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Abstract: Dimethyl carbonate (DMC) is an interesting blending component for diesel fuel (D) owing
to the high oxygen content (53 wt.%) and the absence of C–C bonds in its structure. Moreover,
DMC can be produced from CO2 and methanol, which provides a renewable way to reduce anthro-
pogenic CO2. This research has been addressed to assess the use of DMC as a solvent of sunflower
oil (SO) and castor oil (CO), with the purpose of obtaining biofuels that can replace fossil diesel
as much as possible. The blending of DMC with straight vegetable oils (SVOs) reduces their high
viscosity, allowing their usage as drop-in biofuels without chemical treatments. Based on viscosity
requirements of European Standard EN 590, the optimal DMC/SVO double blends have been tested
as direct biofuels by themselves or mixed with fossil diesel in D/DMC/SVO triple blends. Relevant
physico-chemical properties of fuels have been analyzed. Engine parameters such as power output,
brake-specific fuel consumption (BSFC) and soot emissions have been studied to determine the effect
of new biofuels on efficiency of a diesel engine. An outstanding engine efficiency is shown by the
studied D/DMC/SVO triple blends, either with SO or CO as an SVO. The low calorific value of DMC
is the main reason for reduction in power and BSFC, as the amount of diesel in the triple blends is
reduced. Experimental results demonstrate that the use of these biofuels allows the replacement of up
to 40% of fossil diesel, without compromising the power and BSFC of the engine, and accomplishing
optimal cold flow properties and a marked drop in exhaust emissions.

Keywords: dimethyl carbonate; straight vegetable oils; castor oil; sunflower oil; biofuel; oxygenated
fuel; diesel engine; soot emissions; smoke opacity; power output

1. Introduction

The necessary climate change mitigation, along with the decreasing crude oil reserves,
make gradual fossil fuel replacement mandatory. Electric, hybrid or hydrogen engines
are emerging as future substitutes for conventional engines. However, the urgent need
for reducing anthropogenic gases implies that the energy transition must also be carried
out considering the engines installed in currently in-use vehicles [1]. This is especially
important in certain transportation sectors such as aviation, maritime shipping or heavy
vehicles, where the incorporation of new engines is still a challenge [2–4].

Nowadays, biodiesel, produced by transesterification of vegetable oils with methanol,
is the most employed biofuel to replace diesel fossil fuel [5]. From a technical point of
view, the substitution of diesel for biodiesel does not entail an issue. The major drawback
is the obtention of glycerol during its production, which contaminates biodiesel and also
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generates huge amounts of this by-product that needs a clear commercial outlet, and this
makes the biodiesel production process economically infeasible. Moreover, large quantities
of agricultural products are used to produce biodiesel. Considering that the transport
sector annually consumes a quarter of the total global primary energy on its own, the use
of this biomass as feedstock for biofuel production endangers the agricultural resources
destined for human and animal consumption, and generates competition for land use,
increasing the prices in the market [6]. Thus, an intensive investigation into alternative
fuels for diesel engines has been performed in recent years.

Straight vegetable oils (SVOs) are a promising alternative to replace fossil diesel.
SVOs are obtained from renewable resources, available around the world and are also envi-
ronmentally friendly. In fact, vegetable oils began to be used as fuels in 1900, when Rudolf
Diesel used peanut oil in a diesel engine, although they were subsequently replaced by
fossil fuels due to economic issues. To achieve a short-term energy transition process in
the most efficient way, the substitution of fossil fuels by SVOs ought to be carried out,
keeping the current fleet of compression-ignition (C.I.) Diesel engines. However, since
diesel engines are designed to run on diesel fuel, the higher viscosity that vegetable oils
exhibit reduces fuel atomization and generates problems in diesel engines, e.g., carbon
depositions on the injector, less efficient combustion, etc. [7]. For this reason, in addition to
the widely used transesterification reaction, alternative methodologies to adjust viscosity
values of vegetable oils to those required by European norm EN 590, such as pyrolysis or
emulsification, have recently been studied [8].

The technique of blending an SVO with a low-viscosity solvent (LVS) has gained a lot
of attention from among the different options. In the literature, numerous works have re-
ported the effect of adding a less viscous compound to vegetable oils to diminish their high
viscosity. Thereby, gasoline has been successfully used to reduce the high viscosity of castor
oil and sunflower oil in blends with fossil diesel [9]. However, in order to achieve a higher
diesel replacement, compounds derived from renewable sources represent a better option.
Generally, the use of oxygen-rich compounds as viscosity improvers allows to a better com-
bustion process and reduced emissions. In this sense, light vegetable oils (orange, camphor,
eucalyptus and pine oil) [10–13] and lower (methanol and ethanol) [14–16] and higher
alcohols (1-propanol, 2-propanol, isobutanol, 1-butanol, 2-butanol and 1-pentanol) [16,17],
as well as other renewable oxygenated compounds (diethyl ether, acetone, ethyl acetate,
diethyl carbonate and so on) [18–21] have recently been described as viscosity reducers
of SVOs. Overall, the exhaust emissions were significantly reduced with the use of these
blends, resulting in a similar or slightly lower engine performance than that exhibited
by conventional diesel. Moreover, the behavior of blends at low temperatures is usually
improved by using these less viscous oxygenated compounds.

In this line, dimethyl carbonate is highlighted as a potential biofuel not only because
of its non-toxic and biodegradable nature, but also because of its suitable properties for
achieving a good performance in diesel engines, including high miscibility with diesel fuel,
low boiling point and high oxygen content (53% by weight). Furthermore, the absence
of carbon–carbon bonds in the dimethyl carbonate (DMC) molecule would contribute
to hydrocarbon oxidation, which limits its participation in soot growth reactions [22].
Although DMC is industrially produced through different routes, e.g., phosgenation,
transesterification or oxidative carbonylation of methanol using O2, another low-cost
and higher efficiency alternative route that implies the use of CO2 as feedstock, is under
study [23]. Thus, DMC can be directly produced from methanol and CO2 by catalytic
procedures [24]. Methanol can also be obtained by catalytic hydrogenation of CO2 [25],
which becomes DMC production in a CO2 sink, and contributes to the reduction of this
harmful gas.

In recent years, DMC has been intensively studied as an effective biofuel and ad-
ditive for diesel fuel [22,26–34]. This oxygenated compound has been tested in blends
with biodiesel [35,36] and in biodiesel/diesel blends [37]. Results have showed that the
use of DMC notably improves the engine performance and exhaust emissions from C.I.
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engines [22,26–37]. However, DMC has only been applied as an additive in small pro-
portions to diesel, biodiesel or their blends because of its low calorific value that reduces
the energy density of fuel mixtures, which represents the most important limitation of
this methodology to reach high levels of fossil fuel substitution. In order to increase the
percentage of replaced fossil diesel, the combination of renewable vegetable oils and DMC
represents an excellent option.

To the best of our knowledge, the direct blending technique applied to vegetable oils
and DMC as a solvent has not yet been studied. Herein, waste cooking oil (sunflower
oil) and castor oil, two second-generation biofuels, have been chosen as SVOs due to
their easy availability and lack of competition with food uses. Then, this work provides
information about the castor oil/DMC and sunflower oil/DMC binary blends as substitute
biofuels for fossil diesel. To evaluate the possibilities of using these pure vegetable oils and
dimethyl carbonate as biofuels, the most important physico-chemical properties of fuel
blends, as well as their efficiency in a conventional diesel engine, have been studied.

This paper firstly collects an analysis of viscosity, density, cold flow properties, cetane
number and calorific value of the ternary fuel blends. Secondly, the evaluation of the
performance of a diesel engine fueled with the proposed new fuels through relevant engine
parameters, such as brake-specific fuel consumption (BSFC), power output and generated
smoke emissions, has also been carried out.

2. Materials and Methods

Some of the most important physico-chemical properties of diesel, sunflower oil,
castor oil and dimethyl carbonate (DMC) are collected in Table 1.

Table 1. Properties of diesel, sunflower oil, castor oil and dimethyl carbonate (DMC) [26–37]. Kine-
matic viscosity and density data are obtained from this work.

Property Diesel Sunflower Oil Castor Oil DMC

Density at 15 ◦C (kg/m3) 820 865 898 1079
Kinematic viscosity at 40 ◦C (cSt) 3.20 37.80 226.20 0.63

Oxygen content (wt.%) 0 10 15 53
Calorific value (MJ/L) 35.1 34.3 35.5 17.0

Flash point (◦C) 66 220 228 21.7
Auto-ignition temperature (◦C) 250 316 448 220

Cetane number 51 37 40 35.5

2.1. Preparation of (Bio)Fuel Blends: Dimethyl Carbonate/Vegetable Oil Binary Mixture,
and Diesel/Dimethyl Carbonate/Vegetable Oil Ternary Mixture

Dimethyl carbonate (purity ≥ 99.5%) was acquired from Sigma-Aldrich (St. Louis, MO,
USA). Sunflower oil (as a reference for waste cooking oils) and castor oil were purchased
from a local market and from Panreac (Castellar Del Valles, Spain), respectively. Diesel was
acquired from a Repsol service station.

The DMC/SVO double blends were prepared by adding DMC to either sunflower or
castor oil in proportions of 20, 40, 45, 50 and 60% by volume. Those DMC/sunflower oil
(SO) and DMC/castor oil (CO) double mixtures that met the viscosity requirements accord-
ing to the EN-590 ISO-3104 standard were mixed with commercial diesel (diesel/DMC/SVO
triple blends). The proportions of mixed fuels, in vol.%, are as follows: 20% DMC/SO
+ 80% diesel (B20SO), 40% DMC/SO + 60% diesel (B40SO), 60% DMC/SO + 40% diesel
(B60SO), 80% DMC/SO + 20% diesel (B80SO), 20% DMC/CO + 80% diesel (B20CO), 40%
DMC/CO + 60% diesel (B40CO), 60% DMC/CO + 40% diesel (B60CO), 80% DMC/CO +
20% diesel (B80CO). In addition, 100% commercial diesel (B0) and pure biofuels composed
of sunflower oil (DMC/SO, B100SO) and castor oil (DMC/CO, B100CO) were experimen-
tally tested as reference fuels.
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2.2. Fuel Characterization

The most important physico-chemical properties of fuel blends for their use in a diesel
engine, including kinematic viscosity, density, cloud point, pour point, calorific value
and cetane number, are determined either by experimental testing or by using predictive
equations. Herein, all data are displayed as an average of three experimental measures.
Additionally, errors are indicated as the standard deviation.

2.2.1. Kinematic Viscosity and Density

The EN ISO 3675 test method was used for density measurements of diesel, DMC, SO,
CO and their blends. The pure fuel components and the different blends were cooled until
reaching a temperature of 15 ◦C and, after that, the measurements were performed.

The EN 590 ISO 3104 test method was used for kinematic viscosity measures. Thus,
kinematic viscosity (υ) was measured at 40 ◦C using an Ostwald–Cannon–Fenske capillary
viscometer (Proton Routine Viscometer 33, 200, size 150). The viscosity, expressed in
centistokes (cSt) or mm2/s, was obtained by means of Equation (1):

υ = C·t (1)

where C is the constant of the calibrated viscometer, provided by the manufacturer (0.037150
(mm2/s)/s at 40 ◦C) and t is the flow time, i.e., the time (seconds) that a known volume of
liquid takes to pass, under action of gravity, between two marks indicated on an instru-
ment [18–21]. The maximum absolute error in the viscosity measurements is 1.1% and that
in the density measurements is 0.7%.

2.2.2. Cloud Point and Pour Point

The flow properties at low temperatures were measured following the same procedure as
described in previous works [18,19]. EN 23015/ASTM D2500 and ISO 3016/ASTM D97 were
the standard methods followed for cloud point (CP) and pour point (PP), respectively.

2.2.3. Calorific Value and Cetane Number

Calorific value (CV) and cetane number (CN) were estimated through the following
generic Formula (2) [28]:

P = ∑
i

Pi·xi (2)

where P is the estimated property of the fuel mixture, Pi is the property of each component
and xi is volumetric fraction of each component in the mixture. The CV is expressed in
megajoules per liter (MJ/L) from the experimental density obtained for each blend.

2.3. Experimental Procedure for Testing (Bio)Fuel Blends in Diesel Engine–Electrogenerator Set

A study of power output, brake-specific fuel consumption and smoke emissions was
carried out in a diesel engine–electrogenerator set fueled with the proposed fuel blends,
in order to analyze their efficiency. An experimental methodology that has been previously
reported was followed [18–21] and the technical specifications of the employed engine are
collected in Table 2. Likewise, the experimental methodology is illustrated in Figure 1.

The compression–ignition engine employed in this investigation was a 4-stroke and
single-cylinder engine with cylinder dimensions of 78 mm bore and 67 mm stroke, and a
forced air-cooling system with a flywheel fan. To evaluate the different fuel blends, all en-
gine parameters remained identical in each test, i.e., there were no modificationsto the
engine during the tests. Additionally, the measures were carried out with same engine
operation conditions, changing only the engine load (0, 1, 2, 3, 4 and 5 kW). The engine load
means the power demanded to the engine. Electric hot plates of 1000 W were connected to
the engine to apply the different loads. The volume of fuel employed in each test was 0.5 L.
To ensure comparability between the measurements, the engine ran for 20 min before each
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test. Additionally, between different fuel blends, the engine was fueled with diesel and
kept running for 20 min to purge from the system the possible remaining fuel.

Table 2. Diesel engine–electrogenerator set specifications.

Model AYERBE 4000 Diesel

Alternator LINZ-SP 10MF 4.2 KVA
Engine YANMAR LN-70
Type Vertical cylinder, 4-cycle, air-cooled diesel engine

Combustion Direct injection
Bore × Stroke 78 × 67 mm
Displacement 320 cm3

Horsepower 6.7
Rated power output 4.5 kW/3000 rpm

Voltage 230 V
Fuel consumption 1.3 L/H (75%)
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Figure 1. Scheme of experimental methodology to determine (a) power output by means of a
voltmeter–ammeter device; (b) generated soot emissions by means of a smoke density tester, in a
diesel engine–electrogenerator set [21].

The power output was calculated from the amperage and voltage generated by the
engine, which were measured using a voltmeter–ammeter device.

The contamination degree was obtained from the opacity of the generated smoke
during the combustion process. In this research, smoke density in the flue gases was
measured with an opacimeter-type TESTO 338 density gauge (or smoke density tester),
following the standard method ASTM D-2156. This instrument calculates the smoke
density from the level of soot on a filter paper. The smoke emissions are expressed in soot
concentration (mg/m3). The measurement range for smoke density is 0–50 mg/m3, where
0 indicates absolute clarity on the paper and 50 is maximum blackening. The repeatability
is ±0.5 mg/m3 (or ±9%). Before each test, the analyzer was calibrated with zero gas.

The BSFC, expressed in g/h·kW, is the mass of fuel consumed per hour and per kW of
power generated by the engine. BSFC is calculated measuring the volume consumed by
the engine fueled with the different (bio)fuels at a certain time. The BSFC measurements
were carried out at engine loads of 1, 3 and 5 kW, which represent low, medium and high
power demands. Experimental tests were done in triplicate, so the results are shown as the
average of three measures. The errors are calculated as standard deviation and represented
as error bars. mass of fuel consumed.



Sustainability 2021, 13, 1749 6 of 14

3. Results
3.1. Physico-Chemical Properties of Fuel Blends

One of the most important properties of a fuel is the kinematic viscosity because it
has a substantial influence on the atomization quality as well as the distribution of the fuel
droplet size and uniformity of the mixture, which directly affects combustion. Therefore,
the most suitable binary blends composed of DMC and sunflower or castor oils have been
chosen based on this property. In this sense, the viscosity of each fuel blend must meet the
European standard EN 590 ISO 3104, which establishes a viscosity range of 2.0–4.5 cSt for
the appropriate running of a diesel engine.

In Table 3, the viscosity data sets of DMC/SVO double blends are collected. As can
be seen, as the DMC proportion in the blend increased, the kinematic viscosity decreased.
This demonstrated the positive effect of DMC to reduce the high viscosity of vegetable
oils. In fact, a very notable reduction in viscosity values is achieved by the incorporation
of 20% DMC. The sunflower oil suffers a drastic drop in its viscosity value, from 37.80 to
11.46 cSt, i.e., it is three times lower. The effect of adding DMC to the vegetable oils is
even stronger on castor oil, which reduces its very high initial viscosity (226.20 cSt) by six
times (26.38 cSt). The results show that suitable viscosity values of 4.42 and 3.59 cSt can be
obtained by the addition of 40% and 45% DMC to sunflower and castor oil, respectively.
Therefore, these double blends can be used as biofuels in a conventional diesel engine,
according to European Standard requirements.

Table 3. Kinematic viscosity (cSt) at 40 ◦C of dimethyl carbonate (DMC)/sunflower oil (SO) and dimethyl carbonate
(DMC)/castor oil (CO) binary blends.

Property Blend
Dimethyl Carbonate (vol%)

0 20 40 45 50 60 100

KinematicViscosity
(cSt)

DMC/SO 37.80 ± 0.46 11.46 ± 0.25 4.49 ± 0.02 4.06 ± 0.03 3.52 ± 0.06 2.45 ± 0.05 0.63 ± 0.02

DMC/CO 226.20 ± 0.55 26.38 ± 0.09 7.04 ± 0.03 4.31 ± 0.02 3.06 ± 0.025 2.15 ± 0.10 0.63 ± 0.02

Some of the most important fuel properties of D/DMC/SVO triple blends, prepared
by the combination of fossil diesel and the selected biofuels (DMC/SO 40/60 and DMC/CO
45/55) have been determined, in order to evaluate their influence on performance of a
diesel engine. All data related to kinematic viscosity, density, cloud point, pour point,
calorific value and cetane number are collected in Tables 4 and 5. As can be seen, as the
percentage of DMC/SVO biofuel incorporated into diesel increased, from 20% to 80%
(B20–B80), the viscosity also increases, which is logical due to the higher viscosity of the
biofuels (4.49 and 4.31 cSt) with respect to diesel (3.2 cSt). Overall, all the tested blends
comply with the viscosity requirements indicated by European Standard EN 590, and so
they are suitable fuels for fueling a C.I. diesel engine.

Table 4. Fuel properties of diesel (B0), DMC/SO double blend (B100) and diesel (D)/DMC/SO triple blends (B20–B80),
containing 40% DMC.

Fuel Blend D/DMC/SO Kinematic
Viscosity (cSt)

Density at 15
◦C (kg/m3)

Cloud Point
(◦C)

Pour Point
(◦C)

Calorific
Value (MJ/L)

Cetane
Number

B0 100/0/0 3.20 ± 0.03 820 ± 6 −6.0 ± 1.0 −16.0 ± 1.2 35.10 51.00
B20SO 80/8/12 3.22 ± 0.02 850 ± 5 −9.0 ± 1.2 −19.5 ± 0.8 34.22 48.08
B40SO 60/16/24 3.60 ± 0.03 864 ± 4 −8.0 ± 1.1 −18.1 ± 1.0 32.58 45.16
B60SO 40/24/36 3.65 ± 0.04 909 ± 3 −5.7 ± 0.6 −14.3 ± 1.1 31.96 42.24
B80SO 20/32/48 4.13 ± 0.04 939 ± 4 −5.2 ± 0.9 −13.2 ± 0.9 30.63 39.32

B100SO 0/40/60 4.49 ± 0.02 960 ± 5 −4.5 ± 1.0 −12.3 ± 1.0 28.90 36.40



Sustainability 2021, 13, 1749 7 of 14

Table 5. Fuel properties of diesel (B0), DMC/CO double blend (B100) and D/DMC/CO triple blends (B20–B80, containing
45% DMC.

Fuel Blend D/DMC/CO Kinematic
Viscosity (cSt)

Density at 15
◦C (kg/m3)

Cloud Point
(◦C)

Pour Point
(◦C)

Calorific
Value (MJ/L)

Cetane
Number

B0 100/0/0 3.20 ± 0.03 820 ± 6 −6.0 ± 1.0 −16 ± 1.2 35.10 51.00
B20CO 80/9/11 3.23 ± 0.01 856 ± 5 −12.0 ± 0.8 −20.5 ± 0.5 34.24 48.40
B40CO 60/18/22 3.40 ± 0.02 877 ± 5 −10.0 ± 1.0 −19.0 ± 0.7 32.63 45.79
B60CO 40/27/33 3.64 ± 0.04 919 ± 5 −9.3 ± 0.9 −16.4 ± 0.7 31.63 43.19
B80CO 20/36/44 4.12 ± 0.04 946 ± 4 −7.4 ± 0.8 −15.9 ± 0.4 29.91 40.58

B100CO 0/45/55 4.31 ± 0.02 979 ± 5 −8.0 ± 0.6 −15.3 ± 1.0 28.22 37.98

The density is a property that has an impact on the power and the fuel spray charac-
teristics of the engine and therefore on the engine performance, combustion and exhaust
emissions. As was expected, the density values of ternary blends were increased with
an increase in the proportion of dimethyl carbonate and vegetable oil due to their higher
viscosity in comparison with diesel (see Table 1). Therefore, it is found that the density
values of mixtures containing sunflower oil oscillate between 850 and 960 kg/m3 (Table 4),
whereas castor oil blends show densities within the range 856–979 kg/m3 (Table 5).

In order to know the influence on the cold flow properties of blending DMC and
vegetable oils with traditional fossil diesel, both the cloud point and pour point of each
mixture were determined, and the results are displayed in Tables 3 and 4. As can be
observed, a small proportion of DMC (8–9%) is able to reduce CP and PP values of the
B20 mixtures by around 3.0–6.0 ◦C and 3.5–4.5 ◦C, respectively. However, it is noted that
those fuel mixtures containing an amount of DMC above 16–18% (B60–B100) do not show
significative improvements in the flow characteristic at low temperatures and, in some
cases, CP and PP values even slightly increase (B60SO–B100SO and B100CO blends).
The best results are obtained with the blends composed of castor oil. Particularly, B20CO
exhibited the lowest PP, −20.5 ◦C, and the biggest reduction of CP, −12.0 ◦C (by addition
of 9% DMC and 11% castor oil). In general, enhancements in the CP and PP, as compared
to diesel, are produced by using up to 40% pure biofuel, independently of the vegetable oil
employed. From the results of fuel characterization, it can be affirmed that the use of these
new biofuels could solve the biodiesel problem associated with the poor low-temperature
flow properties.

The calorific value of a fuel is an essential parameter of engine performance, since
it is directly related with power output and fuel consumption. The effect of DMC on
the calorific value of blends with diesel and sunflower oil (Table 4) or castor oil (Table 5)
has been analyzed. As can be observed, a higher proportion of DMC/SVO biofuel into
the blend involves a progressive decline in the calorific values of fuels. This tendency is
ascribed to the increase in DMC in the mixtures, as the calorific value of dimethyl carbonate
(17.0 MJ/L) is lower than diesel (35.1 MJ/L, Table 1). Therefore, the highest calorific value
(around 34 MJ/L) corresponds to the blends that contain the lowest percentage of DMC
(8–9%), i.e., B20 fuel mixtures (B20SO and B20CO). It is very remarkable that these blends
have about 98% of the calorific value of diesel. For their part, B100SO and B100CO, i.e.,
the pure biofuels composed exclusively of DMC and vegetable oil, exhibit calorific values of
28.90 and 28.22 MJ/L, respectively, and so they have around 18–20% less energy than diesel.
No big differences in energetic content are observed by comparing both vegetable oils.
This fact was expected, considering that they have very close calorific values, 34.3 MJ/L
for SO and 35.5 MJ/L for CO (Table 1). In general, triple fuel mixtures with sunflower oil
exhibit up to 13% less energy than diesel fuel, while the analogous castor oil blends show a
maximum energy loss of 15% in comparison with the fossil fuel.

Cetane number indicates the ignition quality of a fuel. Tables 4 and 5 also display the
variation of cetane number with the volumetric percentage of DMC and vegetable oil in
the triple blends. As can be seen, cetane number decreases as the DMC/SVO blending
ratio rises from 20% to 100% for all mixtures. Particularly, mixtures composed of castor
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oil show slightly higher cetane number values than those with sunflower oil. The CN
for B20SO–B100SO mixtures ranges between 48.08 and 36.40, whereas B20CO–B100CO
mixtures exhibit a CN of 48.40–37.98. The European standard EN 14214 establishes that the
CN should be at least 51. Since all of studied fuels have a cetane number below 51, a higher
ignition delay is regarded as likely.

3.2. Performance of a Diesel Engine Fueled with Dimethyl Carbonate/Straight Vegetable Oil and
Diesel/Dimethyl Carbonate/Straight Vegetable Oil (Bio)Fuel Mixtures
3.2.1. Power Output

Figure 2 shows the effect of the addition of DMC/SO (Figure 2a) and DMC/CO blends
(Figure 2b), as pure biofuels (B100) or in triple blends with diesel (B20–B80), on the power
output of a diesel engine at loads of 0 to 5 kW. For comparison, fossil diesel (B0) tests have
also been included as a reference. In most cases, the power output increased as engine
load increased from 0 to 4 kW, whereas a slight decrease in power output is produced
when the load applied to the engine is 5 kW. This behavior is observed for diesel and
B20SO–B80SO blends that contain up to 80% biofuel, as well as B20CO–B60CO blends,
composed of a maximum of 60% DMC/CO biofuel. On the contrary, the pure biofuel
B100SO and B80CO–B100CO fuels exhibit a different tendency, since the generated power
by the engine fueled with these fuels rises for engine loads from 0 to 3 kW and then suffers
a gradual drop between 3 and 5 kW.
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Figure 2. Effect of (a) DMC/SO and (b) DMC/CO biofuels on power output (W) of a diesel engine at different loads from
0 to 5 kW. Measurement errors are less than 3% in all cases.

It can be observed that, independently of the SVO employed, an increment in the
percentage of DMC/SVO biofuel (from B20 to B100) involves a lower power output with
respect to diesel. This behavior is explained by the lower energetic content of fuel mixtures,
as the ratio of dimethyl carbonate, whose calorific value (17 MJ/L) is about half that of
diesel (35.1 MJ/L), gets larger. Although the loss of power can be mainly attributed to
energy density, the effect of any other operational parameters on engine performance
cannot be ruled out. Since the pure biofuels do not contain diesel and have the highest
proportion of DMC, B100SO and B100CO generate the lowest power, up to 32% and 38%
less power than diesel, respectively. However, engine operability fueled with the 100%
renewable fuels (DMC/SVO double blends) should be highlighted. The best results are
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shown by B20SO and B20CO, probably because of their higher calorific value, higher
cetane number, lower density and lower viscosity, in comparison with the rest of the blends.
It is very outstanding that these fuels give rise to very similar power values to those of
commercial diesel, and even slightly higher at the highest engine loads. This fact could be
due to a better combustion resulting from using more oxygen-enriched fuels. In general,
no significant differences between the two vegetable oils are noted since their mixtures
exhibit a similar calorific value and cetane number (Tables 4 and 5).

3.2.2. Brake-Specific Fuel Consumption (BSFC)

BSFC is a key parameter to find the efficiency of an engine. The lower the BSFC for a
given power output, the more efficient the engine will be. Figure 3 illustrates the variation
in the BSFC at low (1 kW), medium (3 kW) and high (5 kW) engine loads, with the different
DMC/SO and D/DMC/SO blends (Figure 3a), as well as the DMC/CO and D/DMC/CO
blends (Figure 3b). For all tested fuels, BSFC decreases as engine load becomes higher. Thus,
the highest BSFC values are obtained at the lowest load. At medium loads, BSFC decreases
and, afterwards, it remains practically constant at the highest load. This fact is associated
with the higher temperature inside the cylinder that enhances the combustion process and
so leads to a drop in the BSFC values as the engine load increases [38].
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As can be observed in Figure 3a,b, the increase in %DMC in triple mixtures promotes
an increment in BSFC in comparison with diesel, because of its low calorific value (Table 1)
that decreases the energy content of the blends. Additionally, other factors, such as a higher
density and higher viscosity, as DMC content is increased from B20 to B100, lead to an
increase in BSFC because a greater quantity of fuel is required by the engine to produce the
same power. Therefore, all of blends show higher BSFC than diesel. Nonetheless, there are
no big variations in BSFC for the fuel mixtures at 3 kW and 5kW. Indeed, BSFC for B20 and
B40 is very similar to that of diesel, independent of vegetable oil, which is mainly due to
the oxygen-rich content of the tested fuels that improves the premixed combustion phase,
resulting in an increment in power output and lower BSFC. On the other hand, the use of
sunflower or castor oil does not result in noteworthy differences, since the properties of the
tested blends are very similar (Tables 4 and 5). The smaller BSFC revealed by the sunflower
oil mixtures, in comparison with their counterparts with castor oil, could be a consequence
of their slightly lower cetane number, which prolongs the ignition delay, contributing to a
better premixed combustion phase [31].

3.3. Exhaust Emissions from Diesel Engine: Smoke Opacity

The smoke opacity values versus engine load for B20SO–B100SO (Figure 4a) and
B20CO–B100CO (Figure 4b) blends are plotted in Figure 4. For all D/DMC/SVO blends,
the results clearly reveal a significant reduction in smoke emissions at any engine load,
as compared to those of conventional diesel. The higher the ratio of DMC/SVO biofuel in
the triple blends, the higher the reduction of smoke emissions at all engine loads. This in-
dicates that the enrichment of oxygen provided to fuel blends with the incorporation of
DMC (53 wt.% oxygen) enhances the combustion and, hence, reduces opacity. Gener-
ally, the presence of oxygen favors the oxidation of carbon to CO and CO2, rather than
participates in soot growth reactions. In this sense, the radical CH3OC• = O from DMC
decomposition usually leads to the formation of CO or CO2. Likewise, oxygenated fuels
increase the formation of free radicals such as •O and •OH that promote the oxidation of
unsaturated species, which are soot precursors [22]. On the other hand, in particular for
the case of dimethyl carbonate, the absence of C-C bonds in its structure reduces the forma-
tion of acetylene and benzene, which are species that lead to the formation of polycyclic
aromatic hydrocarbons (PAHs), which are soot precursors [22,29]. Additionally, decreasing
the cetane number of blends by the addition of DMC increases the ignition delay, which
means that a major amount of fuel is burned during the premixed combustion phase and,
therefore, soot particle oxidation is increased. This causes a decrease in the smoke from the
engine as more biofuel is incorporated in the triple mixtures [29,39].

As is logical, the biofuels B100SO and B100CO that contain the highest percentage of
oxygen and the lowest cetane number show the lowest opacity values at all loads, up to
96–97% lower than that of diesel. In the triple blend cases, the highest opacity reduction
is generally achieved at the lowest engine loads (1 and 2kW). Overall, an engine fueled
with sunflower oil blends (B20SO–B80SO) emits between 3% (B20SO at 3 kW) and 78%
(B80SO at 1 kW) less soot than diesel. For their part, fuels with castor oil as the vegetable
oil (B20CO–B80CO) generate between 41% (B20CO at 4 kW) and 97% (B80CO at 1 kW)
less emissions than commercial diesel. Related to the kind of vegetable oil, the mixtures
that contain castor oil emit less smoke than those containing sunflower oil at all loads.
In fact, 20% biofuel (B20CO) is enough to notably lower opacity values down to 41–85%
as compared to diesel, and down to 17–80% with respect to their counterparts with SO.
The differences between both SVOs can be ascribed to the greater amount of unsaturations
in the linoleic acid of sunflower oil, in comparison with those that the ricinoleic acid of CO
incorporates in its structure. The unsaturated compounds are decomposed to PAHs, which
are finally transformed into soot particles [40]. This would explain why the fuels containing
sunflower oil have worse performance in reducing smoke opacity from a diesel engine.
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The implementation of the strategy studied here would not only reduce soot from the
transportation sector, but could also be part of carbon capture, use and storage (CCUS)
technology for the treatment of anthropogenic CO2 [41], since DMC can be synthetized
from CO2 as a starting material.

4. Conclusions

This study has been conducted to evaluate the viability of dimethyl carbonate as a
biofuel that is part of diesel/dimethyl carbonate/straight vegetable oil ternary blends.
The effect of DMC on the blends has been studied through their application in a C.I. diesel
engine. DMC successfully reduces the viscosity values of vegetable oils down to the
limits required by the European Standard EN 590 on their usage in current diesel engines.
Moreover, the use of DMC leads to an enhancement in cloud point and pour point values
for blends B20SO–B40SO and B20CO–B80CO, especially in the cases where a maximum of
40% biofuel is added to diesel and castor oil is used as an SVO. Therefore, engines fueled
with these blends can run more effectively in cold climates than with diesel and biodiesel,
which provides a very important competitive advantage over other alternative fuels.

The reduction of calorific value and cetane number, as well as the increment in the
density and viscosity as the biofuel amount is increased in the blends, from B20 to B100,
are responsible for a lower power output and higher BSFC in comparison with diesel.
However, the higher oxygen proportion in the blends improves the combustion and leads
to a practically identical behavior to diesel for B20SO and B20CO blends. The higher
oxygen content of fuels is also a key parameter to remarkably reduce smoke emissions by
97%. The absence of carbon–carbon bonds in DMC and its tendency to decompose into CO
and CO2 make this oxygenated compound an excellent candidate as a biofuel to reduce
soot particles. Based on the studied criteria, the best engine efficiency is reached by B20CO
containing 9% DMC and 11% CO.

The results demonstrate that the blending procedure with DMC as a renewable solvent
is a simple but effective method to allow the direct use of vegetable oils, avoiding the
energy and economic costs associated with chemical transformation processes used to
produce biodiesel, and, in this way, achieve higher levels of fossil fuel substitution as well
as significantly reduced exhaust emissions, while keeping a very good engine performance.
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Abbreviations

ASTM American Society for Testing and Materials
B0 100% diesel
B20CO 80% diesel + 20% dimethyl carbonate/castor oil blend
B40CO 60% diesel + 40% dimethyl carbonate/castor oil blend
B60CO 40% diesel + 60% dimethyl carbonate/castor oil blend
B80CO 20% diesel + 80% dimethyl carbonate/castor oil blend
B100CO 100% dimethyl carbonate/castor oil blend
B20SO 80% diesel + 20% dimethyl carbonate/sunflower oil blend
B40SO 60% diesel + 40% dimethyl carbonate/sunflower oil blend
B60SO 40% diesel + 60% dimethyl carbonate/sunflower oil blend
B80SO 20% diesel + 80% dimethyl carbonate/sunflower oil blend
B100SO 100% dimethyl carbonate/sunflower oil blend
BSFC Brake-specific fuel consumption
C.I. Compression ignition
CN Cetane number
CO Castor oil
CP Cloud point
cSt Centistokes
CV Calorific value
D Diesel
ISO International Standards Organization
LVS Low-viscosity solvent
PP Pour point
rpm Round per minute (min−1)
SO Sunflower oil
SVO Straight vegetable oil
VO Vegetable oil
W Watts
Symbols
C Calibration constant (mm2/s)/s
t Flow time (s)
υ Viscosity (centistokes)
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