
Facultade de Informática

TRABALLO FIN DE GRAO
GRAO EN ENXEÑARÍA INFORMÁTICA

MENCIÓN EN SISTEMAS DE INFORMACIÓN

Tool for the semi-automatic generation of
software for Digital Libraries

Estudante: María Delfina Ramos Vidal
Dirección: Alejandro Cortiñas Álvarez
Dirección: María de los Ángeles Saavedra Places

A Coruña, setembro de 2020 .

To my family, for giving me a dream and encouraging me in every step of the way.

Acknowledgements

To my mentors, Alejandro and Ángeles, without whom this thesis wouldn’t be possible, for
believing inme even against the adversities. For theywould alwaysmeet mewith great advice
and uplifting words, even in the difficult circumstances we had to face due to the COVID-19.

To my family and those who are far, far away, for trusting me even when I wouldn’t trust
myself, for their unconditional support during all the up and downs I faced along the last five
years.

To my friends and classmates, for turning this time in to the best years of my life, for
gifting me laughter when I didn’t feel like laughing, and for always meeting me with a coffee
and a smile when I most needed a break.

Abstract

The objective of this end-of-degree thesis is to develop a tool that allows generating source
code for different applications with features from the domain of Digital Libraries.

In order to achieve this goal, it was decided to perform the development of a Software
Product Line (SPL) to implement the variability of Digital Libraries applications. To accom-
plish that, it was necessary, first of all, to perform an exhaustive analysis of the domain in
order to define the requirements of the product and the generation tool, and to determine the
variance of the SPL.The project beganwith the aforementioned analysis, whichwas employed
as a basis to decide themost relevant features to our prototype. Thenceforth, the design, devel-
opment and testing of a complete and functional application including the selected features.
Finally, the corresponding variation was added to the code from the application so, among
the SPL workframe, different applications can be generated. The last step was to create the
application to manage the app generation tool.

In the development, PostgreSQL was used for the storage of information, as well as Java,
Spring and Hibernate for the implementation of the web server, and Vue.js for the web client.
In the case of the software product line, spl-js-engine was used as a derivation engine for
product generation, and Vue.js for the web interface designated for the generation tool.

The end-of-degree thesis was managed following an iterative and incremental methodol-
ogy for software development, therefore we split the development process into weekly itera-
tions in each of which a different set of functionalities was carried out.

Resumo

El objetivo de este trabajo de fin de grado es desarrollar una herramienta que permita
generar código fuente para diferentes aplicaciones con funcionalidades del dominio de las
Bibliotecas Digitales.

Para lograr este objetivo, se decidió realizar el desarrollo de una línea de productos de
software (LPS) para implementar la variabilidad de las aplicaciones para Bibliotecas Digitales.
Para lograr eso, primero fue necesario realizar un análisis exhaustivo del dominio para defi-
nir los requisitos del producto y la herramienta de generación, y para determinar la varianza
del SPL. El proyecto comenzó con el análisis mencionado previamente, que sirvió de base pa-
ra decidir las características más relevantes de nuestro prototipo. A continuación, el diseño,
desarrollo y prueba de una aplicación completa y funcional que incluye las características

seleccionadas. Finalmente, se agregó la variabilidad correspondiente al código desde la apli-
cación para que, en el marco de la LPS, se puedan generar diferentes aplicaciones. El último
paso fue crear la aplicación para administrar la herramienta de generación de aplicaciones.

En el desarrollo se empleó PostgreSQL para el almacenamiento de información, así como
Java, Spring e Hibernate para la implementación del servidor web y Vue.js para el cliente
web. En el caso de la línea de productos de software, se utilizó spl-js-engine como motor
de derivación para la generación de productos, y Vue.js para la interfaz web designada a la
herramienta de generación.

El trabajo de fin de grado se gestionó siguiendo una metodología iterativa e incremental
para el desarrollo de software, por lo tanto, dividimos el proceso de desarrollo en iteraciones
semanales en cada una de las cuales se llevó a cabo un conjunto diferente de funcionalidades.

Keywords:

• Code generation

• Software product line

• Digital library

• REST service

• Vue.js

• Spring

• Hibernate

• PostgreSQL

• Generation engine

Palabras chave:

• Generación de código

• Líneas de producto software

• Biblioteca digital

• Servicio REST

• Vue.js

• Spring

• Hibernate

• PostgreSQL

• Motor de generación

2

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2

2 State of the art and technological fundamentals 3
2.1 State of the art . 3

2.1.1 Digital Libraries . 3
2.1.2 Software Product Lines . 6
2.1.3 Related work . 7

2.2 Technologies employed . 8

3 Methodology and project planning 9
3.1 Development methodologies . 9

3.1.1 The Scrum roles . 10
3.1.2 Scrum artifacts . 11
3.1.3 Scrum events . 11

3.2 Methodology support tools . 12
3.3 SPL development methodology . 13
3.4 Planning and tracking . 15

3.4.1 Resources . 15
3.4.2 Planning . 15
3.4.3 Schedule tracking . 17

4 Software product line analysis 19
4.1 Product requirements . 19

4.1.1 Actors . 19
4.1.2 Requirements . 20

4.2 Variability modeling . 26

i

Contents

4.3 Generation tool requirements . 29
4.3.1 Actors . 30
4.3.2 Requirements . 30

5 Product construction 33
5.1 Analysis . 33

5.1.1 System architecture . 33
5.1.2 User interface . 35
5.1.3 Conceptual data model . 41

5.2 Design . 52
5.2.1 Technological architecture of the system 52
5.2.2 Client . 54
5.2.3 Application design . 54

5.3 Implementation and testing . 59
5.3.1 Implementation . 59
5.3.2 Testing . 61

6 Software product line construction 63
6.1 Analysis . 63

6.1.1 System architecture . 63
6.1.2 User interface . 64

6.2 Design . 64
6.2.1 Technological architecture of the system 64
6.2.2 Application design . 65

6.3 Implementation and testing . 67
6.3.1 Implementation . 67
6.3.2 Testing . 69

7 Developed solution 71
7.1 Generation tool . 71
7.2 Product . 73

8 Conclusiones y trabajo futuro 79
8.1 Objectives . 79
8.2 Lessons learned . 79
8.3 Future work . 80

A Feature model for the SPL 83

ii

CONTENTS

B User interface mockups 97

C Data model for the product 127

D Glosary of Acronyms 129

E Glossary of terms 131

Bibliography 133

iii

Contents

iv

List of Figures

2.1 Screenshot of Symbola’s static pages management 4
2.2 Screenshot of location management from CBDRS 5

3.1 SPL development methodology . 14

4.1 Actor diagram . 20
4.2 Collapsed feature model . 27
4.3 Zoom-in of navigation features . 28
4.4 Zoom-in of language selection . 29
4.5 List of constraints for the variability model . 29

5.1 System’s architecture diagram . 34
5.2 Home Page for Latest Releases Page . 35
5.3 Home Page for Editions List Page . 36
5.4 Home Page for Presentation Page . 37
5.5 Advanced search page . 38
5.6 Admin management - Editions list . 38
5.7 Admin management - Edition form . 39
5.8 Admin management - Edition form with digitized pages 40
5.9 Edition details . 41
5.10 Data model . 42
5.11 closeup to the element classes . 43
5.12 Closeup to the authority and organization classes 47
5.13 Closeup to the user classes . 50
5.14 Technological architecture for the system . 53
5.15 Package structure of the application server . 55
5.16 Package structure of the application client . 57
5.17 Extract from the Resource dedicated to files . 60

v

List of Figures

6.1 System architecture for the Software Product Line 63
6.2 Technological architecture of the Software Product Line 65
6.3 Generation tool package structure . 66
6.4 Delimiter annotations configuration . 67

7.1 Main page of the generation tool . 71
7.2 Feature tree selection of the generation tool 72
7.3 Static pages management of the generation tool 72
7.4 List of published editions from the generated product 73
7.5 Detail of an edition without authentication . 74
7.6 Detail of an edition after authentication . 74
7.7 Management of reporters . 75
7.8 Management of editions . 75
7.9 Form to create new editions or update existing ones 76
7.10 List of authorities from public access . 77

A.1 Collapsed feature model . 90
A.2 User management features . 91
A.3 Digital resources features . 91
A.4 Element features . 91
A.5 Authority features . 92
A.6 Organization features . 92
A.7 Language features . 92
A.8 Public access features . 93
A.9 Navigation features . 94
A.10 Public search features . 95
A.11 Management features collapsed . 95
A.12 Management search . 96
A.13 Export features . 96

B.1 Home for Static Pages . 97
B.2 Home for New releases . 98
B.3 Home for Editions with Infinite scroll . 99
B.4 Home for Works with infinite scroll . 100
B.5 Home for works with pagination . 101
B.6 Home for authorities with pagination . 102
B.7 Home for authorities with infinite scroll . 103
B.8 Advanced search logged as Admin . 104

vi

LIST OF FIGURES

B.9 Sign in . 104
B.10 Sign up simple . 105
B.11 Sign up with extended user profiles . 105
B.12 Admin management - Collaborators list . 106
B.13 Admin management - Register collaborator . 106
B.14 Admin management - Reporters list . 107
B.15 Admin management - Edition list . 107
B.16 Admin management - Organizations list . 108
B.17 Admin management - Works list . 108
B.18 Admin management - Parts list . 109
B.19 Admin management - Collection list . 109
B.20 Admin management - Edition detail . 110
B.21 Admin management - Edition with several works related 110
B.22 Admin management - Edition form . 111
B.23 Admin management - Edition form with authority accordion 112
B.24 Admin management - Edition form with works accordion 113
B.25 Admin management - Edition form with parts accordion 114
B.26 Admin management - Edition form with collection accordion 115
B.27 Admin management - Edition form with location accordion 116
B.28 Admin management - Edition form with digital resources accordion, PDF . . . 117
B.29 Admin management - Edition form with digital resources accordion, external

files . 118
B.30 Admin management - Edition form with digital resources accordion, collec-

tion of digitalized pages . 119
B.31 Search result as text list . 120
B.32 Search result with images . 120
B.33 Search result as map . 121
B.34 Public edition detail with one wokr . 121
B.35 Public edition detail with several works . 122
B.36 Public work detail with several publications related 122
B.37 Public part detail . 123
B.38 Public edition download resource . 123
B.39 Public work download resource . 124
B.40 Public part download resource . 124
B.41 Public authority detail . 125
B.42 Public organization detail . 125

C.1 Digital resources classes . 127

vii

List of Figures

C.2 Digital resources classes . 128

viii

List of Tables

3.1 Salary per hour for each role . 16
3.2 Planned project costs . 16

ix

List of Tables

x

Chapter 1

Introduction

1.1 Motivation

When information technologies collide with the literary scope, the idea of a digital library is
born. Although there can be plenty of different scenarios, let them be a digital library, just a
catalogue -when there is no digital copy stored in the system- or an institutional repository -an
archive for digital copies of the intellectual output of an institution-, among other examples,
we will talk about digital libraries as an umbrella term.

In present times, said digital libraries have become a valuable channel to broadcast cultural
material since they make it possible for the society to have access to knowledge, content,
and research results that establish a unique cultural heritage. Hence, the development of a
digital library is not exempt from complexity and requires, in general terms, an intricate and
expensive project. Information digitization processes imply high costs themselves. Besides,
the features of each library entail that support software must be custom-made, which means
an unreasonable cost that can constitute a critical barrier towards the development of the
library.

Themain objective for this thesis is to present a tool which allows the generation of source
code corresponding to web applications of digital libraries following an approach based on
Software Product Lines, which represents an ambitious and recent software engineering field
in software development. Said application would be built adapted to the peculiarities of the
concrete library to be generated, minimizing both the application and the code’s complexity.
The purpose of this tool is to offer the final user a solution to the aforementioned problems,
providing a product equipped with the desired features at the same time as being as manage-
able as possible, implemented with the lesser amount of resources and avoiding the presence
of unnecessary functionalities that make its usage and maintenance more laborious.

1

1.2. Goals

1.2 Goals

To achieve the main goal settled for this project, creating a SPL-based generation tool capable
of producing web applications to manage and visualize the information of a digital library
starting from a set of given functionalities, the following specific objectives must be achieved:

• In-depth analysis of the work domain regarding digital libraries, taking into special
consideration how the information is modelled in such an specific field.

• Define the set of functionalities that will be part of the auto-generated web appli-
cations, including typical functionalities for a digital library, such as: management of
book editions, works and users, support for digital resources regarding those books,
search for and consult information about an specific authority or work, manage orga-
nizations related, manage the physical locations where the edition took place.

• Analyse and model the variability of the software product line (SPL), selecting the
variable features included in the product, and definingmandatory rules and constraints.

• Develop the baseline for the SPL, that is, a web application tomanage and run a digital
library that includes all the features.

• Annotate source code to make it suitable for the generation engine to generate the
functional products.

• Provide a user-friendly generation tool through a web interface that allows the user
to select the features desired for the final product and generates the applications with
a straightforward approach.

• Generate the source code to deploy a digital library web application using a software
product line derivation engine.

• Deliver quality products, which do not contain known error, for which a series of
tests, both manual by the application and automatic, must be carried out.

• Offer safe products, that may grant access to the data solely to those users that have
been authenticated, for which a security system would be required.

2

Chapter 2

State of the art and technological
fundamentals

In this chapter, we focus on existing tools that perform similar functions to the required ob-
jectives, but do not provide a complete solution to the problem. This part of the development
provided a better understanding of how the project should be implemented. On a first note,
the state of art will be established, taking an in-depth look into the work domain and, lastly,
it will close presenting the technologies that will be employed during the implementation of
the solution.

2.1 State of the art

Based on the general ambitions of the project and noting that it is composed of two well-
defined elements, a digital library platform and a derivation tool for SPL, an exhaustive re-
searchwas carried out for each element, analyzing other offers already existing in the industry
that could satisfy our necessities. Additionally, this section will summarize the research car-
ried out to grant that the digital libraries generated by the SPL provide the features that an
experienced user would expect, both as customer and management, and are supported by a
database that enables storing all the relevant data in a digital library.

2.1.1 Digital Libraries

To begin with, platforms have been sought to manage digital libraries, amid which plenty of
alternatives have been found. An in-depth analysis of some specific platforms and their most
remarkable features was accomplished. An overview of said analysis will be carried out in
this section.

Some of the libraries analyzed have the main purpose of giving visibility to different
projects in the field of Hispanic languages in order to affect the profitability and recogni-

3

2.1. State of the art

tion of efforts and results, the development of new work instruments, and the opening of
new lines of research or the enhancement of existing lines in new registries. The majority
of them were constructed based on the OAI-PMH interoperability protocol, whose mission is
to promote interoperability standards that facilitate content diffusion on the internet. One of
the most outstanding library among them, specially to the team developing this thesis due to
their proximity to thementors isBIDISO (BibliotecaDigital Siglo deOro) [1], Golden Cen-
tury Digital Library. Regarding BIDISO, the way they model the management features and
the administration interface was the most profitable, with user-friendly approaches, giving
the information in a straightforward manner. Another two libraries from this portal worth
mentioning are:

• SYMBOLA Divisas o empresas históricas [2], library specialized in historical em-
blems, from whom stands out its administration side management, including their fea-
ture of offering static pages to model additional information about the library. An
example of their interface can be seen in figure 2.1

Figure 2.1: Screenshot of Symbola’s static pages management

• CBDRS Catálogo y biblioteca digital de Relaciones de sucesos [3], Digital Library
of News Pamphlets. Stands out their advanced search feature, enabling an exhaustive
and restrictive filtering of the data, in addition of the geographical locationmanagement
of where an edition took place, as well as an event, and the inclusion of maps for its
physically representation, visible in figure 2.2.

The project Edicion Crítica [4], based on the study of the publishing industry in Galicia
during the Franquist period, was also taken into account. Protrudes their intricate data model,
an ambitious approach that takes into account all different types of literary publications, them

4

CHAPTER 2. STATE OF THE ART AND TECHNOLOGICAL FUNDAMENTALS

Figure 2.2: Screenshot of location management from CBDRS

being editions, works, parts of works, collections of editions, and modelling the different
relationships that can happen among them, as well as their authorities, which can sign each
work with a different pseudonym, and the organizations in charge of executing the edition of
each work.

The project from the University of A Coruña, Biblioteca virtual galega [5], galician
virtual library, from which we took into special consideration their data model, where they
include authors with different pseudonyms, although they don’t register whichwork is signed
under each alias, and the relation among works contained in a single edition, with their re-
spective digitized pages to access the data from the original copy of the edition.

To summarize, the remarkable characteristics as a whole for this kind of applications are:

• They tend to be massive platforms that provide an extensive number of functionalities
to manage a library and implement a database according to the requirements.

• Collaborative edition, they enable the possibility that many users manage the same
data.

• Internal reviewing process, in addition to the collaborative edition, they provide a me-
thod to ensure that the data updated to the library is accurate, quality data, by means
of internal revision among different team members.

• Geographic Information System (GIS) that enables the location of the different publi-
cations in a map.

• The interoperability necessary to share valuable data between organizations, improving
the performance of the library.

5

2.1. State of the art

• Management of different types of literary publications such as editions of a work, col-
lection of editions, parts of works, standalone works. As well as management for their
respective authorities, let them be writers, editors, printers or illustrators, to name a
few.

• User management, allowing different authentication means, even registration through
social networks.

• Support for digital resources that supplement the information available regarding pub-
lications and their authors in different formats to match the user needs and the style of
the text.

• Complex browser that offer the opportunity to search for an element by different cri-
teria at the same time.

• The navigation on these libraries usually takes profit of the relationships among the
entities of the database to find data in a easier way and go from one item to the other
without effort.

• User-friendly interface, considering the profile of most users, specialized in literature,
the design of these web pages is highly intuitive and transparent.

2.1.2 Software Product Lines

On the other hand, software product line (SPL) derivation tools have been sought, among
which we can highlight:

AHEAD Tool Suite (ATS) [6] or FeatureHOUSE [7], both tools that offer suppor for
Feature Oriented Programming (FOP). FOP is based on the premise of implementing sepa-
rately the code for each feature and, after that, combines everything with a concrete mecha-
nism depending of the tool. AHEAD is a Java tools collection based on an architecture model
that enables the representation of an arbitrary number of software devices as a nested set of
equations. FeatureHOUSE is a tool for software artifacts composition independently of lan-
guage, which allows to combine artifacts written in different programming languages, but
this implies programming adapters for each language.

AspectJ [8] is a seamless aspect-oriented extension to the Java programming language.
Aspect Oriented Programming (AOP) is a programming paradigm that aims to increase mod-
ularity by allowing the separation of cross-cutting concerns. It does so by adding additional
behavior to existing code without modification of the code itself. Instead, we declare sepa-
rately which code is to modify. Its main disadvantaje is that the way of programming gets
really compromised to adapt to AOP, which hinders the possibility of escalating the product
once it is generated.

6

CHAPTER 2. STATE OF THE ART AND TECHNOLOGICAL FUNDAMENTALS

Antenna [9] provides a set of Ant tasks suitable for developing wireless Java applications.
It is based on conditional compilation, one of the most important and popular techniques to
implement variable systems. Using preprocessors, code can be annotated with directives to
include or exclude statements depending on feature selections. That way, products can be
customized to the needs of a customer. Due to this mark and exclude principle, preprocessors
are simple to use and understandable and enable a fine-grained way to implement variability
[10]. Preprocessors can be adapted to our case but Antenna only supports Java, it would be
impossible to create a variable web client, and its annotations are really complex.

For this purpose, spl-js-engine [11] (which was developed by the directors of this the-
sis, providing first-hand experience) combines the main advantages of Feature Oriented Pro-
gramming with the best features of Preprocessors and does so with simple, user-friendly
annotations based on JavaScript instead of implementing a new sintax. All the mentioned
techonologies are accessible on FeatureIDE, the Eclipse Framework employed to create the
feature model, and one of the most well-known tools for SPL.

2.1.3 Related work

This thesis is accomplished with the direction of two professionals that have been an ac-
tive part of the Database Laboratory from University of A Coruña, which devotes invaluable
first-hand experience in matter, not just in concrete projects regarding the creation of digital
libraries, besides the development of tools that simplify the generation of complex informa-
tion systems. With the collaboration of the laboratory, remarkable projects were executed by
the University of A Coruña. Some examples can be:

An open source system for the creation, maintenance and exploitation of Digital Libraries
[12]: Compression and Indexation, carried by the Databases Laboratory, where they had to
main goals: to enhance the behaviour of compression and search algorithms when the text is
written in a romance language and, in addition, publishing the algorithms and tools developed
as open source.

Advanced tools for the implementation of Digital Libraries [13], also carried by theDataba-
ses Laboratory, whose major goals was the development of advanced tools to facilitate the es-
tablishment of digital libraries on the web, while improving the quality of their services, from
a multidisciplinary point of view. Some features from this project that have quite some rele-
vance are the tool for rapid prototyping digital libraries and the tool to feed digital libraries
that permits XML markup of documents.

Furthermore, the European Comission funded a Network of Excellence on Digital Li-
braries, called DELOS [14], whose main objectives were research and technology transfer,
although it was abandoned in 2009. On their last period, DELOS was working on the develop-
ment of a Digital Library Reference Model, designed to meet the needs of the next-generation

7

2.2. Technologies employed

systems, and a globally integrated prototype implementation of a Digital LibraryManagement
System.

2.2 Technologies employed

During the development of this project several technologies have been used, as listed below:

• PostgreSQL [15]: Open source object-relational database management system. Fea-
tures multi-version concurrency control (MVCC) and the use of read locks.

• spl-js-engine [11]: JavaScript tool for the implementation of Software Product Line
derivations.

• Vue.js [16]: Open-source model–view–view-model progressive JavaScript framework
for building user interfaces and single-page applications. One of the advantages is that
Vue works with components, elements that encapsulate reusable code. Said compo-
nents allow the modularized developments and ease the scalability of the project.

• Maven [17]: build automation tool used primarily for Java projects, like in this case,
where it was employed for the implementation of the digital library.

• Node.js [18]: Open-source, cross-platform, JavaScript runtime environment (frame-
work) that executes JavaScript code outside a web browser, focused on speed and scal-
ability.

• NPM (Node Package Manager) [19]: package manager for the JavaScript program-
ming language. It is the default package manager for the runtime environment Node.js.
Employed to develop the digital library web client and the web interface fo the gener-
ation tool.

• Spring [20]: Application framework that offers an integral programming and config-
uration model for Java based applications. Joined with Spring Boot [21] to facilitate
the configuration of the project, making it automatic.

• Hibernate [22]: Object-relational mapping (ORM) tool for the Java programming lan-
guage. It provides a framework for mapping an object-oriented domain model to a
relational database.

8

Chapter 3

Methodology and project planning

This chapter gives an in-depth description of the development methodology applied to this
project, as well as the implemented mechanisms for planning and tracking. Furthermore,
the methodology followed when it comes to the development of the Software Product Line is
specified.

3.1 Development methodologies

First, to accomplish the goals determined for this system, an iterative and incrementalmethod-
ology, feature-driven, was elected. The whole project was completed following an agile
methodology [23]. These methodologies are characterized by allowing to adapt the way of
working according to the conditions of the project and to achieve flexibility and immediacy in
the response to adjust the project and its development to the specific circumstances of the en-
vironment. In conclusion, they allow a fast adaptability to change and continuous refinement
of requirements, as well as good response to error detection.

This type of approach advocates adaptive planning, evolutionary development, early de-
livery, and continual improvement, and it encourages flexible responses to change [24], pro-
viding a series of advantages compared to traditional software engineering. Agile methodolo-
gies simplify project planning and estimation, since it is performed for each iteration instead
of having to organize the entirety of the project in one sitting, favouring progress tracking
by means of meetings held at the end of each iteration. Furthermore, at the end of the iter-
ation a working product is demonstrated to collaborators, allowing their participation in the
development process, minimizing overall risk, and granting the product to adapt to changes
quickly.

The development methodology applied to this project is inspired by Scrum [25], a frame-
work within which people can address complex adaptive problems, while productively and
creatively delivering products of the highest possible value. It is described as lightweight,

9

3.1. Development methodologies

simple to understand but difficult to master. Since this is an individual project, it has been
necessary to adapt this work method to the characteristics of the end of degree project, so it
has not been possible to apply all the good practices that it proposes.

From here on, Scrum adaptation to this project is outlined, indicating which technique
and practices were suitable for this case, considering its concrete characteristics.

The Scrum Framework itself is very simple. It defines only some general guidelines with
only a few rules, roles, artifacts and events. Nevertheless each of these components is impor-
tant, serves a specific purpose and is essential for a successful usage of the framework.

3.1.1 The Scrum roles

One of the first things to understand is how Scrum roles differ from traditional project exe-
cution roles. While there are only three main roles in Scrum, they don’t automatically align
with titles familiar to most of us.

Product owner is a scrum development role for a person who represents the business
or user community and is responsible for working with the user group to determine what
features will be in the product release. They are responsible for maximizing the value of the
product. In addition, they are the sole person responsible for managing the Product Backlog.

A scrum master is the facilitator for an agile development team. Scrum is a methodol-
ogy that allows a team to self-organize and make changes quickly, in accordance with agile
principles. The scrum master manages the process for how information is exchanged.They
are responsible for promoting and supporting Scrum by helping everyone understand Scrum
theory, practices, rules, and values.

Scrum team (aka. Development team) is formed by people who must fulfill all techni-
cal needs to deliver the product or the service. They must be self-organized, versatile, and
responsible enough to complete all required tasks. It is extremely important that they are
self-organized and cross-functional.

In the framework for this thesis, the product owner role was played by the directors of the
thesis and the author herself, given that the definition and refinement of the Product Backlog
was collectively completed by all the members of the team, as well as the Scrum Master role.
On the other hand, the Development Team is solely composed by the author of the thesis.

This adaptation of the methodology implies crucial modifications with respect to the
Scrum Theory since the Product Owner role was carried out by several people, as well as
the Scrum Master role, while the Development Team was formed by just one member instead
of the seven usual people.

10

CHAPTER 3. METHODOLOGY AND PROJECT PLANNING

3.1.2 Scrum artifacts

The SCRUM artifacts are used to help define the workload coming into the team and currently
beingworked upon the team. Artifacts defined by Scrum are specifically designed tomaximize
transparency of key information so that everybody has the same understanding of the artifact.
There are many more artifacts, for example, User stories, Release backlog, Burn-up chart etc.
But we will concentrate on the core three.

The product backlog is a collection of user stories which present functionality which is
required/wanted by the product team. It is the single source of requirements for any changes
to be made to the product. The Product Backlog evolves as the product and the environment
in which it will be used evolves.

The sprint backlog is a list of tasks identified by the Scrum team to be completed during
the Scrum sprint. During the sprint planning meeting, the team selects some number of
product backlog items, usually in the form of user stories, and identifies the tasks necessary
to complete each user story.

The increment is a sum of all the Product Backlog items completed during a Sprint and
the value of the increments of all previous Sprints. At the end of a Sprint, the new Increment
must be “Done,” which means it must be in usable condition and meet the Scrum Team’s
definition of “Done”.

Along the development, all the Scrum artifacts defined above were applied to the project.
The Product Backlog was initially established in the preliminary analysis stage and it was
refined progressively in the upcoming meeting for planning and reviewing. During those
reunions, the Sprint Backlog was also defined for the iteration that was about to start and the
Increment revision was done over the finished sprint.

3.1.3 Scrum events

SCRUM relies on all aspects of the team being and working transparently. With this core
ethos in mind, the methodology is structured around a number of key event for ensuring the
two other pillars: Inspection and adaptation. Prescribed events are used in Scrum to create
regularity and to minimize the need for meetings not defined in Scrum. Other than the Sprint
itself, which is a container for all other events, each event in Scrum is a formal opportunity
to inspect and adapt something.

• Sprint: The heart of Scrum is a Sprint, a time-box during which a “Done”, usable, and
potentially releasable product Increment is created.

• Daily Scrum: time-boxed event held every day of the Sprint where the Development
Team plans work for the next 24 hours.

11

3.2. Methodology support tools

• Sprint planning: meeting where the work to be done during the Sprint is organized.

• Sprint review: held at the end of the Sprint to inspect the Increment and adapt the
Product Backlog if needed.

• Sprint retrospective: occurs after the Sprint Review and prior to the next Sprint Plan-
ning. Its purpose is to inspect how the last Sprint went, identify, and order the major
items that went well and potential improvements and create a plan for implementing
improvements to the way the Scrum Team does its work.

For this project, the life cycle was subdivided into several Sprints, each one incorporated
the development of a defined set of functionalities. At the end of each Sprint and right before
starting the next one, a review and planningmeetingwas held, equivalent to the Sprint Review
and Planning events. During these reunions, the work done during the finished sprint was
revised, attending the errors, and defining future changes to be done. Likewise, the Product
Backlog refinement was done and the next elements to be implemented were selected.

Since the Development Team was constituted by just one person, it was not conceivable
to hold Daily Scrum meetings, nor Retrospective Sprint meetings.

3.2 Methodology support tools

In this section are collected the tools exploited in the project’s development, which aided the
utilization of the selected methodology.

Gitlab
One of the main tools employed was an instance of Gitlab deployed andmaintained by the

research group to which the directors of this thesis belong, the Database Laboratory. Gitlab
is an open source version repository managed under Git that, moreover, holds multitude of
functionalities to ease the integration of agile methodologies such as: an issue tracking sys-
tem, tasks and milestones management, issue tagging and dashboard for their organization,
wiki management, issue-trackingmanagement and collaboration features, among others [26].

Inside Gitlab three projects were created: the first one to manage the source code for the
digital library server, the second one for the web client of the library, and the third and last
for the web generation tool. All of them were assigned to the same group, which eased the
management of milestones and issues.

When developing the project, a workflow based in GitFlow was stablished, meaning that
the development was organized in different branches. The main branch, the Master branch,
where everything that is pushed to it must work correctly, and consequently the secondary
branches created from each issue, the ones where the code will actually be modified to add or
modify features to get the desired result.

12

CHAPTER 3. METHODOLOGY AND PROJECT PLANNING

The common procedure of this method consists in opening the issue, creating a new
branch for said issue, make the necessary changes over that branch and when the imple-
mented functionally is finished and works correctly, perform a merge request that consists in
merging the code of the branch with the code located in the master branch and proceeding
to close the issue. Therefore, the work done for each feature will go into its own branch. This
allows to have a clear separation of the code during the development and in case an error
occurs during the implementation, it can be easily located and fixed.

Other tools
In addition to Gitlab, during the implementation of the project the following tools were

used:

• Eclipse [27], Visual Studio Code [28]: both integrated development environments
employed for the elaboration of the digital library and the generation tool.

• Adobe XD [29]: vector-based user experience design tool for web apps and mobile
apps, employed to design the prototypes of the web interface.

• Draw.io [30] and StarUML [31]: diagram software for making flowcharts, process
diagrams, org charts, UML, ER, and network diagrams to represent the design of the
project.

• GoogleChrome and Firefox browsers employed to run the applications and runman-
ual tests against their functionalities.

• Overleaf [32]: Collaborative cloud-based LaTeX editor used for writing and editing
research papers.

3.3 SPL development methodology

A software product line is a set of software-intensive systems that share a common, man-
aged set of features satisfying the specific needs of a particular market segment or mission
and that are developed from a common set of core assets in a prescribed way [33]. SPL are
emerging as viable and important development paradigm. They enable rapid market entry
and flexible response to market changes; at the same time, they provide a capability for mass
customization.

In the generation of the SPL, the spl-js-engine derivation engine was chosen since it was
thought to be the best fit for the project. Some of the decisive criteria was that it is a flexible
tool and supports any type of files, in addition to the previous experience of the teamwith said
tool. The derivation engine was combined with the scaffolding technique, which consists on
generating code from a set of predefined templates and a specification given by the developer.

13

3.3. SPL development methodology

This tool constructs the products based on the templates, that consist on an annotated source
code file, and the specification of the product features [34].

The methodology implemented can be appreciated in the figure 3.1.

Figure 3.1: SPL development methodology

Firstly, an analysis about the SPL domain was carried out to define the features that would
be a part of the resulting products and, based on that, define the requirements to build said
product. Furthermore, the generation tool requirements were determined.

Once the features were settled, the variability model was generated, determining common
features to all SPLs as well as those that can vary, resulting in a feature model.

After the analysis was completed, product development, the consequent digital library
web application. This process was guided by the previous analysis such that organization
and implementation of the components pursued the ease of inclusion and exclusion of said
components on the generated products.

Eventually the implementation and testing of the digital library took place, and right after
the development of the Software Product Line took off, using spl-js-engine tool. During this
stage, the source code of the library was annotated, and the web generation tool interface was
implemented.

Reached this point of the process, the development of the digital library tool was com-
pleted. From here on it can be employed to generate products starting from a product config-
uration, in other words, a set of selected features.

14

CHAPTER 3. METHODOLOGY AND PROJECT PLANNING

3.4 Planning and tracking

This section details the resources necessary to carry out the project, as well as the planning
and estimation carried out initially and the actual monitoring of the planning, along with
deviations in time and cost.

3.4.1 Resources

The resources, both human and technical, necessary to carry out this project.
Human resources
For the realization of this thesis we have had a team of three people formed by the directors

and the author of the work, who have assumed the roles of Product Owner, accomplishing the
product backlog management; analyst, carrying out planning and design; and as a developer,
carrying out the implementation and testing of the different functionalities.

Technical resources
Within the technical resources used in the development of this project can be differentiate

two groups: hardware resources and software resources.
Regarding hardware resources, a laptop has been used for the sake of the implementation

and testing of all the functionalities defined for the system, as well as the thesis’ diagrams and
documentation elaboration.

Regarding software resources, those mentioned in section 3.2 are included.

3.4.2 Planning

At the beginning of the project, a preliminary analysis was carried out in order to determine
its scope and the technologies to be used in it. The preliminary analysis phase had a duration
of four weeks and in it the following tasks were carried out:

• Technology study: an analysis of the main JavaScript available frameworks was car-
ried out to determine which was the most appropriate to develop the web interface of
the application. After studying the advantages and disadvantages of each one of them,
the decision was made to use Vue.js since it is a simple and easy framework to use but
at the same time powerful enough for the development of this project. The previous
experience of the team working with Vue.js was also crucial at the time of the decision.

• Definition of system actors: an analysis of the possible roles and actors that could
interact with the system, defining the functionalities to which each of themwould have
access.

15

3.4. Planning and tracking

• Data model definition: The initial version of the Product Backlog, defining the func-
tionalities of the system.

• Initial product backlog implementation: the data model design was performed to
determine how the information from the application would be stored.

• Elaboration of mock-ups: design of interface prototypes for the web application by
usingmock-ups, in order to refine functionalities and requirements and how everything
must fit in the desired final product.

The software development process split into weekly sprints, resulting in eight iterations,
combining with the realization of this document. The work to be done in each sprint was
planned so that the author would work 10 hours every day, every day of the week, in the per-
formance of analysis, design, implementation tasks and tests. In addition, it was estimated
that the monitoring and planning meeting corresponding to each sprint would last approxi-
mately one hour.

This planning results in 70 hours of work in each sprint by the author, resulting in a
total of 560 hours estimated for software development. The total sum of hours invested in the
preliminary phase of the analysis, 40 hours, must be added to this amount, resulting in a grand
total of 600 work hours estimated for the development of this project. Once the time cost was
estimated, the monetary cost for the realization of the project was estimated, considering the
standard salary per hour for a professional, as stated in table 3.1. Said estimation can be found
in the table 3.2.

Role Salary per hour
Product owner 30€

Analyst 25€
Developer 15€

Table 3.1: Salary per hour for each role

Member Product owner hours Analyst hours Developer hours Cost
Ángeles Saavedra 10 - - 300€
Alejandro Cortiñas 10 15 - 675€

Delfina Ramos 20 30 560 9.750€
Total 40 45 560 10.725

Table 3.2: Planned project costs

16

CHAPTER 3. METHODOLOGY AND PROJECT PLANNING

3.4.3 Schedule tracking

This section will analyze the monitoring of the project on the initial planning, detailing the
work done in each sprint with respect to its planning and mentioning the deviations in time
and cost suffered together with the causes thereof. It should be noted that the number of
stories assigned to each sprint is not the same, since not all of them count with the same
complexity and the development time required for its implementation is not equivalent.

It must be taken into account that, following the guidelines of the methodology used, in
the Review and Planning meeting of each sprint a revision of the user stories implemented
in the iteration was performed, and the remediation and implementation of the errors and
improvements detected for the next sprint was planned.

Sprint 1
For the first Sprint the assigned tasks were the creation of the web server skeleton and the

creation of the web client skeleton using Vue CLI. Also, it was required to create the feature
model using FeatureIDE and generate the XML file for the features. Lastly, during this sprint it
was decided to implement the basic functionalities to login and logout from the app, register,
view an user’s profile and delete an account, corresponding to user stories from 1 to 14, 45
and 46.

Sprint 2
For the second Sprint the assigned tasks were those related to the creation of an edition,

displaying a list of editions both from the admin management and the public access. User
stories 15, 20, 21, 26, 32, 33, 38 and 47.

Sprint 3
For the third sprint the assigned tasks were those related to the creation and management

of authorities and the thesaurus for organizations and locations, both on the server side and
the client side. From the product backlog the equivalents are the user stories 17, 18, 19, 22,
24, 28, 29, 40, 48 and 49.

Sprint 4
For the fourth sprint the assigned tasks were those related to the creation and adaptation

of the generation tool, implementing the skeleton of web client. From the SPL product backlog
the equivalents are the user stories 1 to 3. The ideal progress would be to start implementing
the server side of file loading in this sprint, since it was never done before by the author and
it may present some difficulties.

Sprint 5
For the fifth sprint the assigned tasks the ideal progress would be to start scribbling the

memory of the thesis and do parallel implementations among the programming of the ap-
plication and the drafting of the document since the time lapse available was really small.
Simultaneously, the features related to loading data should begin here with the images for

17

3.4. Planning and tracking

the covers and profile pics and the implementation of the entities for the digital resources.
Also, from the generation tool the importation and exportation of specification should be
implemented, without static pages.

Sprint 6
For the sixth sprint the assigned tasks were those related to the creation and management

of works and begin the loading of files. Equivalent user stories: 16, 23, 25, 27, 34, 39. Also,
from the generation tool, the generation of static pages should be implemented by the end of
the sixth sprint. The user stories from 4 to 6 should be implemented.

Sprint 7
For the seventh sprint the assigned tasks were the search functionalities for the product,

user stories 35 to 37 and the correction of pending errors. In this sprint the annotation of the
product to model the variability should be started at least.

Sprint 8
For the eighth and last sprint the product prototype should be completed so that the user

story number 7 from the SPL product backlog can be implemented and working. By the end
of this sprint the memory for the thesis should be done and corrected.

18

Chapter 4

Software product line analysis

This chapter details the analysis carried out for the development of the product line software.
In this process it was necessary to define the requirements of the product and the tool gener-
ation, as well as analyze and model the variability of the SPL.

4.1 Product requirements

In this section the actors defined for the product are detailed. Six actors have been determined,
whose hierarchy can be seen in the figure 4.1.

4.1.1 Actors

• User: abstract actor that represents the functionalities common to all the library users.
These functionalities are: access the library and view literary publications’ details, view
authorities’ public profiles, and search for publications by title as per authority, year or
location with a simple search, or select an advanced search by multiple fields such as
title, authority with differentiated roles (author, editior or other), location, language, a
date or a date range, or the ISBN code.

• Anonymous user: can register, log into the app and search specific content, such as
details for the published editions or works, and the authorities of each of the elements.

• Social network user: can access the digital resources by authentication with a social
network account.

• Reporters: can have complete access to the publications stored in the library once
the account is approved by an admin, as well as their authorities and download the
digital resources associated to them, export the details available for each element in a
convenient format, such as CSV, TXT, JSON, EXCEL or PDF, as well as a collection of
elements.

19

4.1. Product requirements

• Collaborators: can create new content for the digital library and modify existing con-
tent, as well as consult all the information. They can publish the content they create,
save it as a draft or mark it as pending of review by an admin.

• Admin: can access all the functionalities offered by the application, can create new
publications, review contributions by collaborators and publish them, schedule the re-
lease of new content in the future, register new collaborators and approve the registra-
tion of a new reporter.

Figure 4.1: Actor diagram

4.1.2 Requirements

This section details the functional and non-functional requirements defined for the product.
Initially the requirements are listed in a general way to later detail them in the product backlog
in the form of user stories.

Functional requirements

The functional requirements established for the application are as follows:

• Publication elements management, creation of a new element with the input from
a form, update of said element and deletion if needed.

• Possibility to model different type of publications such as editions, works, collec-
tions or parts, and the corresponding relations among them taking into account that a
collection can contain several editions, and edition can be conformed by several works
or parts of works.

20

CHAPTER 4. SOFTWARE PRODUCT LINE ANALYSIS

• Reportersmanagement, registration of a new reporter, approval of said new reporter,
authentication, view profile, modify personal information and delete an account.

• Collaborators management, creation of a new collaborator account from the admin-
istration panel, view profile, modify personal data, delete said account.

• Elements management, admin and collaborators can create, save drafts if the form is
not complete, mark it as pending for review, admin can review collaborators work, can
schedule publications, publish them for everyone to see, update and delete them from
the database.

• Edition locationmanagement, create locations related to each edition, save geograph-
ical location with coordinates, save historical references to defined coordinates, modify
their data and delete them.

• Digital resource management, creation of files associated to each publication that
represent a digital copy of the original copy we refer to, update the file and delete said
file from our disk.

• Authority management, can create an authority in relation to each of the publica-
tions, storing the alias under which the work was signed and the role developed in the
production of said work. View the data corresponding to the authority, modify the in-
formation, delete the authority, in addition to storing the contact information, including
the social networks.

• Organizationmanagement, can create organizations related to the publications, them
being the editorials or the library that stores the physical copy, view details from said
organization, modify their data, delete the organization from the database, and store
information about the different organization directors over the years.

• Export features, can export the data into a file of the format desired.

• Management features, can view statistics about who uploads more resources or who
consults more information.

• Search features, can view the result list from the search in map or in list, can have
simple search by one term or advanced search by many parameters.

• Internationalization of the messages displayed in the application.

• Creation of static pages to store additional information about the library or the man-
agement team, for example.

21

4.1. Product requirements

• Management of favorite elements, the reporters can mark a published item or an
authority as a favorite to keep track of new updates and have easy access to them.

Non-functional requirements

The non-functional requirements refer to the characteristics that the program should have to
improve the user experience and those defined for the application are as follows:

• Ease of usage: the web application must be easy to use, for which it must be developed
as an intuitive and simple web interface that facilitates operations.

• Easy installation/deployment: the system should be easy to install and configure, so
documentation with appropriate instructions must be provided.

• Security: the application must ensure that the data is accessible only by authorized
users, controlling access to them through some system of security.

• Compatibility: the web application must display correctly in Google Chrome and
Firefox browsers.

Product backlog
Following the selected methodology, a product stack was developed that constituted the

only source of requirements during application development. General requirements previ-
ously mentioned were detailed in the form of user stories that, with the advancement devel-
opment, they were refined until obtaining a sufficient level of detail for their implementation.
Likewise, the product stack was reordered based on the priorities of every moment, until the
final version shown below.

1. As an anonymous user I want to register a new account as a Reporter and authenticate
myself using my login and password, or login as a Collaborator or Admin using the
same information.

2. As an anonymous user I want to authenticate into the web using a social network ac-
count.

3. As an authenticated user I want to logout from the application.

4. As an Admin I want to approve new Reporter account registered to give them permis-
sion to access the digital resources.

5. As an administrator I want to register new collaborators associated to the digital library
into the application.

22

CHAPTER 4. SOFTWARE PRODUCT LINE ANALYSIS

6. As a user I want to be able to access my profile and view my public data.

7. As a user I want to be able to modify my personal data.

8. As an admin I want to be able to view a list displaying all the registered collaborator
accounts with their most relevant data.

9. As a user I want to be able to access the profile of a collaborator and visit an external
link associated to their account to get more information.

10. As an admin I want to be able to modify the data corresponding to a registered collab-
orator.

11. As an admin I want to be able to delete an account corresponding to a collaborator.

12. As an admin I want to be able to view a list displaying all the registered reporters
accounts with their most relevant data, including registration date, and their status,
them being approved to access the digital resources or not.

13. As an admin I want to be able to approve a new reporter to grant them access to the
digital resources.

14. As an admin I want to be able to delete a reporter account.

15. As an user I want to be able to navigate the web and see a list with all the editions that
I have published.

16. As an user I want to be able to navigate the web and see a list with all the works that I
have published.

17. As an user I want to be able to navigate the web and see a list with all the authorities
that I have published.

18. As an admin or collaborator I want to be able to see a thesaurus storing all the organi-
zations that I have stored.

19. As an admin or collaborator I want to be able to see a thesaurus storing all the edition
locations that I have stored.

20. As a collaborator or administrator I want to navigate the management web and see a
list with all the editions stored, including drafts and those pending of review in addition
to the published ones.

23

4.1. Product requirements

21. As a collaborator or administrator I want to be able to create a new edition from the
input collected from a form. The formmust provide an input for the cover of the edition
in addition to the basic data.

22. As a collaborator or administrator I want to be able to include the information regarding
to the authorities related to said edition without leaving the form, being able to select an
author already present in our database or create a new author from scratch, repeating
the process as many times as authorities I need.

23. As a collaborator or administrator I want to be able to include the information regarding
works, collections, parts or organizations without leaving the form.

24. As a collaborator or administrator I want to be able to create a place of edition only if
it is related to an edition, and only one place can be associated to each edition.

25. As a collaborator or administrator I want to include digital resources to consult the
content of the edition from a digital copy. Said resources can be PDF files, EPUB files,
videos, audio files, digitized pages in image format or external files referenced from a
link.

26. As a collaborator or administrator I want to be able to save an incomplete form as a draft
and if once the form in filled, if I am a collaborator, I want to mark it as pending for
review by an admin. If I am an admin, I want to be able to publish the edition instantly
or schedule the release date to an upcoming day.

27. As a collaborator or administrator I want to be able to create a new work with the
same features as an edition, taking into account that a work does not have a location
associated.

28. As a collaborator or administrator I want to be able to create a new authority, including
a list of its known alias and its contact information with a list of their available social
network accounts, modify the data of said authority or remove all of its information
from the database.

29. As a collaborator or administrator I want to be able to create a new organization.

30. As an user I want to be able to mark an author as a Favorite Author to add it to my list
of favorite authors and have easy access to the new updates related to said author.

31. As an user I want to be able to mark a publication as favorite to add it to my list of
favorite publications and have easy access any time I want to read it.

24

CHAPTER 4. SOFTWARE PRODUCT LINE ANALYSIS

32. As an admin or collaborator I want to be able view a management list with the most
relevant data from a publication, including their status, which can be a draft, pending
for revision, published, or revised but not published.

33. As an admin I want to be able to review the data included in an item that was marked
as “pending for revision” and accept it, marking it as revised after selecting if it will be
published in the same moment or scheduled.

34. As a user I want to be able to download the digital resources available for each publi-
cation in case it is a file or visit the resource in case it is an external file.

35. As a user I want to be able to search for editions and display the result as a simple text
list, as a grid with the cover of each edition, or as a map displaying the edition location.
I want to be able to perform a simple search by a single field, it being title, author, year
or location, or perform an advanced search by multiple fields among the public data
available for a edition.

36. As a user I want to be able to search for works and display the result as a simple text
list or as a grid with the cover of each work. Also, I want to be able to perform a simple
search by a single field, it being title, author or year, or perform an advanced search by
multiple fields among the public data available for a work.

37. As a user I want to be able to search for authorities and display the result as a simple
text list or as a grid with a profile picture of each authority.

38. As a user I want to be able to navigate the web and visualize a list of editions, as a
simple text list or as a grid with an image of each cover. The list can be navigated using
an infinite scroll or with a pagination system.

39. As a user I want to be able to navigate the web and visualize a list of works, as a simple
text list or as a grid with an image of each cover. The list can be navigated using an
infinite scroll or with a pagination system.

40. As a user I want to be able to navigate the web and visualize a list of authorities, as
a simple text list or as a grid with an profile picture of each author. The list can be
navigated using an infinite scroll or with a pagination system.

41. As a user I want to be able to export the public data available regarding a single publi-
cation into a file that can be a PDF, a TXT, a JSON, an EXCEL or a CSV file.

42. As a user I want to be able to export the public data available regarding an single au-
thority into a file that can be a PDF, a TXT, a JSON, an EXCEL or a CSV file.

25

4.2. Variability modeling

43. As a user I want to be able to export the bibliographic reference of a single edition into
a file that can be a PDF, a TXT, a JSON, an EXCEL or a CSV file.

44. As a user I want to be able to select several items from the public list of publications or
authorities to export them into a file.

45. As an administrator or collaborator I want to be able to filter the list of registered col-
laborators to find an specific collaborator.

46. As an administrator or collaborator I want to be able to filter the list of registered re-
porters to find an specific reporter.

47. As an administrator or collaborator I want to be able to filter the list of publications
(editions, works, collections or parts) to find an specific item.

48. As an administrator or collaborator I want to be able to filter the list of authorities to
find an specific authority.

49. As an administrator or collaborator I want to be able to filter the thesaurus for organi-
zations and locations to find the elements matching the criteria.

50. As an administrator or collaborator I want to be able to perform an advanced search
over all the elements stored in the database.

51. As an administrator or collaborator I want to be able to perform an edition search over
an selected area in a map, displaying all the editions whose location edition is contained
in that area.

52. As an administrator I want to be able to see the statistics for the digital library which
would offer information such as which collaborator inputs more information into the
database, which publications are frequently consulted, which reporters access the dig-
ital resources more frequently, etc.

4.2 Variability modeling

The development of a software product line implies managing its variability. To do this, it is
necessary to define the variation points between the products, determining the common ele-
ments (commonalities) and the variable elements (variabilities). The common characteristics
are those that are present in all the products of the line, while that variable characteristics
may be common to several products, but not all [35].

The variability of the software product line developed in this project has been represented
using a feature model, which can be seen in figure 4.2 in a collapsed version, although the full

26

CHAPTER 4. SOFTWARE PRODUCT LINE ANALYSIS

Figure 4.2: Collapsed feature model

model had to be fragmented in several figures for better legibility. A feature model is a tree
that hierarchically structures the set of functionalities of the system. Within this structure,
each characteristic can be decomposed in several sub-characteristics that can be mandatory,
optional or alternative. The mandatory characteristics represent the elements common to all
products (commonalities), while optional characteristics represent variable elements (variabil-
ities).

The collection of features modelled is based on the list of features desired for the appli-
cations compiled in the requirementes and features mentioned in section 4.1.2 and 4.1.2 after
deciding individually which ones could be variable and which ones needed to be mandatory.

27

4.2. Variability modeling

A closer look to the different sets of features is available in appendix A, specially for those
cases that are not included in the chapter due to space reasons.

As can be seen in figure 4.2, there are different types of relationships between the charac-
teristics defined for the product based on your requirements. The OR operator indicates that
at least one of the characteristics that are part of the relationship must be selected, being able
to select more than one (notation visible in figure 4.3); while the alternative operator indicates
that you must select a single characteristic from among those that are part of that relationship
(notation visible in figure 4.4).

Serving as a more detailed example, figure 4.3 shows the subfeature Navigation (we can
see it under Public Access in figure 4.2), and its subfeatures, among we can find the decision
of which HomePage should be used, or in which way editions, works and authorities can be
listed (as lists or with thumbnails/images), as well as decisions regarding pagination.

Figure 4.3: Zoom-in of navigation features

In addition, the following restrictions listed in figure 4.5 have been defined for the selec-
tion of characteristics.

To be able to store Collections of Digital Resources, at least one of the features correspond-
ing to Digitalized Pages, Audio Files or Video Files must be selected, since they are the only
cases in which one edition might be represented in several files instead of only one unique
file representing the whole publication.

28

CHAPTER 4. SOFTWARE PRODUCT LINE ANALYSIS

Figure 4.4: Zoom-in of language selection

Figure 4.5: List of constraints for the variability model

All the features including maps depend on Geographical Location since it would be impos-
sible to represent a position in a map without the information of their coordinates. Likewise,
to have the features related to the Authority Role “Author” such as Search By Author or Sim-

ple Search By Author, the feature Author from Authority Role must be selected. The same case
happens with Editor, if the feature Search By Editor is desired, the Authority Role: Editor must
be selected.

Finally, when it comes to the Export Features, to be able to select that export type, the
entity related to it must be modelled in those cases they are not mandatory. For example, it
is not necessary for ExportEdition since Edition is mandatory, but it is required for ExportOr-
ganization.

4.3 Generation tool requirements

This section defines the requirements for the tool that allows a developer to configure a prod-
uct and then use the software product line to build it.

29

4.3. Generation tool requirements

4.3.1 Actors

Just one actor needed to be defined since only one user will generate the applications:
User of the tool: complete access to all the functionalities provided by the generation

tool.

4.3.2 Requirements

This section details the functional and non-functional requirements defined for the generation
tool, initially listing them in a general way and later detail them in the product backlog.

Functional requirements

The functional requirements defined for the generation tool are as follows:

• Visualization and selection of features: tree-like display and selection permitted
for all the features available for the product.

• Import and export a concrete specification: offer options to import and export the
specification file of a product in JSON format.

• Download as ZIP: offer the option of downloading the complete source code for the
application into a ZIP file.

• Generation of static pages: possibility to model static pages to include additional
information e.g. research team members of the library or “About us” page.

• Generation of a product: can auto-generate the product with the given features se-
lected previously.

Non functional requirements
The non-functional requirements defined for the tool are as follows:

• Ease of usage: the tool should be easy to use, so it should be developed an intuitive
and simple web interface that facilitates the generation of products.

• Compatibility: the web interface of the tool must be displayed correctly in several
browsers like Google Chrome and Firefox.

Product backlog
The general requirements listed above were detailed in the form of user stories for the

product backlog, then used as the source of requirements during the development of the tool,
and its shown below.

30

CHAPTER 4. SOFTWARE PRODUCT LINE ANALYSIS

1. As a user of the tool I want to be able to visualize the features offered for the products.
These features ought to be presented in a hierarchical structure, so that each feature
should contain those sub-features depending on it, and it must ensure that the relation-
ships and constraints defined in the feature model are checked.

2. As a user of the tool I want to be able to select or deselect the desired features for the
final product. A checkbox should be displayed beside the feature to enable this.

3. As a user of the tool I want to be able to add a title to the Digital Library that will be
generated. Said title must be inserted in a text field. In case no title is specified, a default
title will be assigned.

4. As a user of the tool I want to be able to create static pages in addition to the features
offered to include extra information about the digital library. The static pages might be
a simple HTML page created with a text editor inserted in the web generation.

5. As a user of the tool I want to be able to export the specification containing a list of the
selected features for the product and a list of static pages. The file must be a JSON file
that will contain the list of selected features and the list of static pages created.

6. As a user of the tool I want to be able to import an specification file. The file must be a
JSON file that would contain the list of features to be selected. It can also contain a list
of static pages to be created.

7. As a user of the tool I want to generate a final product with said selected features and
the static pages I have created. The final product should be compressed into a ZIP file
and be downloadable, ready for the deployment.

31

4.3. Generation tool requirements

32

Chapter 5

Product construction

In this chapter, we complement the analysis of the products to generate, showing the archi-
tecture, complete data model and the user interface, and we describe the design and imple-
mentation of a particular product of the SPL. Specifically, we decided to build a new version
for the BIDISO library [1] mentioned in chapter 2.1. This way, we selected the subset of fea-
tures presented in this library, and we carried out their implementation. In terms of Software
Product Lines Engineering, implementing the whole set of features of a product line can be a
huge labour, depending on the domain, and usually there is a work of selection and prioritiza-
tion of features in order to decide which ones should be implemented first. This is the case for
the domain chosen for this thesis, since the total set of features is very large. The advantage
of this process of prioritization is the possibility of generating products before finishing the
whole development of the SPL.

5.1 Analysis

This section describes those aspects of the product analysis not covered in the section.

5.1.1 System architecture

This section describes the general architecture of the system, performing a high level de-
composition of the components that comprise it. As you can see in the figure 5.1, the web
application is based on the client-server architecture, and therefore it is composed of two
differentiated elements, the server or back-end and the client or front-end. Said architecture
favors the separation and independence between both elements, facilitating exchange ormod-
ification among them without affecting other parts of the system. In addition, it allows the
existence of different clients for the same server and the replication of components to cope
with high demand.

33

5.1. Analysis

Figure 5.1: System’s architecture diagram

Server

The server is composed by a set of services that host the application logic, the information re-
trieval, persistence and treatment operations. These services are handed to the client through
an API, an interface in charge of exposing the set of endpoints that can be invoked from
outside.

The server is internally structured following a layered architecture. In this kind of struc-
ture system functionality is organized in separated layers, each of one uses just the services
available on the layer immediately below them by means of an interface. This architecture
favors independence between layers and is also changeable and portable. If its interface is
unchanged, a new layer with extended functionality can replace an existing layer without
changing other parts of the system. Furthermore, when layer interfaces change or new facil-
ities are added to a layer, only the adjacent layer is affected [36].

The server is structured in a three-tier architecture, as it can be seen in figure 5.1, and it
has the following layers:

• Data access layer: in charge of the communication with the database, including per-
sistence operations and information retrieval.

• Bussiness logic layer: wraps up the main functionalities of the application, imple-
menting the data processing by means of the available functionalities.

• Service layer: offers an interface compound by a set of functionalities invocable from

34

CHAPTER 5. PRODUCT CONSTRUCTION

outside. This layer is in charge of managing the petitions received from the client in-
voking data access layer services and sending the response to the client with the re-
sult obtained after the execution of the method. Based on REST (Representational State
Transfer) paradigm, a software architectural style that defines a set of constraints to be
used for creatingWeb services and enables the communication with other apps through
HTTP requests.

Client

The client is the part in charge of presenting the graphical interface to the final users. Based
on the actions performed by the user, the client sends the corresponding HTTP requests to
the server and updates the screen with the new information when it gets the response,

5.1.2 User interface

This section is destined to provide a high-level explanation of the user interface of the ap-
plication, manifesting the general structure of the most important screens constituting it, as
well as the navigation between them.

Figure 5.2: Home Page for Latest Releases Page

35

5.1. Analysis

In the preliminary analysis phase, the detailed design of the web interface was completed
through the use of prototypes, in order to facilitate its future implementation and the analysis
of requirements. The most distinctive mockups will be explained in detail below, the rest are
shown in Appendix B for space reasons.

The main page for the Digital Library is a part of the variability model, so different pages
were designed as a Home page. In case the Latest Releases Page is desired, the prototype can
be seen in figure 5.2. This page presents an horizontal menu at the top that allows navigation
over the web and the possibility of login into the web application. Its main feature is the
list that advertises the latest releases updated to our library, which can come really handy
for contemporary libraries that include publications frequently. In addition, it can contain a
static list of the members of the library.

Figure 5.3: Home Page for Editions List Page

Another possibility is to set one of the navigation pages as the home page, for example,
the list of Editions published in the digital library, as seen in figure 5.3. In this page, instead
of seen just the new releases, we can see all the editions published in the Digital Library. It
can be more appropriate for cases of historical libraries or research libraries, where the focus

36

CHAPTER 5. PRODUCT CONSTRUCTION

is on the quality of the content instead of its appeal to the public. In case the editions list is
selected as Home page, the visualization with images would be preferred over the text list,
due to its visual attractiveness. More variability can be found inside this page, since the list
can be loaded with an infinite scroll or by pagination. Also, this option can be adapted to any
list that may be relevant for the Digital Library, either works, collections or authorities.

Figure 5.4: Home Page for Presentation Page

In case non of those options covered the needs of the Digital Library, the option of Pre-
sentation Page can be chosen instead. This feature allows us to configure an static page as our
default Home page and, as it was mentioned earlier, static pages can be modelled at the will
of the creator with a simple text editor an basic knowledge of HTML coding. This possibility
can be really useful for research teams that may want to introduce their project to let more
people know who they are and what their works is about. An example of an hypothetical
static page can be seen in figure 5.4.

The feature of Advanced Searchmight have a dedicated page to accommodate a big browser
where we can fill several search criteria fields with the desired parameters. This page gives
the option of selection where the lookup must be performed, in the editions database, the
works database or the authorities database, depending of what the user is looking for. From
there we can switch to the simple search criteria. The search page can be seen in figure 5.5.

One of the key pages for the admin side is the management for publications, either edi-
tions, works, parts or collections. Note that when we access the admin side of the web, the
layout changes and the menu switches to a vertical position, providing space for more man-
agement pages an access to the thesaurus. In the figure 5.6 it can be seen an example for the
editions list, where we have the elements displayed in a table with the relevant information to
distinguish them and see administration details, such as the status, which is displayed with a

37

5.1. Analysis

Figure 5.5: Advanced search page

chip indicating whether it is published, revised, pending for revision or saved as draft. The list
can be navigated alphabetically and it allows access to each edition, to modify said element
or to remove it from the database without having to open a new page. This table also allows
to filter the elements by any field, inserting the keywords that must be matched at the top
search field. Lastly, from this page we can access the form to create a new edition.

Figure 5.6: Admin management - Editions list

After selecting the creation of a new edition, the form for said purpose is shown, as seen
in figure 5.7. The main purpose of this page is to facilitate the process of data loading into
the system, therefore, the design was conceived so that a user could create an edition and

38

CHAPTER 5. PRODUCT CONSTRUCTION

all of their related items from the same page if necessary. In order to achieve that, after the
main data necessary for the edition is provided, the form provides several accordion tabs that
conform a new sub-form, one per each entity that needs to be associated. In the figure B.23
we can appreciate that the input form for an authority follows the same line as the main fields
of its father form, with the peculiarity that it allows the user either to create a new authority
or to create a new association between the new edition and an authority that is already stored
in the system. To do that, the user can start typing the name of the authority and, if there
is a match in the database, the rest of fields disappear and the authority gets added to a list
of authorities related to that specific edition. This behaviour was decided based on the idea
that, if the authority already exists, the user would not want to update it for each edition,
and in case the user wants to update a certain authority they just have to search it in the
authority list and edit it from there. The rest of entities follow the same approach, although

Figure 5.7: Admin management - Edition form

their visual representation is located in Appendix B due to lack of space. Likewise, when it
comes to modelling a work with related publications, a collection or a part, the accordion
system is applied. In the case of creating a new authority, the only thing that is collected as

39

5.1. Analysis

an accordion is the list of known alias and the set of contact information, including the list of
social network accounts in case they are modelled.

The implementation of a new edition location is noteworthy in the case that geographical
location is included. If that was the case, the ideal behaviour would be to pin the location
in a map, get the name from the coordinates and be able to rename that pin in case that
historical location is needed, in which case we want to store the ancient name of the place
where the edition was originally conceived. Nonetheless, features including maps will not be
implemented in this prototype but the corresponding mock-up in Appendix B can be used as
reference for future work.

Figure 5.8: Admin management - Edition form with digitized pages

40

CHAPTER 5. PRODUCT CONSTRUCTION

Lastly, taking into account that the basic feature of a digital library is to offer digital copies
of a publication to its users, the digital resource upload was implemented following the same
schema, an user-friendly and accessible file input that allows loading several files at the same
time, with one tab per file type. The interface changes according to the type of input desired,
facilitating the process in each case. In figure 5.8 the upload of digitalized pages is illustrated.

Finally, one of the most common requests for the web application will be to display the
detailed information available regarding a publication. The same quandary is present, just
like in the creation, it is not just an edition or a work, the web must display in a legible
manner the data regarding the edition, its authors, the work or works related, the collections
that include it, the organization in charge of editing the publication and the set of digital
resources available for each of them. Trying to avoid an infinitely long page, a grid based on
small boxes for each element was preferred as depicted in figure 5.9, which also allowed the
information to be encapsulated and gives the user a clear separation between the different
elements composing the edition itself.

Figure 5.9: Edition details

Due to space issues it became unaffordable to list all the mock-ups designed and explain
them in detail, although they can all be found in Appendix B.

5.1.3 Conceptual data model

This section presents the data model designed in the preliminary analysis phase to determine
how the structure of the database should be implemented. To this end, the conceptual model
of the database was developed, specifying the entities, their attributes and the relationships
that exist among them. This data model distinct itself because it varies depending on the fea-

41

5.1. Analysis

tures selected from the feature model explained in section 4.2. Since this engineering field is
relatively new and still evolving, no standard notation was found for variability representa-
tion in class diagrams, so a proper notation had to be created from scratch.

The condition of the selection of a feature is represented as “[if featureName]”, meaning
that the element annotated will exist if the condition is true i.e. the feature is selected. On
the contrary, if an element exists only if the feature is not present, the notation will be “[if
not featureName]”. To represent changing relationships a dotted line was chosen, annotated
with the name of the feature that would active its existence.

The stated data model may be examined in the figure 5.10, although due to sizing issues
closeup figures will be added to support the explanation:

Figure 5.10: Data model

Firstly, taking a look to the section with the blue border, we can see the classes related to
the publications of the digital library, and can be seen in the figure 5.11. Since the purpose of
a library is to store literary publications, this section should be considered as the core of the
data model, without which the application would lose its purpose. It contains the following
classes:

• Element: This class is a generalization that models the common attributes to all the
elements and takes charge of the relationships with the rest of classes that are not sub-
classes from itself. Each element can have several authorities and an authority can par-

42

CHAPTER 5. PRODUCT CONSTRUCTION

Figure 5.11: closeup to the element classes

ticipate in several elements, so Element should have aManyToMany relationship with
Authority, although in this case it is desired to store which role is developed by which
authority in each publication (writer, editor, prologuist, translator or illustrator) so that
a intermediate class is created under the nameAuthorityElement (that can be seen in
figure 5.12). Element has a OneToMany relationship with AuthorityElement, an El-
ement can have many authors or be anonymous, and anAuthorityElementwill only
be stored in case they have an Element associated. A similar situation occurs between
Organization and Element, since an Organization can develop different roles for
each publication, it can be a Library or a Editorial, and an Element can be edited by an
organization different to the one storing its physical copy. To be able to model this, the
class Participates. Element has a OneToMany relationship with Participates. Ele-

43

5.1. Analysis

ment has a OneToMany relationship withDigitalResource since an Element can have
several resources associated but a Digital Resource will only correspond to one element.
Element has a ManyToOne relationship with User that represents which User (Admin
or Collaborator) loaded an element into the database. Element has a ManyToOne re-
lationship with Admin that models which Admin revised an element already created
by a Collaborator before publishing it and only exists if the feature ReviewingFeatures
is selected. Finally, Element has a OneToMany relationship with Reporter and only
exists if the feature FavoriteElement is selected.

– Id: Element identifier.

– Title: Title of the literary publication.

– Observations: Additional comments regarding the publication.

– Draft: Boolean representing the draft status. True if the element is saved as a
draft, false if the element is ready for publishment.

– Revised: Only if ReviewingFeatures are active. Boolean representing if an element
was revised by an Admin or not.

– CreationDate: Date and time at which an item was created, it is not setted if the
item is saved as a draft.

– PublishmentDate: Date and time at which an element is complete and, in case
there is ReviewingFeatures, revised by an Admin. Ready to be released to the
public.

– ReleaseDate: Date and time at which an element is made public on the web, can
be different from PublishmentDate if the option SchedulingPublications is active,
in other case this attribute does not exist.

– Cover: Image of the physical cover of a literary publication.

• Collection: Type of literary publication that compiles a set of editions. Only modelled
if the feature CollectionElement is selected. Collection has a OneToMany relationship
with Element as it was considered that a Collection is a rare element and an Edition
will only be present in one Collection if the case is given. See figure 5.11.

– Genre: Literary genre of the Collection.

– Subtitle: Additional title to complement the Element title in necessary case.

– CDU: Corresponds to the Universal Decimal Classification or, in spanish, Clasifi-
cación Decimal Universal, an extended classification system for libraries.

– Beginning year: Year at which the collection began its composition.

44

CHAPTER 5. PRODUCT CONSTRUCTION

– Finnishing year: Year at which the collection is considered finished and published.

• Edition: The most common type of literary publications together with Work, repre-
sents the “printed” copy of a literary text, although in present days a digital copy can
be considered an edition without being physically printed. An Edition can edit sev-
eral Works, even if the most common case is that each Edition represents only one
Work, so Edition has a ManyToMany relationship with Work. The participation is
partial since an Element has a ManyToMany relationship with Authority can be con-
formed by Element has a ManyToMany relationship with Authority and a Element
has a ManyToMany relationship with Authority can be a simple text without edition.
Edition-Part needs the backup of an intermediate class to model the order in which
the Parts must be stored, so Edition has aManyToMany relationship with Part. Lastly,
if the feature LocationManagement is selected, the class Location is created and has a
OneToMany relationship with Edition. Given the case that LocationManagement is not
selected, the edition location would be modelled as a simple attribute.

– ISBN: Code assigned to each edition of a book.

– Number: Number of edition that is being stored.

– Type: Type of edition.

– Year: Year of edition.

– Probable: Boolean that represents if the year is exact or a probable year. If prob-
able is false, the exact year of edition is known; if true, the year is unknown and
but can be delimited in a range.

– Textual year: If probable is true, the value of textual year is stored. It depends
of the values beginning year and finnishing year, so if a edition was published
among 1960 and 1968, the textual year would be 196?.

– Finnishing year: The ending year of the estimated range of publishing for an edi-
tion.

– Beginning year: The beginning year of the estimated range of publishing for an
edition.

– Legal deposit: Number associated to the legal deposit of the edition.

– Language: Language of the edition.

– Physical description: Textual description of the physical aspect of an edition.

– Location: In case the LocationManagement feature is not present the location of
edition is stored as an attribute with the name of the place.

45

5.1. Analysis

– Editorial: In case the Organization feature is not present the editorial is stored as
an attribute with the name of editorial.

• Work: Represents a literary text without the edition process. Work can be present
in several Editions, as it was stated previously. Work can have a ManyToMany rela-
tionship with Part. Work can even contain another Work, so it has a ManyToMany

relationship with itself.

– Genre: Literary genre of the Collection.

– Type: Type of work.

– CDU: Corresponds to the Universal Decimal Classification or, in spanish, Clasifi-
cación Decimal Universal, an extended classification system for libraries.

– Lycense: Number of the author’s rights lycense.

– Extension: Extension of the work, in number of pages.

• Part: Represents a fragment of a Work that can be referenced multiple times. Part has
relationships with Work and Edition but they will not be mentioned since they were
explained in the paragraphs corresponding to those classes previously. Part does not
have special attributes.

• Edition pages: Represent the order in which a Part is located inside an Edition.

– Initial page: First page of the Edition at which the Part starts.

– Final page: Last page of the Edition at which the end of the Part is met.

• Location: This class only is present in case that LocationManagement feature is selected
and represents the physical place at which the edition of a work took place. Location
has a OneToMany relationship with Edition. In case the feature HistoricalLocation is
selected, Location can have aOneToMany relationship with itself to reference the same
physical place with different names along the years. See figure 5.11.

– Id: Identifier of location.

– Name: Name of the location.

– Latitude: In case the GeographicalLocation feature is selected, the coordinates for
the latitude of the place is stored.

– Longitude: In case the GeographicalLocation feature is selected, the coordinates
for the longitude of the place is stored.

46

CHAPTER 5. PRODUCT CONSTRUCTION

Afterwards, taking a look to the sectionwith the lilac border, we can see the classes related
to the authorities stored in the digital library, and can be seen in the figure 5.12. It contains
the following classes:

Figure 5.12: Closeup to the authority and organization classes

• Authority: The most relevant class of this section since it models all of the informa-
tion available about an authority. A detailed study of this class is needed since it can
be a strong point of variability after the inclusion of the SPL annotations. To begin
with, an Authority can have a list of known Alias in case the Alias feature is desired,
stored in a separated class with a OneToMany relationship. As it was mentioned ear-
lier, the authors of the Elements of the library are modelled with an intermediate class

47

5.1. Analysis

called AuthorityElement which, in case Alias exists, stores which alias was used to
sign each of the elements, in which caseAuthority has a OneToMany relationship with
Alias. The variability comes when the user does not desire to store any alias for any
authority, in that case the class Alias does not exist, so the relation from Authority
to Alias disappears too, switching to a direct OneToMany relation from Authority to
AuthorityElement instead. When it comes to modelling the director of an organiza-
tion after selecting the homonym feature, it is desired to know the period each person
spent working as a director of each organization, and for that purpose the class Orga-
nizationDirector is created with aManyToOne relation withAuthority since for each
period of time only one authority can be set as director. In case the feature Organiza-
tionDirector is not selected, Authority and Organization will not have any kind of
association. Lastly, Authority can have a reference to the contact information of said
Authority in case the feature for this option is selected, which results in a OneToOne

relationship.

– Id: Identifier of Authority.

– Name: Name of the authority.

– Gender: Gender identity of the authority.

– Birthdate: Date of birth of the authority.

– Deathdate: Date of death of the authority, in case they are deceased.

– Century: Century of activity of the authority, useful in case of historical libraries.

– Region: Originary region of the authority.

– Photo: Profile picture of the authority.

– Genre: Main literary genre they wrote.

• Contact: Stores the contact information of anAuthority. At the same time it can con-
tain a set of Social network accounts belonging to the authority, in case SocialNetworks
feature is selected.

– Id: Identifier of Contact.

– Web: Link to the web page of the authority.

– Phone: Phone number to contact the authority.

– Email: Email address of the authority.

– Street: Street of the postal address of the authority.

– City: City of the postal address of the authority.

48

CHAPTER 5. PRODUCT CONSTRUCTION

– Postal code: Postal code of the authority.

– Province: Province of the postal address of the authority.

• Social Network: Stores a reference to a social network account in case the SocialNet-
works feature is selected.

– Name: Name of the social network.

– Url: Link to the profile of the authority.

• Alias: Stores an alias associated to an authority if the feature Alias is selected. Alias
has a OneToMany relationshio with AuthorityElement.

– Id: Identifier of Alias.

– Alias: Pseudonym used by the author.

• AuthorityElement: This class was mentioned in the paragraph discussing the Ele-
ment and in the previous paragraphs regarding the variability of the model.

– Role: Role developed by an authority in the creation of an element, can be Author,
Editor, Illustrator, Prologuist, Translator or Printer.

• Organization: Stores the information available about an Organization in case the ac-
cording feature was selected. In addition to the aforementioned relation with Organi-

zationDirector, which is a OneToMany, it possesses a relation with Element by means
of an intermediate class, Participates, used to model the role an Organization takes
in the creation of an Element.

– Id: Identifier of Organization.

– Name: Name of the organization.

– Place: Location where the sede of the organization was.

– Type: Type of organization.

– Creation date: Date of opening of the organization.

– Closing date: Date of closing of the organization.

– Web: Web page associated to the organization.

– Observations: Comments relevant to the content of the library made by the col-
laborators.

49

5.1. Analysis

• OrganizationDirector: Models the director of an organization in a period of time. Its
relationships where already mentioned so they will be skipped to avoid redundancy.

– Beginning date: Date in which an authority took the role of director of an orga-
nization.

– Termination date: Date in which an authority dropped the role of director of an
organization.

• Participates: Models the relation among an organization and an element. Its relation-
ships where already mentioned so they will be skipped to avoid redundancy.

– Role: Role developed by an organization in the existence of an element, can be
Editorial or Library.

Furthermore, taking a look to the section with the green border, we can see the classes
related to the users with access to the digital library, and can be seen in the figure 5.13. It
contains the following classes:

Figure 5.13: Closeup to the user classes

50

CHAPTER 5. PRODUCT CONSTRUCTION

• User: This class is a generalization that models the common attributes to all the users
and takes charge of the relationships with the rest of classes that are not sub-classes
from itself. User has a ManyToOne relationship with Element to keep track of which
publication was uploaded to the database by which user (Admin or Collaborator, al-
though this constraint is modelled in the server).

– Id: Identifier of User.

– Email: Email address of each individual user:

– Login: Login name used to access the application by the user.

– Password: Password to access the application.

– Name: Name of the user, only in case that the extended UserProfiles feature is
selected.

– Surname: Surname of the user, only in case that the extended UserProfiles feature
is selected.

– Token: Token to store the social registration in case that SocialRegistration feature
is selected.

• Admin: Sub-class of User that models those user with Admin authority, which means
they have full access to the features offered by the digital library and can modify its
content. If the feature ReviewingFeatures is selected, the login of the Admin is stored as
the reviser of the Element and becomes responsible of their publishing. This situation
is modelled with a ManyToOne relationship from Admin to Element.

– Start date: Date in which they started working for the digital library.

– End date: Date in which they terminated working for the digital library in case
they are not a part of the administration team anymore.

• Collaborator: Sub-class of User that stores the users with Collaborator authority in
case the UserRoles Collaborators feature is selected. This class is composed by the people
that conforms the research team behind the digital library, theworkers, the scholars, etc.
The collaborators have almost full access to all the features of the application, although
they are subordinated to the approval of an admin in the case ReviewingFeatures are
needed.

– Occupation: Position the collaborator occupies.

– Organization: Organization the collaborator is working for.

51

5.2. Design

– External URL: Link to an external page where more information about the collab-
orator can be found.

• Reporter: Sub-class of User that stores the users with Reporter authority in case the
UserRoles Reporters feature is selected. This class is composed by the people with public
access to the digital library and its digital resources. When the features FavoriteEle-
ments and FavoriteAuthors are selected, this class is related to them with OneToMany

relationships.

– Registration date: Date and time of registration in the application.

– Occupation: Occupation of the reporter.

– Organization: Organization the reporter is part of.

– Approved: Boolean signaling if the new account has been approved or not by an
admin, only present if AdminUserNeedsToValidate is selected.

Lastly, the orange section corresponding to the digital resources classes can be seen at
the appendix C. No further explanation will be given since it does not present any peculiar-
ity or complexity on its design, just a dependency among DigitalResourceCollection and
DigitalResource to represent there must not exist a Collection of an element that does not
exist.

It must be highlighted that the data model represented in these figures is composed by
all the possible features that can conform a product from the SPL, but when it comes to the
generation of the digital library it will vary according to the variabilities mentioned in each
case.

5.2 Design

5.2.1 Technological architecture of the system

The intention of this section is to fulfill the architecture analysis carried out in the previous
section taking an in depth study of the technologies included in each of the components of
the application. Figure 5.14 illustrates the technological architecture of the system.

Database

The selected technology to implement the information storage was PostgreSQL, free and
open-source relational database management system (RDBMS) emphasizing extensibility and

52

CHAPTER 5. PRODUCT CONSTRUCTION

Figure 5.14: Technological architecture for the system

SQL compliance. Two databases were created, the first one to carry out automated and man-
ual tests against the REST service, and the second one to store the real data generated by the
application since its execution.

Server

In the development of the server, it has been chosen to use Open JDK 11 together with the
functionalities offered by the Spring framework. In addition, Hibernate has been adopted, an
object-relational mapper that has facilitated data persistence and information retrieval from
the database by supportingworkwith annotated objects rather than directlywith the database
tables.

The internal structure of the server follows the upcoming schema:

• Repositories for theData Access Layer, classes in charge of the communication with
the storage service which carry out the information retrieval and persistence opera-
tions. Said repositories are based on the Data Access Object (DAO) pattern, whose
main advantage is the capability to isolate the Data Access Layer from the rest of the
application in a way that modifications on the storage service do not affect other parts
of the system. Repositories offer the aforementioned services to the Business Logic
Layer using an interface.

• Services for the Business Logic Layer, classes that cluster a set a related function-
alities later offered to the layer above by means of an interface. Services use those
functionalities extended by the repositories to implement the methods’ logic.

• Controllers for the Service Layer, classes in charge of receiving the requests from

53

5.2. Design

the client and sending back the response after invoking the methods extended by the
services. Controllers get HTTP requests from the client and deliver a response in JSON
format through another HTTP request.

To regulate and ensure the security of the application, use has been made of Spring Secu-
rity, an access control and authentication framework used to safeguard applications based on
Spring [37]. This framework allowed the configuration of authentication in the application
and provided access restrictions to requests through the use of filters. Connecting to com-
munication between the client and the server, the JSON Web Token (JWT) standard has been
used to manage user authorization.

5.2.2 Client

On the client side, the preferred implementation was based on Vue.js, a JavaScript framework
used to develop web interfaces and Single Page applications (SPA); and Vuetify, a framework
that combines the power of Vue.js and the aesthetic of a Material Design component

To complement Vue’s functionalities, the following libraries have been used:

• Vue-router: Vue’s official router for SPA [38]. This library allows navigation among
pages with the possibility to configure interceptors to execute actions beforehand or
afterwards.

• Vue i18n: internationalization plugin of Vue.js [39]. It easily integrates some local-
ization features to any Vue.js Application, enabling the automatic translation of any
desired display to the expected language specified in the locale.

• axios: HTTP client based on promises employed on the development of Javascript
applications [40]. It works both on browsers as well as in Node.js platforms. Axios
eases the implementation of web services that manage information in any file format
and enables the configuration of the interceptors to the requests, making it possible
to execute certain activities before they get sent to the server or, when they come as
responses, before they reach the final component.

5.2.3 Application design

This section will detail the internal structure of the application components.

Server

The server package structure is depicted in figure 5.15. From each package protrudes:

54

CHAPTER 5. PRODUCT CONSTRUCTION

Figure 5.15: Package structure of the application server

• src/main/java: contains all the Java classes implementing the server functionalities. Its
internal structure goes as follows

– restbidi: contains the main class, responsible of the execution of the application.

– config: contains the files in charge of the configuration of the application, includ-
ing the security configuration and the properties.

– model: contains the entities and DTOs that conform the application.

∗ domain: contains the classes responsible of modelling how the information
will be stored in entities inside the database.

∗ exception: stores the general exceptions for the Business Logic Layer.
∗ repository: contains the interfaces and repositories (Data Access Objects) of
the application.

∗ service: contains the DTOs and the services of the application.

55

5.2. Design

– security: contains the classes responsible of keeping the security checks of the
application.

– web: contains the controllers responsible of managing the HTTP requests.

• src/main/resources: contains the configuration file.

Detailing some elements for the main packages:

Entities

Persistent classes that represent the entities designed in the data model (figure 5.10). These
classes have a sequence of attributes that display both the properties defined for each entity
in the data model, such as relationships between entities. Also, they have read and write
methods (getters and setters) to allow the entrée to its attributes, constructors, and the equals,
hashcode, and toString methods.

All entities are annotated with @Entity in order to hint to the object-relational mapper
which are persistent classes andmust be mapped to the database. In addition, other Hibernate
annotations were applied on attributes to determine how the tables should be generated in
the database.

Repositories (DAOs)

Elements in charge of providing methods to perform the operations of persistence and recov-
ery of the information of the database. There is a repository for each entity.

All repositories are annotated with @Repository and extend the GenericDaoJpa that im-
plements the EntityManager interface adopted to manage persistence. This configuration
allows make use of the benefits provided by Spring Data, such as the implementation auto-
matic method following a naming convention, the ability to implement queries by using the
@Query annotation, or the facilities when performing the pagination of results.

Services

Classes containing most of the server logic implementation. Each service groups together a
set of related functionalities, and all are annotated with @Service. They all count with an
interface, through which they offer their methods to the other components, and with a class
that performs the implementation of those methods.

The services, through dependency injection, make use of the methods exposed by repos-
itories and by other services through their interfaces.

56

CHAPTER 5. PRODUCT CONSTRUCTION

Controllers

Classes in charge of the external exposure of the services through a REST API. Controllers
are responsible of receiving the requests from the client, invoking the corresponding methods
from the service and sending back the response to the client. All of them include the anno-
tation @RestController by Spring, which eases the creation of REST APIs since it translates
Java objects into JSON object in the responses sent by the methods.

In order to map the received request URL Spring offers the annotations @RequestMap-
ping, @PostMapping, @GetMapping, @PutMapping and @DeleteMapping, to which it must
be added the pattern that the URL must follow. The first one designates that the requests
matching the pattern must be attended by the annotated class while the rest are employed at
method level to signal what type of petition that method is going to be attending, them being
POST, GET, PUT or DELETE respectively.

Controllers, just like services, make use of the DTOs (Data Transfer Object) when the
information exchanged among client and server cannot be represented by any of the entities
defined on the data model.

Client

The client follows a package structure that can be seeing in figure 5.16. For each package we
may highlight:

Figure 5.16: Package structure of the application client

• node_modules: contains all the npm libraries referenced in the application.

57

5.2. Design

• public: the public folder from the application containing the index.html file.

• src: contains the application code, the internal hierarchy contains the following pack-
ages:

– assets: application images for those general cases applicable to any generated
product.

– components: contains the main components of the application, independent of
the entity or authenticated user.

– entities: contains one folder for each of the applications entities, them being the
Admin visualization, Authority, Collaborator, Edition, Organization, Reporter and
Work.

– locales: contains the translated messages needed to apply the internationaliza-
tion of the application.

– plugins: configutarion of Vuetify.

– repositories: contains the files in charge of the connection between the client
and the server, one per resource on the server side.

Components

The web interface is composed by a set of components, reusable Vue intances. At the time
of implementation the strategy Single File Components was chosen, meaning that each com-
ponent was implemented in a single file with .vue extension, formed by three differentiated
sections: template, script and style.

The first one, template, defines the view of the component employing a syntax based on
HTML that allows the linking of the DOM to the data from the Vue instance. This template
system eases the management of several events as well as the data representation since it
provides methods for looping, conditional rendering, etc.

On the second hand, script defines the component behaviour and data, implemented in
JavaScript. Other components’, application files or external libraries’ imports take place here.
In addition, script implements the methods called during the component’s execution, like the
ones responsible of sending the requests to the server and await the response.

Lastly, the styles of the elements that compose the user interface are defined, interface
defined on the template section.

58

CHAPTER 5. PRODUCT CONSTRUCTION

5.3 Implementation and testing

5.3.1 Implementation

This section covers themost complex implementation issues and other issues that complement
the information in the previous sections.

Features implemented
Just as it was stated at the beginning of this section, for the product based on BIDISO a

set of features was selected and implemented. Specifically, X out of 149 features (see figure
4.2) were implemented. The features Authority and Language were implemented in its whole,
including their subfeatures. The list of features implemented from the remaning can be found
below:

• UserManagement: UserProfiles, UserRoles with all the subfeatures corresponding to Ad-

minFeatures, CollaboratorsFeatures and AnonymousFeatures, AnonymousUserCanRegis-

terInTheApplication and AdminUserNeedsToValidate.

• DigitalResource: FilesSupported, ExternalFiles and PDFFiles.

• Elements: SchedulingPublication, ElementTypes, WorElement, EditionElement, Location-
Management and HistocialLocation

• Organization: OrganizationRole with all its subfeatures.

• PublicAccess: SeachResult with all its subfeatures, SimpleSearch with all its subfeatures
and Navigation with all its subfeatures.

• ManagementAccess: ManagementSearch and Filter with all its subfeatures.

Storage of pictures and digital resources
One of themain features to be implementedwas the storage of files of any kind, required to

store not only the digital resources associated to each publication, but also the profile picture
for each authority and the cover image for each publication. It supposed a challenge among
the functionalities outside of the SPL implementation.

First of all, a new Java class had to be implemented outside of the data model in order to
store the information of each file associated to the corresponding entity, which would keep
the information gathered from the file such as fileName, fileType and the fileDownloadUri,
in addition to the size. To improve the performance of the application it was decided to store
the files on the hard disk instead of the database, since keeping an array of bytes in the DDBB
would involve the processing of each file everytime we want to retrieve them. Taking into
account that one of the most frequent uses of the product will be the listing of the cover

59

5.3. Implementation and testing

images and profile pictures, is would be really resource consuming to do so each time for a
massive amount of data.Moreover, a resource dedicated exclusively to file management was

Figure 5.17: Extract from the Resource dedicated to files

implemented with the URI /api/files, whose most requested methods will be those shown in
figure 5.17. The storageLocation had to be added to the configuration properties file for the
application, with the path to which the uploaded files must be directed.

In order to request the upload of a file, the HTTP request was implemented using axios
[40], in charge of its configuration. The file are passed as MultiPart files, which are established
as the standard of Spring according to its guide and comes auto-configured, saving up a lot of
implementation. In the case of the cover of an edition, like in the snippet below, the petition
is executed with axios and it receives the response in the type DBFile defined in the server,
so that we can directly store that object as a reference from edition.

1 if (this.edition.cover) {
2 const formData = new FormData();
3 formData.append("file", this.edition.cover);
4 const res = await HTTP.post(
5 "http://localhost:8080/api/files/upload-file",

60

CHAPTER 5. PRODUCT CONSTRUCTION

6 formData,
7 {
8 headers: {
9 "Content-Type": "multipart/form-data"

10 }
11 }
12);
13 this.edition.cover = res.data;
14 }

Listing 5.1: Client petition for upload-file

For the download of files, the file extension had to be extracted from the returned object
by parsing its name in order to adjust the media type of each of the file types supported by
the application generated, in this case PDF, PNG and JPG.

5.3.2 Testing

In this section we comment on the type of tests that have been carried out to ensure quality
and compliance with customer requirements.

The tests that have been carried out in this project are known as functional tests, which
are specific, concrete and exhaustive tests to prove and validate that the software meets the
specified requirements. There are several types of functional tests, but those that have been
performed in this project are known as acceptance software quality tests.

During these tests, people (often from the demographic area the software is designed for)
prove the software tomake sure it can handle required tasks in real-world scenarios, according
to specifications. Acceptance tests let the developers know if an application complies with
the expected performance and they focus on the users who are in charge of validating the
functionality and performance of the application.

These evaluations have been performed throughout the entire development process, first
by the development team, checking the correct functioning of the new functionalities, added
to the project during the implementation of each of the iterations, and then, in each of the
sprint review meetings, by checking if the new functionalities fulfilled the requirements and
if the interface was adequate, intuitive and easy to use.

The requested changes as a result of these sprint review were:

• Minor changes on the design of the data model, retiring irrelevant information from
user profiles and instead linking an external URL to collaborator’s profile since they are
expected to be associated to an organization that will keep that data for us.

• Add the possibility to export the bibliographic reference to the feature model.

61

5.3. Implementation and testing

• Add pagination choices to the feature model, giving the option to have infinite scroll or
numerated pages.

• Change the interface to have different menu bars for both administration and public
access. For the administration it will be a side bar, for the public access it will be a top
bar with less items.

62

Chapter 6

Software product line construction

6.1 Analysis

In this section, we explain the analysis of the software product line that were set out in chapter
4, describing the system architecture, the user interface, the design and its implementation
and testing.

6.1.1 System architecture

This section will describe the system architecture for the SPL with a high level of abstrac-
tion by performing a high-level decomposition of the system components but without yet
mentioning the technologies that support them.

Figure 6.1: System architecture for the Software Product Line

Figure 6.1 provides an overview of how the system architecture is structured.
Firstly, the web interface is the component displaying the functionalities offered by the

generation tool to the final user. Using the interface the user can select the desired features

63

6.2. Design

for the product, can import or export a file with the product specification, can add a title to
the product and, last but not least, generate a digital library.

The components are reusable elements implementing the functionalities and features
defined for the product.

Lastly, the derivation engine is the element responsible for the code generation of the
product using the components previously implemented and taking the defined specification
as a basis for the product, the desired features.

6.1.2 User interface

In this section, the user interface will be described at a high level by discussing the general
structure of the application’s screens and the navigation structure among them. The inter-
face designed for the generation tool pursued a simple and easy to understand design, very
intuitive since the focus for this tool is on the functionality, not the visual appeal.

The main page for the web generator must be a simple interface that allows the user to
perform the basic operations such as import or export the specification and export the source
code of the product, with a button to call each of these functionalities. The menu bar will be
displayed at the top to allow navigation towards the feature selection page. In this case, also,
simplicity rules and the page is conformed by a hierarchical list of all the features modelled
in figure 4.2 with a unique checkbox besides the name to allow its selection. In case the
feature StaticPagesManagement is selected, a new button unveils in the menu to access the
Static Pages list. The list will be empty in case there is no existing specification that includes
static pages loaded, and will allow the creation of a new static page. For that purpose it will
be implemented a page with a simple text editor that allows plain HTML input.

6.2 Design

6.2.1 Technological architecture of the system

In this section the goal is to supplement the architecture analysis executed in section 6.1.1,
giving a insight of the technologies employed for each component of the SPL. Its architecture
is depicted in figure 6.2.

Derivation engine
As it was stated earlier, the final choice for the generation of source code for the products

from the SPL was spl-js-engine, a JavaScript derivation engine based on scaffolding. This tool
makes use of annotations over the original code of the product to define the snippets belong-
ing to each component, instead of physically splitting the code. This implies an advantage,
as it was noted at section 2.1. The template annotations are indicated by comments in the

64

CHAPTER 6. SOFTWARE PRODUCT LINE CONSTRUCTION

Figure 6.2: Technological architecture of the Software Product Line

programming language of the template and its content is any JavaScript code. Along with to
annotations related to features, the template engine allows you to use variables in templates.
Finally, the engine can also validate the specification and templates with functionalities like
detecting which characteristics are not referenced in any annotation [34].

The derivation engine needs determined input files in order to generate the product. The
configuration files for the tool, which will be model.xml, config.json and extra.js.

The file model.xml contains the feature model for the SPL, and can be easily generated
using the Eclipse plugin FeatureIDE [10], which allows the generation of a XML file from
the graphical representation of the feature tree (collapsed version in figure 4.2). The source
code for model.xml can be seen at listing A from appendix A. The file config.json contains
the derivation engine configuration, defining the delimiters for annotation depending of the
template file extension, and those elements that must be ignored at generation time. The file
extra.js contains the JavaScript code utilized to derivate the product.

Additionally, the file product.json contains the product specification in JSON format.
Lastly, the templates embrace the source code developed for the product (explained in

chapter 5) with the corresponding annotations.
Web interface
The implementation of the web interface was carried out following the steps of the prod-

uct, with Vue.js and Vuetify, making use of the library vue-router. These technologies were
throughly explained in section 5.2.2, so the details will be spared to avoid redundancy.

6.2.2 Application design

This section sets out the internal structure of the web application designed for the gener-
ation tool. Figure 6.3 displays the package structure established for said tool. Just like in

65

6.2. Design

the case for the product construction, node_modules contains the npm libraries referenced,
scripts contains auxiliary JavaScript files, products stores the product.json file that defines
the specification and output will be the containing folder for the generated product after the
generation process.

Figure 6.3: Generation tool package structure

Moreover, the src folder contains the application code and the elements required to gen-
erate the products. The internal hierarchy goes as follow:

• client, containing the web application code. It hosts the interface configuration files
and the index.html file, along with a folder to store the styling files. The main compo-
nents of the application are stored in the app folder, that contains the router file and
the common aspects of the web, in addition to the following folders:

– components, which contains the pages and components that conform the web
interface. Its structure follows the same Single Page Applications premise just like
the client designed for the product.

– services, containing the JavaScript files in charge of implementing the features
and behaviour of the application in combination with the derivation engine.

• platform, containing the templates to use as a basis for the generated product. It
houses the configuration files detailed earlier in section 6.2.1 and a code folder simulta-
neously housing the code for both the client and the server of the product.

It is ought to be mentioned that, since the generation tool is based on spl-js-engine, which
was developed by the directors of this thesis, part of the interface was provided together

66

CHAPTER 6. SOFTWARE PRODUCT LINE CONSTRUCTION

with the engine. Components such as the FeatureTree display and selection and some of the
JavaScript features to join the behaviour of the interface togetherwith the enginewere already
implemented and only some modifications were applied by the author of thesis.

6.3 Implementation and testing

6.3.1 Implementation

In this section, we describe some complex features that implements an important functionality
of the application.

Annotations
Based on the previous explanation of the tool, it can be stated that annotations are the key

point of the Software Product Line implementation. When it came to annotating the source
code it was required to, first of all, define the delimiter comments for each type of template
in the config.json file. Said configuration can be seen in figure 6.4.

Figure 6.4: Delimiter annotations configuration

The configuration offers the possibility to establish different delimiters for each file type,
enabling the integration of the annotation as code comments so that they don’t impact on code
compilation. Nevertheless, .vue files do not support an universal type of comments valid for
each part of the file (template in HTML, script in JavaScript and style in CSS) since the format
of comments is different for each of them. Moreover, JSON files do not support comments,
son compilation error may arise when compiling.

Once the configuration is settled, the source code annotation can proceed for both the
server and the client of the developed product. Considering that the derivation engine takes

67

6.3. Implementation and testing

care of checking dependencies and constraints, it was not necessary to implement them dur-
ing the annotation.

A small code snippet can be seen in listing 6.1, only to enable the visualization of how
these annotations actually work, inserted in the main code and following the delimiter con-
figuration stated above. The annotation process entails wrapping up a slice of code that must
be added just in case the feature associated to that piece was selected in the FeatureTree. The
developer in charge of the annotation must take care of placing the annotation in the correct
places, since a comma generated when it should not be there could derive into a compilation
error.

1 @Transactional(readOnly = false)
2 @PreAuthorize("hasAuthority('ADMIN')")
3 public void registerCollaborator(String email, String login,

String password/*% if (feature.UserProfile) { %*/, String name,
String surname, String organization, String occupation, String
externalURL/*% } %*/) throws UserLoginExistsException {

4 if(collaboratorDAO.findByEmail(email) !=null) {
5 throw new UserLoginExistsException("User email " + email + "

already exists");
6 }
7 if(collaboratorDAO.findByLogin(login) != null) {
8 throw new UserLoginExistsException("User login " + login + "

is taken");
9 }

10 Collaborator collaborator = new Collaborator();
11 String encryptedPassword = passwordEncoder.encode(password);
12 collaborator.setEmail(email);
13 collaborator.setLogin(login);
14 collaborator.setPassword(encryptedPassword);
15 /*% if (feature.UserProfile) { %*/
16 collaborator.setName(name);
17 collaborator.setSurname(surname);
18 collaborator.setOrganization(organization);
19 collaborator.setOccupation(occupation);
20 collaborator.setExternalURL(externalURL);
21 /*% } %*/
22 collaboratorDAO.create(collaborator);
23 }

Listing 6.1: Code snippet from the REST service with annotations

Static pages
Themain peculiarity this product has to offer is the possibility of customization evenwhen

the premise is that the generated products must be limited to a set of given functionalities.
This can be done thanks to the management of static pages, which the final user can design

68

CHAPTER 6. SOFTWARE PRODUCT LINE CONSTRUCTION

to they liking, and include in the generation tool as a part of the final product. If the feature
StaticPagesManagement is selected on the FeatureTree, the user can access the StaticPages

listing and create a new page.
The creation of static pages is implemented using CKEditor, a JavaScript rich text editor

with MVC architecture, custom data model and virtual DOM that provides every type of
WYSIWYG editing solution imaginable [41, 42]. After creating the page, its raw HTML code
gets stored in a list that later on can be exported as part of the specification together with the
title of the digital library.

When it comes to the inclusion of the static pages to the generated product, a new anno-
tation had to be implemented in order to create full files from scratch. In this case, the file
generation annotation must be at the beginning of the file and must contain the implementa-
tion of a function that perceives both the data (title and pages) and the features from the JSON
specification file and returns an array of objects with the properties corresponding to the file
name and the content of the file. The @ character is used to differentiate the file generation
annotation from the rest. The generated files get stored in a dedicated folder and they are
accessible from a drop-down menu located on the menu bar of the resulting web application
where a new tab gets generated for each page.

6.3.2 Testing

The correct implementation of the Software Product Line was tested through diverse manual
tests. With the main objective of checking the correctness of all annotations included on the
templates, several products were generated trying all of them. Due to the sizeable amount of
elements on the feature model designed, and taking into account that many of the function-
alities were not implemented because of that same reason, it was not feasible to test all the
possible combinations.

Besides the generation engine, the web interface for the tool was also tested by checking
creation, exportation and importation of JSON and ZIP files containing the specification file
and the code for the generated application respectively. They use cases any regular user can
perform were carried out by the developer team.

69

6.3. Implementation and testing

70

Chapter 7

Developed solution

The aim of this chapter is to show the developed application resulting from this project. To
this end, a explanation will be provided on the main functionalities of the application.

7.1 Generation tool

Figure 7.1: Main page of the generation tool

This section illustrates the final behaviour of the generation tool. The main page of the
application can be seen in figure 7.1, providing easy access to the key functionalities. When
the user opens the generation tool, they can, first of all, import an already existing specifica-
tion that could have been previously exported in the past, this specification will be shown in
the feature selection and the list of static pages. The selection of the features can be done in
the FeatureTree page, shown in figure 7.2. If a constraint is not fulfilled, a red alert will display
at the top of the page informing the user what needs to be corrected. This alert also checks
the conditions based on the definition of OR and Alternative features, avoiding any possible

71

7.1. Generation tool

human error jeopardizing the generation of the product.

Figure 7.2: Feature tree selection of the generation tool

Lastly, the StaticPages listing is represented in figure 7.3. When the user wants to create
a New Page, the editor based on CKEditor will be displayed as the center of the page with a
field to define the title of the page before saving. The pages can be edited or deleted before
generating the product.

The generation of the final product is automatically done when clicking the “Generate
Source Code” button from the main page. After clicking the button, a file saver window will
pop up, allowing the user to select where to store the zip file with the application, both server
and client. Its deployment and execution is really easy and a instructions file can be found
inside the zip file so that no technical knowledge should be needed.

Figure 7.3: Static pages management of the generation tool

72

CHAPTER 7. DEVELOPED SOLUTION

7.2 Product

This section illustrates the final behaviour of a generated example with the digital library
generation tool.

The welcome page for the blog is a part of the variability but in this example it was chosen
to show the list of editions published on the digital library. Additionally note that the example
is generated in spanish since the product was designed as a prototype for the library BIDISO
[1], centered in hispanic literature and part of ARACNE [43], the Digital Humanities and
Hispanic Letters Networks. The welcome page can be seen in figure 7.4, showing the cover
of the publications when possible, and a default image in case the cover is not available.

Figure 7.4: List of published editions from the generated product

The horizontal menu at the top bar is provided to navigate the web, allowing the navi-
gation to the list of works, the list of authorities and a drop-down selector to navigate the
possible created static pages. In this case, due to the similarity of the interface for both the
works list and the edition list, the screenshot will be spared to save up space. When clicking
the “View More” button below each element, the user gets redirected to the detail page for
the selected edition, seen in figure 7.5. In this page the information available about an edi-
tion is displayed in a straight-forward manner, trying to get everything in just one sitting.
In this case, the digital resources are not listed because the user is not authenticated into the
application.

After login into the application with the button at the top right corner, the user can access
the files related to a publication once their credentials are validated. The page for the edition
details is the same, the only change is that now there is no prohibition message and, instead,

73

7.2. Product

Figure 7.5: Detail of an edition without authentication

the icon and link to the file are listed below the cover. If the user clicks the link, the PDF file
gets automatically downloaded.

Figure 7.6: Detail of an edition after authentication

To achieve this, the application verifies that a reporter has been previously approved by
an admin since the AdminUserNeedsToValidate feature was selected during the generation of

74

CHAPTER 7. DEVELOPED SOLUTION

Figure 7.7: Management of reporters

this product. When an administrator access the management site, they can view a list of
registered reporters, signaled in red if they are waiting for approval or in green in case they
have already approved. Changing their status is as easy as clicking the check button at the end
of the row corresponding to the reporter. On the contrary, if we deny access to that reporter,
the account gets deleted.

Note that the structure of the site is different from the public access, the menu bar is
now located at the side instead of at the bottom, in addition to the fact that the management
team has access to more information, such as the thesaurus for Organizations and Locations.
The main page for the management site is also the edition list, as seen in figure 7.8, since
the most common task will be to review editions created by other teammates and input new
publications.

Figure 7.8: Management of editions

75

7.2. Product

In this page, the editions are listed with the most important information from the admin-
istration point of view, such as who and when created each element. The focus of attention
must be in the status, highlighting those elements that are pending of revision so that they

Figure 7.9: Form to create new editions or update existing ones

76

CHAPTER 7. DEVELOPED SOLUTION

don’t go unnoticed.
When an administration or collaborator wants to create a new edition, the only thing they

have to do is to click the “New Edition” button at the top of the table and the creation page
will display as seen in figure 7.9 (cut to allow the visualization of the full element).

As it was stated in the requirements, the user can create an edition and all of the elements
related to it from the sameworkspace, allowing the possibility to publish at the samemoment,
schedule the publication, save as draft or mark it as ready to be reviewed. If instead of creating
an element, they want to update an existing element, the page would be the same with the
variation that the input fields would already be fulfilledwith the data gathered form the object.

The screenshots for the work publications will be spared to avoid redundancy due to space
issues and its similarity to the edition implementation. Also, the majority of the management
site follows a similar distribution and behaviour, adjusting to small derivations such as the
requirements that Locations can only be modelled from an edition since they can only exist
depending on said edition.

Figure 7.10: List of authorities from public access

Lastly, for the public access the authorities list follows a similar approach to the list of
editions but displaying the pictures of the authors as shown in figure 7.10. Due to space
issues the detail for an authority will not be shown because it follows the same approach as
the detail for an edition, with a list of works and editions the person authored or collaborated.

77

7.2. Product

78

Chapter 8

Conclusiones y trabajo futuro

This chapter discusses the degree to which the objectives set at the beginning of the project
have been achieved, the lessons learned and future implementations that can enhance the
functioning of the application.

8.1 Objectives

A tool based on Software Product Lines has been developed that allows the semi-automated
generation of web applications to manage a digital library from a set of given features, imple-
mented with a simple interface that facilitates the process of product generation.

The products generated are safe, high quality and easy to use through the execution of
several tests, the implementation of a security system and the development of a user-friendly,
intuitive interface.

The instructions necessary for the correct configuration and deployment of the generated
product is provided to the final users, smoothing the set up process as much as possible.

8.2 Lessons learned

The execution of this thesis gave the author the opportunity to get to know and become aware
of the planning and workload of a real project. As well as being able to apply a development
methodology in a project, getting to know first-hand the importance of the good use of them,
in order to ensure the quality of the final product.

Existing knowledge acquired along the degree about back-end technologies has been im-
proved through their use during the project: Sprint, Hibernate, REST servers… At the same
time new knowledge has been gathered related with the technologies and tools employed to
develop this thesis, specially about Software Product Lines in combination with scaffolding

and the work behind a generation tool.

79

8.3. Future work

8.3 Future work

As it was stated in section 5, this thesis was centered in the development of an specific prod-
uct of the SPL that implements a subset features from all functionalities collected during the
analysis phase, focusing instead on said analysis and the in-depth analysis of SPL. The future
work shall continue with the implementation of those requirements defined but not fulfilled,
such as the inclusion of maps into the application and the features related to them, the con-
version of the data to make it exportable into different file types, the management of statistics
from the management side…

In addition, some future improvements to make the application more suitable for the real
world could be automatizing the deployment process for the generated products through the
implementation of a cloud application platform, for example, so that the web apps could be
accessible from anywhere as long as they have an internet connection.

On top of that, a peculiarity present on the domain of digital libraries is the different
styles they all present with very customized interfaces. In upcoming versions of the software
it should be considered the possibility of offering a degree of customization of the styles in
a easy way, that does not require programming knowledge and that can keep track of the
changes on each individual library when changing the version.

80

Appendices

81

Appendix A

Feature model for the SPL

Extended representation of the feature model with zoom-in for the set of features that
can be more difficult to read.

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <featureModel>
3 <properties>
4 <graphics key="legendautolayout" value="true"/>
5 <graphics key="showshortnames" value="false"/>
6 <graphics key="layout" value="vertical"/>
7 <graphics key="showcollapsedconstraints" value="true"/>
8 <graphics key="legendhidden" value="false"/>
9 <graphics key="layoutalgorithm" value="4"/>

10 </properties>
11 <struct>
12 <and abstract="true" mandatory="true" name="BIDIFeatures">
13 <and mandatory="true" name="UserManagement">
14 <graphics key="collapsed" value="true"/>
15 <feature name="UserProfiles"/>
16 <and abstract="true" mandatory="true" name="UserRoles">
17 <and mandatory="true" name="Admin">
18 <and abstract="true" name="AdminFeatures">
19 <feature name="ReviewingFeatures"/>
20 <feature name="StaticPagesManagement"/>
21 </and>
22 </and>
23 <and name="Colaborators">
24 <and abstract="true" name="ColaboratorsFeatures">
25 <feature name="OnlyCreatorCanModify"/>
26 <feature name="ThesauriCRUD"/>
27 </and>
28 </and>
29 <and name="Reporters">
30 <or abstract="true" name="ReportersFeatures">

83

31 <feature name="FavoriteElements"/>
32 <feature name="FavoriteAuthors"/>
33 </or>
34 </and>
35 <and mandatory="true" name="Anonymous">
36 <and abstract="true" name="AnonymousFeatures">
37 <feature name="CanAccessElementFiles"/>
38 </and>
39 </and>
40 </and>
41 <and name="AnonymousUserCanRegisterInTheApplication">
42 <feature name="AdminUserNeedsToValidate"/>
43 <or abstract="true" name="SocialRegistration">
44 <feature name="Facebook"/>
45 <feature name="Twitter"/>
46 <feature name="Google"/>
47 </or>
48 </and>
49 </and>
50 <and name="DigitalResource">
51 <graphics key="collapsed" value="true"/>
52 <or abstract="true" mandatory="true"

name="FileTypesSupported">
53 <feature name="ExternalFiles"/>
54 <feature name="EPUBFiles"/>
55 <feature name="VideoFiles"/>
56 <feature name="AudioFiles"/>
57 <feature name="PDFFiles"/>
58 <feature name="DigitalizedPages"/>
59 </or>
60 <feature name="Collections"/>
61 </and>
62 <and mandatory="true" name="Element">
63 <graphics key="collapsed" value="true"/>
64 <feature name="SchedulingPublication"/>
65 <and abstract="true" mandatory="true" name="ElementTypes">
66 <feature mandatory="true" name="WorkElement"/>
67 <and mandatory="true" name="EditionElement">
68 <and name="LocationManagement">
69 <feature name="HistoricalLocation"/>
70 <feature name="GeographicalLocation"/>
71 </and>
72 </and>
73 <feature name="PartElement"/>
74 <feature name="CollectionElement"/>
75 </and>

84

APPENDIX A. FEATURE MODEL FOR THE SPL

76 </and>
77 <and mandatory="true" name="Authority">
78 <graphics key="collapsed" value="true"/>
79 <feature name="Alias"/>
80 <and name="Contacts">
81 <feature name="SocialNetwork"/>
82 </and>
83 <or mandatory="true" name="AuthorityRole">
84 <feature name="Author"/>
85 <feature name="Editor"/>
86 <feature name="Printer"/>
87 <feature name="Illustrator"/>
88 <feature name="Translator"/>
89 <feature name="Prologuist"/>
90 </or>
91 </and>
92 <and name="Organization">
93 <graphics key="collapsed" value="true"/>
94 <feature name="OrganizationDirector"/>
95 <or mandatory="true" name="OrganizationRole">
96 <feature name="Library"/>
97 <feature name="Editorial"/>
98 </or>
99 </and>

100 <or mandatory="true" name="Language">
101 <graphics key="collapsed" value="true"/>
102 <feature name="Spanish"/>
103 <feature name="English"/>
104 </or>
105 <and mandatory="true" name="PublicAccess">
106 <graphics key="collapsed" value="true"/>
107 <and name="Search">
108 <graphics key="collapsed" value="true"/>
109 <and name="SearchResult">
110 <and name="SearchResultEdition">
111 <and name="SearchFormat">
112 <feature name="SearchResultAsList"/>
113 <feature name="SearchResultAsMap"/>
114 </and>
115 </and>
116 <feature name="SearchResultWorks"/>
117 <feature name="SearchResultAuthority"/>
118 </and>
119 <and name="AdvancedSearch">
120 <feature name="SearchByTitle"/>
121 <and name="SearchByAuthority">

85

122 <feature name="SearchByAuthor"/>
123 <feature name="SearchByEditor"/>
124 <feature name="SearchByCustom"/>
125 </and>
126 <feature name="SearchByLocation"/>
127 <feature name="SearchByLanguage"/>
128 <and name="SearchByDate">
129 <feature name="SearchByDateRange"/>
130 </and>
131 <feature name="SearchByIdentifier"/>
132 <feature name="SearchByISBN"/>
133 </and>
134 <or name="SimpleSearch">
135 <feature name="SimpleSearchByTitle"/>
136 <feature name="SimpleSearchByAuthor"/>
137 <feature name="SimpleSearchByYear"/>
138 <feature name="SimpleSearchByLocation"/>
139 </or>
140 </and>
141 <and name="Navigation">
142 <or name="HomePage">
143 <feature name="EditionsList"/>
144 <feature name="WorksList"/>
145 <feature name="AuthoritiesList"/>
146 <feature name="PresentationPage"/>
147 <feature name="LatestReleasesPage"/>
148 </or>
149 <and name="Visualization">
150 <or name="EditionsVisualization">
151 <feature name="EditionsAsList"/>
152 <feature name="EditionsAsImages"/>
153 </or>
154 <or name="WorksVisualization">
155 <feature name="WorksAsList"/>
156 <feature name="WorksAsImages"/>
157 </or>
158 <or name="AuthoritiesVisualization">
159 <feature name="AuthoritiesAsList"/>
160 <feature name="AuthoritiesAsImages"/>
161 </or>
162 </and>
163 <and name="Pagination">
164 <or name="EditionsListPagination">
165 <feature name="EditionsInfiniteScroll"/>
166 <feature name="EditionsPaginationByRange"/>
167 </or>

86

APPENDIX A. FEATURE MODEL FOR THE SPL

168 <or name="WorksListPagination">
169 <feature name="WorksInfiniteScroll"/>
170 <feature name="WorksPaginationByRange"/>
171 </or>
172 <or name="AuthoritiesListPagination">
173 <feature name="AuthoritiesInfiniteScroll"/>
174 <feature name="AuthoritiesPaginationByRange"/>
175 </or>
176 </and>
177 </and>
178 <feature name="Maps"/>
179 </and>
180 <and mandatory="true" name="ManagementAccess">
181 <graphics key="collapsed" value="true"/>
182 <and name="ManagementSearch">
183 <and name="AdvancedManagementSearch">
184 <and name="SearchByElement">
185 <feature name="SearchByElementTitle"/>
186 <and name="SearchByElementAuthority">
187 <feature name="NoAuthority"/>
188 </and>
189 <feature name="SearchByDraft"/>
190 <feature name="SearchByRevised"/>
191 <feature name="SearchByElementId"/>
192 <feature name="SearchByElementISBN"/>
193 <and name="SearchByElementYear">
194 <feature name="NoYear"/>
195 </and>
196 <feature name="SearchByGenre"/>
197 <and name="SearchByEditionLocation">
198 <feature name="NoEditionLocation"/>
199 </and>
200 </and>
201 </and>
202 <and name="Filter">
203 <feature name="FilterCollaborators"/>
204 <feature name="FilterReporters"/>
205 <feature name="FilterElements"/>
206 </and>
207 <feature name="MapSearch"/>
208 <feature name="AlphabeticalPagination"/>
209 </and>
210 <feature name="Statistics"/>
211 </and>
212 <and name="ExportFeatures">
213 <graphics key="collapsed" value="true"/>

87

214 <and name="ExportType">
215 <feature name="PDF"/>
216 <feature name="TXT"/>
217 <feature name="JSON"/>
218 <feature name="EXCEL"/>
219 <feature name="CSV"/>
220 </and>
221 <and name="ExportPossibilities">
222 <feature name="SingleItem"/>
223 <feature name="SelectionOfItems"/>
224 </and>
225 <and name="ExportableElements">
226 <feature name="ExportAuthority"/>
227 <feature name="ExportCollection"/>
228 <feature name="ExportEdition"/>
229 <feature name="ExportWork"/>
230 <feature name="ExportPart"/>
231 <feature name="ExportOrganization"/>
232 <feature name="ExportBibliographicReference"/>
233 </and>
234 </and>
235 </and>
236 </struct>
237 <constraints>
238 <rule>
239 <imp>
240 <var>DigitalizedPages</var>
241 <var>Collections</var>
242 </imp>
243 </rule>
244 <rule>
245 <imp>
246 <var>SearchByAuthor</var>
247 <var>Author</var>
248 </imp>
249 </rule>
250 <rule>
251 <imp>
252 <var>SearchByEditor</var>
253 <var>Editor</var>
254 </imp>
255 </rule>
256 <rule>
257 <imp>
258 <var>Maps</var>
259 <var>GeographicalLocation</var>

88

APPENDIX A. FEATURE MODEL FOR THE SPL

260 </imp>
261 </rule>
262 <rule>
263 <imp>
264 <var>SearchResultAsMap</var>
265 <var>GeographicalLocation</var>
266 </imp>
267 </rule>
268 <rule>
269 <imp>
270 <var>Collections</var>
271 <disj>
272 <var>DigitalizedPages</var>
273 <disj>
274 <var>AudioFiles</var>
275 <var>VideoFiles</var>
276 </disj>
277 </disj>
278 </imp>
279 </rule>
280 <rule>
281 <imp>
282 <var>SimpleSearchByAuthor</var>
283 <var>Author</var>
284 </imp>
285 </rule>
286 <rule>
287 <imp>
288 <var>MapSearch</var>
289 <var>GeographicalLocation</var>
290 </imp>
291 </rule>
292 <rule>
293 <imp>
294 <var>ExportCollection</var>
295 <var>CollectionElement</var>
296 </imp>
297 </rule>
298 <rule>
299 <imp>
300 <var>ExportOrganization</var>
301 <var>Organization</var>
302 </imp>
303 </rule>
304 <rule>
305 <imp>

89

306 <var>ExportPart</var>
307 <var>PartElement</var>
308 </imp>
309 </rule>
310 </constraints>
311 </featureModel>

Listing A.1: Source XML code corresponding to the feature model

Figure A.1: Collapsed feature model

90

APPENDIX A. FEATURE MODEL FOR THE SPL

Figure A.2: User management features

Figure A.3: Digital resources features

Figure A.4: Element features

91

Figure A.5: Authority features

Figure A.6: Organization features

Figure A.7: Language features

92

APPENDIX A. FEATURE MODEL FOR THE SPL

Figure A.8: Public access features

93

Figure A.9: Navigation features

94

APPENDIX A. FEATURE MODEL FOR THE SPL

Figure A.10: Public search features

Figure A.11: Management features collapsed

95

Figure A.12: Management search

Figure A.13: Export features

96

Appendix B

User interface mockups

Extended version of the user interface analysis to include those mock-up that could not
fit the space dedicated for it in the section 5.1.2.

Figure B.1: Home for Static Pages

97

Figure B.2: Home for New releases

98

APPENDIX B. USER INTERFACE MOCKUPS

Figure B.3: Home for Editions with Infinite scroll

99

Figure B.4: Home for Works with infinite scroll

100

APPENDIX B. USER INTERFACE MOCKUPS

Figure B.5: Home for works with pagination

101

Figure B.6: Home for authorities with pagination

102

APPENDIX B. USER INTERFACE MOCKUPS

Figure B.7: Home for authorities with infinite scroll

103

Figure B.8: Advanced search logged as Admin

Figure B.9: Sign in

104

APPENDIX B. USER INTERFACE MOCKUPS

Figure B.10: Sign up simple

Figure B.11: Sign up with extended user profiles

105

Figure B.12: Admin management - Collaborators list

Figure B.13: Admin management - Register collaborator

106

APPENDIX B. USER INTERFACE MOCKUPS

Figure B.14: Admin management - Reporters list

Figure B.15: Admin management - Edition list

107

Figure B.16: Admin management - Organizations list

Figure B.17: Admin management - Works list

108

APPENDIX B. USER INTERFACE MOCKUPS

Figure B.18: Admin management - Parts list

Figure B.19: Admin management - Collection list

109

Figure B.20: Admin management - Edition detail

Figure B.21: Admin management - Edition with several works related

110

APPENDIX B. USER INTERFACE MOCKUPS

Figure B.22: Admin management - Edition form

111

Figure B.23: Admin management - Edition form with authority accordion

112

APPENDIX B. USER INTERFACE MOCKUPS

Figure B.24: Admin management - Edition form with works accordion

113

Figure B.25: Admin management - Edition form with parts accordion

114

APPENDIX B. USER INTERFACE MOCKUPS

Figure B.26: Admin management - Edition form with collection accordion

115

Figure B.27: Admin management - Edition form with location accordion

116

APPENDIX B. USER INTERFACE MOCKUPS

Figure B.28: Admin management - Edition form with digital resources accordion, PDF

117

Figure B.29: Admin management - Edition form with digital resources accordion, external
files

118

APPENDIX B. USER INTERFACE MOCKUPS

Figure B.30: Admin management - Edition form with digital resources accordion, collection
of digitalized pages

119

Figure B.31: Search result as text list

Figure B.32: Search result with images

120

APPENDIX B. USER INTERFACE MOCKUPS

Figure B.33: Search result as map

Figure B.34: Public edition detail with one wokr

121

Figure B.35: Public edition detail with several works

Figure B.36: Public work detail with several publications related

122

APPENDIX B. USER INTERFACE MOCKUPS

Figure B.37: Public part detail

Figure B.38: Public edition download resource

123

Figure B.39: Public work download resource

Figure B.40: Public part download resource

124

APPENDIX B. USER INTERFACE MOCKUPS

Figure B.41: Public authority detail

Figure B.42: Public organization detail

125

126

Appendix C

Data model for the product

Extended representation of the data model with a close-up for the Digital Resources
classes that were not explained in detail.

Figure C.1: Digital resources classes

127

Figure C.2: Digital resources classes

128

Appendix D

Glosary of Acronyms

AOP Aspect Oriented Programming.

API Application Programming Interface.

CLI Command Line Interface.

CRUD Create, Read, Update and Delete.

CSS Cascading StyleSheets.

DAO Data Access Object.

DBMS DataBase Management System.

DOM Document Object Model.

DTO Data Transfer Object.

FOP Feature Oriented Programming.

HTML HyperText Markup Language.

HTTP HyperText Transfer Protocol.

IDE Integrated Development Environment.

JDK Java Development Kit.

JPA Java Persistence API.

JSON JavaScript Object Notation.

JWT JSON Web Token.

129

MVCC Multi Version Concurrency Control.

NPM Node Package Manager.

ORM Object Relational Mapping.

PDF Portable Document Format.

RDBMS Relational DataBase Management System.

REST Representational State Transfer.

SPA Single Page Application.

SPL Software Product Line.

SQL Structured Query Language.

UML Unified Modeling Language.

URL Uniform Resource Locator.

WYSIWYG What You See Is What You Get.

XML Extensible Markup language.

130

Appendix E

Glossary of terms

Back-end Part of a computer system that is not directly accessed by the user and is respon-
sible for storing and manipulating system data.

Bug Error or issue in a computer program.

Framework Reusable software environment that provides particular functionality to facili-
tate the development of a computer application.

Front-end Part of a computer system with which the user interacts directly.

Issue Unit of work to complete an improvement in a system.

Plugin Software component that adds an specific feature to a computer program.

Scaffolding Technique consisting on code generation starting from predefined templates
and an specification given by the developer.

Scrum Set of practices used in agile project management that emphasize daily communica-
tion and the flexible reassessment of plans that are carried out in short, iterative phases
of work.

Sprint In Scrum it is a prefixed interval duringwhich a ”Done or Finished” product increment
is created.

131

132

Bibliography

[1] Biblioteca digital siglo de oro. [Online]. Available: https://www.bidiso.es/index.htm;
jsessionid=A5109F67AF0FF912C9573C5B72E0AABE

[2] Symbola, divisas o empresas históricas. [Online]. Available: https://www.bidiso.es/
Symbola/

[3] Cbdrs catálogo y biblioteca digital de relaciones de sucesos. [Online]. Available:
https://www.bidiso.es/CBDRS/

[4] E. R. L. Carme Fernández Pérez-Sanjulián, Mª Antonia Pérez Rodríguez and Ángeles
Saavedra Places, “Recursos para a clasificación da produción editorial na galiza
durante a etapa franquista: deseño e alimentación da base de datos,” 2014. [Online].
Available: https://www.janusdigital.es/anexos/contribucion.htm?id=15

[5] Biblioteca virtual galega. [Online]. Available: http://bvg.udc.es/

[6] Ahead tool suite. [Online]. Available: https://www.cs.utexas.edu/~schwartz/ATS/
fopdocs/

[7] Featurehouse: Language-independent, automated software composition. [Online].
Available: https://www.infosun.fim.uni-passau.de/spl/apel/fh/

[8] The aspectj project. [Online]. Available: https://www.eclipse.org/aspectj/

[9] Antenna: An ant-to-end solution for wireless java. [Online]. Available: http:
//antenna.sourceforge.net/wtkpreprocess.php

[10] J. M. T. S. B. L. Saake, Mastering Software Variability with FeatureIDE. Springer, 2017.

[11] A. C. Álvarez. Github repository for spl-js-engine derivation engine. [Online]. Available:
https://github.com/AlexCortinas/spl-js-engine

133

https://www.bidiso.es/index.htm;jsessionid=A5109F67AF0FF912C9573C5B72E0AABE
https://www.bidiso.es/index.htm;jsessionid=A5109F67AF0FF912C9573C5B72E0AABE
https://www.bidiso.es/Symbola/
https://www.bidiso.es/Symbola/
https://www.bidiso.es/CBDRS/
https://www.janusdigital.es/anexos/contribucion.htm?id=15
http://bvg.udc.es/
https://www.cs.utexas.edu/~schwartz/ATS/fopdocs/
https://www.cs.utexas.edu/~schwartz/ATS/fopdocs/
https://www.infosun.fim.uni-passau.de/spl/apel/fh/
https://www.eclipse.org/aspectj/
http://antenna.sourceforge.net/wtkpreprocess.php
http://antenna.sourceforge.net/wtkpreprocess.php
https://github.com/AlexCortinas/spl-js-engine

Bibliography

[12] D. L. from University of A Coruña, “Sistemas de Código Aberto para a creación,
mantemento e aproveitamento de Bibliotecas Dixitais: Compresión e Indexación.
(Spanish) [Open source system for the creation, maintenance and exploitation of
digital libraries],” 2006. [Online]. Available: https://lbd.udc.es/ProjectInformation.
do?lang=en_US&slug=TIN2006-15071-C03-03

[13] ——, “Herramientas avanzadas para la implementación de Bibliotecas Digitales.
(Spanish) [Advanced tools for the implementation of digital libraries],” 2006.
[Online]. Available: https://lbd.udc.es/ProjectInformation.do?lang=en_US&slug=
TIN2006-15071-C03-03

[14] Delos network of excellence on digital libraries. [Online]. Available: http://delosw.isti.
cnr.it/

[15] Postgresql official website. [Online]. Available: https://www.postgresql.org/

[16] Vue.js official guide. [Online]. Available: https://vuejs.org/v2/guide/

[17] Maven official website. [Online]. Available: https://maven.apache.org/

[18] Node.js official website. [Online]. Available: https://nodejs.org/es/docs/guides/getting-
started-guide/

[19] Npm official website. [Online]. Available: https://www.npmjs.com/about

[20] Spring official website. [Online]. Available: https://spring.io/

[21] Spring boot official website. [Online]. Available: https://spring.io/projects/spring-boot

[22] Hibernate official website. [Online]. Available: https://hibernate.org/

[23] D. M. from Zenkit Blog, “Agile software development,” 2018. [Online]. Available:
https://zenkit.com/en/blog/agile-methodology-an-overview/

[24] Atomate, “Agile methodology: An overview,” 2018. [Online]. Available: https:
//atomate.net/process/agile-software-development/

[25] J. Schwaber, Ken; Sutherland, “The scrum guide: The definitive guide to scrum: The
rules of the game,” 2017. [Online]. Available: https://www.scrumguides.org/docs/
scrumguide/v2017/2017-Scrum-Guide-US.pdf

[26] Gitlab official website. [Online]. Available: https://about.gitlab.com/

[27] Eclipse ide and tools. [Online]. Available: https://www.eclipse.org/ide/

134

https://lbd.udc.es/ProjectInformation.do?lang=en_US&slug=TIN2006-15071-C03-03
https://lbd.udc.es/ProjectInformation.do?lang=en_US&slug=TIN2006-15071-C03-03
https://lbd.udc.es/ProjectInformation.do?lang=en_US&slug=TIN2006-15071-C03-03
https://lbd.udc.es/ProjectInformation.do?lang=en_US&slug=TIN2006-15071-C03-03
http://delosw.isti.cnr.it/
http://delosw.isti.cnr.it/
https://www.postgresql.org/
https://vuejs.org/v2/guide/
https://maven.apache.org/
https://nodejs.org/es/docs/guides/getting-started-guide/
https://nodejs.org/es/docs/guides/getting-started-guide/
https://www.npmjs.com/about
https://spring.io/
https://spring.io/projects/spring-boot
https://hibernate.org/
https://zenkit.com/en/blog/agile-methodology-an-overview/
https://atomate.net/process/agile-software-development/
https://atomate.net/process/agile-software-development/
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://about.gitlab.com/
https://www.eclipse.org/ide/

BIBLIOGRAPHY

[28] Documentation for visual studio code. [Online]. Available: https://code.visualstudio.
com/docs

[29] Adobe launches experience design cc, a new tool for ux designers. [Online]. Avail-
able: https://web.archive.org/web/20171020041101/https://techcrunch.com/2016/
03/14/adobe-launches-experience-design-cc-a-new-tool-for-ux-designers/

[30] Draw.io by diagrams.net. [Online]. Available: https://app.diagrams.net/

[31] Staruml official documentation. [Online]. Available: https://docs.staruml.io/

[32] Overleaf documentation. [Online]. Available: https://www.overleaf.com/learn/latex/
Main_Page

[33] S. E. I. from Carnegie Mellon University, “Software product lines collection,” 2014.
[Online]. Available: https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=
513819

[34] N. R. Brisaboa, A. Cortiñas, M. R. Luaces, and O. Pedreira, “Aplicando scaffolding en el
desarrollo de Líneas de Producto Software. (Spanish) [Applying scaffolding to the
development of software product lines],” in Actas de las XXI Jornadas de Ingeniería

del Software y Bases de Datos (JISBD 2016), Salamanca, 2016, pp. 23–36.

[35] E. R. Frank J. van der Linden, Klaus Schmid, Software Product Lines in Action: The Best

Industrial Practice in Product Line Engineering. Springer, 2007.

[36] I. Sommerville, Software Engineering, 10th ed. Pearson, 2016.

[37] Spring security. [Online]. Available: https://spring.io/projects/spring-security

[38] Vue-router guide. [Online]. Available: https://router.vuejs.org/

[39] Vue-i18n, internationalization plugin for vue.js. [Online]. Available: https://kazupon.
github.io/vue-i18n/

[40] Axios, romise based http client for the browser and node.js. [Online]. Available:
https://github.com/axios/axios

[41] Ckeditor 5. [Online]. Available: https://ckeditor.com/ckeditor-5/

[42] Ckeditor 5 documentation. [Online]. Available: https://ckeditor.com/docs/ckeditor5/
latest/index.html

[43] Aracne, red de humanidades digitales y letras hispánicas. [Online]. Available:
http://www.red-aracne.es/presentacion

135

https://code.visualstudio.com/docs
https://code.visualstudio.com/docs
https://web.archive.org/web/20171020041101/https://techcrunch.com/2016/03/14/adobe-launches-experience-design-cc-a-new-tool-for-ux-designers/
https://web.archive.org/web/20171020041101/https://techcrunch.com/2016/03/14/adobe-launches-experience-design-cc-a-new-tool-for-ux-designers/
https://app.diagrams.net/
https://docs.staruml.io/
https://www.overleaf.com/learn/latex/Main_Page
https://www.overleaf.com/learn/latex/Main_Page
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513819
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513819
https://spring.io/projects/spring-security
https://router.vuejs.org/
https://kazupon.github.io/vue-i18n/
https://kazupon.github.io/vue-i18n/
https://github.com/axios/axios
https://ckeditor.com/ckeditor-5/
https://ckeditor.com/docs/ckeditor5/latest/index.html
https://ckeditor.com/docs/ckeditor5/latest/index.html
http://www.red-aracne.es/presentacion

Bibliography

136

	Introduction
	Motivation
	Goals

	State of the art and technological fundamentals
	State of the art
	Digital Libraries
	Software Product Lines
	Related work

	Technologies employed

	Methodology and project planning
	Development methodologies
	The Scrum roles
	Scrum artifacts
	Scrum events

	Methodology support tools
	SPL development methodology
	Planning and tracking
	Resources
	Planning
	Schedule tracking

	Software product line analysis
	Product requirements
	Actors
	Requirements

	Variability modeling
	Generation tool requirements
	Actors
	Requirements

	Product construction
	Analysis
	System architecture
	User interface
	Conceptual data model

	Design
	Technological architecture of the system
	Client
	Application design

	Implementation and testing
	Implementation
	Testing

	Software product line construction
	Analysis
	System architecture
	User interface

	Design
	Technological architecture of the system
	Application design

	Implementation and testing
	Implementation
	Testing

	Developed solution
	Generation tool
	Product

	Conclusiones y trabajo futuro
	Objectives
	Lessons learned
	Future work

	Feature model for the SPL
	User interface mockups
	Data model for the product
	Glosary of Acronyms
	Glossary of terms
	Bibliography

