716 0.896 0.482 0.141

Spirulina 15 100.016  155.843 36.720 5.231 0.671 0.880 0.432 0.107
platensis 20 94.596  152.557 33.648 4.050 0.636 0.866 0.401 0.084
25 90.105  150.287 32.272 3.270 0.611 0.855 0.382 0.069

30 87.953  148.035 31.516 2.804 0.592 0.848 0.371 0.059

Table 4.5: Average seasonal biomass productivity and temperature index
for microalgae study.

for spring, autumn and winter, while for summer a depth of 25 ¢m has
been chosen. With this change, productivity increases by 4% on spring,
0.6% on summer, 20.4% on autumn and 65.5% on winter. Despite the fact
that in summer the increase on biomass productivity is practically zero,
during the autumn and winter a considerable improvement is achieved.

Figure[d.2Trepresents the feasibility study for Isochrysis galbana strain.
In this case, a depth of 5 ¢m has also been chosen for spring, autumn and
winter, while 25 cm for the summer. The improvements obtained have been
4.5% for spring, 1.5% for summer, 27% for fall and 104% for winter. In
this case, the improvement on biomass productivity is reflected especially
during the autumn and winter, as observed from the figure.

Figure represents the feasibility study for Nannochloropsis
gaditana strain. A culture depth of 5 c¢cm has been taken for spring,
autumn and winter, while a depth of 30 c¢m for summer. The biomass
productivity increase has been of 3.6% for spring, 6.8% for summer, 24%
for fall and 57.5% for winter. The optimum temperature for this strain is
the lowest among those studied, so during the summer, a high depth
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considerably improves the temperature of the culture and its
productivity.

Figure represents the feasibility study for Spirulina platensis
strain. For this strain, a culture depth of 5 cm has been used during all
seasons, since it presents the highest optimum temperature of all the
strains studied. In this case, the improvement in productivity has been
15% in spring, 2% in summer, 31% in autumn and 82% in winter. As it
is a warm ambient strain, the increase in temperature during cold periods
considerably improves its productivity.

As a result of this study, it can be concluded that the strains of
microalgae studied need warm climates to maximize their productivity.
Under this condition, the cultivation during autumn and winter is
difficult. However, low culture depths have been shown to increase the
culture temperature on the reactor, and consequently biomass
productivity.  Cultivation in open thin-layer reactors, where higher
temperatures are reached, can be an interesting option during the coldest
critical months (autumn and winter).

4.2 Optimization control problem

The influence of the medium temperature on the microalgae growth has
been demonstrated in the previous sections. From the performed
analysis, it can be seen that it is important to regulate the temperature
in the reactor. However, in the literature, there is a lack of solutions for
the temperature regulation problem in raceway reactors, where the
tradeoff between efficiency and profitability is managed. This section
presents a simple method for temperature regulation by varying the
volume in the reactor throughout the daytime period [72], in a similar
way as the strategies presented in [23] and [24]. The core idea is based on
the influence of the atmospheric conditions and the liquid depth on
culture temperature. A culture depth optimizer has been designed to
determine the culture depth variation that minimizes the difference
between the reactor temperature and the desired optimal culture
temperature. The control of the culture depth in the reactor is carried
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out by means of the harvesting and dilution processes, being a method
that does not require the use or installation of new devices for cooling or
heating the reactor culture. A schematic of the system is shown in Figure
424

Figure 4.24: Culture depth optimization scheme.

In order to show better the temperature effect on the process
productivity, it is assumed that the pH and the dissolved oxygen
variables are perfectly controlled [61] [73, [70], and thus the corresponding
factors described by and are considered equal to one. In this
way, the specific growth rate model only depends on solar radiation and
temperature.

Analyzing the temperature regulation problem for microalgae
production, the aim is to keep the medium temperature T, as close as
possible to the strain optimum growth temperature Toptimum. In this
way, the normalized temperature index given by will be increased
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and thus the biomass productivity will be maximized. Therefore, the
optimization problem proposed in this work can be posed as:

min J = |T,(t) — Toptimum| (4.1)
h
subject to:

dTw(t) _ Qtotal(t) (42)

dt h(t)-A-Cp-p
hmin S h(t) S hma:c (43)
—Ahpas < Ah(t) < Ahpas (4.4)
Tmz’n S Tw(t) S Tmaz (46)

where Qoq) 18 the sum of all heat terms described in Section [3.1] On the
other hand, the culture depth should be limited to avoid overestimated
harvesting or dilutions. Therefore, minimum (Ay,;,) and maximum
(Amaz) culture depth values are included in the optimizer based on the
dilution rate parameter (the % of volume that can be added or removed
from the reactor so that the biomass concentration a the end of the day
is the same as at the beginning of the day) and on the variation in
reactor volume. Likewise, to avoid sudden changes in the culture depth, a
maximum increment (Ahfy,q,) of 1 cm on the depth has been established
for each iteration of the optimizer, performed with a period of half an
hour. Finally, the reactor temperature is limited between T}, and Thaz
values that are determined by the characteristics of the microalgae strain
(see Table in order to avoid a detrimental effect on the microalgae
growth. The microalgae analyzed with the optimization approach has
been Scenedesmus almeriensis.
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The implementation of the cost function to minimize has been carried
out in the Matlab programming and calculation environment, using the
fmincon function. The objective of this function is to find the minimum of
a restricted nonlinear multivariate problem from a cost function, subject
to linear and nonlinear restrictions. The structure of this function is as
follows:

)
min f(x) such that A-z<b (4.8)
X

where z is the optimized variable (in this case, the culture depth), f(z)
represents the cost function, c¢(x) are the nonlinear inequality constraints,
ceq(x) are the nonlinear equality constraints, A and b are linear inequality
constraints, Aeq and beq are linear equality constraints, (b is the lower
bound and wub is the upper bound.

The culture depth adjustment in the reactor is carried out from the
removal of volume by means of a harvesting pump or the injection of
freshwater with nutrients from a reservoir by means of a dilution pump.
The amount of harvested and diluted volume is established by the
dilution rate parameter (D), which determines the percentage of volume
that can be withdrawn from the reactor and added, so that the biomass
concentration at the end of the day is the same as at the beginning. In
this way, the biomass concentration can be considered practically
constant between days, calling this method continuous operation. The
dilution rate depends on each season and month. During the summer,
the period of maximum biomass productivity, this parameter can reach
values of around 40%. However, in winter, due to low productivity, the
dilution rate is around 15%. Due to the operating characteristics and the
design of the reactor, it is not possible to execute the harvesting and
dilution processes simultaneously. Due to the configuration in the pipe
network, it can be counterproductive to activate harvest and dilution at
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the same time. On the other hand, when these processes are
simultaneous, the biomass concentration of the harvested volume
decreases over the time in which the activity is carried out, due to the
constant dilution of the reactor. This is a very important restriction with
regard to the optimization problem, since the volume changes in the
reactor are made by setting fixed values to harvest and dilution flow rates
in each iteration of the optimizer, but not at the same time.

As a solution to the optimization problem, two approaches have been
proposed. Initially, a one-step horizon has been established for the
optimization, so that the objective function is based only in the current
inputs values. Subsequently, weather forecast and future horizon
optimization have been included with the aim of improving performance.

The technical characteristics of the computer where the simulation has
been carried out are the following:

e Processor Intel Core i7-4700HQ CPU 2.40 GHz.

¢ 8 GB RAM memory.

4.2.1 One-step horizon approach

The proposed one-step horizon architecture consists of two layers, the
representation of which is presented in Figure .25 The upper layer,
where the optimizer presented by calculates the optimal culture
depth set-point according to the proposed cost function. And the bottom
layer, a culture depth on/off control is carried out by means of the
harvesting and dilution pumps.

With this approach, at each optimization instant, a simulation of the
temperature of the culture is carried out towards the next instant, taking
into account different culture depths. As a method of estimating the
culture temperature, the model has been used, so the inputs of the
objective function are the net heat accumulated in the reactor (Qiotai),
the culture depth to optimize and the environmental conditions (solar
radiation, ambient temperature, relative humidity and wind speed).
Being a one-step optimization, the environmental variables remain
constant for the next time instant.
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Figure 4.25: Control hierarchy for one-step optimization.

The optimization frequency is a user-chosen parameter, and represents
the time that elapses between the calculation of one culture depth set-
point and the next. This optimization frequency or optimization time (¢,)
has been established in half an hour, taking into account the harvest and
dilution flow rates and their ability to vary the volume of the reactor. Even
50, it is a modifiable parameter, and can be lower or higher, adjusting to
the specific situation of each scenario.

During the optimization process, the objective function estimates the
reactor temperature for the entire time interval, that is, if the optimization
time ¢, is half an hour, the cost function estimates the temperature for a
half an hour onwards. This estimation takes into account the evolution of
both, the harvesting and dilution flows, as well as the progressive volume of
liquid in the reactor. However, environmental conditions remain constant
for this interval. Once the temperature is estimated for the entire interval
to, the absolute error between the estimated temperature and the optimal
temperature of the microalgae strain is calculated. As a result of the
optimization, the culture depth set-point that minimizes the error in the
culture temperature during the interval ¢, is obtained.
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From the culture depth set-point, the corresponding harvesting and
dilution flows are calculated, taking into account the applied restrictions.
The harvesting flows can be set as variables (e.g. for simulation purposes),
so that the reference depth is reached before the next optimization instant,
or on the contrary, they can be set as fixed flow rates, representing a more
realistic scenario, which conditions the optimization process.

Using this approach, two configurations for the optimization have been
designed:

One-step unconstrained optimization: to check the effect of
the depth optimizer with respect to the normal operation of the
reactor. Initially, the optimization function has been used without
the restrictions described in this section. Computational time: 18
seconds to simulate a day.

One-step constrained optimization: to represent a more
realistic scenario.  The aforementioned restrictions have been
incorporated, so that the comparison between normal operation
and this new approach is as faithful as possible. Computational
time: 61 seconds to simulate a day.

4.2.2 Future horizon approach

Starting from the initial one-step optimization approach, an upper layer
has been added to the control hierarchy shown in Figure This new
layer represents weather forecast for the input variables in the
optimization function. So, it is possible to improve the optimization
problem and regulation of temperature in the reactor using a prediction
horizon in the estimation of the culture temperature. This new hierarchy
of control is represented in Figure 4.26| and presents a higher level of
prediction with respect to optimization.

This new optimization approach is based on a receding horizon
approach, where at each optimization instant a series of future depth
set-points are calculated. Ounly the first step of the control strategy is
implemented, then the plant state is sampled again and the calculations
are repeated starting from the new current state, yielding a new control
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Figure 4.26: Control hierarchy for future optimization.

and new predicted state path, discarding future references calculated in
the previous instant. The number of set-points corresponds to the value
of the prediction horizon (NN,), being a vector which values are modified
depending on the conditions present at each optimization instant.

The optimization time (¢,) is still a user-chosen parameter, but a new
term is introduced, the prediction horizon N, equivalent to the number of
predictions or optimization intervals that will be carried out in advance.
The value of N, can be selected by the user and its interpretation
depends on the optimization time. If the optimization time is 1 hour, the
value of N, will represent the number of hours of prediction into the
future. For example, a value of N, equal to 10 with an optimization time
of 1 hour, the forecast horizon would be 10 hours. However, with an
optimization time of half an hour, the forecast horizon would be 5 hours,
with optimization actions every half hour. For the simulations, an
optimization time (¢,) of half an hour and a prediction horizon (N,) of 10
(5 hours) have been used. The vector of results obtained from the
objective function at each optimization instant represents the liquid
depth set-points for future instants, based on current environmental



4.3. Simulation results 121

conditions and weather forecast. The new cost function is presented as
follows:

N

J = | Z Tw (Z) - Toptimum| (4.9)
i=1

The values of the results vector are not fixed, but can be modified at
each optimization instant if the input conditions change, such as
perturbations in the forecast. In this way, the performance of the
optimization is improved to take into account, at present moment,
possible future scenarios or disturbances that affect the temperature of
the culture.

From this new approach, three types of configurations have been
considered for optimization:

Constant weather receding horizon optimization: during the
prediction horizon, constant values of the environmental variables, at
the optimization time, are used. Computational time: 639 seconds
to simulate two days.

Perfect forecast receding horizon optimization: during the
prediction horizon, the real values of the measured environmental
variables are used, which correspond to the vector positions of the
future instants. This scenario is only possible to apply it in
simulation. Computational time: 560 seconds to simulate two days.

Real forecast receding horizon optimization: at each
optimization instant, a weather forecast API tool is used to
determine weather future values of environmental condition
variables.

4.3 Simulation results

Such as described above, with the proposed culture depth optimizer, it is
possible to determine a set-point for the culture depth to modify the
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volume in the reactor and regulate the temperature value for maximizing
the growth rate of the microalgae, and subsequently, biomass
productivity. Thus, in this study the aim is to compare the temperature
and microalgae growth, by means of biomass productivity, using the
culture depth optimizer contrasted with the normal operation of a
reactor with a culture depth of 15 cm (harvesting at 9 a.m. and dilution
at 11 a.m.). The simulation tests have been carried out from
environmental data measured for the summer and winter periods, in
order to establish the differences between two seasons where the
temperature reaches its maximum and minimum values. Specifically,
Figures [£.27] and (.28 represent the data used for simulation tests,
corresponding to a week in January and a week in August, respectively.

Figure 4.27: Weather variables during January.

For the different seasons, initial biomass concentration of 0.32 (g L=1)
during winter and 0.75 (g L™!) for summer have been used, respectively. In
addition, the dilution rate established for normal operation has been 17%
for the winter period and 40% for the summer period. The dilution rate
with the optimizer has been adapted to equal the biomass concentration at
the end of the test period, so that a fair comparison can be made between
both scenarios. In winter, due to the low temperature and low growth



4.3. Simulation results 123

Figure 4.28: Weather variables during August.

rate of the microalgae, the biomass concentration is lower, as well as its
dilution. On the other hand, summer is the period of greatest growth of
the microalgae, with a higher concentration of biomass and the maximum
annual dilution rate value.

The temperature of the dilution medium is a very important factor to
take into account in optimization. This parameter is variable throughout
the day, with a profile similar to the temperature of the culture inside the
reactor. Due to the lack of measurement sensors in the physical reservoir,
to estimate this dynamics, the culture temperature evolution model
described in Section has been used to simulate a 100 m? water
reservoir. The objective is to represent a dilution medium temperature
real scenario, instead of using a constant value throughout the simulation
period. This method can also be used in simulation in the absence of
experimental measurements.

As an indicator to differentiate the performance of the two scenarios
(optimized operation and normal operation), the amount of biomass
harvested in the entire time period evaluated for the two cases has been
estimated. This calculation is made from the volume harvested in the
reactor (each time the culture depth decreases) and the biomass
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concentration at each harvest moment.

4.3.1 One-step unconstrained optimization

Two initial tests were carried out in which no dilution or harvest
restrictions were taken into account for the optimized scenario. For these
tests, culture depth regulation limits have been established between 5
and 30 cm, without restriction between depth set-points. Figures
and [4.30] show the results of the tests without constraints.

The normal operation of the reactor (represented in red) is carried
out every day at morning, harvesting microalgae and, later, diluting the
reactor. When harvesting occurs (at the same time every morning),
culture is removed from the reactor until the dilution rate is achieved
(when a certain culture depth is achieved). Then, fresh medium is added
to replenish lost volume.

Figure 4.29: Biomass productivity comparison without constraints for two
consecutive days of January. Red lines represent the results for normal
reactor operation, while blue lines represent the results applying the culture
depth optimizer. Dashed black lines on graph c represent the culture depth
set-point from the optimizer. Dashed lines on biomass productivity (graph
e) represent maximum theoretical biomass productivity.



4.3. Simulation results 125

Figure represents the results obtained without restrictions for
two consecutive days in January. The red curves represent the normal
operation of a reactor with a culture depth of 15 cm. This is done to
maintain the normal operating level of the reactor over time and to
maintain a constant biomags concentration throughout the days. On the
other hand, the blue curves represent the results obtained by regulating
the culture depth in the reactor by using the proposed optimized
approach, with an initial and final depth of 15 cm. Figure [4.29a
represents the culture temperature for both scenarios.  Using the
optimizer, the maximum temperature during the day increases on
average 1.7°C, getting closer to the optimum temperature. Figure [£.29|b
shows the temperature index, obtained by using [I.5] In this case, the
optimized temperature index increases 15.33% with respect to the normal
operation, during the daytime period. Figure .29 c represents the
culture depth in the reactor for both cases. The black dashed line
represents the depth set-point established by the optimizer. It is
interesting to note how the depth decreases during the day to increase
the temperature. However, during the night period, the depth increases
to prevent the culture temperature from falling excessively due to the low
ambient temperature. Figure [£.29]d represents the concentration of
biomass. It can be seen that it drops drastically due to the lack of
restriction in dilution. This fact highlights the need to constraint the
dilution rate in the optimization problem. Finally, Figure 4.29e shows
the biomass productivity (obtained from in solid lines, in addition to
the maximum theoretical productivity represented in dashed lines (when
the temperature index is 1). Due to the lack of dilution restrictions, the
decrease in biomass concentration causes a decrease in productivity. As a
result, it is established that the use of the optimizer without constraints
is not feasible.

The test without constraints for the summer period (in August) is
shown in Figure [£.30 As for January, two consecutive days have been
analyzed. In this case, the temperature of the culture is higher than the
optimal temperature for the microalgae strain. So, the optimizer must
manage to reduce the temperature in the reactor. Figure [£.30la shows
the culture temperature for both scenarios, where the optimizer approach
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reduces the average maximum temperature by 2.2°C compared to normal
operation. The temperature index, represented by Figure [£.30]b,
improves on average 50.3% during the daytime period. The profile of the
culture depth (Figure 4.30¢) shows a behavior contrary to the January
test. During daytime, the culture depth is increased to inject fresh
medium into the reactor (which is at a lower temperature) and prevent
the reactor from reaching a higher temperature than normal operation.
During the night-time period, the depth decreases to cool the reactor
more quickly and, when it decreases from the optimal temperature, fresh
medium is injected (which in this case is at higher temperatures) to
slightly raise the temperature in the reactor and avoid a drastic drop.
Figure [.30ld represents the biomass concentration, which, as in the
previous test, decreases drastically to 0. Biomass productivity (Figure
.e) also decreases to 0 compared to normal operation, due to
over-dilution in the reactor.

Figure 4.30: Biomass productivity comparison without constraints in one
day of August. Red lines represent the results for normal reactor operation,
while blue lines represent the results applying the culture depth optimizer.
Dashed black lines on graph c represent the culture depth set-point from
the optimizer. Dashed lines on biomass productivity (graph e) represent
maximum theoretical biomass productivity.
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4.3.2 One-step constrained optimization

Due to the undesired results related to the biomass concentration
obtained by applying the optimizer without constraints (Figures and
, it is evident that the physical application is not feasible. Therefore,
some constraints have been defined in order to represent a more realistic
behavior and simulate a practical application of the optimizer for the
reactor described in Section Figures and represent the
results obtained for a week in January and another week in August, using
the culture depth optimizer with the constraints previously defined. The
main constraint applied is the dilution rate of the medium in the reactor,
which allows the biomass concentration to remain almost equal from one
day to another. The dilution rate constraint is achieved by regulating the
minimum and maximum limits of culture depth established for the
optimizer. The optimization time t, was set to half an hour (period in
which optimization runs). Notice that this is a significant difference when
compared to previous approaches found in the literature, as in [23] 24].

Figure represents the results obtained using the optimizer with
the one-step approach during a week in January. Because the dilution
restrictions are very restrictive, there is not much difference in the
culture temperature between both scenarios (Figure [4.31la). In that
sense, the temperature increase has been 0.63°C. The increase in the
temperature index (Figure [£.31]b) was 5.6%. The variation in depth,
represented in Figure [4.31}c, is very representative. At the beginning of
the day, the culture depth drops to the allowed limit, throughout the
daytime period, to increase the temperature. At the beginning of the
night-time period, the depth returns to its initial value to avoid a further
drop in temperature. Regarding the biomass concentration represented in
Figure [4.31]d, contrary dynamics can be observed between both
scenarios, where the concentration of the optimized approach increases
during daytime (due to harvesting) and decreases at the end of the
night-time period (due to dilution). Regarding biomass productivity
(Figure 4.31le), a similar result is observed, with an increase of 6.8%.
Analyzing the estimated harvested biomass, making use of the optimizer,
there is an increase of 5.1% with respect to the harvested biomass during
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the normal operation of the reactor for the evaluated period.

Figure represents the results obtained using the optimizer with
the one-step approach during a week in August. As Figure d.32]a shows,
the difference in the culture temperature is small, only 0.5°C. Even so, this
slight difference has allowed the dilution rate parameter to be increased
in the optimized scenario. The improvement in the temperature index
(Figure 4.32|b) was 12%. As can be seen in Figure [£.32]c, the evolution
in the culture depth, at the beginning of the day, is similar to the normal
operation. However, because the dilution is greater, the depth during the
dilution period increases more, in addition to allowing a greater harvesting
capacity. In this case, the dilution rate for the optimized scenario has
been 43% of the total volume in the reactor, instead of 40% for normal
operation during this period. Although the dilution rate with the optimizer
is higher, the biomass concentration (Figure 4.32/d) at the end of the test
has been the same as for normal operation, which denotes the improvement
in biomass productivity (Figure e), which increases 11% on average.
Due to this improvement, the estimate of the harvested biomass is 6.8%
more than the biomass harvested with normal operations.

4.3.3 Constant future weather horizon optimization

Based on the results obtained with the one-step optimization approach, a
receding horizon approach using future predictions has been designed.
The aim of this approach focuses on improving the optimization when
environmental conditions change or are not favorable, being able to
anticipate disturbances.  As an initial configuration, an optimizer
implemented within a receding horizon approach has been designed
where the environmental variables remain constant at the current value
throughout the prediction horizon. Figures and represent the
results obtained using the receding horizon optimizer with constant
environmental variables.

Figure [4.33] shows the January results obtained for this case. The
results have been practically identical to those obtained for January using
the one-step approach (Figure . This is due to the fact that the
dilution rate in winter is so small that it is hardly possible to vary the
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culture depth, so a better result cannot be obtained.

However, the results obtained during the summer have been
noticeably different. Figure {.34] shows the results obtained for August
using the optimizer with future predictions, keeping the environmental
variables constant during the prediction horizon. The decrease in
maximum culture temperature (Figure 4.34la) during daytime period has
been on average 1.3°C less than normal operation. The improvement in
the temperature index, represented in Figure [£.34lb, has been 31.6%
compared to normal operation. As for the culture depth, represented in
Figure f.34lc, at the beginning of the daytime it increases so that the
temperature decreases during the daytime period. At the end of the day,
the depth decreases to harvest biomass and return to the initial culture
depth point. As in Figure due to the improvement in temperature,
the biomass productivity is higher, which allows increasing the dilution
rate. In this case, the dilution rate was 55% the total volume of the
reactor compared to 40% for normal operation, which considerably
increases the amount of harvested biomass. The biomass concentration,
represented in Figure 4.34]d, for both scenarios has a similar evolution.
At the end of the evaluated period, the value is the same for both cases,
despite the fact that with the optimizer, the dilution rate is higher. The
improvement in biomass productivity has been 43.4%, so the microalgae
growth speed is higher and it is possible to increase the dilution rate.
During harvesting, an increase on biomass amount of 26.42% compared
to normal operation has been estimated for the time period evaluated.

4.3.4 Perfect forecast receding horizon optimization

After verifying the operation of the optimizer with receding horizon
approach considering constant environmental variables, a different
configuration has been designed where the real wvalues of the
environmental variables are taken into account along the horizon during
the optimization process. Being a simulation approach, in each
optimization period, the experimental measured values of the
environment variables are taken for the computation of the cost function.
In this way, it is possible to have a perfect forecast of the weather
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conditions during optimization.

Figure represents the results obtained for January using the
optimizer with perfect forecast. Like the results obtained in the previous
cases for January (Figures [4.31] and [.33), in this case, the values
obtained have been practically identical. This fact is indicative that the
improvement using the optimizer during the winter is very limited.

Figure represents the results obtained for August using the
optimizer with perfect forecast. The values obtained in this case have
been very similar to those obtained in the previous case (Figure .
Observing Figure [.30la, the decrease in the maximum culture
temperature has been on average 1.3°C less than the normal operation
case. The improvement in the temperature index (Figure [£.36]b) was
31.8%, very similar to the previous case. For the culture depth,
represented in Figure [4.36lc, there is a certain difference with respect to
the previous case. For the fourth and fifth days, where the solar radiation
is irregular, the variation of the depth has better behavior than applying
the optimizer with constant environmental conditions. The biomass
concentration, represented in Figure [£.36]d, has also been similar. The
improvement in biomass productivity (Figure [4.36le) has been 45%
compared to normal operation, slightly higher than the previous case.
Due to this increase, the estimation for biomass harvesting has been
26.4% more than normal operations.

Discussion

Comparing the results, the considerable improvement in biomass
productivity through the use of the optimizer can be observed when
compared to the normal day-to-day operation in a raceway reactor.
During the winter period, where temperatures are low, there is not much
improvement in the use of the optimizer with its different settings. Even
o0, an increase of approximately 6.8% in biomass productivity and 5% in
biomass obtained during harvesting has been estimated. However, as the
dilution rate is small, the amount of biomass obtained with the
improvement is not very significant.

On the other hand, during the summer period, when the reactor
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performance is optimal, a significant difference can be seen between the
different proposed approaches. Using the one-step optimizer, the increase
in biomass productivity was 11%, obtaining 6.8% more harvested
biomass. Although the percentage is similar to that obtained for winter,
the dilution rate in summer is much higher, so the amount of harvested
biomass considerably increases. Furthermore, by using the optimizer with
predictions (both with fixed environmental variables and perfect
forecast), this improvement has increased even more. Biomass
productivity has risen 43.4% compared to normal operation, which
translates into a 26.42% increase in harvested biomass, much above the
one-step configuration.

Simulation tests have demonstrated the importance of controlling
certain variables in the operation of reactors, such as the dilution rate
and its duration. By applying the liquid depth optimizer, it has been
possible to regulate the temperature of the culture inside the reactor.
Due to this, a significant improvement has been achieved on biomass
productivity and the amount of harvested biomass, compared to the
classic operation that is carried out every day in raceway reactors. Both
the one-step optimization approaches and the receding horizon solutions
have shown that productivity can be increased. Furthermore, this
improvement is achieved through an adequate management of the
harvesting and dilution processes, something intrinsic in the operation of
raceway reactors. So, this solution does not imply any additional costs of
material or the installation of external devices, such as heat exchangers.

4.4 Experimental results

This section describes the experimental tests about temperature control
carried out in the reactor described in Section located at the
IFAPA research center (Almeria, Spain). As previously described, the
implementation of the culture depth optimizer has been performed in the
SCADA tool that controls the reactors. The liquid depth control is
carried out through an On/Off architecture with hysteresis using the
harvesting and dilution pumps. Since the research center has two
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raceway reactors that operate in parallel, a comparison has been possible
by applying the depth optimizer to one of them, while the other operates
normally.  Figures and represent the real results obtained
applying the optimizer, in comparison with the normal operation of the
other raceway reactor. The tests were carried out in September, with a
dilution rate of 20% for the reactor operated normally, while for the
scenario with the optimizer a dilution rate of 13% was used, equivalent to
2 cm of difference from the initial base depth of 15 cm (due to a
preliminary implementation of the optimizer). For these tests, it has only
been possible to evaluate the culture temperature, the culture depth and
the temperature index. Currently, all the biomass that is harvested in the
reactors of the IFAPA research center is collected in the same tank, so it
has been impossible to quantify the biomass harvested individually.

4.4.1 One-step constrained optimization

Figure 4.37: Optimization experimental results with one-step structure.
The red dashed lines represent the results with normal operation, while
blue lines represent the results applying the optimization.

Figure [4.37] shows the results of an experimental test applying the
optimizer with the one-step architecture. Figure ¥.37]a represents the
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culture temperature for the two scenarios. Although the difference
between the optimizer and the normal case is not very significant, it can
be seen that there is a period in which it increases more rapidly until
reaching the optimum temperature. Subsequently, the maximum
temperature reached is slightly lower than for normal operation. This
result is indicative of the correct functioning of the optimizer. Figure
M.37lb represents the culture depths in both cases. Using the optimizer,
the depth increases at the beginning of the day to slightly heat the
reactor and make the maximum temperature lower (due to a higher
volume). Near the end of the afternoon, the culture depth drops to its
initial value to harvest the established ratio. As mentioned, even though
the temperature difference is small, it is possible to observe the
improvement in the temperature index, represented in Figure 4.37,c, with
an increase of 11.2% with respect to normal operation.

4.4.2 Real forecast future horizon optimization

Figure 4.38: Optimization experimental results with predictions. The red
dashed lines represent the results with normal operation, while blue lines
represent the results applying the optimization.

Differently form the previous case, Figure [4.38 presents the
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experimental results applying the optimizer with future predictions. The
implementation of environmental predictions in the optimizer has been
done from a weather forecast API (Application Programming Interfaces)
called weatherbit [94]. This API is capable of predicting the weather 48
hours onwards, with a resolution time of one hour. At each execution of
the optimizer, a call is made to the weather API and the obtained values
are passed as inputs to the optimizer. In this case, the prediction that is
made is not perfect, but it is a good approximation. Figure [£.38la
represents the temperature of the culture, which results to be very similar
to that obtained in the previous case (Figure . On the other hand,
there is a difference in the culture depth, represented in Figure [4.38]b.
The depth increases later than in the previous case, which coincides with
the rise in solar radiation. Furthermore, the harvest is carried out later,
when the temperature drops below the optimum temperature. The
temperature index (Figure [4.38lc) increases of 13% with respect the
reactor at normal operation, slightly higher than in the previous case.

Discussion

Although the improvement in the experimental results has been small,
the contribution of the optimizer has been evident. Due to the
characteristics of the implementation, the dilution rate for the optimizer
has been much lower than during the simulation tests, which greatly
limits the performance. Even so, a slight improvement in culture
temperature is noted, being a very interesting fact for future
configurations for the optimizer and its implementation. Also, it is clear
that the dilution rate is a very important factor, as well as the inlet
temperature of the dilution medium.

4.5 Conclusions and contributions

In this chapter, an analysis of the influence of temperature and culture
depth in raceway reactors on biomass productivity has been presented.
This analysis is complemented with different feasibility studies carried
out on different strains of microalgae, each with different temperature
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characteristics. Furthermore, a simple method for temperature regulation
is presented by varying the volume in a raceway reactor through
optimization of the liquid depth.

Culture temperature is one of the parameters that mostly affects the
growth of microalgae, being also a difficult variable to control at an
industrial level. The tests carried out on a laboratory scale include
heating and cooling systems that allow the temperature of the culture to
be modified, so that they always maintain an optimal value. However,
when the work is extrapolated to industrial scale reactors (such as
raceway reactors) the difficulty of controlling the temperature of the
culture becomes evident. Due to the high cost of temperature control
facilities for large volumes of liquid, this type of control is not carried out
in open microalgae reactors, which is why culture temperature presents a
very important disturbance on biomass productivity. Therefore,
temperature regulation through the optimal use of the harvesting and
dilution processes is an interesting an innovative approach.

The results obtained with the application of the optimizer with
constraints have been satisfactory, with a considerable increase on
biomass productivity during summer with respect to the normal
operation of the raceway reactor performed everyday. The culture depth
optimizer opens the door to new ways of controlling temperature and
improving biomass productivity. Due to its characteristics and
restrictions, the regulation is carried out by means of the dilution and
harvesting processes in the reactor, and it does not require any expensive
devices with respect to the normal operation of the reactor, such as heat
exchangers for cooling and heating.

Moreover, the dilution rate is a parameter which value depends on
experimental studies carried out for every month. However, with a
proper cost function, it could be a variable parameter that depends on
the microalgae and environmental conditions, in such a way that it can
be combined with the culture depth optimizer to also control the biomass
concentration. Therefore, the culture depth optimizer application serves
as a design tool for temperature control architectures without the need
for additional equipment.






CHAPTER 5
Daytime/Night-time pH
control

In this chapter, the advantages of using event-based pH control approaches
for raceway reactors and new ideas for daytime/night-time control schemes
are proposed and demonstrated, both in simulation and experimentally.

The structure of this chapter is as follows: Section details the pH
control problem. The daytime and night-time models are presented in
Section [5.2l  The classical and event-based control approaches are
described in Sections and [5.4] Simulation results are presented in
Section while the experimental results are shown in Section
Finally, the conclusion are drawn in Section [5.7]

5.1 pH control problem

Microalgae growth depends on several variables, the main ones being
solar radiation, medium temperature, pH and dissolved oxygen [20]. The
incidence of solar radiation and temperature conditions are determined
by the orientation and location of the reactor or by indirect control such
as shown for the temperature in the previous chapter. So, usually, they
are not controllable variables and act as disturbances [61]. Indeed, pH
and dissolved oxygen are the controlled variables in the process, being
the pH the most critical due to its influence on the photosynthesis
process. Thus, the pH of the culture will be the variable considered for
control purposes in this chapter.

The photosynthesis process performed by the microalgae changes the
acidity of the culture medium, increasing the pH, while COs injections
reduce its value due to the formation of carbonic acid. An adequate pH
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control is required in this type of processes, since the pH has an optimum
range that maximizes biomass production, as well as influencing the health
of microalgae, being lethal when it exceeds certain limits. On the other
hand, CO; injections should not be arbitrary. If the culture conditions are
inadequate for the microalgae, the CO» is stripped to the air instead of
being consumed or stored in the water as bicarbonate buffer. Moreover,
it can be harmful to the microalgae culture and generating unnecessary
waste.

Figure 5.1: Process main variables.

Furthermore, the pH of the nutrients present in the dilution medium
causes disturbances in the reactor, decreasing the pH of the culture in
a heterogeneous way until an equilibrium is established. Therefore, it is
essential to design a correct control architecture that allows optimal pH
control by reducing COg injections and losses. Moreover, better use of CO»
leads to increase biomass production and reduces stress on microalgae.
Summarizing, the main variables are presented in Figure [5.1] as follows:
the process output is the culture pH, the aperture of CO2 valve is the
manipulated variable, and the solar radiation and the pH of nutrients act
as the main disturbances.

Figure [5.2] shows the process scheme of the control problem. The COq
injections are made by means of a valve controlled from the SCADA system
tool described in Section where different types of control algorithms
are implemented. Figure schematically shows the measurement points
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Figure 5.2: pH control problem scheme.

housed in the reactor. Each point has a pair of pH and dissolved oxygen
sensors (described in Table 2.1). The pH sensor located at the end of
the reactor (the measure point 1 of Figure is taken as the output of
the system. This point is considered the most unfavorable from the control
point of view and is the one used for this study. Due to its position, relative
to the injection point, a time delay appears in the transfer function relating
COg injection to pH.

Figure 5.3: Raceway reactor measure points.

Traditionally, raceway reactors are operated only during the daytime
period by performing a pH control using an On/Off control architecture
applied to the COg injection valve. Due to this On/Off daytime control,
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the pH evolves freely overnight, producing variations in pH between day
and night, which can considerably affect the health of microalgae.

In addition, due to this difference between night and day, the On/Off
control performs a larger injection at the beginning of the day to reduce
the error, consuming large amounts of COy. Other control schemes can
solve the effect, but the variation of pH during the night-time period still
continues. The night-time pH control would avoid this problem and
reduce the injection of COg that occurs during daytime, especially with
the On/Off control, since the pH would remain close to the set-point
during the whole night. Moreover, event-based control approaches allow
the establishment of a relationship between performance and control
effort to maintain the pH at optimal values without performing a large
number of injections, therefore reducing COs consumption. All these
ideas will be explored in the next sections.

5.2 pH modeling

For the design of the control architecture, two models, named as
G(5)daytime and G(8)nighttime; have been identified from the raceway
reactor described in Section They represent the pH dynamic
evolution during the daytime and the night-time periods, respectively,
with respect to COq injections. These models are described as FOPDT
transfer functions [3], where the delay or dead time represents the time it
takes for a cell to reach the final part of the reactor, considered as the
measurement point 1 in Figure (that is, the time it takes to see the
effect of a CO2 injection on the output pH). It was decided to identify
two models due to the differences observed in the dynamics between
daytime and night-time periods. So, open-loop experiments were
performed for a pH range from 7.4 to 8.2, taking into account an
operating point of pH equal to 8. The resulting transfer functions (which
are models expressed in the Laplace domain by the complex variable s)
relating the pH to the COy are the following:

5.1
7380s+ 1 (5:1)

G(s)daytime =
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—0.1293 504
103785 + 1

Figures and [5.5] represent the validation of the daytime and night-
time models contrasted with experimental measured data.

G(S)nighttime - (52)

Figure 5.4: Model validation during daytime period. Upper graph
represents the evolution of the real pH (blue) and the estimated one (red).
Middle graph represents the valve opening, input for the model. Bottom
graph represents the environmental global solar radiation disturbance.

The input variable for both models represents the opening of the COs
valve, being in a range from 0% to 100%, while the solar radiation acts as
a disturbance during the daytime (Figure [5.4), causing the pH to rise. In
theory, for obtaining a linear model (transfer function) relating CO;
injection to pH, constant conditions of disturbances are required.
Nevertheless, this is difficult to achieve in this kind of systems and tests
have been done in (almost) clear day conditions and around midday, so
that variations in solar irradiance and temperature are small and smooth,
and thus they are considered constants during the test. The same applies
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to biomass concentration, that changes in a slower time scale.

Notice that the models represent the dominant dynamics of the
system. There is an oscillatory behaviour which period corresponds to
the residence time of the system. However, it is not modelled here to be
used for control design purposes as it would increase the control effort
without a noticeable improvement in performance. An example of control
application taking into account both dynamics (FOPDT plus second
order oscillatory behaviour) can be found in [14].

Figure 5.5: Model validation during night-time period. Upper graph
represents the evolution of the real pH (blue) and the estimated one (red).
Bottom graph represents the valve opening, input for the model.

During the night-time period (Figure [5.5), solar radiation is zero and
the process dynamics is much slower, with a rise in pH caused by an
imbalance in the concentrations of the different compounds in the medium.
A phenomenon called bicarbonate buffer appears, allowing the stabilization
of the culture pH inside the reactor, causing a pH drop when COs is
supplied and a pH increment when no COq is externally provided, and
that already present in the medium is consumed by the cells. This is due
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to the equilibrium carbonate-bicarbonate of the different inorganic carbon
forms present in water (COz, HCO3 and COg3). Due to these dynamics,
the pH control during the night-time period is less critical (require less
actions) than during the daytime period, but it is in any case necessary
because the rise in pH can be very high (sometimes over values of 9.5).

5.3 Classical control approaches

Classical control architectures for pH control are frequently applied in the
operation of raceway reactors. By default, the most common and
widespread control architecture is the On/Off control. On the other
hand, multiple examples of pH control approaches based on PI controllers
can be found in the literature.

5.3.1 On/Off operation

The On/Off control approaches are widely used for pH control in raceway
reactors as in other industrial processes, due to its simplicity. Its behaviour
is a relay with hysteresis and represents the most simple feedback controller
that can be used to control a process. This type of control is suitable for
processes that have two states (open and close) because the controller
switches the control variable between two states (On or Off), depending
on the set-point error with respect to the controlled variable. However,
this type of control is characterized by low accuracy and pH oscillations
due to the changes in the control signal, causing a negative influence on
microalgae. The On/Off control valve is opened and carbon dioxide is
injected until the pH measure decreases below the set-point. Then, the
control valve is closed until the pH reaches a value above the set-point,
and so on. The control structure is presented in Figure [5.6] and the pH
control is carried out exclusively during the daytime period, leaving it free
during the night-time period.
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Disturbance

On/Off controller Raceway reactor

Set—point—b@e—bj— y P(s) —‘ ¥

Feedback

Figure 5.6: Control scheme of the On/Off control architecture. e represents
the process error, u represents the control signal (valve opening) and y
represents the process output (pH).

5.3.2 PI-based operation

Many examples of pH control in raceway reactors by means of PI
controllers can be found in the literature with satisfactory results
[37, 61, 62]. Notice that the pH presents different dynamics at the
diurnal and nocturnal periods as observed in models and .
Thus, two controllers have been designed for each model depending on
the period of the day, named as C(S)daytime and C(S)nighttime- The
control structure is presented in Figure [5.7, where the PI controller
changes depending on the daytime and night-time periods.

Figure 5.7: Control scheme of the Pl-based control architecture. e
represents the process error, u represents the control signal (valve opening)
and y represents the process output (pH).
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It is worth noting that the normalized dead time of the system, that
is, the ratio between the dead time and the time constant, in both cases,
is very small, i.e., the process is lag dominant. For this reason, among the
wide variety of PID tuning rules [57], a Simple-Internal-Model-Control
(SIMC) tuning rule [33] has been selected, which states that the PI
parameters have to be selected as:

T; = min{T,4(\ + 0)},

where 0 is the dead time of the process, T is its time constant and A is the
desired closed-loop time constant.

This tuning rule states that a closed-loop time constant greater than
or equal to the system delay should be used for robustness purposes. In
this case, closed-loop time constants of 369 and 180 seconds were set for
the daytime and the night-time periods, respectively according to
and . For the daytime, the value is calculated according to 0.05 times
the open-loop time constant, to ensure a quick response while avoiding
aggressive control actions. On the other hand, for the night-time period a
180 seconds closed-loop time constant value has been used, corresponding
to the time delay. In both cases, simulations were performed to select those
control parameters providing adequate results. Therefore, the following
transfer functions for the PI controllers were obtained:

1
C(S)daytime = —149- <1 + 21928) (53)
C$)mignitime = —224- (14 —— (5.4)
S)nighttime = 1440 s .

Because the COq valve is discontinuous, Pulse Width Modulation
(PWM) transformation has been performed to control the opening range
from 0% to 100%, corresponding with a flow rate from 0 to 15 (L min~1).

Obviously, when tuning a PI controller, it is important to ensure the
asymptotic stability of the system [32],[88] 90]. For this reason, the analysis
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provided in [I6] to determine the parameter stability region for which there

are no limit cycles for the two systems and have been performed.
Results are shown in Figures and and they confirm that, for both
controllers, the parameters have been selected so that the avoidance of
limit cycles and instability is ensured. Moreover, the tuning is also robust
as the parameters are far from the border of the region.
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Figure 5.8: Stability region for daytime controller

5.4 Event-based control approaches

The event-based control architecture designed for pH control in raceway
reactors is based on the Symmetric-Send-On-Delta method (SSOD). This
method is presented by Beschi et al. in [I6] and it is a modification of the
so-called Send-On-Delta (SOD) event-based method ([49]). Denote as
v(t) the input signal to the SSOD sampled algorithm and as v*(t) the
sampled output signal, which can assume only values multiple of a

predefined threshold A multiplied by a gain 8 > 0, namely v*(t) = iAS
with ¢ € Z.

The sampled signal changes its value to the upper
quantization level when the input signal v(¢) increases more than A, or
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Figure 5.9: Stability region for night-time controller.

to the lower quantization level when v(t) decreases more than A. The
behaviour can be described with the following equation:

(i +1)AB
v (t) =

ifo(t) > (i+1)A and v*(t7) =iAp
=] iAfB if v(t) €
(i—1)AB ifv(t) <

(1 — 1A, (i+1)A] and v*(t7) = iAS
(i —1)A and v*(t7) =iAB

(5.5)
The relationship between wv(t) and v*(t) can be considered as a
generalization of a relay with hysteresis, where there are an infinite
number of thresholds (iAB). This mathematical description can be
interpreted as a state-machine representation, where ¢ is the state
number, v(t) > (i + 1)A is the condition to jump to the upper state i + 1
and v(t) < (i + 1)A is the condition to jump to the lower state i — 1.
The A parameter establishes the change amplitude in the error signal

deadband, so the system error is increased or reduced in A intervals. In
[16], it has been demonstrated that this parameter influences the system

tolerance without affecting the system stability. For this reason, it has to
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be properly tuned to establish a trade-off between the increments of the
steady-state error and the decrements of the number of events. Due to
its implementation and operation characteristics, this method can be used
with wireless sensors to reduce the number of communications with the
control unit.

Two different architectures are implemented with the SSOD technique
based on the event-triggered data exchange position in the control loop

and are shown in Figures and

SSOD-PI Scheme

In the SSOD-PI scheme, presented in Figure [5.10] the event-based method
is applied to the system error, before the PI controller in the control loop.
In this way, the last sampled error is maintained until a certain tolerance,
established by the A parameter, is exceeded. One of the benefits of this
configuration is the reduction on the communication between the sensor
and the control unit, improving the life span of the batteries of wireless
sensors.

Disturbance

Event-based method Pl controller Raceway reactor

Set-point SS0OD B Pl(s) P(s) y
e e* u W

Feedback

Figure 5.10: Control scheme of the SSOD-PI event-based control
architecture. The SSOD block represents the error treatment performed
by the Symmetric-Send-On-Delta method. e (v(t)) represents the process
error, e* (v¥(t)) represents the event-based sampled error, u represents the
control signal (valve opening) and y represents the process output (pH).

PI-SSOD Scheme

On the other hand, in the PI-SSOD scheme, presented in Figure the
event-based method is applied to the control signal, after the PI
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controller in the control loop. The last control action received is
maintained until the next change that exceed the control deadband
imposed by the A parameter. Analogous as the SSOD-PI scheme, this
configuration presents a reduction of the number of changes in the
control action, thus the actuator wear can be reduced.

Disturbance

Pl controller Event-based method Raceway reactor

Set-point PI(s) » SSOD P(s) y
e u u* W

Feedback

Figure 5.11: Control scheme of the PI-SSOD event-based control
architecture. The SSOD block represents the error treatment performed
by the Symmetric-Send-On-Delta method. e represents the process error u
(v(t)) represents the control signal, u* (v*(t)) represents the event-based
sampled control signal (valve opening) and y represents the process output

(pH).

As can be seen in Figures and this event-based method is
coupled with a PI controller in the control loop, that can be designed by
any tuning rule. This is one of the most powerful advantages of this event-
based method, being able to convert any PI controller into an event-based
controller, just adding the SSOD block into the control loop, before or
after the PI controller. This event-based method was applied with the PI
controllers previously designed to evaluate different deadbands in the pH
error.

5.5 Simulation results

This section discusses the results obtained in simulation with the
application of two SSOD event-based architectures for the pH control
problem with a nonlinear model [69, [70]. This simulation model for
biomass production, presented in [31]], takes into account fluid-dynamic,
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mass transfer, and biological phenomena taking place in a microalgae
raceway photobioreactors. Several experiments were performed with
different solar radiation profiles during five days to observe how the
event-based controller reacts to changes in the photosynthesis rate and in
the pH variable. An evaluation of the pH referred to the Integral
Absolute Error (IAE), to the control effort and to the COy consumption
associated with the injection time have been carried out.

The aim is to establish a comparison between the traditional On/Off
control architecture and the SSOD event-based method. An initial
comparison was made between the traditional On/Off control operating
during daytime and a PI control architecture that operates both during
daytime and night-time periods. Afterwards, further comparisons have
been made with the SSOD event-based control architectures (SSOD-PI
and PI-SSOD) from the initially designed PI controllers and applied to
the combined daytime plus night-time solution. Results about the
stability of SSOD-PI and PI-SSOD for FOPDT processes can be found in
[16].

Usually, the pH control is performed only during the diurnal period
because of its influence on the photosynthesis process. Thus, the system
is working in open-loop during the night-time period to save COsg
injections and thus saving costs and reduce COs losses. However, due to
the carbonate-bicarbonate balance, pH can rise above the set-point
during night-time (without being critical). At the beginning of the day,
as the pH starts outside the optimal value, a considerable injection is
necessary to regulate it. In addition, changes in pH cause stress in the
microalgae strain and decrease its performance. Therefore, in this
section, the control scheme will be evaluated for the whole day in order
to analyse how the (event-based) control approach can contribute to
control the system also during night-time and without increasing the
costs too much.

For the simulation study, the characteristics of the microalgae strain
Scenedesmus almeriensis have been taken as a reference. This strain has
an optimal pH range around 8, but during the simulations a value of 7.8 has
been used, due to the initial assumption of being the value that produces
maximum growth.
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5.5.1 On/Off vs PI control results

The first scenario shows the simulation results considering two control
architectures, a traditional On/Off controller operated during daytime (the
system is in open loop during the night-time) and a combined daytime plus
night-time PI control. Figure[5.12]shows a two days simulation where it can
be seen how the pH oscillates around set-point (established in 7.8) during
daytime for the On/Off controller (represented in red). These oscillations
range from 7.73 to 7.9 while, for the PI controller (represented in black), the
pH remains close to the set-point. Another remarkable fact is the variation
of the pH during night-time, which, in the case of On/Off control, can reach
values of 8.7. On the opposite, the night-time PI controller keeps the pH
around set-point in that period.

Figure 5.12: Two days comparison between traditional On/Off daytime
control (red) and PI control during daytime and night-time periods (black).
Blue dashed line represents pH set-point on 7.8.

Referring to the control effort, the control signal plot of Figure [5.12
represents the opening % of the injection valve for both control schemes.
In this plot, it can be verified that, in the case of the On/Off controller,
the valve opens completely in short periods of time, which causes a great
control effort. In the case of the PI controller, the maximum opening of the
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valve is around 23% during daytime period and 12.5% for the night-time
period.

Indexes On/Off Controller PI Controller Units

IAE 185,513.10 2972.96 -
TAE daytime 11,590.10 1366.30 -
TAE ighttime 173,923.00 1606.66 -
TV, 274.00 15.99 -

IT 1856.47 1600.70 min

Gas 1.86 1.60 m?

IT gaytime 1856.47 851.05 min

ITighttime - 749.65 min

Table 5.1: Performance indexes for On/Off and Proportional-Integral (PI)
control approaches

Table shows the indexes for these two control schemes during the
five days. The indexes are described as follows: IAE is the Integral
Absolute Error (also during daytime and night-time), T'V,, is the Total
Variation in the control signal, I'T represents the COq Injection Time to
the reactor (also during daytime and night-time) and Gas shows the COq
consumption. Starting with the TAE, it is very remarkable how the PI
controller reduces this error by up to 98.40% with respect to the On/Off
control, since it also operates during the night-time. Observing this error
independently between the daytime and night-time periods, reductions of
the order of 88.21% and 99.08% respectively for the TAE can be achieved.
From the point of view of the Total Variation in the control signal, the
PI control reduces this variation by 94.16%, due to a more accurate
control during the daytime and even the night-time. This improvement
in the control signal is reflected in a reduction of the control effort. The
most remarkable comparison that can be made is about Injection Time
and gas consumption. The PI controller reduces these values by 13.78%
compared to the On/Off control, despite operating during the entire day
and not only during the daytime period.
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5.5.2 Event-based SSOD-PI control results

The second scenario presents the results of the SSOD-PI control
architecture for five days. Figure represents the SSOD-PI approach
for the pH control problem with two different A values for daytime
period (A = 0.01 and A = 0.05), maintaining a A = 0.05 during the
night-time period. By analysing the graphics of Figure a
comparison can be established between both A values, which represent
the lowest and higher values studied for this SSOD configuration.
Regarding pH (first plot), during night-time, both signals show similar
behaviour, due to a A value of 0.05. On the contrary, during the daytime
period, the change in the tolerance produced by the A parameter is
appreciated. With a A value of 0.01 (black), it can be seen that the pH
of the reactor remains around set-point with a rise peak at the beginning
of the daytime period caused by the photosynthesis process (microalgae
perform sunlight photosynthesis, which acidifies the culture and increases
pH). On the other hand, with a A value of 0.05 (red), this rise peak is
increased due to a lower tolerance caused by a higher A value. Moreover,
at the end of the daytime, a drop peak is observed, which is produced by
a decrement on solar radiation and the continuous gas injection caused
by a greater tolerance on the event deadband.

For the control signal (second plot), during the night-time period, the
response of the valve is the same in both cases. Regarding the daytime,
the control signal corresponding to a A value of 0.05 shows a slower rise
at the beginning of the daytime period and a higher average value with
respect to the A value of 0.01. In relation to the events (third and fourth
plots), a decrease in the number of events can be appreciated when the
value of the A parameter increases, as it can be seen in Table

The SSOD-PI performance indexes are presented in the Table [5.2]
where the tests carried out with different A values (A = 0.01, 0.02, 0.03,
0.04 and 0.05) are collected for five days each. Two new indexes with
respect to the previous Table are introduced: E,_guytime and
Ey_nighttime are the number of events during daytime and night-time
periods. The TAE error increases during the daytime period as the A
value increases, while for the night-time similar values result for all cases.
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SSOD-PI A
0.01 0.02 0.03 0.04 0.05

Indexes Units

[IAE 9418.45 9743.28 10,196.29 10,805.44 11,484.70

IAEjaytime | 2089.36 2416.45  2899.45 3309.99 3974.87

IAEpighttime | 7329.09  7326.83  7296.84 7495.45 7509.81

TV, 1138 1139 11.86 11.82 12.41

By daytime 132 55 43 32 26

By nighttime | 91 93 95 93 96

IT 153770 1541.90 125350 154570  1542.97 | min
Gas 154 154 1.54 1.55 1.54 m
IT daytime 852.42 857.53  864.33  867.03  865.70 | min

[T ighttime 685.28  684.37 679.97 678.67 677.27 min

Table 5.2: Performance indexes for the Symmetric-Send-On-Delta-
Proportional-Integral (SSOD-PI) control approach.

This is due to the fact that a fixed A value was used for the night-time
period while a value range from 0.01 to 0.05 was used for daytime, thus
increasing the error tolerance. Therefore, due to this increase in the error
tolerance, the number of events—or communications between the sensor
and the control unit—will be reduced with the increase of the A value, as
can be seen in the table, especially during the daytime period. The Total
Variation increases slightly in every case due to the tolerance imposed by
the A value, which makes the control signal during the daytime period
more constant but higher in the case of A = 0.05. Regarding the
Ingection Time and gas consumption, there is no significant variation
between cases, ranging from 1537.70 [min| (A = 0.01) to 1545.70 [min|
maximum (A = 0.04), with the highest consumption during the daytime
period.

5.5.3 Event-based PI-SSOD control results

The last scenario presents the results of the PI-SSOD control architecture
for five days. Figure shows the simulation performed using different
A values (A = 0.001 and 0.01) to compare both results. In the top plot,
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the pH behaviour during the whole experiment is presented, where the pH
reaches a higher value due to the photosynthesis process on daytime for
the A value of 0.01. The photosynthesis due to solar irradiance acts as a
disturbance at the same hour for every simulated day and the controller
reacts later than for a A value of 0.001 because the event-based control
method has a higher tolerance regarding the step in the control signal.
On the other hand, for the A value of 0.001, this peak is smaller and the
pH remains around the set-point. During night-time period, a A value of
0.006 for the PI controller was used for all the experiments, to maintain
the pH oscillating close to the set-point.

In the second plot, the combined control signal applied to the actuator
is shown. This signal is similar during the night-time period for both
simulations, and during the start of the daytime period, it can be seen
that the signal corresponding to a A value of 0.01 begins to act later
than for the A value of 0.001, due to a greater deadband tolerance. The
daytime and night-time events are presented in the third and fourth plots,
respectively. It can be seen that, during the daytime, there are fewer events
than during night-time, as it can be checked in Table because of the
small deadband in the night-time period.

Table shows the performance indexes for all A cases studied (A —
0.001, 0.003, 0.005, 0.007 and 0.01) during a period of five days.
Comparing the IAE, it can be appreciated that it increases as the A
value increases because the increments in the control signal are greater.
The error during night-time is similar in all cases, due to the same A
value used in that period. The Total Variation does not show a regular
increase or decrease, and it varies depending on the A value because the
control signal is similar in all cases. The only observed difference is a
later actuation during the daytime period. The daytime events are
reduced as the A wvalue increases and they remain similar during
night-time as the IAE and the night-time events. The Injection Time
and gas consumption do not show much variation in the analyzed cases.
In the case of A = 0.01, the reduction in the Injection Time due to the
photosynthesis process at the beginning of the daytime is compensated
with an increase at the end of the daytime due to a late actuation caused
by the drop on solar irradiance, which is the period in which the pH
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remains below the set-point. Thus, gas consumption is similar to the case
of A = 0.001, where the pH remains close to the set-point.

Indexes PI-SSOD A Units
0.001 0.003 0.005 0.007 0.01

IAE 6643.80 7339.80 8109.32 9260.24 12,799.96 -

TAE gaytime 2093.44 2782.69 3555.31 4462.89  7847.62 -

IAE ighttime | 45650.36  4557.11 4554.01 4797.35  4952.34 -

TV, 7.73 9.43 6.31 5.85 6.09 -
By daytime 1226 332 161 88 63 -
Ey_nighttime | 700 1040 720 638 724 -
IT 1577.60 1585.30 1579.00 1570.30 1540.03 | min
Gas 1.58 1.59 1.58 1.57 1.54 m3
1T daytime 849.03 856.63 851.63 845.23  818.90 | min

I'Tighttime 728.57  728.67  727.37  725.07 721.13 min

Table 5.3: Performance indexes for the Proportional-Integral-Symmetric-
Send-On-Delta (PI-SSOD) control approach.

Discussion

As verified from the first scenario comparing the On/Off control with the
PI control architecture, the time-based scheme brings a series of benefits
to the pH control problem with respect to the traditional one. It provides
an improvement in the CO, usage even operating the reactor during both
daytime and night-time periods, while the On/Off control was used only
during the diurnal period.

On the other hand, the event-based control architectures based on the
SSOD method and coupled with a classical time-driven PI controller
(SSOD-PI and PI-SSOD) also count with the benefits that improve the
reactor control compared to the traditional On/Off control. Comparing
these event-based control architectures with respect to the PI control,
certain advantages are obtained accompanied by a series of disadvantages
related to the trade-off between tolerance and control accuracy. Looking
at Tables and the first advantage for the event-based schemes
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is the reduction of the COs consumption, at the expense of slightly
degrading the pH control performance by increasing the TAE values. This
reduction in gas consumption is obviously more relevant when the plant
operates for long periods of time (i.e., months). The second advantage is
related to the control effort, which is reduced due to control tolerances
established in both daytime and night-time periods, as can be seen, by
the total variation and injection time.

Finally, the two event-based control architectures (SSOD-PI and
PI-SSOD) show some differences between them regarding the event-based
architectures and the A values suitable for its operation. One of the main
differences that can be seen between the two architectures is that the A
parameter has a greater influence on the PI-SSOD scheme since small
variations of this parameter showed greater changes in IAE, as from
Tables [5.2] and The PI-SSOD scheme shows a greater reduction in
the total variation of the control signal with respect to the SSOD-PI. On
the contrary, the SSOD-PI scheme shows less number of events, being
more suitable for use with wireless sensors. Regarding the injection time,
it can be appreciated that, for the PI-SSOD architecture, it is slightly
higher than for the SSOD-PI one. These differences are due to the
event-based triggering method in both cases, where the A parameter
does not work in the same way, and therefore, it must be selected
regarding the needs of the process.

5.6 Experimental results

This section presents the experimental results obtained during the tests
performed on the microalgae raceway reactor for the pH control problem
during several days. Specifically, two-days tests will be presented for each
evaluated control structure [73] [71].

The aim is to establish a comparison between the classical On/Off
control operation of the reactor and a time-based controller architecture,
in addition to the SSOD-PI event-based method. First, the reactor is
operated with the classical On/Off control performed only during the
daytime period. Second, the PI time-based control architecture is applied
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to control the system during the whole day with two controllers,
corresponding to the daytime and night-time periods. Afterwards, the
SSOD-PI event-based method is proposed combined with the PI
controllers previously designed and compared with the other control
architectures applied.

It is remarkable to mention that the dynamic behavior of the physical
raceway reactor is quite far from the behavior shown in the simulation
part. This is due to the model used in simulation, which corresponds
to a microalgae culture from a period prior to the experimental tests,
and therefore, with a different configuration compared to the current one.
Regarding the event-based control approach, the SSOD-PI structure has
been chosen due to its application on the pH error in the system.

5.6.1 On/Off control results

The results obtained during the two days test performed with the On/Off
control architecture are presented in Figure [5.15] The traditional On/Off
control is characterized for a simple and fast control that does not take
into account error limitations. With this type of control, the COs valve
opens to the maximum until the pH drops below the reference and the
error decreases, but without acting against the lowering of pH below the
reference that occurs.

From Figure [5.15] the effects of the On/Off control on the pH can
be observed, which considerably oscillates, moving away from its optimal
production value, set at a pH value of 8. In fact, this behavior causes CO9
injections with an excessive duration, which provokes considerable drops
in pH to values close to 7.5, very far from the reference. Notice that during
the night-time period, due to bicarbonate buffer effect and the absence of
control, the pH rises to values close to 8.2.

5.6.2 PI control results

The PI control results obtained during daytime and night-time periods are
presented in Figure [5.16] The variation in pH ranges from 7.97 to 8.04,
being on the optimal production zone. To maintain the pH on this range,
during the night-time the PI control (input for the PWM) signal maintains
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approximately a 10% of the total injection flow, corresponding to a COq
flow rate of 0.5 (L min~!); and a 20% of the total injection flow during
daytime, corresponding to a COo flow rate of 2 (I min~1).

5.6.3 Event-based SSOD-PI control results

Figure shows the results obtained with the SSOD-PI event-based
control architecture during two days. A value of A = 0.1 has been used
in the event-based method for the tolerance deadband. The effect of the
A value can be seen in the evolution of the pH, which varies between 7.9
and 8.1 during the night-time, with the slow dynamic characteristic of
this period. On the other hand, during the daytime the pH varies
between 7.9 and 8.2 because of the disturbances caused by solar
radiation. The control signal during the night-time period shows a
behavior similar to the On/Off control, with pulses of smaller amplitude
occurring when the pH exceeds the threshold of the error band imposed
by the A parameter. During the daytime period, the PI control signal is
more active than at night-time. Regarding the COg flow, it is
characterized by injection pulses of varying amplitude and duration
depending on the period of the day when the pH exceeds the threshold of
the error zone. During night-time period, flow pulses are short and with
an amplitude of 5 (L min~!), while, during daytime, the flow pulses
become longer with an average amplitude of 6 (L min~1).

5.6.4 Performance indexes

To make a comparison between all control architectures, four
performance indexes have been taken into account, which IAE, IT and
Gas consumption were previously defined. The Ozygen Production rate
or photosynthesis rate (POg), is an index to establish system
performance, which is in relative units with respect to the On/Off
control. This index represents the oxygen production per unit of biomass
per day and can be calculated as the increase in the production of oxygen
per unit of time. Table [5.4] shows the performance indexes described for
the three control architectures calculated only based on the first day
evolution, as in this day the three evaluated control approaches have the
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Index [1 day] | On/Off control | PI control | SSOD-PI control | Units
TIAE 12793 683.5 4940 -
IT 82.3 1440 723.7 min
Gas 993.2 1302.1 1172.4 L
GaSdaytime 993.2 1132.7 1046.5 L
Gasnighttime 0 169.4 125.9 L
POy 1 2.3 1.7 -

Table 5.4: Performance indexes computed for the first day due to equal
conditions comparing the three control architectures presented on the
results part. TAE represent the Integrated-Absolute-Error, IT represents
the Injection Time, Gas represents the COg2 total gas consumption, in
addition to the consumption during the daytime and night-time periods.
POs represents system performance.

same operating conditions (similar levels of solar radiation, ambient
temperature and biomass concentration). During the second day, both
the On/Off controller and the PI controller suffer from disturbances
coming from variations in the solar radiation. So, Table shows the
performance indexes for the complete two-days test performed for the
control architectures under different weather conditions and in the case of
PO, this table shows the mean Oxygen Production rate for the two
days. Notice that environmental conditions cannot be fixed in
experimental tests (only in simulation this is possible as it was done in
the previous section [70]).

Discussion

The differences between the On/Off control and the PI control are
evident by looking at Figures [5.15] and [5.16] in addition to the indexes in
Tables and Regarding the pH, the PI control reduces the
variation, keeping it in an optimum range, but at the expense of injecting
during the whole day. The total gas consumption is slightly higher in the
PI control compared to the traditional control, but it is understandable
considering that the control is carried out even during the night-time
period, with better results in pH, reflected in the IAE parameter, which
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Index [2 days] | On/Off control | PI control | SSOD-PI control | Units
TAE 28282 1372 9402 -
IT 157.7 2880 1405 min
Gas 1933.3 2540.4 2446.9 L
Gasdaytime 1933.3 2179.9 2182.7 L
Gasmyhttime 0 360.5 264.2 L
PO2 1 1.9 1.7

TAE
represent the Integrated- Absolute-Error, I'T represents the Injection Time,
Gas represents the CO9 total gas consumption, in addition to the
consumption during the daytime and night-time periods. POg represents

Table 5.5: Performance indexes computed for the two-days tests.

system performance.

is reduced approximately a 95% with respect to the On/Off control. The
increase in gas consumption is not high and can be translated into
greater biomass production, as can be seen by the POs index, which
increases approximately a 50% with respect to the On/Off control. The
pH is maintained at an optimal level and without variation, thanks to a
higher pH stability, which could generate stress on the microalgae and
reduce its performance, situation that happens with the On/Off control.

On the other hand, the SSOD-PI event-based control presents a
behavior in pH very similar to that shown by the On/Off control
architecture, but with a controlled amplitude, varying around the
reference. Thus, the TAE error is reduced by 61% (Table on equal
conditions), at the expense of slightly higher consumption, as in the case
of the PI control. Also, the Oxygen Production rate of Tables [5.4] and
are higher, with an increase of 40% with respect to the On/Off control.
Comparing this architecture with the PI control, both show a similar
consumption (as can be seen in Tables and , being lower the one
related to the event-based control. Injections performed during the
night-time are punctual and scarce, instead of the continuous injection of
COg3 caused by the PI control architecture. Moreover, Tables [5.4] and
denote that the TAE error is greater for the event-based control with
respect to the PI control, due to the oscillation of the pH caused by the
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tolerance in the error, determined by the A parameter. As for the
performance of the system observed in the Oxygen Production rate
(PO3), the PI control improves the production by approximately 20%
with respect to the event-based control, at the cost of higher gas
consumption.

Regarding the CO3 consumption of each period of the day, represented
in Tables and it can be seen that the consumption during the
daytime period is practically the same for the PI and the event-based
control architectures. The PI control is the one that reduces the most
the error and increases the Oxygen Production rate, but also with a more
variable control signal. On the other hand, the consumption during the
night-time period shows a reduction of CO3 in the case of the event-based
control, with fewer injections, as can be seen with the control signal in
Figures and This fact yields interesting control architecture,
such as the combination of the PI control during the daytime period and
the use of the event-based control during the night-time period. As stated
earlier, the night-time period is not as critical as the daytime and tolerance
in the error bands could be controlled by the A parameter, an intrinsic
feature of the SSOD method.

5.7 Conclusions and contributions

Summarizing, this chapter describes the problem regarding the pH
control carried out in the raceway reactors and the importance of a
correct management in the use of resources, such as the consumption of
CO3. In addition, different control approaches based on two identified
models are presented for the evolution of pH in the reactor during
daytime and night-time periods. One of the most characteristic
innovations of these approaches is the control carried out during the
whole day, since the classical operation of pH in raceway reactors is
carried out exclusively during the daytime period.

The development of these new control approaches (time-based and
event-based) is aimed at improving pH control in raceway reactors while
reducing COo consumption, in addition to improving biomass
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productivity due to less fluctuation of pH and cultivation around optimal
values. The tests carried out, both in simulation and experimentally,
have highlighted the difference that precise control and correct
management of CO9 supposes compared to its normal operation.

The results regarding the pH error show that the PI control reduces
the error to a large degree with respect to the On/Off control
architecture, keeping the pH very close to the reference, that is at the
optimum production value during 24 hours. To achieve this, the PI
control slightly increases the COs consumption but considerably
improves system performance. On the other side, the SSOD-PI
event-based control architecture increases the IAE error with respect to
the PI control, but reducing the CO2 consumption during the night-time
period, improving control effort and gas utilization.

As conclusion, a control structure that combines the PI control for the
daytime period and the event-based control for the night-time period is an
interesting architecture to consider due to the advantages that both types
of control provide individually.






Conclusions and future works

This thesis has presented modeling and control approaches related to the
biomass production process carried out in raceway reactors, with the aim
of improving the operation of existing systems.

A detailed description of the specific microalgae growth rate model
coupled with nutrients availability influence on microalgae and bacteria
growth has been stated in Chapter [3] Moreover, an estimation model for
culture temperature on raceway reactors has also been developed and
explained. Temperature has proven to be one of the parameters that
most affects the growth of microalgae and bacteria in open reactors on an
industrial scale. It is a variable difficult to control, and it represents a
serious challenge for microalgae cultivation. From the developed
temperature model, it is possible to estimate the temperature of a culture
inside a raceway reactor, based only on environmental conditions.
Therefore, this model can be used as a design tool to determine the
viability of cultivating different strains of microalgae at various locations.
On the other hand, the combined model of biomass production and
wastewater treatment, together with the calibration method based on
genetic algorithms, open the door to the design of models that faithfully
reflect these processes in a single reactor. The main objective of these
models is the improvement or design of complete models that represent
the balances and intrinsic processes of microalgae during biomass
production process.

According to the model developed for culture temperature in raceway
reactors, Chapter [ has focused on analyzing the influence of temperature
and liquid depth on the microalgae culture. Thus, a liquid depth
optimizer has been designed to modify the volume of liquid in the
reactor, and thus regulating its temperature. This optimization approach
is carried out from the harvesting and dilution processes applied every
day during the operation of the reactor for microalgae biomass
harvesting. It should be noted that this method does not imply an
additional cost in the facilities, but rather takes advantage of existing
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mechanisms to improve biomass productivity. The results obtained from
this approach denote a considerable improvement in the amount of
biomass harvested, especially in summer, the period of maximum
production due to favorable environmental conditions. Moreover, the
importance of certain parameters that affect optimization should be
highlighted, such as the dilution rate and the inlet temperature of the
dilution medium, which must be taken into account to achieve proper
optimization.

The pH control is one of the most common processes in the
cultivation of microalgae, both at the laboratory level and at an
industrial scale. However, this control is usually carried out using On/Off
architectures, which are widespread in this field. This type of control
generates considerable oscillations in the pH value, in addition to being
carried out exclusively during the daytime period. Different control
approaches have been presented in Chapter 5] PI controllers combined
with event-based methods have shown great potential in improving pH
control and reducing COs consumption, compared to classical control
architectures. Furthermore, innovative pH control throughout the whole
day (daytime and night-time periods) has been introduced, with
satisfactory results compared to the control carried out exclusively during
the daytime period.

During the development of the contents shown in this thesis, a series
of ideas have arisen regarding improvements that could be applied. These
ideas could not be carried out due to lack of time or resources, and thus
are established as future objectives to be developed. The proposed future
works are the following:

e In most test presented, biomass productivity is used as a performance
index to compare different approaches. In addition to this parameter,
an economic or energetic analysis should be carried out to improve
the comparison. Therefore, a future work will be to perform an
economic and energetic analysis, with up to date values, in order
to establish comparisons between the different architectures of pH
control or in the culture depth control for temperature regulation.
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e For the calibration of the parameters for the combined biomass
production and wastewater treatment model, shown in Chapter 3, a
cost function has been used that represents the RMSE between the
measured and estimated variables. This result is preliminary and
the cost function can be improved to include different weights in
the errors for the variables analyzed, since their range of variation
is diverse. In addition, data collection can be improved to try to
achieve a less dispersed data set.

e The culture depth optimization process is based on a cost function
that computes the error between the estimated temperature and the
measured temperature in the raceway reactor. This cost function can
be improved by using a factor that takes into account the biomass
productivity as a function of temperature, biomass concentration and
culture depth. In this way, the established control action ensures the
maximization of biomass productivity. Taking online measurements
of biomass concentration is a complex task to achieve. This can be
done using turbidimeters that measure the turbidity of the water
from refraction, but the readings are often not very accurate. Thus,
another future work will be the development of biomass estimators.

o Regarding the culture depth optimizer, more tests remain to be
done over extended periods of time comparing between the
proposed optimization architectures (one step and receding
horizon).

e The dilution rate applied in the different test carried out is a value
that is taken depending on the biomass concentration and month.
These values are taken from tables and historical data, however, it
is a parameter that depends on the biomass concentration and the
growth rate, in addition to the atmospheric conditions. Therefore, a
new objective is to implement a function that calculates the dilution
rate online to optimally harvest the raceway reactor each day. This
implementation can be combined with the culture depth optimizer
to adjust the maximum and minimum limits in the operation of the
raceway reactor.
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