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Abstract: Optical motion capture is currently the most popular method for acquiring motion data
in biomechanical applications. However, it presents a number of problems that make the process
difficult and inefficient, such as marker occlusions and unwanted reflections. In addition, the obtained
trajectories must be numerically differentiated twice in time in order to get the accelerations. Since
the trajectories are normally noisy, they need to be filtered first, and the selection of the optimal
amount of filtering is not trivial. In this work, an extended Kalman filter (EKF) that manages
marker occlusions and undesired reflections in a robust way is presented. A preliminary test with
inertial measurement units (IMUs) is carried out to determine their local reference frames. Then,
the gait analysis of a healthy subject is performed using optical markers and IMUs simultaneously.
The filtering parameters used in the optical motion capture process are tuned in order to achieve
good correlation between the obtained accelerations and those measured by the IMUs. The results
show that the EKF provides a robust and efficient method for optical system-based motion analysis,
and that the availability of accelerations measured by inertial sensors can be very helpful for the
adjustment of the filters.

Keywords: Kalman filter; motion capture; gait analysis; inertial sensor

1. Introduction

Human motion capture during gait provides a way to understand the principles
of the natural mode of locomotion of the human being. Technological advances have
changed its practice and improved its accuracy along history [1,2]. Recent developments
in microelectromechanical systems (MEMS) have caused a renewed interest in the use
of inertial measurement units (IMUs) to perform three-dimensional (3D) human move-
ment reconstruction [3–10]. However, getting orientation from IMUs presents accuracy
and consistency issues [11–16], especially in the presence of environmental ferromagnetic
disturbances or when measuring fast complex movements over long periods of time [17].
This is why, although the performance of inertial sensors has improved in the last decade,
optical motion capture remains as the preferred method to perform precise biomechanical
studies. In fact, as pointed out in [18,19], IMU-based methods for motion capture and
reconstruction are usually validated against optical methods, which remain as the golden
standard reference. The problem with optical motion capture systems is that it is very
difficult to ensure that all markers are visible to the cameras all the time and, moreover,
other reflective objects present in the capture zone can be incorrectly identified as markers.
In general, obtaining the skeletal motion involves some manual post-processing of the cap-
tured data, so the technique is not straightforward [20,21]. This problem can be overcome
by using an extended Kalman filter (EKF) [22], as will be described later in this paper.

The typically high-frequency noise harmonics present in the recorded marker trajecto-
ries are hardly perceptible at displacement level. However, after numerical differentiation,
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the amplitude of each harmonic increases with its harmonic number; for velocities, it
increases linearly, and, for accelerations, the increase is proportional to the square of the
harmonic number [2]. For this reason, filtering is required when trying to obtain velocities
and accelerations by numerically differentiating position data. The problem here lies on
the choice of the cutoff frequency of the filter, since it is difficult to achieve a value that
filters out most of the noise, without also removing relevant motion information [23–27].
From what has been said, it is deduced that different filtering quality is demanded for
the animation of virtual characters, where only configuration-level information is needed,
and for biomechanical analysis including dynamics, where velocity- and acceleration-level
information is also required.

Numerous filtering approaches can be found in the literature [2,23,28,29]. While the
Butterworth filter has generally been preferred, because impulsive-type inputs are rarely
seen in human movement data [28,30,31], recent studies have applied the Kalman filter [32]
(most commonly used in the literature for inertial sensors), thus improving the accuracy of
estimated joint kinematics and computed orientation data [22,33,34]. However, beyond the
choice of a filtering algorithm, the main problem remains in the tuning of its parameters.
In almost all the filtering studies for gait analysis, the smoothing level is based on the
author’s decision of how much noise is acceptable. A common criterion is to establish an
error threshold at position level, and then setting the cutoff frequency accordingly [22,23].
Regardless of the method used, there is no way of assessing the accuracy of the obtained
accelerations by relying on position data alone. In order to provide an objective filter-tuning
procedure, this work proposes to compare the filtered accelerations from the optical capture
with their experimental measurement from the inertial sensors in the case of gait. In [24], a
similar procedure was applied in the case of jumping, but it was not successful due to the
overshoot provided by the accelerometers in their horizontal measurements.

IMUs are capable of estimating their own orientation within an Earth-fixed frame by
using sensor fusion algorithms, such as Madgwick’s algorithm [35] or the EKF [36]. These
algorithms provide an estimate of the orientation by combining the information from the
triaxial accelerometers, gyroscopes and magnetometers present in the IMU. Because IMUs
show limitations to give an accurate orientation [13] (closely related to sensor calibration,
magnetometer sensitivity, and presence of accelerations other than gravity) and, moreover,
their Earth-based global frame will in general differ from that of the optical motion capture
system, a preliminary test was performed with nine IMUs. This test was carried out in
order to assess the instrumental errors associated, select the most accurate units, and
determine the global frame offset corresponding to each one [11]. Second, the gait analysis
of a healthy subject was conducted. The motion was recorded by both the optical and
the inertial techniques, using the seven most accurate IMUs among the nine previously
tested. The human motion was then reconstructed by using both the classic Vaughan’s
method [37], which does not impose the kinematic constraints and is similar to those
proposed in [19] and the EKF introduced in this paper, which allows automatic marker
labeling, is robust to short marker occlusions and imposes kinematic constraints, even in
real time, so the local accelerations measured by the IMUs could be used to tune the filters
applied to the optical motion capture data.

The remaining of the paper is organized as follows. Section 2 describes the two
experiments carried out, sensor test and gait analysis. It points out the errors that may
be incurred by inertial sensors, and proposes a way to minimize their influence. Then, it
explains the two motion reconstruction methods applied and compared in this work, with
a detailed description of the EKF, and shows the procedure to obtain the accelerations of
the IMU attachment points from the optical system-based analysis, so that they can be
compared with the accelerations measured by the IMUs. Section 3 presents the results of
both the preliminary test and the gait analysis, showing the errors of the inertial sensors in
orientations and accelerations, and the effect of the filter parameters adopted for the motion
reconstructions methods in the accuracy of the accelerations obtained from the optical
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system recordings. Finally, Section 4 discusses the results and points out the limitations of
the study, while Section 5 draws the conclusions of the work.

2. Materials and Methods
2.1. Preliminary Test

IMUs provide the measured accelerations expressed in their local reference frames,
while the optical motion capture system provides marker positions within its own fixed
reference frame. Therefore, in order to establish a comparison between accelerations
coming from both techniques, it is necessary to express them in the same reference frame,
and this implies obtaining the transformation matrix between each IMU and the fixed
frame used by the optical motion capture system.

As mentioned above, an IMU can use sensor fusion algorithms to estimate its ori-
entation within an Earth-fixed frame. This Earth-fixed frame is usually defined as NED
(North-East-Down) or NWU (North-West-Up), and will be probably rotated with respect to
the reference frame used by the motion capture lab. Therefore, the first step is to determine
the offset between both reference frames, for which two methods can be applied: (i) the first
option is to carry out a preliminary IMU calibration process, as the spot check proposed
in [11]; (ii) the second alternative is to attach three markers to each IMU, so the local frames
can be obtained directly from the optical motion capture system [38]. Since the second
method requires a large number of markers, thus making the motion capture process more
involved and error-prone, the calibration approach has been chosen in this work.

2.1.1. Experimental Data Collection

Nine IMUs (STT-IWS, STT Systems, San Sebastián, Spain) sampling at 100 Hz were
fixed on a flat rigid wooden plate (with no ferromagnetic disturbances), equally spaced
and accurately aligned to each other. Four reflective markers were also attached to four of
the sensors, as illustrated in Figure 1.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 23 
 

compared with the accelerations measured by the IMUs. Section 3 presents the results of 

both the preliminary test and the gait analysis, showing the errors of the inertial sensors 

in orientations and accelerations, and the effect of the filter parameters adopted for the 

motion reconstructions methods in the accuracy of the accelerations obtained from the 

optical system recordings. Finally, Section 4 discusses the results and points out the limi-

tations of the study, while Section 5 draws the conclusions of the work. 

2. Materials and Methods 

2.1. Preliminary Test 

IMUs provide the measured accelerations expressed in their local reference frames, 

while the optical motion capture system provides marker positions within its own fixed 

reference frame. Therefore, in order to establish a comparison between accelerations com-

ing from both techniques, it is necessary to express them in the same reference frame, and 

this implies obtaining the transformation matrix between each IMU and the fixed frame 

used by the optical motion capture system. 

As mentioned above, an IMU can use sensor fusion algorithms to estimate its orien-

tation within an Earth-fixed frame. This Earth-fixed frame is usually defined as NED 

(North-East-Down) or NWU (North-West-Up), and will be probably rotated with respect 

to the reference frame used by the motion capture lab. Therefore, the first step is to deter-

mine the offset between both reference frames, for which two methods can be applied: (i) 

the first option is to carry out a preliminary IMU calibration process, as the spot check 

proposed in [11]; (ii) the second alternative is to attach three markers to each IMU, so the 

local frames can be obtained directly from the optical motion capture system [38]. Since 

the second method requires a large number of markers, thus making the motion capture 

process more involved and error-prone, the calibration approach has been chosen in  

this work. 

2.1.1. Experimental Data Collection 

Nine IMUs (STT-IWS, STT Systems, San Sebastián, Spain) sampling at 100 Hz were 

fixed on a flat rigid wooden plate (with no ferromagnetic disturbances), equally spaced 

and accurately aligned to each other. Four reflective markers were also attached to four of 

the sensors, as illustrated in Figure 1. 

 

Figure 1. Calibration setup composed by nine IMUs and four markers on a rigid plate. Figure 1. Calibration setup composed by nine IMUs and four markers on a rigid plate.

The optical motion capture system was formed by 18 infrared cameras (OptiTrack
FLEX 3, Natural Point, Corvallis, OR, USA), also sampling at 100 Hz. Starting with the
plate on the floor, where it was kept for 5 s, it was manually moved around for 30 s and,
finally, put again in the original place during 5 s. Data from both the IMU set and the
optical system were recorded and the plate orientation during the motion was obtained
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from: (i) each IMU, based on gravity, magnetic North and gyroscope integration within
the commercial software iSen provided by the manufacturer; (ii) the optical system, by
rigid-body motion reconstruction based on the trajectories of the reflective markers 1,
2 and 3.

2.1.2. Sensor Orientation and Geomagnetic Frame of Reference

Figure 2 shows the three reference frames involved in the problem. The first reference
frame is the global reference frame of the motion capture lab, obtained after calibration of
the optical system, and it is noted with subscript O (after optical). This reference frame
is fixed and common for all IMUs. The second reference frame is the global, Earth-fixed
reference frame of each inertial sensor, and it is noted with subscript E (after Earth-fixed),
and superscript i denoting the IMU number. Although this frame should be the same for
all the IMUs, their inherent errors in determining gravity and magnetic North directions
lead to discrepancies among sensors. The third reference frame is the local reference frame
of each inertial sensor, and it is noted with subscript I (after inertial). In the calibration
setup, the local reference frame is the same for all the IMUs, and it coincides with the local
reference frame of the wooden plate. Note that the axes of this reference frame have a bar
on them, meaning that they are moving axes, rigidly attached to the wooden plate.
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Figure 2. The three reference frames involved in the calibration: fixed global reference frame of the
optical system (subscript O); Earth-fixed global reference frame of each IMU (in grey, subscript E and
superscript i); moving local reference frame of all the IMUs and the wooden plate (subscript I).

If ROI is the variable rotation matrix that transforms the components of a vector
expressed in the reference frame I into the components of the same vector expressed in the
reference frame O, Ri

OE is the constant rotation matrix that does the same between frames E
and O for the inertial sensor i, and Ri

EI is the variable rotation matrix that makes the same
between frames I and E for that sensor, the following relation can be stated at any instant
of the plate motion:

ROI = Ri
OERi

EI (1)

At any time point, the trajectories of the markers measured by the optical system
provide ROI, while the sensor fusion algorithm from the ith IMU provides Ri

EI. Therefore
Ri

OE can be derived from Equation (1) as,

Ri
OE = ROIRi T

EI (2)

Each Ri
OE matrix must be constant, since it represents a rotation between two fixed

frames. However, if it is calculated for all the time points of the recorded motion, the
obtained values will not be completely constant, due to sensor and estimation errors. In
order to find a unique matrix for each IMU, an average rotation matrix is calculated and
taken as its effective Ri

OE. Since rotation matrices are orthogonal, care must be taken when
averaging them, so that orthogonality is preserved. The method followed here consisted
of extracting the roll, pitch and yaw angles from each rotation matrix at every time point,
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averaging them, and using these values to build back the corresponding effective rotation
matrix. This calibration procedure to get the Ri

OE matrices yields different results for
different days due to magnetic changes, so it should be ideally performed right before
using the IMUs.

Once the IMUs were properly calibrated, the orientation error provided by each
of them along the motion of the wooden plate was obtained. For each time point, the
trajectories of the markers measured by the optical system provided matrix ROI, while data
from ith IMU provided Ri

EI. Since the constant matrix Ri
OE had been obtained for each IMU

in the calibration process described before, it can be written from Equation (1),

Ri
OI = Ri

OERi
EI (3)

where Ri
OI is the rotation matrix between frames I and O provided by the ith inertial

sensor. Ideal IMUs would provide the same matrix Ri
OI for all the sensors, and it would

be coincident with matrix ROI provided by the optical system. However, due to errors in
the IMUs, such matrices differ, and the orientation error committed by each IMU at each
time point can then be obtained by calculating the roll, pitch and yaw angles of Ri

OI, and
comparing them with the roll, pitch and yaw angles of ROI, taken as reference. This was
done for the nine IMUs, the results being shown in Section 3.

Once the method to obtain the orientation error of each inertial sensor has been
described, the objective of comparing the accelerations provided by the optical and the
inertial systems is addressed. The optical system provides the trajectories of the markers,
based on which the position history of any point of the body can be obtained through
a motion reconstruction method. Then, double differentiation of the position history
yields velocity and acceleration histories of the point considered. Positions, velocities
and accelerations are expressed in the global reference frame of the motion capture lab
(previously denoted by O). On the other hand, IMU accelerometers measure a combination
of the gravitational and translational accelerations. As reported by Woodman [21], it is
necessary to have very accurate rotation sensors in inertial navigation systems, because
knowing the precise orientation of the body allows to properly subtract the gravitational
acceleration from the measurement, in order to find the translational acceleration. Each
IMU provides its acceleration expressed in its local reference frame (previously denoted by
I). Therefore, to compare accelerations obtained through the optical and inertial techniques,
it is necessary to express them in the same reference frame and to take into account the
gravity constant, which is present in the inertial case.

To highlight all the mentioned issues, the acceleration of point 4 in Figure 1 was
obtained in three different ways. First, since point 4 had a marker on it, the marker
trajectory was filtered by means of a 8 Hz forward-backward 2nd order Butterworth filter,
then it was differentiated twice with respect to time, and the gravity constant (9.81 m/s2)
was added to the vertical component of the resulting acceleration; the presence of the
marker attached at the point made it unnecessary the use of any motion reconstruction
method, thus eliminating a source of error for the optical system. Second, the acceleration
provided by the IMU at point 4 was expressed in frame O by multiplying it by matrix
R5

OI (orientation provided by the IMU #5, attached to that point). Third, the acceleration
provided by the IMU at point 4 was expressed in frame O by multiplying it by matrix ROI
(orientation provided by the optical system after the mentioned filtering of the marker
trajectory). The resulting accelerations and their comparison are shown in Section 3.

2.2. Gait Analysis
2.2.1. Experimental Data Collection

A healthy adult male, 24 years old, 70 kg, and 175 cm, performed a complete gait
cycle. Both 36 reflective markers in all his body segments for optical motion capture (same
equipment as that described in Section 2.1) and 7 IMUs (the best seven among the nine
tested in the preliminary test) at pelvis, thighs, shanks and feet for inertial motion capture
were attached to the subject’s body, as can be seen in Figure 3. One additional marker
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was attached to each IMU so as to determine its local position within the corresponding
segment during a static pose recording.
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2.2.2. Skeletal Model and Kinematics

The human body is modeled as a three-dimensional multibody system formed by
rigid bodies, as shown in Figure 4. The model consists of 18 anatomical segments [39]: two
hind feet, two forefeet, two shanks, two thighs, pelvis, torso, neck, head, two arms, two
forearms, and two hands. The segments are linked by ideal spherical joints (black dots in
Figure 4b), thus defining a model with 57 degrees of freedom (DOF). The axes of the global
reference frame are defined as follows: x-axis in the antero-posterior direction, y-axis in the
medio-lateral direction, and z-axis in the vertical direction.
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2.2.3. Motion Reconstruction from Motion Capture Data

Optical motion capture records the motion of entities (markers) that are external to the
body, and the objective is to use the marker data to determine the positions and orientations
of the body segments. The traditional approach for accomplishing this is to use the method
described by Vaughan [37]: (i) select three non-collinear entities, which can be either
markers or already located joints, within each body segment; (ii) define an orthogonal
reference frame for the corresponding segment, based on the three selected entities; (iii)
use correlation equations, based on archived anthropometric data and body measurements,
to estimate the position and orientation of the body segment. When applying this method,
marker trajectories are previously filtered with a low-pass filter (forward-backward 2nd
order Butterworth filter), whose cutoff frequency must be selected by the analyst.

Another commonly used approach is to solve a weighted optimization problem,
in order to fit the skeletal model to the measured markers, as done in the OpenSim
software [40]. The fitting is carried out in two steps. First, a reference skeletal model, with
virtual markers fixed to the anatomical points, is scaled in order to match the markers
from a static capture, taken in a reference pose. Then, a second optimization problem
finds the positions and orientations of the scaled body segments that best track the motion
capture data. This last optimization uses an independent set of positions and orientations
as design variables, which can be filtered and differentiated afterwards to find velocities
and accelerations.

These methods present important drawbacks. In the first one, the local frames are
obtained directly from the markers, which are not rigidly attached to the bones, so the
obtained skeletal motion is not consistent with the rigid body constraints, i.e., the distances
between joints do not remain constant. This can be addressed by enforcing kinematic
consistency in a post-processing stage [41]. Another problem, common to both methods, is
that they require clean capture data: marker trajectories must not contain any gaps, and
the markers need to be properly labeled at every time step, something that is not always
guaranteed by the motion capture system. The procedure used for fixing this problem
usually involves some manual gap filling and marker labeling [20] and, in some cases of
severe marker loss, it is not even possible to salvage a take. The main consequence of these
drawbacks is the impossibility of knowing if a motion capture take has been successful
until all post-processing has been carried out.

2.2.4. Extended Kalman Filter for Motion Reconstruction

In order to overcome these drawbacks, a motion capture algorithm based on the
extended Kalman filter has been developed. The filter uses a purely kinematic model for
the plant, while the markers act as position sensors. The kinematic model mostly coincides
with that described in Figure 4 but, in order to avoid the need for additional markers,
the spherical joint at the base of the neck has been substituted by a universal joint, and
metacarpophalangeal joints are modeled here as revolute pairs. Therefore, the kinematic
model used in the Kalman filter has 52 degrees of freedom instead of 57. Since the Kalman
filter requires using independent state variables, the position of the model must be defined
by a set of independent coordinates, including 3 base body translations (pelvis), 2 relative
angles at the toes, 2 relative angles at the base of the neck, and 45 Euler angles representing
the absolute orientation of the remaining bodies.

The Kalman filter is based on a discrete white noise acceleration model (DWNA) [42],
in which the plant is considered as a discrete-time state-space system,

xk+1 = Fxk + Γak (4)

where xk+1 and xk are the state vector at time instants k + 1 and k respectively, F is the
state propagation matrix, ak is the process noise vector, and Γ is the noise gain matrix. The
DWNA is a second-order kinematic model, so the state vector contains the 52 degrees
of freedom, q, along with their first time derivatives,

.
q. Accelerations are introduced in

the system through the process noise vector a. This vector contains the 52 independent
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accelerations, being each of them a discrete-time zero-mean white sequence. Therefore, they
are assumed to be constant along every time step, and their values are random variables
with a zero-mean normal distribution of variance σ2

a . This variance has dimensions of
squared acceleration for the translational DOFs, and squared angular acceleration for the
angular ones. In order to reduce the number of parameters, in this work the same numerical
value will be used for all of them.

Taking into account that accelerations are assumed to remain constant along each time
step, the state transition in Equation (4) particularized to any given DOF i is,[

qi
k+1

.
qi

k+1

]
=

[
1 ∆t
0 1

][
qi

k.
qi

k

]
+

[ 1
2 ∆t2

∆t

]
ai

k i = 1, . . . , 52 (5)

where ∆t is the sampling period, which is fixed to 10 ms (the motion capture cameras used
in this work have a maximum frame rate of 100 Hz). As can be seen in Equation (5), the
state propagation and noise gain matrices defined for each DOF only depend on the time
step ∆t, so they are constant and equal for all of them. Therefore, matrices F and Γ for the
whole system are the result of assembling these individual matrices, following the structure
of the state vector x.

The process noise covariance matrix Qi has also the same form for all DOFs [42],

Qi =

[ 1
4 ∆t4 1

2 ∆t3

1
2 ∆t3 ∆t2

]
σ2

a (6)

The Q matrix for the whole system is the result of assembling these individual matrices,
as done for the state transition and noise gain matrices.

The observation function h(x) provides the observation vector z, which in this case
contains the absolute x, y and z coordinates of the 36 optical markers, as a function of the
state vector x,

zk = h(xk) + wk (7)

The additive term wk represents the noise introduced by the motion capture system,
along with the skin motion artifact. Since the latter is correlated to the skeletal motion,
modeling the sensor noise as a random variable following a Gaussian distribution is
not strictly correct, so the Kalman filter will not be optimal. All sensors are considered
independent and equally affected by noise, so the observation noise covariance matrix R is
a diagonal matrix, whose diagonal elements are all equal to the sensor noise variance σ2

s ,
which has dimensions of squared length.

In order to compute the absolute marker positions from the system states, a recursive
kinematic relationship can be established, as shown in Figure 5. The absolute position zi of
a marker i, which is attached to body b (right hand in Figure 5), can be obtained from the
following recursive relationships,

zi = rb + Abmi
rb = rb−1 + Ab−1rb

(8)

where rb is the absolute position of the proximal joint of body b, Ab is the rotation matrix of
the same body, which depends on its three orientation angles, and mi is the local position
vector of marker i within the local frame of body b. In the observation model, the markers
are considered as rigidly attached to the skeleton, so mi is a constant vector. The vector
rb itself can be obtained in a recursive way from the position vector rb−1 and orientation
matrix Ab−1 of the preceding body in the kinematic chain, knowing that rb is the position
of the proximal joint of body b in the local frame of b − 1, which, due to the rigid body
assumption, is considered constant. This recursive process starts at the pelvis, whose
position vector is contained directly in q and, consequently, in x.



Sensors 2021, 21, 427 9 of 22

Sensors 2021, 21, x FOR PEER REVIEW 9 of 23 
 

strictly correct, so the Kalman filter will not be optimal. All sensors are considered inde-

pendent and equally affected by noise, so the observation noise covariance matrix R is a 

diagonal matrix, whose diagonal elements are all equal to the sensor noise variance 2

s , 

which has dimensions of squared length. 

In order to compute the absolute marker positions from the system states, a recursive 

kinematic relationship can be established, as shown in Figure 5. The absolute position iz  

of a marker i, which is attached to body b (right hand in Figure 5), can be obtained from 

the following recursive relationships, 

1 1

i b b i

b b b b 

 

 

z r A m

r r A r
 (8) 

where br  is the absolute position of the proximal joint of body b, bA  is the rotation matrix 

of the same body, which depends on its three orientation angles, and im  is the local po-

sition vector of marker i within the local frame of body b. In the observation model, the 

markers are considered as rigidly attached to the skeleton, so im  is a constant vector. The 

vector br  itself can be obtained in a recursive way from the position vector 1br  and orien-

tation matrix 1bA  of the preceding body in the kinematic chain, knowing that br  is the 

position of the proximal joint of body b in the local frame of 1b  , which, due to the rigid 

body assumption, is considered constant. This recursive process starts at the pelvis, whose 

position vector is contained directly in q and, consequently, in x. 

 

Figure 5. Kinematic description of the observation function h(x). 

The local position vectors br  and im  must be scaled prior to running the Kalman fil-

ter, in order for the model to adjust to the experimental data. This is performed by solving, 

at a reference pose, a nonlinear least squares optimization problem, in which the design 

variables are a set of scale factors k and the skeletal degrees of freedom q, being the ob-

jective function the quadratic error between measured and estimated marker positions, 

   
,

min ( , ) ( , ) ( , )
T

a af   
q k

q k h x k z h x k z  (9) 

where ( , )ah x k  is an augmented version of the observation function that also takes the 

scale factors as input variables. The resulting scale factors are then used to scale the br  

and im  vectors that will be used in ( )h x . It has been found that the Levenberg-Marquardt 

algorithm works very well for this problem, converging in a very robust way even from 

rough initial estimates. 

The Kalman filter algorithm follows a recursive predictor-corrector scheme. It uses 

the current estimate of the state vector, ˆ kx , along with the sensor measurements, 1kz , to 

Figure 5. Kinematic description of the observation function h(x).

The local position vectors rb and mi must be scaled prior to running the Kalman
filter, in order for the model to adjust to the experimental data. This is performed by
solving, at a reference pose, a nonlinear least squares optimization problem, in which the
design variables are a set of scale factors k and the skeletal degrees of freedom q, being the
objective function the quadratic error between measured and estimated marker positions,

min
q,k

f (q, k) = [ha(x, k)− z]T [ha(x, k)− z] (9)

where ha(x, k) is an augmented version of the observation function that also takes the
scale factors as input variables. The resulting scale factors are then used to scale the rb
and mi vectors that will be used in h(x). It has been found that the Levenberg-Marquardt
algorithm works very well for this problem, converging in a very robust way even from
rough initial estimates.

The Kalman filter algorithm follows a recursive predictor-corrector scheme. It uses the
current estimate of the state vector, x̂k, along with the sensor measurements, zk+1, to obtain
an optimal estimate x̂k+1 at the next time step. In the predictor stage, the state estimate is
updated by means of the state transition matrix F, leading to the so-called a priori estimate
x̂−k+1. The estimate covariance matrix P is updated accordingly, by using matrices F and Q,

x̂−k+1 = Fx̂k
P−

k+1 = FPkFT + Q
(10)

The state estimate at the first time step, x̂0, will contain the initial independent po-
sitions, q0, along with the corresponding velocities,

.
q0. The positions are obtained after

solving the initial marker labeling problem, which will be described later. The initial
velocities are unknown, as well as the value of P0, so they are both set to zero, but they
converge quickly to their correct values after a short transient.

The corrector stage uses the sensor measurements zk+1 to find the optimal a posteriori
estimate x̂k+1, as well as its corresponding covariance matrix, Pk+1,

Kk+1 = P−
k+1HT

k+1

(
Hk+1P−

k+1HT
k+1 + R

)−1

x̂k+1 = x̂−k+1 + Kk+1

[
zk+1 − h(x−k+1)

]
Pk+1 = (I − Kk+1Hk+1)P

−
k+1

(11)

In these equations, Hk+1 is the Jacobian matrix of the observation function, evaluated
at x̂−k+1. This matrix can be computed very efficiently due to the recursive nature of h(x).
Moreover, it is quite sparse, due to the usage of absolute angles as state variables: most
rotation matrices will only depend on three angles, greatly simplifying their derivatives.
In addition, the gradient used in the scale optimization problem shown in Equation (9)
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mostly coincides with this matrix, which is very convenient from the implementation point
of view.

Since this algorithm is recursive and each step can be evaluated very efficiently, it can
be used for real-time motion reconstruction and visualization, as opposed to the previously
mentioned methods, which provide skeletal motion after post-processing the captured data.
In order to achieve on-the-fly motion reconstruction, the marker labeling and occlusion
issues must be addressed.

The problem of initial marker labeling is addressed by using a simple heuristic method
to identify the markers. The procedure consists of checking their relative positions at the
initial time step, according to a reference pose. Then, the same Levenberg-Marquardt
optimization algorithm previously used for scaling the model is used here to fit the DOFs
to the measured markers. This time, the objective function uses the regular observation
function h(x) with the scale factors already applied to the local position vectors, so only
the positions q0 are considered as design variables. If the objective function value after
the optimization (i.e., the fitting error) is below a certain threshold, the marker order is
considered valid, and the iterative process of the Kalman filter can begin.

During the execution of the Kalman filter, marker labeling must be carried out on
the fly, between the predictor in Equation (10) and the corrector in Equation (11). This is
because, for several reasons, the raw measurement vector zr

k+1 obtained from the cameras
cannot be directly used within the corrector. First, the markers are provided as an unsorted
list by the cameras. Second, some markers may be missing due to occlusions. Third, other
bright objects present during the motion capture can be incorrectly identified as markers.
Therefore, the raw measurement zr

k+1 must be correctly labeled and sorted, the missing
markers need to be identified, and all spurious markers have to be discarded, in order to
get the “clean” measurement vector zk+1. After the Kalman filter predictor has computed
the a priori state estimate x−k+1, the observation function h(x) is evaluated at that point to
obtain the corresponding set of estimated marker positions ẑk+1. Ideally, these estimated
markers would coincide with the measured ones zr

k+1, and this fact can be used to identify
the measured markers by using a simple, nearest-neighbor approach. First, a matrix of
squared cross-distances D is built, such that

Dij =
(

ẑi − zr
j

)T(
ẑi − zr

j

)
(12)

where ẑi contains the estimated x, y and z coordinates of marker i, and zr
j is the position

vector of measured marker j. By setting a maximum search distance, estimated markers
that do not have a measured one close enough are considered as missing, and the remaining
ones are assigned to their closest measured counterparts. Any marker from zr

k+1 remaining
unassigned, after all estimated markers have been either paired to their measured counter-
parts or marked as missing, are regarded as spurious, so they are discarded. In order to
avoid resizing vectors and matrices at runtime, missing markers are set to zero in z, and
the same is done to their corresponding rows in H, so they do not affect the correction.

The EKF can provide a smoothing effect depending on the tuning of its parameters,
so in this case there is no need for filtering the marker trajectories. If the sensor noise
variance σ2

s is fixed to a constant value, the smoothing can be controlled by the process
noise variance, i.e., the acceleration variance σ2

a . Low values of the variance limit the
accelerations the system can reach at every time step, thus having a smoothing effect on the
resulting position histories, while high values of the variance allow for larger accelerations,
so that the system can follow the sensors (i.e., the markers) more closely, at the expense of
introducing sensor noise into the reconstructed motion. In this work, the accelerations are
obtained by further filtering the independent positions, and differentiating them twice to
obtain velocities and accelerations. There exist higher order state-space models that include
accelerations in the state vector, but they present two major issues when used with position
sensors only: the resulting accelerations are noisy and delayed, and some unwanted
oscillations may appear in the resulting motion for certain values of the filter parameters.



Sensors 2021, 21, 427 11 of 22

The analyst has in this case two parameters for tuning the obtained accelerations: the
process noise variance and the cutoff frequency of the Butterworth filter. In order to find
their optimum values, the use of accelerometers can be of great help.

2.2.5. Calculation of the Accelerations

In order to make the accelerations obtained from the optical system directly compa-
rable to those obtained by the inertial sensors, it was necessary to transform the former
into the local axes of the corresponding IMUs, and to add the gravity effect to them. Such
an acceleration obtained from the optical system will be called hereafter the virtual ac-
celeration, as it comes from a virtual accelerometer. It is possible to do the opposite, i.e.,
to rotate the IMU measurements to the global frame of reference instead, subtracting the
acceleration of gravity afterwards. However, this procedure involves mixing data from
both systems (to rotate the IMU accelerations to the global frame), so the first alternative
seems more appropriate.

Figure 6 shows a segment or body of the multibody model of the human skeleton,
where the black dots are joints connecting the segment with its neighbors, and the white
dots are the markers attached to the segment. The small rectangle represents the IMU
attached to the segment, which in turn has a marker attached to it, as also shown in Figure 3.
The local reference frame of the body is denoted by B, a moving frame rigidly attached
to the body, and its origin is defined in frame O by the position vector rB while the local
position of the IMU in frame B is given by the constant vector ri (i is the number of the
IMU attached to that particular body). The following equation can be written,

ri = rB + ROBri (13)

where ri is the position vector of the IMU in frame O and ROB is the rotation matrix between
frames B and O. Then, ri can be worked out as,

ri = RT
OB(ri − rB) (14)
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Regarding the orientations, the following relation stands,

ROBRBI = Ri
OERi

EI (15)

being RBI the unknown constant rotation matrix between frames B and I. Superscript i in
the rotation matrices of the right-hand side refers to the number of the IMU attached to
that particular body. From Equation (15), the constant rotation matrix RBI can be worked
out as,

RBI = RT
OBRi

OERi
EI (16)

The two constant terms worked out in Equation (14) and Equation (16), respectively,
must be determined in order to obtain, later on, the virtual acceleration. To this end, a
capture of a static pose of the subject is recorded by both the optical and inertial systems.
From the positions of the markers, ri, rB and ROB can be derived, so that ri is calculated
from Equation (14). On the other hand, the constant matrix Ri

OE had been obtained in
the calibration process carried out during the preliminary test, while Ri

EI can be derived
from the orientation provided by the IMU, so that RBI is calculated using Equation (16).
It must be noted that this is the only point, along the process of getting the virtual ac-
celeration, in which the orientation provided by the IMU is used. However, this does
not induce a significant error, since the estimated orientations are much more accurate in
static conditions.

Once the constant terms ri and RBI have been determined in the described preprocess,
the history of the virtual acceleration can be derived from the info recorded by the optical
system. At each time point, the global acceleration of the point where the IMU is attached,
expressed in frame O, can be obtained by differentiating Equation (13) twice with respect
to time,

..
ri =

..
rB +

..
ROBri (17)

where
..
rB and

..
ROB are calculated as the second derivative with respect to time of the position

data obtained from the optical motion capture. The virtual acceleration, still expressed
in frame O, is obtained by including the gravity effect into the acceleration given by the
Equation (17),

ai =
..
ri + g (18)

being g the gravity vector (9.81 m/s2 in the positive vertical direction, as it would be
perceived by the IMU). To get the virtual acceleration, vector ai must be expressed in the
local frame of the IMU, I,

ai = RT
OIai (19)

with,
ROI = ROBRBI (20)

where ROB is calculated from the optical motion capture. Compacting Equations (17)–(20)
into a single expression, the virtual acceleration can be written as,

ai = RT
BIR

T
OB

(..
rB +

..
ROBri + g

)
(21)

Therefore, the acceleration directly measured by the IMU can now be compared
to the virtual acceleration provided by the Equation (21) from the measurements of the
optical system, and the filtering parameters applied in the latter can be adjusted so as
to yield the optimal correlation. The error was measured as the root-mean-square error
(RMSE) between the histories of the two accelerations compared, the results being shown
in Section 3.
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3. Results
3.1. Preliminary Test and Calibration

As explained in Section 2, the orientation error committed by the ith IMU, i = 1, . . . ,9,
at each time point, was obtained by calculating the roll, pitch and yaw angles of Ri

OI, and
comparing them with the roll, pitch and yaw angles of ROI, taken as reference. Figure 7
shows the error incurred by each IMU in roll, pitch and yaw angles, along the time of
the calibration experiment. Maximum errors of 19◦ in yaw (around the vertical axis) with
respect to the reference (optical system) were found, while mean error differences of up
to 4◦ were detected among IMUs. Similar results were obtained for Ri

OE, the rotation
matrix between frames E and O for the inertial sensor i: differences of up to 8◦ in yaw were
detected among IMUs.
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As explained in the last paragraph of Section 2.1.2, the acceleration of point 4 of the
wooden plate was obtained in three different ways: (i) from the optical system, using the
marker attached to point 4; (ii) from the inertial system, using the orientation provided
by the inertial system; (iii) from the inertial system, using the orientation provided by the
optical system. A forward-backward 2nd order Butterworth filter with a cutoff frequency of
8 Hz was applied to the optically captured trajectories of the markers, while no filtering was
applied to the inertial measurements. Figure 8 gathers the global components, expressed in
frame O, of the three accelerations. While the x- and z-components are similar, significant
discrepancies are observed between 15 and 20 s for the y-component, with a maximum error
of 1.9 m/s2 when using the orientation provided by the IMU. Moreover, the accelerometer
shows some peaks that are not captured by the optical system, for instance when the
plate touches the ground after the 30 s mark. Due to the low sampling rate of the optical
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system, it cannot capture high-frequency events such as impacts, regardless of the filter
cutoff frequency.
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methods: from the optical system (red); from the inertial system with the orientation provided by
the inertial system (blue); from the inertial system with the orientation provided by the optical
system (black).

3.2. Gait Analysis

This Section is devoted to gather the results obtained when comparing the accelera-
tions provided by each of the seven IMUs during the gait analysis described in Section 2.2,
with the so-called virtual accelerations obtained from the optical motion capture. As ex-
plained in the mentioned Section, the trajectories of the markers recorded by the optical
system should be processed by a motion reconstruction method, which includes filtering
of the recorded data. Therefore, the results from each of the two reconstruction methods
proposed in Section 2.2 are shown in what follows.

3.2.1. Vaughan’s Method

The virtual accelerations obtained after the application of the forward-backward
2nd order Butterworth filter with different cutoff frequencies were compared with those
directly measured by the IMUs. Figure 9 shows the three components of the accelerations
at the seven segments analyzed for cutoff frequencies of 6, 12 and 40 Hz, while Figure 10
provides more detail for the left foot. Table 1 gathers the RMSE of the optical-system based
accelerations, with cutoff frequencies ranging between 6 and 40 Hz, with respect to those
directly measured by the inertial system.
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Table 1. RMSE of the accelerations obtained from the optical system through Vaughan’s method with different cutoff
frequencies, with respect to the accelerations measured by the IMUs, taken as reference. The row with the lowest mean
RMSE is highlighted in red.

Cutoff Freq. (Hz)
RMSE (m/s2)

Pelvis R Thigh L Thigh R Tibia L Tibia R Foot L Foot Mean

6 0.626 1.034 1.123 1.583 1.502 2.743 2.485 1.585
8 0.578 1.005 1.071 1.538 1.448 2.640 2.405 1.336
10 0.559 0.997 1.043 1.515 1.428 2.571 2.362 1.309
12 0.559 1.003 1.031 1.508 1.426 2.529 2.339 1.299
15 0.583 1.034 1.036 1.521 1.445 2.504 2.328 1.306
20 0.680 1.138 1.086 1.607 1.510 2.526 2.354 1.363
25 0.840 1.303 1.181 1.771 1.602 2.590 2.422 1.464
30 1.045 1.517 1.314 2.002 1.706 2.679 2.526 1.599
40 1.531 2.035 1.654 2.602 1.931 2.897 2.815 1.933

It can be seen that the influence of the filtering parameter is significant. For high cutoff
frequencies (above 20 Hz), the accelerations were too noisy, with peak errors over 5 m/s2.
Conversely, for low cutoff frequencies (below 8 Hz), the accelerations were too smooth, not
reaching the experimental peak measurements of the inertial sensors. As opposed to the
preliminary test, some acceleration peaks can be captured by the optical system at high
cutoff frequencies, due to the softer contacting materials involved in this case, but at the
cost of very noisy accelerations along the whole capture. The lowest errors were obtained
for a cutoff frequency of 12 Hz, as highlighted in Table 1.

3.2.2. Extended Kalman Filter

The accelerations obtained after the application of different values of the process noise
standard deviation σa (with the sensors noise standard deviation σs fixed to 0.001 m), along
with the application of the forward-backward 2nd order Butterworth filter with different
cutoff frequencies to the position data, were compared to those directly measured by the
IMUs. The units for σa are omitted in what follows for the sake of brevity, since they
depend on the associated degree of freedom: for translational DOFs, σa is expressed in
m/s2 whereas for rotational DOFs it is in rad/s2.

Figure 11 shows the three components of the accelerations at the seven segments
analyzed for combinations of σa and cutoff frequencies of 0.1/30 Hz, 1/20 Hz and 50/6 Hz,
while Figure 12 provides more detail for the left foot. Table 2 gathers the RMSE of the
optical-system based accelerations with σa ranging between 0.1 and 50 m/s2 (or rad/s2,
depending on the corresponding coordinate), and cutoff frequencies ranging between 6
and 30 Hz, with respect to those directly measured by the inertial system.

It can be seen in Figures 11 and 12 that the accelerations obtained with the EKF
were smoother than those obtained with Vaughan’s method, and that the experimental
peak measurements of the inertial sensors were better dissociated from the noise peaks.
Moreover, Table 2 presents lower values of the RMSEs. The best results were obtained for a
process noise standard deviation of 1 m/s2 combined with a 20 Hz Butterworth filter.

In addition to obtaining better accelerations, it should be noted that the EKF auto-
matically ensures kinematic consistency, whereas Vaughan’s method shows joint distance
variations above 1 cm along the gait cycle, so the resulting motion would require further
post-processing depending on the intended application.
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Figure 12. Detail of accelerations at the left foot obtained from the optical system with the EKF-based
method for combined process noise standard deviations and cutoff frequencies of 0.1/20 Hz (black),
1/15 Hz (blue) and 50/6 Hz (cyan), respectively, vs. accelerations measured by the IMUs (red).
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Table 2. RMSE of the accelerations obtained from the optical system through the EKF-based method with different
combinations of process noise standard deviations and cutoff frequencies, with respect to the accelerations measured by the
IMUs, taken as reference. The row with the lowest mean RMSE is highlighted in red.

Acc. Std.
(m/s2 or rad/s2)

Cutoff Freq.
(Hz)

RMSE (m/s2)

Pelvis R Thigh L Thigh R Tibia L Tibia R Foot L Foot Mean

0.1 6 0.717 1.047 1.195 1.663 1.624 2.649 2.430 1.618
0.1 10 0.679 1.020 1.155 1.679 1.618 2.530 2.338 1.377
0.1 15 0.676 1.018 1.136 1.678 1.614 2.433 2.274 1.354
0.1 20 0.682 1.022 1.133 1.674 1.611 2.377 2.229 1.341
0.1 25 0.690 1.028 1.135 1.672 1.612 2.341 2.198 1.335
0.1 30 0.698 1.035 1.140 1.672 1.615 2.318 2.176 1.332
0.5 6 0.606 1.011 1.108 1.513 1.442 2.553 2.274 1.313
0.5 10 0.545 0.969 1.030 1.514 1.412 2.340 2.105 1.239
0.5 15 0.557 0.965 1.017 1.524 1.415 2.183 2.004 1.208
0.5 20 0.582 0.977 1.034 1.530 1.424 2.098 1.943 1.198
0.5 25 0.608 0.996 1.058 1.538 1.439 2.049 1.907 1.199
0.5 30 0.634 1.018 1.083 1.553 1.458 2.018 1.887 1.207
1 6 0.604 1.006 1.099 1.484 1.433 2.565 2.267 1.307
1 10 0.538 0.963 1.026 1.454 1.383 2.330 2.072 1.221
1 15 0.562 0.961 1.033 1.457 1.379 2.161 1.955 1.188
1 20 0.601 0.978 1.067 1.466 1.393 2.074 1.890 1.183
1 25 0.639 1.004 1.105 1.483 1.417 2.026 1.857 1.191
1 30 0.679 1.036 1.143 1.511 1.446 1.999 1.843 1.207
10 6 0.632 0.987 1.132 1.473 1.439 2.580 2.324 1.321
10 10 0.576 0.926 1.086 1.393 1.343 2.344 2.131 1.225
10 15 0.606 0.928 1.115 1.374 1.300 2.174 2.002 1.187
10 20 0.665 0.973 1.168 1.397 1.307 2.084 1.934 1.191
10 25 0.739 1.041 1.228 1.452 1.342 2.037 1.909 1.218
10 30 0.823 1.124 1.292 1.538 1.391 2.014 1.913 1.262
50 6 0.633 0.989 1.134 1.478 1.442 2.578 2.330 1.323
50 10 0.574 0.933 1.088 1.401 1.348 2.343 2.142 1.229
50 15 0.603 0.943 1.119 1.386 1.307 2.177 2.018 1.194
50 20 0.666 1.000 1.179 1.424 1.319 2.091 1.955 1.204
50 25 0.753 1.085 1.253 1.507 1.359 2.047 1.937 1.243
50 30 0.859 1.190 1.336 1.632 1.416 2.032 1.953 1.302

4. Discussion and Limitations of the Study

This work proposes both an extended Kalman filter that facilitates optical motion
capture, and an objective filter-tuning procedure that improves the resulting accelerations in
gait analysis by using accelerometer data. First, a preliminary test including nine IMUs was
carried out to assess the errors incurred by the inertial sensors in the measured orientations
and accelerations. Second, the gait analysis of a healthy subject was performed. Both
optical motion capture and inertial motion capture (using the seven most accurate IMUs
out of the nine tested in the spot check) were recorded. The motion was then reconstructed
by the classic Vaughan’s method (filtering the marker trajectories with a Butterworth filter)
and by the proposed EKF (applying a process noise variance and filtering the marker
trajectories with a Butterworth filter), and the accelerations measured by the IMUs were
used to tune the parameters of the filters for both methods.

As observed earlier in [11–13], the preliminary test highlighted the IMUs limitation to
yield an accurate orientation. These errors depend on the calibration of the accelerometers
and magnetometers, and on the algorithm used to estimate the orientations. Brodie [13]
showed that it is possible to reduce the errors by substituting the commercial algorithm
implemented in the inertial sensors by an improved one, which is consistent with the
experience of the authors using other algorithms [35,36], but even in this case their accuracy
remains limited. Therefore, although the performance of the IMUs has been improved in the
last decade, optoelectronic systems are still used as the golden standard reference [18,19,43].
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For this reason, it was decided to reduce the use of the orientations provided by the IMUs
to a minimum for the gait analysis, taking as reference the local accelerations measured by
the IMUs, and applying all the required transformations in the optical methods so as to
obtain the accelerations, denoted as virtual accelerations, which are directly comparable to
those provided by the inertial sensors.

This decision was enforced after observing, in the preliminary test, the effect of the
orientation errors incurred by the IMUs on the global accelerations. As reported by Wood-
man [44], it is necessary to have very accurate rotation sensors in inertial navigation systems
because the precise orientation of the body must be known in order to mathematically
calculate the gravitational acceleration to find the translational acceleration. As observed
in Figure 8, the gravitational acceleration was incorrectly estimated and appeared as trans-
lational acceleration perpendicular to the gravitational vector. To alleviate this problem,
the orientations obtained from the optical system could be used instead but, as they are
sensitive to the filter tuning, the resulting global accelerations from the IMUs would be
distorted too.

The virtual accelerations obtained by Vaughan’s method were very sensitive to the
filtering applied to the trajectories of the markers. Best matches with experimental values
were observed for cutoff frequencies ranging between 10 and 15 Hz. Bartlett [45] stated
that cutoff frequencies between 4 and 8 Hz are often used in filtering movement data, while
the OpenSim software [40] recommends to use a cutoff frequency of 6 Hz. However, it was
observed that by using low cutoff frequencies, the accelerations were too smooth and the
peaks measured by the IMUs were not reached. Schreven et al. [31] found that filtering the
data with a cutoff frequency of 6 Hz decreases the accuracy of the reconstructed kinematics
and, hence, can affect the accuracy of the joint moments obtained from inverse dynamics,
as shown in [46].

Regarding the EKF method, apart from its robustness and simplicity of use, it showed
a better accuracy in the resulting accelerations. The best filtering was obtained for a plant
noise variance of 1 m/s2 (or rad/s2, depending on the corresponding coordinate) and a
cutoff frequency of 20 Hz. Noise was eliminated, peaks measured by the IMUs were almost
reached, and the resulting RMSEs were better than those incurred by Vaughan’s method.
Moreover, the EKF offered consistent kinematics by providing constant lengths of the body
segments along the motion. Vaughan’s method is similar to those proposed in [19] and,
like them, does not impose the kinematic constraints to compute the joint kinematics from
the marker trajectories. Therefore, it would require an additional step to correct these
inconsistencies before dynamic analysis.

Although gait may be perceived as a smooth activity, acceleration peaks due to foot
impact are observed in Figures 10 and 12, captured by the inertial system. In fact, they were
also captured by the optical system when sampling at 100 Hz. Focusing on the acceleration
peaks due to left foot landing, happening at around 60% of the gait cycle, it can be seen in
Figure 10 that filtering with a cutoff frequency of 40 Hz already allows to capture them,
but at the cost of keeping a lot of noise in the rest of the signal. On the other hand, using a
cutoff frequency under 30 Hz provides a much cleaner signal, but notably oversmooths
the impact peaks. Therefore, the procedure proposed in this paper can be useful for other
researchers to evaluate existing filtering methods, design new ones and chose the best
filtering parameters, but also to select the best capture frequency for their applications,
because they will be able to distinguish between peaks due to noise and peaks due to
actual motion.

The conducted study has been based on the results obtained from the gait analysis of
one single subject. Although it could be expected that the frequency content of the motion
signals is more dependent on the type of activity than on the particular subject performing
it, tests including a greater number of subjects would be advisable in order to confirm
the presented conclusions. This has been the reason to include the word ‘preliminary’ in
the title.
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5. Conclusions

The conclusion is twofold. First, when performing motion capture and analysis using
a marker-based optical system, the extended Kalman filter significantly streamlines the mo-
tion capture and reconstruction process, since it facilitates automatic marker labeling, and
manages occlusions and reflections in a robust and efficient way. Second, the availability of
accelerations measured by inertial sensors can be very helpful for the tuning of the filters,
no matter which motion reconstruction method is used. Consequently, the reliability of the
obtained accelerations is improved.
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