
Hardware Implementation of Statecharts for

FPGA-based Control in Scientific Facilities

Javier Cereijo Garcı́a

European Spallation Source

Lund, Sweden

Email: javier.cereijogarcia@esss.se

Roberto R. Osorio

University of A Coruña

Dept. Computer Engineering, CITIC

A Coruña, Spain

Email: roberto.osorio@udc.es

Abstract—The problem of generating complex synchronization
patterns using automated tools is addressed in this paper. This
work was originally motivated by the need of fast and jitter free
synchronization in scientific facilities, where a large number of
sensors and actuators must be controlled at the right time in
a variety of situations. Programmable processors cannot meet
the real-time requirements, forcing to use dedicated circuits to
produce and transmit the control signals. Designing application
specific hardware by hand is a slow and error-prone task. Hence,
a set of tools is required that allow specifying the control systems
in a clear and efficient way and producing synthesizable HDL
(hardware description language) code in an automated manner.
Statechart diagrams have been selected as the input method,
and this work focuses on how to translate those diagrams
into HDL code. We present a tool that analyzes a Statecharts
specification and implements the required control systems using
FPGAs. A number of solutions are provided to deal with multiple
triggering events and concurrent super-states. Also, an alternative
microprogrammed implementation is proposed.

I. INTRODUCTION

In this work, we approach the implementation of a software

package that allows the automated synthesis of control systems

based on Statecharts, a diagram-based tool that widely extends

the functionality of finite state machines. In the broader sense,

our tool may be used in a variety of contexts. However, it has

been motivated and tested to be used in a world-class research

center. More specifically, the European Spallation Source

(ESS) is a collaboration of 17 European countries to build the

world’s most powerful neutron source for research [1]. ESS is

being built in Lund (Sweden) and will be completed by 2025.

The control system will be based on the Experimental

Physics and Industrial Control System (EPICS) [2] software

environment, to create distributed soft real-time control sys-

tems for scientific instruments. Timing and synchronization

(Figure 1) will be based on a global event-based timing system

with an event generator at the top of a tree-like structure;

event receivers; and fan-out modules. The timing system

provides a global distribution of RF-synchronised triggers,

beam parameter data and timestamping to the facility, being

the event and data frames frequency of 88.0525 MHz.

This work was funded in part by the Ministry of Economy and Com-
petitiveness of Spain, Project TIN2016-75845-P (AEI/FEDER, UE), Xunta
de Galicia and FEDER funds of the EU under the Consolidation Program
of Competitive Reference Groups (ED431C 2017/04), and under the Centro
Singular de Investigación de Galicia accreditation 2016-2019 (ED431G/01).

88 MHz

Event
receiver

Event
receiver

Event
receiver

Event
receiver

Event
receiver

Event
receiver

Event
receiver

Event
receiver

Master Event
Generator

RF Master
Oscillator

fanout

fanout

Fig. 1. Timing distribution structure.

For fast signal acquisition and online signal processing,

as well as very short latency and hard real time operation,

FPGAs are used, particularly, Kintex-7 FPGAs by Xilinx [3].

In each period of the event frequency, an 8-bit event and either

an 8-clock distributed bus or an 8-bit packet of the beam

parameter data buffer is sent. Figure 2 shows the structure

of the event clock cycles in the timing system bit stream.

The link frequency is around 1.76 GHz, and the granularity

of the timing actions corresponds to one clock cycle, around

11.3 ns. All the changes, triggers, calculations and timestamp

resolution should not exceed that time.

11.3 ns

or

...11.3 ns 11.3 ns

EVENT CODE DBUS

DATA

Fig. 2. Frame structure of the timing system bit stream.

The timing system of ESS will have components in different

form factors (microTCA, PCIe, VME, standalone, etc) with the

same functionality and being compatible with each other, but

with different hardware. Because of that, when implementing

new functionality it is important to follow a methodology that

keeps the chance of errors as low as possible. Hence, a design

based on Statecharts complemented with automated synthesis

has been considered to implement the aforementioned tasks.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Universidade da Coruña

https://core.ac.uk/display/389430651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Introduced by Harel [4] in 1987, statechart diagrams al-

low specifying complex systems in which there may be

several states active at the same time and a large number

of events and transitions to evaluate. Within the diagrams,

basic states may be grouped into super-states and conditions

and transitions may be specified at a super-state level. This

reduced the complexity of the specification and improved

readability.Concurrency is possible, and several super-states

may be active at the same time. This makes statecharts

suitable to describe complex real-world systems, such as the

timing system in a big research facility. The possibility of

specifying, without ambiguity, the conditions under which

those are enabled or disabled is of great importance. Therefore,

Statecharts largely improve traditional state machines, and they

become part of the Unified Modeling Language(UML) [5].

Despite they are gaining traction, a reduced number of tools

support statecharts. In the context of our current project, an

automated way to produce HDL code from a statechart is

required in order to deploy a new timing system configuration

in a short time without incurring in implementation errors.

The remaining of this paper is structured as follows: in

Section II we present an introduction to statecharts and

their specification using graphical tools. In Section III, the

techniques that allow to synthesize statecharts are described.

An alternative implementation based on microprogramming is

then proposed in Section IV. Finally, the conclusions of this

work are presented.

II. STATECHARTS

Simple control systems are usually implemented using

Finite State Machine (FSM). For more complex systems,

however, FSM lack of expressiveness and clarity, as they are

simple state-based models that can greatly grow in complexity

when adding new states. Also, only one state may be active

at any given time, excluding the possibility of implementing

concurrency. Finally, outputs and transitions between states

may be specified in a state-by-state basis. States cannot be

grouped in order to improve readability or specify common

behavior.

For those reasons, statecharts were introduced by Harel [4]

in 1987. The shortcomings of FSM are solved by allowing for

hierarchy, concurrency, and better communication among the

states. In this way, compact diagrams are created, on which

the concurrency is exposed without ambiguity. States sharing

similar outputs and/or transitions may be grouped forming

super-states. Communications and transitions may be specified

at super-state level, allowing a more clear view of how states

and super-states relate to each other. Typically the number

of lines and text of a statechart is significantly lower than

in an equivalent FSM without sacrificing expressiveness of

performance. Hence, statecharts are a visual formalism for

describing states and transitions in a modular way. At the same

time statecharts maintain all of the characteristics of FSMs,

such as conditions, outputs, etc. Their main contributions are:

• Orthogonality: statecharts can have more than one state

active concurrently. This goes beyond FSM’s capabilities,

where only one state can active at a time. Concurrent

states are called AND-states, while the traditional ap-

proach are called OR-states. Orthogonality is very useful

for describing subsystems.

• Depth: the state structure is a hierarchical one, nesting

states or super-states inside other states, connected with

inter-level transitions. Modularity and clustering is then

achieved, improving the design process, and allowing to

better specify and understand complex transitions and

communications between states at different levels. It is

also possible to define entry and default states, and have

history in the states, as explained in Section III-C.

An example of a statechart is shown in Figure 3. This

statechart consists of 2 super-states at the top level named

active and wait. Only one of those super-states may be active

at the same time. Hence, top is an OR super-state. Focusing

in, wait is also an OR super-state on which at a given time

either idle or background may be active, never both. Within

background, 3 basic states exist. The case of active is different,

as it is an AND super-state made of send and receive, which

are both active or disabled at the same time. Each of them

is an OR super-state made of several basic states. Hence, this

particular statechart may be running either idle, or background

or send plus receive. Other combinations are not possible.

The transitions between active and wait are labeled sleep

and wake, and they affect all the internal states without having

to specified it on an individual basis. A black dot and an arrow

are used to signal the initial node for each super-state. The

initial state also applies when a super-state resumes activity,

such as switching from wait to active. Additionally, an H

within the dot denotes that 2 super-states have history. This

means that, when resuming that super-state, the active state

will be the one that was running before exiting. In the example,

when processing returns to wait, the statechart will remember

whether idle or background was running and, in the latter case,

in which of the 3 nodes.

Statechart specifications may be translated to software or

hardware. The former has been already achieved using a

variety of tools. The latter was addressed with important

limitations in the past [6] [7] [8] [9] [10]. Mainly, history was

implemented in a restrictive manner or not at all. Recently, new

works have appeared that address the generation of HDL code

from statecharts [11] [12], but neither history or transitions

between different levels is supported.

A. Graphical tools

Among the tools that allow specifying statechart diagrams

using a graphical intergace, we highlight Yakindu Statechart

Tools (Yakindu SCT) [13]. There exist many more tools

integrated in UML suits, but Yakindu has the advantage of

being based on open source tools, such as Eclipse [14], and

using an accessible format to store the diagram bases on XML.

Yakindu was used to design the diagram in Figure 3, and it

allows to specify all the characteristics of statecharts, including

transitions between super-states and history.

interface:
var send_once : boolean
var transmission : boolean
out even acknowledge
internal:
event sleep
event wake
event send
event resume
event background

StateChart

send

always

always

always [transmission]

always / [transmission] = false

resume

always [send_once]

always [!send_once]

update

wait

send

read

save

idle

entry / raise acknowledge
ACK

receive

active

send

H

idle

wait

background

default

send_once true

transmission false

internal

sleep

wake

send

resume

background

}

}

(x)

(x)

!background

wait

H

read

background

always [!transmission]

every 10 s

always [transmission]

always / [transmission] = false

check

entry / raise acknowledge
ACK

background

top

sleep

wake

Name Value

acknowledge

Fig. 3. Example of a statechart in Yakindu SCT.

B. Statechart parsing and analysis

Yakindu SCT saves the Statechart model in a XML file

describing the regions, states, history nodes, etc, and the

transitions between them. This XML file is organized in a

hierarchical manner, with the contents of any given object

(element) listed as children. Each element has associated an

individual id code in the form of an attribute. Transitions

are represented as elements on their own as children of the

starting state or history node, and have an attribute pointing

to the target element; every element has an attribute with

the transition id for all incoming transition. This XML file

also describes geometrically the graphical representation of

the Statechart model.

The implementation of our application is based on Xerces-

C++ [15], a validating XML parser written in C++. Xerces

library allows parsing, generating, manipulating and validating

XML documents in a variety of ways. In this work, DOM [16]

API will be used. Usually, XML documents are navigated in

DOM by using a mechanism called tree walker, able to move

from node to node in the document. It must be said, that such

mechanism did not provide enough flexibility.

Therefore, a more flexible use of the parser was preferred,

in which a current node was selected at each step, and

other nodes (parent, child or sibling) where accessed by

moving back and forth in the structure. This allowed producing

HDL code in a well structured manner. Also, the variety

of information stored in the XML file requires parsing the

document several times, gathering and processing different

types of information at each step.

Our application uses the Xerces-C++ parser to produce

a synthesizable VHDL file, that implements in an FPGA a

statechart modelled in Yakindu SCT. The only input to our

application is the XML file describing the statechart, and it

detects the inputs and outputs, creates the necessary signals,

defines the processes and transitions, and finally generates the

VHDL file.

Whereas this work aims to cover most of the features of

statecharts, some restrictions have been assumed in the current

implementation of the tools. Some of them are parser related,

such as ruling out names that include spaces. Some others

are implementation oriented, and may require the designer

to express the functionalities in a different way. Hence, the

statechart will react only to inputs, or events generated within

the statechart based on variables or counters. More general

events, such as ”wait one second”, cannot be supported. This

forces the designer to define a external input or implement

a counter that generates an event after one second. It is also

required that state transitions happen only between states at

the same level of hierarchy and region. Finally, history is

implemented, but it will work in a limited way if a deep

hierarchy exists. More specifically, only one history state,

the more recently used, will be remembered through that

hierarchy. This means that some OR superstates will resume

at its initial state, not their history one.

III. IMPLEMENTATION

The problem of statecharts implementation in software has

already being studied and solved [17], mainly in a number of

UML tool suits. Translating statecharts to hardware, however,

is not solved in a satisfactory manner. Many tools exist of FSM

synthesis [18], [19], but most works on hardware synthesis

of statecharts have serious limitations, such as not supporting

history [8] [12].

Our tool analyses the XML description generated by

Yakindu, building a list of basic features such as states,

transitions and outputs. From them, concurrency, and hierarchy

are extracted; and history is analysed together with the entry

and exit conditions.

A. Orthogonal HDL code generation

One of the main differences between FSMs and statecharts

is that the latter ones may have more than one state active

at the same time. This concurrency is expressed using AND

states in the diagram, and must be detected in order to produce

concurrent HDL code. It must be taken into account that code

may run concurrently a different levels of hierarchy. Usually,

AND super-states are characterized by producing different

outputs, but this is not always the case and it cannot be used

as a way to detect concurrency. Even more important, AND

super-states running concurrently may communicate between

them, producing transitions to other states. Using a HDL

language, such as VHDL, this behaviour is described using

independent processes for each super-state, with a sensitivity

list that includes all the inputs, states and conditions that rule

the operation of that particular super-state.

In the example in Figure 3, two concurrent processes would

be generated for super-states send and receive, included in

active. An abridged version of the resulting VHDL code is

shown in Listing 1, showing two processes and their sensitivity

lists. The operations performed within each processed are not

shown, but they basically consist of the evaluation of the

current state using a case-when construct. On each case,

outputs and conditions are produced and the state is updated.

Basically, each process implements an individual FSM. Later

in this section it will be described how history is implemented,

and how to exit and resume the operation in a super-state.

sendFSM : p r o c e s s (s l e e p , wake , send , resume , background ,

s e n d C u r r e n t S t a t e)

begin

cas e s e n d C u r r e n t S t a t e i s

[. . .]

end cas e ;

end p r o c e s s ;

rece iveFSM : p r o c e s s (s l e e p , wake , send , resume , background ,

r e c e i v e C u r r e n t S t a t e)

begin

cas e r e c e i v e C u r r e n t S t a t e i s

[. . .]

end cas e ;

end p r o c e s s ;

Listing 1. Extract of the output VHDL file implementing the 2 regions in
active described in Figure 3 (edited for clarification).

B. Hierarchy

Hierarchy is one of the main differentiating factors of

statecharts with respect to FSMs. Hence, a mechanism is

needed able to implement this characteristic. First, we need

to define an strategy to implement how super-states become

activated or deactivated during processing. This is achieved by

adding a disabled state to each super-state. When a super-state

looses the focus, the process implementing it will transit to the

disabled state, and wait there until processing is resumed for

that super-state. Resuming consists of a transition to either:

the initial state, or the last state if history is implemented.

In a statechart, many transitions are defined at a super-

state level, and they affect all children states and super-states.

Therefore, the scheme explained in the previous paragraph

is incomplete, as it does not consider transitions at a higher

level in the hierarchy. In a first implementation, we considered

linking each super-state to its parent so that transitions at

higher levels would propagate down the hierarchy. However,

a more convenient implementation was eventually chosen: all

transitions that affect a high level in the hierarchy will be

copied to lower levels, making each super-state aware of all the

conditions that may affect its operation. In Listing 2, we show

an abridged example of the VHDL code produced by our tool

that implements super-state wait in Figure 3. In it, we can see

the disable state, called waitEntry, that reacts to condition

sleep=’1’. Regarding hierarchy we can see that, despite

condition wake=’1’ is specified at a higher level, its evalua-

tion is replicated on children states idle and background.

This means that, despite the specification is hierarchical, the

implementation actually flattens that hierarchy.

backgroundFSM : p r o c e s s (s l e e p , wake , send , resume , background

, b a c k g r o u n d C u r r e n t S t a t e)

waitFSM : p r o c e s s (s l e e p , wake , send , resume , background ,

w a i t C u r r e n t S t a t e)

begin

cas e w a i t C u r r e n t S t a t e i s

when i d l e =>

i f wake = ’1 ’ then

w a i t H i s t R e g <= 0 ;

w a i t N e x t S t a t e <= w a i t E n t r y ;

e l s e

i f background = ’1 ’ then

w a i t N e x t S t a t e <= background ;

end i f ;

end i f ;

when background =>

i f wake = ’1 ’ then

w a i t H i s t R e g <= 1 ;

w a i t N e x t S t a t e <= w a i t E n t r y ;

e l s e

i f background = ’1 ’ then

w a i t N e x t S t a t e <= i d l e ;

end i f ;

end i f ;

when w a i t E n t r y =>

i f s l e e p = ’1 ’ then

cas e w a i t H i s t R e g i s

when 0 =>

w a i t N e x t S t a t e <= i d l e ;

when 1 =>

w a i t N e x t S t a t e <= background ;

end cas e ;

end i f ;

end cas e ;

end p r o c e s s ;

Listing 2. Extract of the output VHDL file implementing the wait region
(edited for clarification).

The hierarchy can have any number of levels, so a sub-

state in a super-state can at the same time be a super-state.

Our application uses recursive functions to go through all the

levels of the hierarchy to complete the Statechart model.

C. History

Including a disabled state allows exiting and resuming the

operation in a super-state. However, implementing history

requires that the disabled state remembers which state was

running prior to exiting (Figure 4.(a)). Two basic strategies can

be used to achieve that goal. First, the disabled state makes

a copy of the current state, which is kept on a register. That

value in the register will be used later to resume the operation.

This strategy is implemented in Listing 2, and the register is

called waitHistReg. An alternative option would consist of

implementing as many disabled states as normal ones. In the

case of exiting, the super-state would switch to the disabled

state associated to the one being processed. For a large number

of states, the first option is more desirable. For a small number

errok

A B C
!err

!err

work

H

(a)

B' C'

err

err

errok

ok

ok

A B C!err

!err

work

H

(b)

Fig. 4. (a). Superstate with history. (b). Proposed implementation using
several disabled states

of states, the second option is probably simpler. Thus, the

convenience of adopting any of them is case dependent. In

the current implementation of our tool, a single disabled state

and a register are used. However, we show an scheme of how

the second option would be implemented in Figure 4.(b).

D. Implementation details

Despite the main aspects of statecharts implementation have

been addressed, we have found a number of small challenges

during the design of the tool that deserve some explanation:

Most superstates will produce some kind of output or

variable updating. Usually, a given output or condition is

only modified by a single superstate. Actually, the most used

criteria to group states into a super-state is the fact that they

produce the same outputs. However, is perfectly possible that

an output or condition is modified by several super-states, even

in different levels of hierarchy. In that case, an arbitration is

needed. Assuming that zero is a neutral value, all super-states

producing the same output or updating the same condition may

connect to an or gate. In most cases, only one super-state will

actually produce a valid value, whereas the other ones will

produce zero. However, it may not always be that simple, as

several super-states may produce a valid output at the same

time. In such a case, a proper priority arbiter would be needed.

A clear difference must be made between those events and

conditions that are produced and/or evaluated in a single state,

or more generally. In the former case, that code should only

be part of the specification of that state. In the latter one, a

higher level AND state must be defined that will be active

for longer periods. Possible mismatches between the activity

spans of those states that produce events and those that react

to them must be studied at design time.

The HDL implementation uses several lists: linking ids

and names, linking transitions and triggers, states, and history

nodes. For each super-state, signals are defined that account

for the current and updated local state, history, and inter-

nal variables. Each super-state is implemented as a separate

process, in which the local state is updated, conditions are

evaluated and outputs are produced. Those processes are

purely combinational. An additional clocked process updates

states and registered values before starting a new iteration.

IV. MICROPROGRAMED IMPLEMENTATION

Our tool produces a hardwired control system, which is

commonly accepted to be the fastest and more effective

implementation. However, an alternative implementation is

now proposed, based on microprogramming [20] [21], which

was widely used inside microprocessors some decades ago.

At that time, computer aided design was not developed, and

design errors were quite common. Those errors were often

hidden in corner cases and would only show up after the

computer was put in the market. Microprogramming allowed

vendors to issue control updates and correct those mistakes

even in-field.

In some cases, statecharts may be implemented by mapping

each super-state into a microprogram. As for microprocessors,

the main advantage consists of being able to update the control

by just loading a new configuration. There are a number of

reasons for using this strategy even on FPGAs:

• configuration changes could be deployed in a short time

avoiding logic synthesis, which is a slow task

• updating the microprogram does not depend on the ver-

sion of the synthesis software, making the control system

easier to maintain.

For this purpose, we have implemented a separate tool that

allows specifying the number and type of inputs and outputs;

a set of internal counters; and the micro-instruction format.

Then, it generates the VHDL code that allows implementing

the generic control, as well as the circuitry that allows loading

new microprograms.

In Figure 5.a we show an example of a microprogrammed

control system that is able to implement a variety of super-

states. The microprogram is introduced at start up in a word

by word fashion. Each configurable register or memory is

chained, so that the configuration propagates through all the

elements, in a JTAG fashion, until it is fully transmitted. In

normal operation, the sequencer analyses the current microin-

struction; the inputs; and the events coming from the counters

and selects which outputs are produced, as well as the state

transitions.

In Figure 5.b, four cases are shown. All of them can be

implemented using the same microprogrammed control, by

just changing the microprogram. In order to implement the

circuit in Figure 5.a, it is necessary to specify all the inputs,

outputs and counters that are expected to be used. In the

example number 1 in Figure 5.b, there are 4 basic states; and

4 input signals involved. For each state is possible to specify

any transition depending on which input is active. In example

number 2, one state has been found to be redundant. Removing

it does not change the hardware, only the microprogram. A

new event is introduced in examples number 3 and 4, signaling

when one of the counters reaches a predefined value. The

events coming from the counters are treated in the same way

as input signals, so only the microprogram has to be changed

to support this 2 cases.

Both types of super-states are supported. OR super-states

are implemented by jumping into different regions of the mi-

croprogram. AND super-states are supported by implementing

2 or more micro-memories that will run more than one micro-

program concurrently. In those cases in which there is not

any AND super-state active, one or more micro-programs will

m-code

BRAM

R/W control

addr

m-instr.

m-programmed
outputscounter-based outputs

inputs
r/w din

compreg counter

compreg counter

compreg counter

configuration
input

configuration
propagation chain

SEQUENCER

next

counters
control

m-instr.

history
registers

(a)

disabled running

enabled

stopped

enable

enable

disable

start

start

stop

disabled running

stopped

enable

disable

start

stop

disabled running

stopped

enable

disable counter_1_end

disabled running

enabled

stopped

enable start

counter_2_end
stop

1 2

3 4

(b)

Fig. 5. (a). Microprogrammed implementation. (b). Super-states compatible
with the implementation above

jump to an idle state and wait until resuming. This scheme

allows dealing even with complex statecharts.

The main limitation to map a super-state into a micropro-

gram is the added delay of accessing the memory plus select-

ing the appropriate fields within the micro-instruction. Hence,

the number of fields in the micro-instructions, which grows

with the number of inputs; outputs; and possible transitions,

may restrict the applicability of microprogramming. Of course,

much research has been done on micro-instruction encoding,

so those problems could be tackled to some extent. In any

case, a very intricate super-state would require a large number

of fields that could make a hardwired implementation more

desirable.

It should be made clear that resource consumption is not

a problem, even with large microprograms and long micro-

instructions, provided that modern FPGAs offer a large number

of memory blocks. In the cases shown in Figure 5.b, it can be

seen that encoding the transitions would require either 4 fields,

3-bit each; or 6 fields, 2-bit each. Assuming that the possible

outputs are the current state and the 2 counters, 4 bits would

be required at most.

V. CONCLUSION

In this paper, we explain the implementation of an auto-

matic tool able to process a statechart diagram and produce

synthezisable HDL code. Diagrams may be designed using

a graphical tool (Yakindu), which files are parsed and anal-

ysed. The procedure to translate the special characteristics of

statecharts to VHDL have been explained. Some limitations

have been introduced, justifying why those limitations ease

implementation. In that sense, our work implements history

in hardware in a more general than any other previous paper

we are aware of. Orthogonality and hierarchy have been also

been implemented without significant restrictions. This work

was motivated by the need of implementing complex control

systems onto FPGAs in a scientific facility. Our tool will allow

to update synchronization policies in a short time without

implementation errors. Although our application is already

working and produces VHDL code that correctly implements

the input Statechart, some updates can be applied in the future.

Hence, some of the requirements to the initial statechart can

be relaxed, thus allowing for a reduced time creating the

statechart. Additionally an alternative design methodology is

proposed based on microprogramming, which allows updating

the configuration of a control system without depending on

logic synthesis. Currently, is not possible to translate a stat-

echart diagram to a microprogram using our tool. However,

this will be studied as future work.

REFERENCES

[1] “European Spallation Source,” https://europeanspallationsource.se, ac-
cessed: 2019-05-15.

[2] “Experimental Physics and Industrial Control System,” https://epics.anl.
gov/, accessed: 2019-05-15.

[3] “Xilinx Kintex-7,” https://www.xilinx.com/products/silicon-devices/
fpga/kintex-7.html, accessed: 2019-05-15.

[4] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.

Comput. Program., vol. 8, no. 3, pp. 231–274, 1987.
[5] “Unified Modeling Language,” http://www.uml.org/, accessed: 2019-05-

15.
[6] D. Drusinsky and D. Harel, “Using statecharts for hardware descrip-

tion and synthesis,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 8, no. 7, pp. 798–807, 1989.
[7] P. Clemente, P. Rundstadler, L. Specter, and K. Walsh, “From statecharts

to hardware FPGA and ASIC synthesis,” in Using VHDL in System

Design, Test, and Manufacturing: Proceedings of the Spring 1992 VHDL

International Users’ Forum, 1992.
[8] V. Salapura, G. Waleczek, and M. Gschwind, “A comparison of vhdl and

statecharts-based modeling approaches,” in Proceeding of ITI, 1994.
[9] T. Muller-Wipperfurth and R. Hagelauer, “Graphical entry of fsmds

revisited: putting graphical models on a solid base,” in Proceedings

Design, Automation and Test in Europe, 1998, pp. 931–932.
[10] V. Salapura and V. Hamann, “Implementing fuzzy control systems using

vhdl and statecharts,” in EURO-DAC’96, European Design Automation

Conference, 10 1996, pp. 53–58.
[11] S. Qin and W.-N. Chin, “Mapping statecharts to verilog for hardware/-

software co-specification,” in FME 2003: Formal Methods, 2003, pp.
282–300.

[12] V.-A. V. Tran, S. Qin, and W. N. Chin, “An automatic mapping from
statecharts to verilog,” in Theoretical Aspects of Computing - ICTAC

2004, 2005, pp. 187–203.
[13] “Yakindu Statechart Tools,” https://www.itemis.com/en/yakindu/

state-machine/, accessed: 2019-05-15.
[14] “Eclipse IDE,” https://www.eclipse.org/, accessed: 2019-05-15.
[15] “Apache Xerces Project,” http://xerces.apache.org/, accessed: 2019-05-

15.
[16] “DOM, Document Object Model,” https://www.w3.org/TR/dom/, ac-

cessed: 2019-05-15.
[17] T. Ziadi, L. Helouet, and J. M. Jezequel, “Revisiting statechart syn-

thesis with an algebraic approach,” in Proceedings. 26th International

Conference on Software Engineering, 2004, pp. 242–251.
[18] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli, Synthesis

of Finite State Machines: Functional Optimization. Springer, 1997.
[19] T. Villa, T. Kam, R. Brayton, and A. Sangiovanni-Vincentelli, Synthesis

of Finite State Machines: Logic Optimization. Springer, 1997.
[20] M. Milkes, “The genesis of microprogramming,” IEEE Annals of the

History of Computing, vol. 8, pp. 116–126, 1986.
[21] The Design of a Microprocessor. Springer-Verlag.

