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Abstract—Systems biology is an emerging approach focused
in generating new knowledge about complex biological systems
by combining experimental data with mathematical modeling
and advanced computational techniques. Many problems in
this field are extremely challenging and require substantial
supercomputing resources to be solved. This is the case of
parameter estimation in large-scale nonlinear dynamic systems
biology models. Recently, Cloud Computing has emerged as
a new paradigm for on-demand delivery of computing re-
sources. However, scientific computing community has been
quite hesitant in using the Cloud, simply because traditional
programming models do not fit well with the new paradigm,
and the earliest cloud programming models do not allow most
scientific computations being efficiently run in the Cloud. In
this paper we explore and compare two distributed computing
models: the MPI (message-passing interface) model, that is
high-performance oriented, and the Spark model, which is
throughput oriented but outperforms other cloud programming
solutions adding improved support for iterative algorithms
through in-memory computing. The performance of a very
well known metaheuristic, the Differential Evolution algorithm,
has been thoroughly assessed using a challenging parameter
estimation problem from the domain of computational systems
biology. The experiments have been carried out both in a
local cluster and in the Microsoft Azure public cloud, allowing
performance and cost evaluation for both infrastructures.
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I. INTRODUCTION

The aim of systems biology is to generate new knowl-
edge about complex biological systems by combining ex-
perimental data with mathematical modeling and advanced
computational techniques. Dynamic models (described by
sets of nonlinear ordinary differential equations) is the
most common formalism in this area. Model calibration
consists of finding the parameters of a dynamic model that
give the best fit to a set of time-series experimental data,
which entails minimizing a cost function that measures the
goodness of this fit. This class of problems is extremely chal-
lenging due to its ill-conditioned and multimodal nature [1].
To efficiently solve the calibration problem many research
efforts have focused on developing metaheuristic methods,
which combine mechanisms for exploring the search space
and exploiting previous obtained knowledge, to find good

solutions in reasonable computation times [2]. However, in
most realistic applications, also the metaheuristic methods
require a very large number of evaluations (and therefore,
large computational time) to obtain an acceptable result.
Thus, high-performance computing (HPC) solutions, that
include parallel implementations and the use of HPC plat-
forms, such as supercomputers or commodity clusters, have
been extensively explored in the field. The parallelization
of metaheuristics pursues one or more of the following
goals: increase the size of the problems that can be solved,
speed-up the computations, or attempt a more thorough
exploration of the solution space. However, the success of
the parallel solution, particularly when we are considering
very challenging problems, is subject to be attended by the
provision of a large number of resources, which is not always
practicable.

With the advent of Cloud Computing effortless access
to large number of distributed resources has become more
feasible. However, its adoption by the HPC community has
been limited. First because of the difficulty in employing
cloud-based resources. The traditional parallel programming
models and tools in HPC community are not easily applica-
ble to the cloud platforms, and the learning curve to under-
stand the different architectures and runtime environments of
various cloud platforms discourage from adopting it as an al-
ternative computational system. Second because clouds also
raise important challenges regarding performance aspects.
Recently, there have been many research works evaluating
the promise of cloud platforms for HPC computing, most of
them concluding that cloud-based clusters need a significant
performance improvement to become competitive for HPC
applications.

The main goal of this paper is to assess the performance of
a well-known and popular metaheuristic for global optimiza-
tion, the Differential Evolution (DE) algorithm, using differ-
ent programming models: MPI (message-passing interface)
which is the de-facto standard for HPC distributed comput-
ing, and Spark which is a cloud-oriented framework that
outperforms other cloud solutions for iterative algorithms.
Besides, the results obtained in different infrastructures,
namely a local cluster, which is HPC-oriented, and the



Microsoft Azure public cloud, which is throughput oriented,
have been thoroughly discussed. A very challenging param-
eter estimation problem from the domain of computational
systems biology has been used as benchmark. However, the
results obtained in this paper can be particularly useful, not
only for the computational systems biology community, but
also for those interested in the potential of cloud frame-
works and platforms for developing metaheuristic methods
in global optimization problems in general.

The structure of this paper is as follows. Section II
discusses related work and briefly describes the two pro-
gramming models evaluated here, MPI and Spark, focusing
on its suitability for the cloud. Section III introduces the
parallel implementations of the DE used in this paper. Sec-
tion IV describes the experiments carried out and discusses
on the obtained results. Finally, Section V summarizes the
conclusions of the paper.

II. BACKGROUND AND RELATED WORK

A. Parallel programming models and frameworks

Computational science has appeared as a new disci-
pline several decades ago stimulated by the rapid increase
of computational power. Its success has caused demand
for supercomputing resources to rise sharply, and parallel
computers have evolved to become the everyday tool for
computer scientists. Message passing is by far the most
widely used approach to parallel computing, specially on
large parallel systems, typically with distributed memory.
The message-passing model consists of a set of processes
that are able to communicate with each others by sending
and receiving messages. In the message-passing model of
parallel computation, the processes executing in parallel
have separate address spaces. Communication occurs when
a portion of one process’s address space is copied, in a
cooperative way, into another process’s address space. This
model provides the programmer with explicit control over
the location of memory in a parallel program, specifically,
the memory used by each process. This ability to manage
memory location can allow the programmer to achieve
high performance. However, the main drawback of message
passing is that the programmer needs to pay attention to
details such as the placement of memory and the ordering
of communications. The Message-Passing Interface (MPI) is
a library that allows developers to write robust and efficient
parallel and distributed applications using the message-
passing paradigm. MPI is, probably, the most widely used
programming framework in the HPC community. In the last
decade, several researchers have studied the performance of
MPI applications in the cloud. Most of these studies use
classical MPI benchmarks to compare the performance of
MPI on public cloud platforms. The NAS benchmarks have
been used in [3], while the Linpack benchmark has been

employed in [4]. In [5] a variety of microbenchmarks and
kernels were studied. Besides, also real applications have
been assessed in the cloud, such as bioinformatics appli-
cations [6], high-energy and nuclear physics experiments
[7], and different e-Science applications [8], [9]. In [10]
the performance of a set of applications that represent the
typical workload run at a supercomputing center have been
examined. Also, an extensive analysis to detect the more
critical issues and bottlenecks of HPC applications in the
cloud has been carried out in [11]. These works conclude
that clouds were not designed for running tightly-coupled
HPC workloads, like MPI applications. Overall, the lack
of high-bandwidth, low-latency networks, as well as the
virtualization overhead, has a large effect on the performance
of such applications in the Cloud.

From the new programming models that have been pro-
posed to deal with large scale computations on cloud sys-
tems, MapReduce [12] is the one that has attracted more
attention since its appearance in 2004. In short, MapRe-
duce executes in parallel several instances of a pair of
user-provided map and reduce functions over a distributed
network of worker processes driven by a single master.
Executions in MapReduce are made in batches, using a
distributed filesystem (typically HDFS) to take the input and
store the output. MapReduce has been applied to a wide
range of applications, including distributed pattern-based
searching, distributed sorting, graph processing, document
clustering or statistical machine translation among others.

However, when it comes to iterative algorithms MapRe-
duce has shown serious performance bottlenecks [13] mainly
because there is no way of reusing data or computation from
previous iterations efficiently. New proposals, not based on
MapReduce, like Spark [14] or Flink, which has its roots
on Stratosphere [15], are designed from the very beginning
to provide efficient support for iterative algorithms. Spark
provides a language-integrated programming interface to
resilient distributed datasets (RDDs), a distributed memory
abstraction for supporting fault-tolerant and efficient in-
memory computations. According to [14] the performance
of iterative algorithms can be improved by an order of
magnitude when compared to MapReduce.

Additionally, in an attempt of converging cloud platforms
and HPC, projects like DataMPI [16] or CloudMPI [17]
arose. DataMPI [16] aimed at extending MPI by key-
value pair based communication operations to provide
high performance communications in cloud scenarios. The
cloudMPI [17] framework aimed at designing and imple-
menting an MPI-like framework for cloud platforms, having
an early implementation on the Azure cloud platform. Un-
fortunately, none of these projects seems to be active at this
moment.



B. Parallel metaheuristics in the cloud

The parallelization of metaheuristics methods has re-
ceived much attention to reduce the time for solving large-
scale problems [18]. Many parallel algorithms have been
proposed in the literature, some of them focussed on the
parallelization of DE. Nice reviews can be found in [19],
and more recently in [20]. Most of these proposals are
parallel implementations based on traditional parallel pro-
gramming interfaces. Research on cloud-oriented parallel
metaheuristics based mainly on the use of MapReduce has
also received increasing attention in recent years [21], [22],
[23], [24], [25]. Some proposals are specific on studying
how to apply MapReduce to parallelize the DE algorithm to
be used in the Cloud. In [26] the fitness evaluation in the
DE algorithm is performed in parallel using Hadoop (the
well-known open-source MapReduce framework). However,
the experimental results reveal that the extra cost of Hadoop
DFS I/O operations and the system bookkeeping overhead
significantly reduces the benefits of the parallelization. The
use of Spark for the parallelization of the DE algorithm was
explored in [27]. In this paper Spark-based implementations
of two different parallel schemes of the DE algorithm,
the master-slave and the island-based, were proposed and
evaluated. Results showed that the island-based solution is
by far the best suited to the distributed nature of Spark.
Also, a comparison of the previous Spark implementation
of the DE algorithm with a MapReduce implementation
has been performed in [28], already concluding that Spark
outperforms MapReduce in this kind of iterative algorithms.

Note that, although there are many studies in the litera-
ture evaluating the performance of a specific programming
model or framework in different computing platforms using
traditional benchmarks, we think that there is a lack of
research on assessing and discussing the performance of a
particular kind of widely used applications using different
models and platforms. Recently, in [29] the trade-offs of
performing linear algebra, specifically matrix factorizations,
using Spark were compared to tradicional MPI implemen-
tations. The head-to-head comparisons of those Spark and
MPI implementations revealed a number of opportunities
for improving Spark performance. Those experiments were
performed in a supercomputer. In this paper we will explore
the implications of the use of MPI and Spark in the parallel
implementation of the DE algorithm. We will discuss about
the differences that arise from the inherent features of each
programming model, and we will assess the performance
of both implementations in different computing platforms, a
local cluster and the Microsoft Azure public cloud.

III. PARALLEL DIFFERENTIAL EVOLUTION
IMPLEMENTATIONS

Differential Evolution is an iterative mutation algorithm
where vector differences are used to create new candidate so-

lutions. Starting from an initial population matrix composed
of NP D-dimensional solution vectors (individuals), DE
attempts to achieve the optimal solution iteratively through
changes in its vectors. From now on we will describe and
use the DE basic algorithm reported in [30], specifically the
DE/rand/1 scheme, however, the parallel implementations
described here can be both applied to other DE schemes.
Algorithm 1 shows the basic pseudocode for the specific
version of the DE algorithm used in this paper. For each iter-
ation, new individuals are generated in the population matrix
through operations (crossover - CR; mutation - F) performed
among individuals of the matrix, with old solutions replaced
only when the fitness value of the objective function is better
than the current one. A population matrix with optimized
individuals is obtained as output of the algorithm. The best
of these individuals is selected as solution close to optimal
for the objective function of the model.

In some real applications, such as parameter estimation in
dynamic models, the performance of the classical sequential
DE is not acceptable due to the large number of objec-
tive function evaluations needed. In the literature, different
parallel models can be found [18] aiming to improve both
computational time and number of iterations for conver-
gence. The master-slave and the island-based models are
the most popular. In the master-slave model the behavior of
the sequential DE is preserved by parallelizing the inner-loop
of the algorithm. A master processor distributes computation
operations between the slave processors. Therefore, the
parallel algorithm has the same behavior of the sequential
one.

The parallel implementations evaluated in this paper are
both based on the island model approach. The population

Algorithm 1: Differential Evolution algorithm (seqDE)

input : A population matrix P with size D x NP
output: A matrix P whose individuals were optimized

repeat
for each element i of the P matrix do

choose randomly different r1, r2, r3 ∈ [1, NP ]
choose randomly an integer jr ∈ [1, D]
for j ← 1 to D do

choose a randomly real r ∈ [0, 1]
if r ≤ CR or j = jr then

uG+1
i (j)← xG

r1(j) + F · (xG
r2(j)− xG

r3(j))
else

uG+1
i (j)← xG

i (j)
end

end
evaluate (uG+1

i )
if f(uG+1

i ) < f(xG
i ) then

xG+1
i ← uG+1

i
else

xG+1
i ← xG

i
end

end
until Stop conditions;
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    for each element in population do!
        cross(); mutation(); eval(); !
    end!
!
    while pending migration do!
         !check pending messages!
         !non-blocking operation!
         Test(recSet,isComplete);!
         if isComplete then!
             Replace(recSet);!
         else!

!      break;!
         end!
    end!
until Stopping condition;!

select(migrationSet);!
!
!asynchronous send!
ISend(migSet,remoteDest);!
!
!asynchronous reception!
!non-blocking operation!
!for execution progress!
Irecv(recSet,remoteDest);!
Test(recSet,isComplete);!
if isComplete then!
   Replace(recSet);!
!
!

Figure 1: MPI asynchronous island-based implementation of
the DE algorithm (asynPDE).

matrix is divided in subpopulations (islands) where the algo-
rithm is executed isolated. Phases such as selection, recombi-
nation and mutation are performed only within each island,
which implies absence of collaboration among processes.
Sparse individual exchanges are performed among islands
to introduce diversity into the subpopulations, preventing
search from getting stuck in local optima.

A. MPI asynchronous Parallel DE

The simplest implementation of the parallel island DE is
a synchronous algorithm. The drawback of the synchronous
algorithm is that processors are idle during a significant
amount of time, while they are waiting for each other during
the migration steps. Replacing synchronous communications
with asynchronous ones, each process will send the informa-
tion to a memory buffer associated with the remote process,
enabling the reception of the message later on (whenever that
process is ready to receive it), thus, avoiding idle periods.

For the evaluation carried out in this work we have
used the implementation of the asynchronous parallel DE
(asynPDE) described in [31]. Figure 1 schematically illus-
trates this implementation. Each process receives an island
population. For each iteration of the main loop, mutation
and crossover operations are performed within each island,
in the same way as in the serial implementation. Every
m iterations, a migration phase is performed to link the
evaluations in different islands. Whenever a process reaches
the migration phase, it sends a set of individuals to the
selected remote process using an asynchronous communi-
cation (ISend() function in MPI). Then, the process in

the migration phase checks if the message with the new
individuals of a remote process has already arrived to its
memory buffer (using a IRecv() function). However, if
the new solutions have not arrived yet, the process proceed
with the next evaluation. After each iteration of the algorithm
the process searches for the reception of data missed in
previous migrations (Test() function), avoiding stalls if
the messages have not arrived yet.

In addition to the migration step, the checking of the
stopping criteria may also involve communications between
processes. Stopping criteria are needed to terminate the
execution of the algorithms. They can be as simple as using
a maximum number of evaluations, which do not imply
exchange of communications. However, other criteria, that
allow to react adaptively to the state of the optimization
progress, need communications between processes. Asyn-
chronous MPI communications are also used in the proposed
algorithm for those communications, so that processes may
continue running independently. Each parallel process opens
a buffer where it expects to receive a termination message.
This buffer is checked every iteration of the algorithm. Thus,
the control of the stopping criteria of the global search is dis-
tributed among all the processes: when a stopping condition
is fulfilled in a process, this condition is communicated to
the rest of processes, then all of them can stop the algorithm
almost at the same time.

B. Spark island-based Parallel DE

To understand the Spark-based parallel implementation of
the DE algorithm, some previous insight into the way data is
distributed and processed by Spark is needed. Spark uses the
resilient distributed dataset (RDD) abstraction to represent
fault-tolerant distributed data. RDDs are immutable sets of
records that optionally can be in the form of key-value
pairs. Spark programs are run by a driver (the master in
Spark terminology) which partitions RDDs and distributes
the partitions to workers (the slaves in Spark terminology),
that persist and transform them and return results to the
driver. There is no communication among workers. Shuffle
operations (i.e. join, groupBy) that need data movement
among workers through the network are expensive and
should be avoided.

With the aim of better understanding Spark intricacies
and assess the performance of different alternatives when
implementing DE, in [27] we have presented a preliminary
evaluation of different variants of the master-slave parallel
implementation (SmsPDE), and an island-based parallel im-
plementation (SiPDE). The main conclusion of that work
is that the island-based parallel implementation is the best
suited to the distributed nature of Spark and obtains the best
performance results.

The Spark island-based parallel DE implementation
(SiPDE) used in the evaluation performed in this paper
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Figure 2: Spark island-based implementation of the DE
algorithm (SiPDE).

follows the scheme shown in Figure 2. Boxes with solid
outlines are RDDs. Partitions are shaded rectangles, darker
if they are persistent in memory. A key-value pair RDD has
been used to represent the population where each individual
is uniquely identified by its key. Some steps in the main flow
of the algorithm are executed in a distributed fashion:

• The random generation and initial evaluation of individ-
uals that form the population, implemented as a Spark
map transformation.

• The evolution of the population. Every partition of the
population RDD is considered to be an island, all with
the same number of individuals. Islands evolve isolated
during a number of evolutions. This number can be
configured and is the same for all islands. During these
evolutions every worker calculates mutations picking
random individuals from its local partition only.

• The migration strategy, which introduces diversity by
exchanging selected individuals among islands every
time the evolution of the islands ends.

• The checking of the termination criterion, implemented
as a Spark reduce action (a distributed OR operation).

The evolution-migration loop is repeated until the termi-
nation criterion is met, after which the best individual is
selected by means of a Spark reduce action (a distributed
MIN operation).

For implementing the migration strategy a Spark feature
known as partitioner has been used. In Spark the par-
titioner is responsible for assigning key-value pair RDD
elements to partitions based on their keys. Default partitioner
implements a hash-based partitioning using the key hash.
We have implemented a custom partitioner that randomly
and evenly shuffles elements among partitions. It must be
noted that this partitioner leads to a migration strategy that
randomly shuffles individuals among subpopulations without
replacement.

C. Key differences between the MPI and the Spark imple-
mentations

Three are the main differences between the MPI and the
Spark implementations described above. All these differ-

ences arise from the inherent features of the programming
model used in each implementation, and more specifically
from the fact that the communication among workers is not
allowed in Spark.

• Migration strategy. While in asynPDE the migration
strategy consists of a selection of the best individuals
in one island to replace the worst individuals in the
neighbor, the migration strategy in SiPDE consists of
randomly and evenly shuffling elements among islands
without replacement.

• Synchronization. The use of a partitioner to perform the
migration strategy leads to a synchronization step in the
Spark implementation. The MPI implementation, on the
contrary, performs the information exchange between
islands through non-blocking asynchronous message-
passing operations.

• Stopping criterion checking. Although the stopping cri-
terion is evaluated during each island evolution, when it
is met by one or more islands the Spark implementation
only stops after the reduce operation at the end of the
stage (see Figure 2). Thus, the Spark implementation
cannot stop just right when the value to reach is attained
in one of the islands, as asynPDE implementation
does.

IV. EXPERIMENTAL RESULTS

In order to carry out the proposed performance evalua-
tion, a challenging parameter estimation problem from the
domain of computational systems biology was considered,
the Circadian model. It consists of a parameter estimation
in a nonlinear dynamic model of the circadian clock in
the plant Arabidopsis thaliana, as presented in [32]. The
model contains 7 ordinary differential equations with 27
parameters (13 of them were estimated) with data sets from
2 experiments. This problem is known to be particularly hard
due to its ill-conditioning and non-convexity [33], [1].

For the experimental testbed two different platforms have
been used. First, experiments were conducted in our local
cluster Pluton, that consists of 16 nodes powered by two
octa-core Intel Xeon E5-2660 @2.20GHz CPUs with 64
GB of RAM, and connected through an InfiniBand FDR
network. Second, experiments were deployed with default
settings in the Microsoft Azure public cloud using clusters
with A3 instances (4 cores, 7GB). For the MPI experiments
a custom cluster with canonical Ubuntu Server nodes was
used, while for the Spark experiments we used a standard
HDInsight Spark cluster with A3 instances for head and
worker nodes. All the nodes were located in the North
Europe region, although there is no further guarantee on
proximity of nodes allocated together, which can lead to
significant variability in latency between nodes. Addition-
ally, we had no control over in which underlying hardware
the clusters were instantiated on. To avoid ending up with



different virtual clusters in every experiment, we instantiated
one cluster for MPI experiments and another cluster for the
Spark experiments and all the tests have been performed
in these clusters. By examining /proc/cpuinfo we have
identified that the actual CPU used in both clusters was an
Intel Xeon E5-2673 @2.40GHz with 7GB of RAM.

Comparing the different implementations of the parallel
metaheuristic is not an easy task due to their key differences
(see III-C) that affect the convergence rate of the algorithms.
For this experimental evaluation, both the MPI and the Spark
implementations were executed until their achieved solutions
had a similar accuracy, i.e., they are compared based on a
quality solution. The target value, or value-to-reach (V TR),
used as stopping criterion in the following experiments was
1.0e-5.

Additionally, there are many configurable parameters in
the classical DE algorithm, such as the population size (NP),
the mutation scaling factor (F), the crossover constant (CR)
or the mutation strategy (MSt), whose selection may have a
great impact in the algorithm performance. The objective of
this work is not to evaluate the impact of these parameters,
thus, only results for one configuration are reported here.
Previous tests have been done to select those parameters
that lead to reasonable computation times. For the selection
of the settings in these experiments, the suggestions in [30]
have been followed. For all the experiments in this section
NP=256, F=0.9, CR=0.8 and MSt=DE/rand/1 were used.

Besides, in parallel island DE algorithms, new parameters
have to be also considered, such as the migration frequency
(µ), the island size (λ), the communication topology between
processes, or the selection and replacement policy in the
migration step. The migration frequency will have a signif-
icant impact in the performance of both implementations,
because a high migration rate will emphasize the communi-
cations overhead, particularly affecting the performance on
cloud platforms. Thus, we performed a preliminary study to
determine the optimal migration frequency for both imple-
mentations. Frequencies of 50 iterations between migrations
for asynPDE, and of 200 iterations between migrations for
SiPDE, have been chosen. In addition the island size will
be λ = NP/#cores. Finally, in the MPI implementation,
the communication topology used is a star, and the selection
policy consists in selecting only the best individual in the
island population to be sent as a promising solution, while
the replacement policy consists in replacing the worst indi-
vidual in the island population with the incoming solution.
Note that in the Spark implementation the migration step
consists in a shuffle of the island populations instead of a
selective send and replacement in each island.

Results for both asynPDE and SiPDE implementations
in our local cluster Pluton are shown in Table I. We carried
out experiments varying the number of cores, from 2 to 32.
We have not used more than 32 cores because the scalability
of the parallel DE algorithm is heavily restricted by the

Table I: Performance evaluation of asynPDE and SiPDE
in local cluster Pluton.

meth. #islands/cores #evals time(s) speedup

as
yn

PD
E

1 6,480,102 15230.22±886.80 -
2 3,540,889 4078.36±1852.32 3.73
4 1,815,689 1100.08±180.96 13.84
8 1,231,094 380.99±77.64 39.97

16 1,236,346 220.79±51.17 68.98
32 1,700,782 149.82±30.37 101.65

Si
PD

E

1 6,437,670 40883.39±3712.56 -
2 5,980,416 19275.65±1281.63 2.12
4 5,729,536 9305.30±909.41 4.39
8 3,904,256 3319.33±296.88 12.32

16 1,835,776 790.97±90.50 51.69
32 1,577,216 348.36±43.47 117.36

population size, and, according to the guideline of [30],
the population size should be around 10D (being D the
dimension of the problem, which in the case of the Circadian
benchmark is 13). We have set the population size to 256
individuals, so as to be able to scale up to 32 islands of λ = 8
individuals each. And, although some authors [34] have
shown that a population size lower than the dimensionality
of the problem can be optimal in many cases, the fact
is that the smaller the island population size is, the less
chances for the combination between individuals and a lower
convergence rate will be achieved. Table I displays, for each
experiment, the number of cores (#islands/cores) used, the
mean number of evaluations required (#evals), the mean and
deviation of the execution times (time(s)), and the speedup
achieved versus the sequential execution. Results show that
the parallelization improves the execution time required for
convergence not only by performing the evaluations in par-
allel but also because the cooperation between islands leads
to an improvement in the convergence rate (less evaluations
are needed), thus, achieving superlinear speedups. As it can
be seen, the number of required evaluations is lower in the
MPI than in the Spark implementation, specially when the
number of cores is also low. Besides the other differences
between both implementations remarked in Section III-C
that would significantly affect the convergence rate, it is
worth noting that the checking of the stopping criterion
in the Spark implementation results in a larger number of
evaluations. The reason being that all the islands have to
reach the reduce operation at the end of the evolution stage.
Additionally, the convergence rate in both implementations
differs when the number of islands increases. Although
for a small number of islands the MPI implementation
clearly outperforms in number of evaluations the SiPDE
implementation, it should be noted that the convergence
of the asynPDE implementation stagnates for more than
8 processes, while it improves for the Spark implemen-
tation. This can be also observed in the speedup trend,
shown graphically in Figure 3. This important feature is
due to difference in the migration strategy followed by both



Table II: Performance evaluation of asynPDE and SiPDE
in Azure public cloud.

meth. #islands/cores #evals time(s) speedup

as
yn

PD
E

1 6,633,830 37952.61±3224.67 -
2 3,067,622 9196.63±1110.82 4.13
4 1,809,942 2659.65±410.31 14.27
8 1,279,609 929.77±204.21 40.82

16 1,301,888 491.92±87.50 77.15

Si
PD

E

1 6,565,461 93977.02±5216.28 -
2 5,333,186 41140.87±6474.26 2.28
4 5,716,736 21030.04±2443.06 4.47
8 3,983,616 7444.79±928.91 12.62

16 1,953,536 1768.25±166.51 53.15

implementations. When the number of islands increases,
selecting the best individuals to be shared in the migration
step leads to small populations full of cooperative solutions
that has an adverse impact on diversity, and could even cause
premature convergence to local optima. Shuffling the islands
population, on the contrary, maintains the diversity of the
searches when the number of islands increases.

The same experiments were performed in the Azure public
cloud from 2 to 16 cores. Results are shown in Table II.
As it can be seen, the Azure experiments obtain similar
results as those of the local cluster in terms of convergence
(number of evaluations required). However, results in terms
of execution times and speedup differ. On the one hand,
the overhead introduced in Azure due to virtualization and
use of non-dedicated resources in a multitenant platform
are not negligible, being the execution times obtained in
Azure between 2x and 3x the times obtained in Pluton.
On the other hand, the speedups, in particular when the
number of cores grows, achieved in Azure are larger than
in Pluton. This is due to the computation-to-communication
ratio, that is, the ratio of the time spent computing to the
time spent communicating, which depends on the relative
speeds of the processor and the communication medium. In
particular, for the asynPDE implementation the number of
communications increases with the number of cores, and

Figure 3: Speedup achieved by asynPDE vs SiPDE in
Pluton.

the computation, on its turn, decreases. Thus, since the
computation is slower in Azure, the scalability is better in
this platform.

To further compare the performance of both implementa-
tions without attending to the convergence rate achieved in
each case, the number of evaluations per second and per core
(eval/s/core) has been calculated. Note that this computation
includes not only the CPU time for the evaluation itself but
also the communication time and other overhead introduced
by the algorithm implementation, thus, it is a good metric
to assess the performance of Spark versus MPI for this
problem. Figure 4 shows the eval/s/core achieved for both
implementations and the two testbeds used. We encountered
that the eval/s/core of the MPI implementation was between
2.1x and 2.5x the one obtained by the Spark implementation.
It can also be observed the drop in the number of evaluations
per second and core in Pluton for the asynPDE implemen-
tation when the number of cores grows. The reason is that
the number of communications, and thus their overhead,
increases with the number of cores in the MPI implementa-
tion, and, additionally, since the computation of each island
decreases with the number of cores, the trade-off between
computations and communications degrades. However, in
the Spark implementation the number of communications
in each shuffle is always the same, and this data movement
is spread among the number of cores, thus, providing a good
scalability.

Before finishing the evaluation we wondered how much
performance we can obtain when using larger (and more
expensive) instances in the Azure platform. Azure provides
a number of different instance types that have varying perfor-
mance characteristics and prices. Previous results were ob-
tained in clusters of A3 instances. For this new comparison,
we have also built a cluster with compute-intensive instances
and we have carried out there the tests with the MPI
implementation. We have chosen A11 compute-intensive
instances that are 16-core nodes with Intel Xeon E5-2670
@2.6GHz CPUs with 112GB of RAM. Figure 5 shows the

Figure 4: Evals/s/core achieved by asynPDE vs SiPDE in
Pluton local cluster and Microsoft Azure public cloud.



Figure 5: Comparison of asynPDE results in Pluton local
cluster with results in a cluster of A3 instances and a cluster
of A11 instances in Azure.

results obtained and its comparison with the results obtained
in the previous Azure A3-cluster and also in the local cluster
Pluton. It can be seen that execution times (shown in a
logarithmic scale in the primary axis) in the A11-cluster
are competitive with those obtained in the local cluster, and
even outperforms Pluton when the number of cores grows,
showing a better scalability. The number of evaluations per
second and core is also shown in the secondary axis and
clearly illustrate the improvement in scalability when using
the compute-intensive Azure instances.

To conclude this evaluation we have found it interesting to
carry out a brief study on the cost of these experiments in the
Azure public cloud. Conducting a cost analysis comparing
the cost of relying on cloud computing and that of owning an
in-house cluster would be of particular interest, although it
is a very difficult task [35]. The acquisition and operational
expenses have to be used in estimating the local clusters
cost. However, the actual cost of local clusters is related
to its utilization level. For a local cluster acquired as one
unit and maintained for several years, the higher the actual
utilization level, the lower the effective cost rate. Besides,
labor cost in management and maintenance should also
be included, which could be significant. Thus, we found
unfeasible an accurate estimation of the cost per hour in our
local cluster. Besides, if we take a look to the price of the
used instances, we can see that in February 2017 the cost of
each A3-instance was 0.1585 e/hour, while the cost of the
A11-instance was 1.3155 e/hour. To run the experiments in
this paper we used 16-core clusters, so we needed four A3
instances but only one A11 instance. The mean pricing for
each experiment is shown in Table III. Having into account
that the performance, in terms of execution time, of the A11-
cluster in the tests performed in this work has been of 2.5x
over the A3-cluster, the use of A11 instances can be cost-
effective. In view of the obtained results we can conclude
that, though our experiments in the cloud demonstrates a
slightly poorer performance compared to the local cluster,

Table III: Cost evaluation in Azure public cloud for
asynPDE experiments.

#instances mean prize per run
#cores A3 A11 A3 A11

1 1 1 1.67 e 5.57 e
2 1 1 0.40 e 1.29 e
4 1 1 0.12 e 0.41 e
8 2 1 0.08 e 0.14 e
16 4 1 0.04 e 0.06 e

the cloud pay-as-you-go model can be potentially a cost-
effective and timely solution for the needs of many users.

V. CONCLUSIONS

In this paper, we explore and compare the performance
of a parameter estimation problem in computational systems
biology using the well-known Differential Evolution algo-
rithm implemented using two different distributed computing
models: MPI, that is HPC oriented, and Spark which is
throughput oriented. We have assessed both implementa-
tions in two different infrastructures: a local cluster and
the Microsoft Azure public cloud. Results show that, as
it was expected, from a computational point of view the
MPI implementation outperforms the Spark one in terms
of execution time. This is mainly due to its low level
programming language and reduced overhead. Nevertheless,
the Spark implementation should be positively considered
since it allow easier programmability and because it also
presents further advantages, such as inherent support to node
failures and data replication.

Although this research was designed and tested with
focus on the field of parameter estimation problems in
computational systems biology, we believe that the results
obtained in this work can be useful for those researchers
interested in the performance of existing traditional parallel
metaheuristics in new cloud platforms, as well as in those
interested in the potential of new programming models for
developing parallel metaheuristic methods.

The source code of the two parallel DE
implementations used as benchmarks in this work,
SiPDE and asynPDE, are publicly available at
https://bitbucket.org/xcpardo/sipde and
at https://bitbucket.org/pglez/asynpde,
respectively.
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