Facultade de Informatica

>‘ l< UNIVERSIDADE DA CORUNA

TRABALLO FIN DE GRAO
GRAO EN ENXENARIA INFORMATICA
MENCION EN TECNOLOXIAS DA INFORMACION

DebAuthn: a Relying Party Implementation
as a WebAuthn Authenticator Debugging
Tool

Estudante: Martifio Rivera Dourado
Direccion: José M. Vazquez Naya

Direccion: Marcos Gestal Pose

A Corufia, setembro de 2020.

A meu pai e a mifia nai

Acknowledgements

Firstly, I would like to show gratitude to my tutors José and Marcos for their time in mentoring
and guiding this project. I also want to acknowledge the RNASA-IMEDIR group and the CITIC
Research for supporting the project with their resources. More personally, I would like to
show my gratitude to my close friends for their help and care during my studies and primarily
during these last months. Many thanks also to my classmates who were always willing to
give me a hand. Finally, I could not finish these acknowledgements without expressing my

gratitude to my parents and my sister for the great support through all these years.

Abstract

Passwords as an authentication method have become vulnerable to numerous attacks. During
the last few years, the FIDO Alliance and the W3C have been working on a new authentication
method based on public key cryptography and hardware authenticators, which avoids attacks
like phishing or password stealing. This degree thesis focuses on the development of a web
application as a flexible testing and debugging environment for developers and researchers
of the protocol, still under development. Moreover, the developed tool is used for testing the

most relevant hardware authenticators, showcasing their main characteristics.

Resumo

Os contrasinais como método de autentificaciéon volvéronse vulnerables a numerosos ata-
ques. Durante os ultimos anos, a FIDO Alliance e a W3C estiveron traballando nun novo siste-
ma de autentificaciéon baseado en criptografia de chave publica e autentificadores hardware,
0 que evita ataques como phishing ou roubo de contrasinais. Este traballo de fin de grao
céntrase no desenvolvemento dunha aplicacién web como un entorno flexible de probas e
depuracion para desenvolvedores e investigadores do protocolo, ainda en desenvolvemento.
Ademais, a ferramenta desenvolvida é usada para probar os autentificadores hardware mais

relevantes, mostrando as stas caracteristicas principais.

Keywords: Palabras chave:
+ WebAuthn « WebAuthn
« Authentication « Autentificacion
+ Debugging « Depuracion
« Testing « Evaluacion

Authenticator « Autentificador

Contents

1

2

3

Introduction 1
1.1 Objectives o e 3
1.2 Structure of the degreethesis. 3
State of the Art 5
2.1 Existingstandards 5
2.2 WebAuthn: a W3C recommendation 6
221 Generalconcepts 6
222 Aftestation 7
223 Assertion 8
2.24 Attestation typesand formats o Lo 9
2.2.5 Resident and non-resident credentials 11
2.2.6 WebAuthn charecteristics and usecases 11
2.2.7 Backwards compatiblity with FIDOU2F 12
2.3 Projects and companies around WebAuthn 000, 12
2.4 Implementations of the WebAuthn Relying Party 13
2.5 Implementations of the WebAuthn Authenticator Model 14
2.6 WebAuthn testingtools L 15
27 Conclusion L 17
Planning and methodology 19
3.1 Engineering methodology 19
3.1.1 Tooldevelopment. 19
3.1.2 Authenticatorstesting 21
3.2 Project planning and monitoring Lo L. 22
3.2.1 Materials and costestimate L. 23
3.2.2 Estimated and monitoredcost L. 24

Contents

4 Analysis 25
41 Missionstatement oL 25
4.2 Actorsand Use CasesS. i it e e e e 26
4.3 Architecture and technology election 27

5 Development 29
5.1 Basic operations implementation Lo L., 29

51.1 Generalaspects 29
5.1.2 Aftestation 32
513 Assertion e e 33
5.2 Displaying information totheuser. 0L, 35
52.1 Errorhandlers. L 36
5.2.2 Frontendrouting 36
523 Alertsanddialogs. L L oL 37
5.2.4 Splitting functionality and displaying information. 37
5.3 Modifiable options L 38
5.3.1 Enabling the reuse of options at the backend 39
5.3.2 Improving models and encoding in base64url 40
5.3.3 Attestation optionsformo Lo oL 40
5.3.4 Assertionoptionsform L o oL 41
5.3.5 Userinputvalidation, 42
5.4 Structuring the displayeddata 0oL, 43
5.4.1 Relying Party validation data processing 43
5.4.2 Operation warnings after validation 45
5.4.3 Structuring Authenticator response and validation data 46
5.5 Support for several registered credentials Lo oL 47
5.5.1 Allowed credentials in Assertion 47
5.5.2 Registered credentials at theserver 48
5.5.3 Verifying Assertion L e 50
5.6 Android SafetyNet: a new Attestation format 51
5.6.1 Implementing validation for Android Safetynet attestation format . . . 51
5.6.2 Integration of the implementation in DebAuthn 53
5.7 Improving user eXperience e i e e e e e e e 53
5.7.1 Giving instructions totheuser 53
5.7.2 Featuredetection L 54
5.7.3 Improving two key fields of the attestation options 55
5.8 Extending possibletests. 56
5.8.1 Adding support for resident credentials 56

ii

CONTENTS

5.8.2 Delete all registered credentials

6 Testing and studying authenticators

6.1

6.2
6.3
6.4

Attestation mechanisms in hardware authenticators
6.1.1 Authenticator compatibility 0.
6.1.2 Browser compatibility oo o oL
Communicating with authenticators: the transports
The cryptography: supported algorithms
Testing support for resident credentials
6.4.1 Authenticator compatibility0 0oL
6.4.2 Browser compatibility L o oo

6.5 Configuration and management availabletools

6.6 Additional features of the hardware devices

6.7 Device firmware e e
7 Results

7.1 Toolimplementation,

7.2

7.1.1 REST service for the access to Relying Party operations
7.1.2 Userwebinterface
7.1.3 Extensibletool
714 Extraresults.
Tests with physical authenticators by using thetool
721 Extraresults

8 Conclusion and future research

8.1

B.1
B.2

Future research lines

Code base and installation

Automating deployment with Docker

Automating deployment L o oL

Deploying in Docker containers

C Public key cryptography

C1
C.2

Symmetric and asymmetric cryptography L Lo oL

Public Key Infrastructure Lo

D Android SafetyNet Attestation

D.1

SafetyNet API protocol

1ii

59
60
60
62
62
62
64
65
66
67
69
71

73
74
74
74
75
75
76
77

79
80

83

85
85
86

89
89
90

93

Contents

E Contributing to the fido2-lib library 95
E.1 PullRequestsandforks 95
E.2 Unit tests and Continuous Integration 95
F Code listings 97
F1 Errorhandlers 97
F.2 Encoding and decoding functions 98
List of Acronyms 101
Glossary 103
Bibliography 105

iv

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

Evolution of the standards. The FIDO2 project. 5
WebAuthn Schema for Registering (Attestation) and Authenticating (Assertion) 7
Attestation network diagram Lo Lo 8
Assertion network diagram Lo o L 9
WebAuthn.iodemopage. L 15
WebAuthn.org demopage. L 16
WebAuthn.iodemopage. L 16
WebAuthn Test App. o o o 17
WebAuthn Checkertool. 17
WebAuthn.me App. 18
Iterative cycle in SDLC Iterative Incremental model. 20
Kanban board used in the first iteration. Hosted at Github. 20
Ganttdiagram. L L e 23
WebAuthn frontend complete flow.o L. 32
Basic operations implementation: frontend. 0L 33
Browser prompts in Chrome when performing Attestation. 33
DebAuthn architecture Attestation cermony. L. L. 34
DebAuthn architecture Assertion cermony. L. 35
Alert component of the frontend. Lo 0 L 37
Dialog component of the frontend. L. 37
Frontend flow with the three steps. 38
Frontend steps with VueJS components. 38
Complete frontend with routing and steps. 39
Attestation form initial implementation. 41
DebAuthn frontend flow for Attestation. 42
Assertion form initial implementation.0 L. 43

List of Figures

5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

7.1

Ci

D.1

E1

DebAuthn frontend flow for Assertion. 44
Reactive invalid form. Lo 44
Warnings included in the VueJSdialog. 45
Object tree component for showing objects at the frontend. 46
AllowCredentials form for the user to add a new credentialid. 48
AllowCredentials list and the new form for adding credential ids. 49
Validation flow at the backend for registering several credentials. 49
New Dashboard component: registered credentials. 50
Backend flow for authenticating when having several registered credentials. . 51
New Dashboardpage. 54
Feature detection fontend informationboxes. 55
Failure to register an authenticator that was already registered. 55
PubKeyCredParams new component in the Attestation form. 56

Backend Attestation flow with the user handle to support resident credentials. 57

Assertion validation flow with the user handle to support resident credentials. 58

Confirmation dialog before deleting all credentials. 58
The five hardware authenticators picture. 59
Attestation type and format with the SoloKey tested in DebAuthn. 61
Supported communication transports of the Yubikey5. 63
Chromium dialogs when registering and authenticating with resident keys. . . 66
Resident keys fail during Assertion on Android. 67
Chrome security keys embedded manager. 68
solo-python SoloKey CLI manager. 68
Yubikey Manager: enabling and disabling interfaces.. 68
Yubikey Personalization Tool GUI: program HMAC-SHA1. 69
Add a hardware key in KeePassXC password manager with HMAC-SHA1. . . 70
PIV setup with Yubikey Manager GUL. 70
pesc_scan detecting the Yubikey5 asa smartcard. 71

DebAuthn usage example: testing resident credentials compatibility of the

Solokey. o 77
Types of cryptography 90
Android SafetyNet APL 93

Forks of the fido2-lib library: implementation (author’s fork) and fido2-library

from Cullum. e 96

vi

List of Tables

3.1

5.1
5.2
53
5.4
5.5
5.6
5.7

6.1
6.2

7.1
7.2
7.3
7.4

Cost estimate and monitored costineuros (€). 24
WebAuthn API Requests: Attestation and Assertion. 29
Initial REST endpoints exposed by the backend for Attestation and Assertion. 30
PublicKeyCredentialCreationOptions. 41
PublicKeyCredentialRequestOptions. 42
Designed Validation object as the server response. 45
Designed REST endpoint for requesting the registered credentials. 50
New DELETE REST endpoint for registered credentials. 58
Hardware authenticators tested in this degree thesis. 60
Main cryptographic algorithms used by authenticators in WebAuthn. 63
All REST endpoints defined in the backend. 74
Hardware authenticator testing results. 76
Hardware authenticators extrinsic features results. 78
Browser support for FIDO CTAP1 and FIDO CTAP2.. 78

vii

List of Tables

viil

Chapter 1

Introduction

UTHENTICATION is one of the most critical parts of an application. It is a security ser-
A vice that aims to guarantee the authenticity of an online identity. This can be done by
using several security mechanisms but currently, without a doubt, the most common is the
username and password method. Although authentication based on username and password

is easy for a user to conceptually understand, it presents many security problems.

One of the problems is password stealing through phishing. This attack consists in sending
emails that include a hyperlink that, in general, directs the victim to a clone of the official
web page, misleading the user to introduce their credentials directly to the attacker’s hands.
Furthermore, user passwords can also be compromised at the client side by the use of malware
or hardware devices. Most of the techniques that capture the password on user input involve
the keyloggers, which can be software, hardware, acoustic or even wireless tools [1].

It is a fact that information leaks often appear in the news. They usually happen once
servers hosting web applications have been compromised. This leaked information usually
includes password hashes, susceptible to be cracked using dictionary attacks [2]. All phishing,
password stealing and cracking attacks entail a security risk for password-based authentica-

tion methods that leave the user unprotected and without control over their credentials.

This is the reason why there is the need for a solution that facilitates the credential man-
agement and protects users from phishing and password capture attacks. One of the ap-
proaches that big technology companies such as Facebook or Google started to implement is
based on the use of physical authenticators [3], such as the Yubikey [4] or the Titan Security
Key [5]. This idea evolved into a Web Authentication protocol, called WebAuthn, which was
made public in March 2019 as a W3C Recommendation, result of some collaborations with
the FIDO Alliance under the FIDO2 project.

The FIDO2 project aims to develop a new standard that constitutes an uncomplicated and
phishing resistant authentication method, which returns the user the power over their cre-
dentials. The WebAuthn standard and, more often, its predecessor FIDO UZ2F, are already

implemented in several web services. Some of them are the Google account, the most out-

standing cloud services such as Azure, and even the Github platform.

For configuring an authentication factor with the new standard, it is necessary to be in
possession of an authenticator compatible with WebAuthn [6], usually in the form of an USB
hardware device. Both for registering the device and logging in with it, the user can directly
plug the device into the computer and declare user presence by tapping on a physical sensor.
Therefore, this hardware authenticator can be treated as a physical token independent of a
personal computer or any other device that needs user interaction to approve registration and

authentication operations.

Although these standards have already been implemented in some platforms, it is notable
the evolution within the authenticator model implementations. From the FIDO CTAP1/U2F
standard in 2014 until the current CTAP2 [7], new functionalities have been added during
these last few years. Moreover, despite the fact that the WebAuthn standard has become a
W3C Recommendation last year, the consortium is already building a second version. This
version is currently as a Working Draft and corrects and improves its first version. In fact,
developers implementing WebAuthn in their systems are giving feedback to the W3C working
group.

Because of this current standard adoption and improvement, an accessible and manage-
able test environment can be of use for developers. Mainly, a debugging tool would evade the
need of an ad hoc implementation for reproducing an use case and, eventually, help the devel-
oper to guide their implementations. This aids projects planning to implement WebAuthn to
test support of browsers and authenticators beforehand. For instance, a researcher would be
able to test if both some concrete browser and an authenticator support resident credentials,
which are defined in the new CTAP2 standard.

As a result of the current interest on the recent standards, there is also a need to audit
browser implementations, new authenticator devices and the standard itself. During these
years, some projects have started the development of many libraries supporting the standard
and also some testing systems. Most of them are meant for the final user to test the function-
ing of a device and understand the new authentication flow, like the WebAuthn.io [8] tool.
There also exist some applications like WebAuthn.me [9] which are more intended to test the
protocol. However, the most relevant are linked with a commercial solution or it provides
limited flexibility regarding the configuration of some configurations like the cryptographic

algorithms.

This project will focus on WebAuthn and its main features, while incrementally imple-
menting a useful tool for developers and researchers of the new protocol, named DebAuthn.
Once implemented, it will be used to test the most relevant authenticators available on the

market.

CHAPTER 1. INTRODUCTION

1.1

Objectives

The main objective of this work is the study of the WebAuthn protocol and the implementa-

tion of a Relying Party ', in the form of a web application that can be used as a debugging tool

for WebAuthn Authenticator Model compatible authenticators, meant to serve as a testing

environment for researchers.

The specific objectives are the following:

1.2

Design and implement a REST service for the access to Relying Party operations.

Design and implement a user web interface, using client scripts executable in a web

browser compatible with the WebAuthn standard.

Design the tool such that it is easily extensible, enabling the possibility of adding func-
tionaties that support new WebAuthn extensions or new attestation formats and types,

as it is considered in the standard.

Perform tests with different physical authenticators by using the implemented tool.

Structure of the degree thesis

According to the objectives, this thesis structures the content in a specific order, namely:

State of the Art(chapter 2): covers the analysis of the WebAuthn standard while draw-
ing an image of the projects and companies around WebAuthn, as well as analyzing

tools similar to the developed one.

Planning and methodology (chapter 3): explains the engeneering methodology and

states the project planning.

Analysis (chapter 4) and Development (chapter 5): they cover the full iterative and

incremental development of the tool.

Testing and studying authenticators (chapter 6): covers the testing of five hardware
authenticators by using options of the developed tool. Also, it includes a study of other

extra characteristics.

Results (chapter 7): summarizes the main results according to the objectives.

"“The entity whose web application utilizes the Web Authentication API to register and authenticate users.”

(6]

1.2. Structure of the degree thesis

« Conclusion and future research (chapter 8): includes the conclusion of the author

and it enumerates some of the future research lines.

Chapter 2

State of the Art

HE WebAuthn API [6] is the result of the collaboration of the FIDO Alliance and the W3C,
T although a new version is already being developed [10]. Both the FIDO Alliance and
the W3C are joined efforts of projects and companies that have designed and developed their
protocols and software solutions. The State of the Art explores the WebAuthn standard itself
and some of the most relevant software and hardware implementations around WebAuthn,

including similar tools to the developed one.

2.1 Existing standards

The FIDO2 project (see figure 2.1) is a joint effort between the W3C and the FIDO Alliance
to develop standards for the public-key cryptography authentication [11]. It was born at the
FIDO UZ2F standard in 2014, a standard that designed this type of authentication as a second-

factor authentication method.

p —-...\-
FIDO2 Project
U2F 1.0 FIDO 2.0 W3C WebaAuthn
Proposed Std. r----* Proposed Std. ——= Working Draft
2014-10-09 2015-09-04 2016-05-31
U2F 1.2 CTAP 2.0 W3C WebAuthn
Proposed Std. F---f--+ Proposed Std. Recommendation
2017-07-11 2017-09-27 2019-03-04
AN /

- -

Figure 2.1: Evolution of the standards. The FIDO2 project.

Now, U2F has been renamed to FIDO CTAP1 and its successor, the FIDO CTAP2, was
designed together with the W3C WebAuthn API. In 2019, the W3C reached a consensus pub-
lishing the W3C WebAuthn Recommendation. Nowadays, the consortium is developing a

2.2. WebAuthn: a W3C recommendation

second version of the standard, currently as a Working Draft.
« FIDO

— FIDO UZ2F [12], renamed as CTAP1.
- CTAP2 [7]

« WebAuthn W3C: API built into browsers to enable support for FIDO Authentication

— W3C Recommendation: Level 1 [6].
— Working Draft: Level 2 [10].

2.2 WebAuthn: a W3C recommendation

This section covers the concepts of the WebAuthn standard [6]. However, before getting into
details, it is advisable for the reader to review some basic concepts on cryptography. This de-
gree thesis does not cover these concepts as WebAuthn is a recent standard, subject to change,
that involves a deep level of detail on cryptography. Some of them are digital signatures, pub-
lic key cryptography and Public Key Infrastructure (PKI) certificates. However, Appendix C

covers a brief insight on public key cryptography, together with external documentation.

2.2.1 General concepts

The WebAuthn API [6] was developed by the W3C aiming to create a common interface built
on web browsers to access the public key credentials managed by an authenticator. The com-
munication between the web browser and the authenticator is led to the CTAP protocol [7]
that OS and/or web browsers will implement on top of transports like USB, BLE or NFC.

There are two ceremonies, one for registration called Attestation and other for authentica-
tion, named Assertion. Both of them are based on public key cryptography, where the private
key is held by the authenticator and the public key is stored at the server for validation. All
cryptographic operations are performed at the authenticator after the user’s interaction, pre-
venting a malware to trigger any operations without the user’s awareness (see figure 2.2).

Relying Party (hereinafter, R.P.) is the name given to the service web application, includ-
ing the browser scripts and the server application. On the other hand, the authenticator is
a software or hardware implementation of the WebAuthn Authenticator Model, having to
implement several operations compatible with the FIDO CTAP protocol.

The WebAuthn API is built on top of the W3C Credential Management API [13], used to
request password credentials stored in a web browser. WebAuthn, instead of working with
stored passwords of a browser, it uses the new API to request the browser for public-key

credentials managed by an authenticator.

CHAPTER 2. STATE OF THE ART

Attestation

Root Cert
/ . Browser
®

WebAuthn API

0}
N
X

) CTAP protocol
Public *I}ey

USB/BLE/NFC

WebAuthn Schema for
Registering and
Authenticating

\Z j: o %crygtogr‘aghic oger'ations|
Privaté'Key

Figure 2.2: WebAuthn Schema for Registering (Attestation) and Authenticating (Assertion)

2.2.2 Attestation

Attestation is the process of registering a credential in the RP. by using an authenticator.
This credential will always be created by the authenticator and, in hardware authenticators,
all cryptographic operations occur inside the key’s hardware.

The WebAuthn API call for performing the Attestation operationisnavigator.cre-
dentials.create(). This call is parametrized with the Attestation options, which in-
clude, among many other configurations, the challenge buffer, the user info and the R.P ID.
This call obviously will be triggered by the user, requesting the R.P. JavaScript to initiate the
process, requesting the options to their server.

Apart from the options, the call to the authenticator will also include some client data,
being the most important the domain name of the web page, named origin. This is used
afterwards by the R.P. to identify a possible phishing attack (see figure 2.3).

Once the authenticator receives the request by the authenticatorMakeCreden-
tial () CTAP protocol call, it performs the user presence or user verification and it creates
a new public key pair. After creating this key pair, it will concatenate the client data with the

authenticator data (the public key and other specific data). This results in the attestation ob-

2.2. WebAuthn: a W3C recommendation

Relying Party Browser &
WebAuhthn API Authenticator

@ e

paeatap et Y \ PublicKeyCredentialCreationOptions

+ Relying Party id
* Relying Party info
+ challenge . Use¥ izfo Y s

+ user info ! + Client Data Hash
+ R.P. info

:* :*

user verification
new keypair

= = attestation
AuthenticatorAttestationResponse

« clientDataJSON » new public key

+ attestationObject + credential ID

+ attestation

«: *:

Figure 2.3: Attestation network diagram

ject that will be signed resulting in the attestation signature, that follows a specific attestation
format (see section 2.2.4).

However, this attestation signature is done by a specific private key and will be linked
with an attestation certificate. At the R.P. this certificate will serve to verify the certificate
chain and ensure the authenticator model is actually the model it pretends to be and that the
key pair was actually generated by the authenticator. This certificate chain is validated up to
a common root of trust obtained through a FIDO Metadata Service (MDS) [14].

Finally, it is important to distinguish between the two credential storage modalities: res-

ident and non-resident credentials, explained later in section 2.2.5.

2.2.3 Assertion

Assertion is the operation that authenticates a user with a credential that was previously
generated and registered in the RP. Like during registration, all cryptographic operations
will occur at the authenticator.

The WebAuthn API call is navigator.credentials.get (), parametrized with
many options. The most important is the challenge, fetched from the server. The challenge
will serve as the payload that the authenticator must sign with the credential private key, so
it can be verified with the correspondent public key stored at the R.P. server.

In this operation, the browser prepares the client data and does the request via authen-
ticatorGetAssertion() CTAP protocol operation. After the user presence or user

verification test, the authenticator will increment the signature counter (if present) and then

CHAPTER 2. STATE OF THE ART

it generates the assertion signature using the private key of the selected credential. The pay-
load being signed will contain the challenge, the authenticator data and the hash of the client
data, ensuring the integrity of the information.

The credential private key is fetched from the authenticator memory in the case of resident
credentials, or deciphered from the allowed credentials ids list sent with the options in the
case of non-resident credentials (see section 2.2.5).

Finally, the authenticator response will include the signature together with the authenti-
cator data (see figure 2.4). Also, it will include the credential id that was used during Assertion.

Once at the R.P., the signature will be verified with the correspondent credential public key.

Relying Party Browser &
WebAuhthn API Authenticator

®

navigator.credentials.get() }—
PublicKeyCredentialRequestOptions

+ Relying Party id
+ Client Data Hash
« challenge

:> :-+

user verification| .
create Assertion
AuthenticatorAssertionResponse
« clientDatalSON N
« authenticatorData « authenticatorata
« signature « signature

€ -l

Figure 2.4: Assertion network diagram

2.2.4 Attestation types and formats

Attestation types and formats are one of the key points during the implementation of We-
bAuthn. Not only the server should be compatible with them, but also the authentiators and
browsers.

As Amiet explains on [15], attestation has several purposes. The first of them is to “attest
to the provenance of an authenticator and the data it creates, [...] (and) it allows RPs to
verify that the authenticator that generated this public key is really the specific model of
authenticator it claims to be”.

The result of the attestation operation is called attestation object and contains an attestation
statement, that contains an attestation signature. Usually it also includes a certificate chain,

used at the R.P. to verify the signature up to a common root of trust. The attestation statement

2.2. WebAuthn: a W3C recommendation

is generated differently depending on the attestation type used. Besides, each attestation type

provides a different trust model [15]. There are five main attestation types:

« Basic attestation: Uses an attestation private key securely contained in the authenti-
cator burned in at the factory, common for all key pairs generated at the authenticator.

It also contains an attestation certificate.

« Self attestation: Uses the generated private key to sign the correspondent public key.
This does not prove the authenticator authenticity but the ownership of the public key.

+ Attestation CA: Used by authenticators that have a Trusted Platform Module (TPM).
This guarantees the authenticator uses a TPM and preserves the user’s privacy as it

generates a new trusted signing key each time.

+ Elliptic Curve based Direct Anonymous Attestation (ECDAA): Uses the FIDO EC-
DAA algorithm [16]. It ensures that the signing key is not common to other authentica-
tors of the same model, ensuring user’s privacy and reduces the impact of compromising

one attestation private key.

« None.

On the other hand, for a given attestation type, the same information can be expressed
in multiple attestation formats. The most used is the “packed” format, as it supports all the
attestation types except None, which has its own “none” format. The WebAuthn standard

defines the following attestation formats:

« “packed”: Optimized for WebAuthn, supports the four main attestation types.

« “tpm”: Generally used by authenticators that use a Trusted Platform Module as their

cryptographic engine.

« “android-key”: Used by the platform-provided authenticator on Android “N” or later,
based on the Android key attestation [17].

« “android-safetynet”: Used by the platform-provided authenticator on certain An-
droid platforms based on the SafetyNet API [18].

« “fido-u2f”: The format used with FIDO U2F authenticators.
. “none,’

10

CHAPTER 2. STATE OF THE ART

2.2.5 Resident and non-resident credentials

From the authenticator point of view, the credentials can be resident or non-resident. Resident
credentials refer to the ones that are stored on the authenticator’s memory: the private key
is indexed by the web page origin (domain name).

In contrast, when the private key is not stored in the authenticator memory, the credential
is said to be non-resident. Although the private key is not stored inside the authenticator, it
will be needed to sign the authentication (Assertion) challenge.

For this, when the device creates the key pair during registration (Attestation), it creates
a ciphered version of the private key, which is sent to the server as the credential id. Later,
during authentication, this credential id will be included by the server in the allowCredentials
list, so the authenticator will receive it and decipher the credential ID to obtain the correspon-
dent private key. It is also important to mention that the ciphered private keys sent to the
server can only be deciphered with an unike key embedded in each authenticator.

FIDO-UZ2F uses non-resident credentials as the protocol was only used for second-factor
authentication. Because the authenticator is not storing the credentials, there is no constraint
on the amount of credentials an authenticator can manage.

Later, FIDO2 introduced the concept of resident credentials, as an idea for providing a way
to use authenticators as a first-factor or “passwordless” authentication method. Storing the
credential private key in the device memory, as the standard [6] explains in its section 6.2.2,
allows the authenticator to use a credential given only a Relying Party ID, with no need of
the a credential ID.

This design is meant to avoid the server sending a list of credential IDs during authenti-
cation, without firstly identify the user behind the request. It is during authentication (Asser-
tion), when the authenticator provides the user ID (userHandle) so the R.P. can identify the

user and correctly verify the authentication.

User verification Usually when using resident credentials, the authenticator uses user ver-
ification before authenticating. User verification (UV), according to the WebAuthn standard,
has the intention “to be able to distinguish individual users”. That means the authenticator
may use, for example, a device PIN or a fingerprint recognition, protecting it from other users
using the resident credentials held by the key.

It is important to differentiate it from user presence, when only the button should be

pressed to perform a user presence test with an authorization gesture.

2.2.6 'WebAuthn charecteristics and use cases

The WebAuthn architecture is based on public-key cryptography. This means that the server

will only store the public key so, should the server be compromised, the information leak will

11

2.3. Projects and companies around WebAuthn

not jeopardise the account security. Besides, WebAuthn makes phising attacks are more diffi-
cult thanks to digital signatures, which provide authenticity and integrity to the information.

Signed information during authentication includes not only the challenge but also browser
data, such as the “origin”, which is the domain name of the web page. For instance, if an at-
tacker clones a login web page and tricks the user to use the authenticator on their clone,
they will not be able to perform a replay attack by sending the authenticator response to the
original page. This is because of the domain name, which would be different to the original
page, resulting in a signature validation failure.

WebAuthn can be configured as a first or second authentication factor. As a second factor
authentication method, the user would need to use the authenticator to prove their identity
after a first authentication factor, usually a password. If the password is stolen, the attacker
would also need to compromise the second factor (the authenticator) for accessing the ac-
count.

On the other hand, WebAuthn can be also used as a first factor authentication method.
WebAuthn would then replace the password method so the user would directly login by using
the authenticator. This schema is called the “passwordless” authentication.

With this schema, the authenticator is required to use resident credentials (see section 2.2.5).
When using resident credentials, the authenticator resturns a user handle or user id. This user

handle will serve the server to identify the user behind it for validating their authentication.

2.2.7 Backwards compatiblity with FIDO U2F

The FIDO CTAP protocol has two versions, as seen before. The first version, or FIDO CTAP1
[12], is the renamed version of the first approach: FIDO U2F (Universal Second Factor). The
second version, the FIDO CTAP2 [7], is part of the FIDO2 project [11] that involves the W3C
WebAuthn API and seeks for a first-factor authentication mechanism, introducing the concept
of resident credentials, explained in the previous section.

However, WebAuthn is backwards compatible with FIDO U2F, based on the concept of
non-resident credentials. Also, as explained in the standard in its section 2.2 [6], authentica-
tors compatible only with FIDO U2F use a specific Attestation Statement Format and do not
have any mechanism to store a user handle, or user identifier. With resident credentials, this
handler is stored along with the private key, allowing the R.P. to identify a user during au-

thentication. However, with FIDO U2F, this user handle will always be null (see section 2.2.6).

2.3 Projects and companies around WebAuthn

FIDO and WebAuthn have raised interest among some companies and organisations, starting

some projects around this type of authentication.

12

CHAPTER 2. STATE OF THE ART

 Yubico. The Yubikeys are the most well known security keys in the market. Yubico [19]
also contributed actively on the development of FIDO standards and has many projects

around WebAuthn and their hardware devices.

« FIDO Alliance. Fast IDentity Online Alliance [20] joins big companies like Google,
Microsoft, Facebook or Amazon towards the same goal: solve the password’s problem.
It has been the most important organisation around the standards and that have devel-
oped the FIDO U2F/CTAP1 standard, precursor of the FIDO CTAP2. It is the main actor
of the FIDO2 project [11], involving the W3C and WebAuthn. The FIDO alliance also
has a public discussion community to help FIDO2 developers [21].

« World Wide Web Consortium (W3C). The W3C is an international community that
develops open standards [22]. Working with the FIDO Alliance, they developed the
current W3C Recommendation: the WebAuthn API [6]. The working group that is
developing this standard second version has a public mailing list, used to stay updated
on the Github changes of the standard [23].

« Duo Labs. Duo [24] is a CISCO security company that developed some WebAuthn

projects and demos, being the most important WebAuthn.io.

+ Auth0. As an authentication service provider, Auth0 is one of the highlighted com-
panies around authentication research [25]. The company built WebAuthn.me, a demo

and a debugger tool for the WebAuthn.

+ SoloKeys. Solokeys is a company that developed the first open-source FIDO2 security
key, creating a community around its firmware project. They aim to provide a verified

and trustworthy hardware solution as a WebAuthn authenticator [26].

2.4 Implementations of the WebAuthn Relying Party

During the last few years, many developers have demonstrated interest in WebAuthn. The
most common concern is the implementation of a web application that can make use of this
new standard. According to WebAuthn, the entity that authenticates a user by using WebAu-
thn is called a Relying Party. This includes both the server logic and the front-end scripts that
make use of the APL

The following projects are some examples, although there are more:

« py_webauthn. Built as a Python module, it can be used to implement the server op-
erations of a Relying Party. It also provides a class for the user, storing a public key

and a counter. This user is then used for authentication. The project also provides a

13

2.5. Implementations of the WebAuthn Authenticator Model

Flask complete demo with a simple frontend. Only the three main attestation formats

are supported [27].

+ Fido2-lib. A Node]S library that implements the server functionality for WebAuthn.
It implements the registration and authentication operations and provides extensibility
for MDS and some extensions. The library parses the attestation certificates and sup-
ports several attestation formats. Its main developer is one of the engineers at the FIDO
Alliance [28].

+ Fido2-net-lib. A WebAuthn library for .NET, implementing Attestation and Assertion
operations. It also provides some demos, even some examples for integration with

Active Directory [29].

« webauthn-ruby. A Ruby library for implementing a Ruby/Rails server conformant
with a WebAuthn Relying Party. The project provides a demo and extense API docu-

mentation [30].

« webauthn. A library for Go developed by Duo-Labs. It is the server implementation

of the WebAuthn.io demo site. It provides extensive documentation [31].

2.5 Implementations of the WebAuthn Authenticator Model

The section 6 of [6] describes the WebAuthn Authenticator Model. This is an abstract model
implemented, for example, by the FIDO CTAP standards, so they are compatible with WebAu-
thn. FIDO standards are implemented by hardware devices, but the model is not restrictive
and also allows for software implementations that offer the same abstract interface. The fol-

lowing are some examples of devices and software implementations available on the market:

» Google Titan security keys: Hardware devices used by Google to provide a second-

factor solution to their users. It also works with any FIDO U2F compatible service [32].

» Yubikeys: Yubico is one of the main actors of the new standards. They have imple-

mented several series of hardware devices: the yubikeys [4].

+ Solokeys: An open-source project that began as a FIDO U2F firmware evolved into a

FIDO2 firmware implementation, also with open-source hardware [33].

« OnlyKey: This device is conceived as a hardware password manager, being able to store
static passwords as well as OTP codes. Besides, it implements the FIDO U2F standard
[34].

« Thetis: A FIDO UZF certified hardware authenticator [35].

14

CHAPTER 2. STATE OF THE ART

« WearAuthn. An open-source software implementation for Android wearable devices

like smartwatches [36].

» android-webauthn-authenticator: An open-source software implementation as a li-
brary for Android [37].

« OpenSK: An open-source project from google that offers firmware that can be loaded
on some Norton boards. It is intended for research purposes to inspire new authenti-

cator developments [38].

2.6 WebAuthn testing tools

In order to serve as implementation references, there exist an amount of demo websites that
implement an example of authentication with WebAuthn. Besides, some of them allow some
configuration and more information that can help developers to test the protocol. Some of

the most relevant tools are the following:

+ WebAuthn.io. A WebAuthn demo page sponsored by Duo. It works with an open-
sourced backend and frontend that showcases a real implementation with usernames
and a “passwordless” authentication with WebAuthn. It also allows some configura-
tions like the attestation type, authenticator selection and user verification (see fig-
ure 2.5). [8].

ex ample _username

Advanced Settings

User Verification Discouraged

Attestation Type None 2

Authenticator Type Unspecified :

Advanced Settings

Register with Resident Key Not Required

txAuthSimple Extension Go passwordless!

Figure 2.5: WebAuthn.io demo page.

« WebAuthn.org. This site provides an open-source demo with advanced information
about the WebAuthn registration and login operations. It does not provide any config-

uration options (see figure 2.6) [39].

+ Yubico demo. This tool is proprietary software and is intended to showcase all Yubikey
capabilities [40]. It provides an elaborated playground mimics that allows a user to con-

figure the account with a realistic multi-factor authentication use case, with recovery

15

2.6. WebAuthn testing tools

Create a New Account

test

@ ADVANCED

Figure 2.6: WebAuthn.org demo page.

codes, OTP codes and security keys. It also provides a registration and authentication
page for WebAuthn, with no configuration options (see figure 2.7). However, it does

provide all technical information of the data exchanged during the whole process.

Attestation Certificate

Version: 3 (@x2)
Serial Number: 1073904040 (©x400279a8)
Signature Algorithm: sha256WithRSAEncryption
Issuer: CN = Yubico U2F Root CA Serial 4572008631
validity

Not Before: 2014-08-01T00:00:00

Not After: 2050-09-04T00:00:00
Subject: C=SE,O0=Yubico AB,OU=Authenticator Attestation,CN=Yubico U2F
Subject Public Key Info:

Public-Key: (256 bit)

pub:

Verify OTP

1. Register

2. Authenticate

YubiKey Playground

04:5c:b7:0e:a6:6c:13:f2:bf:e@:ff:93:84:d0:b3:43:20:48:
€d:a0:b6:Tb:87:50:1b:72:9b:e6:cd:4d:68:06:ad:e0:52:66:
76:ad:fd:d4:6f:2e:51:64:4f:12:77:65:4:2a:f0:d0:8f:96:
€C:55:3b:b5:f1:45:15:bf:be:9d:do

Curve: secp256rl
X589v3 extensions:

Figure 2.7: WebAuthn.io demo page.

« WebAuthn Test App. This web application provides an extensive amount of informa-
tion and configuration options (see figure 2.8b) as it is intended to serve as a testing
tool. It lets registering and authenticating several independent credentials along with
all technical information retrieved during the registration and authentication (see fig-
ure 2.8a) [41].

« WebAuthn checker. A web application that provides some information and verifies
that the operation was performed correctly (see figure 2.9). It shows the validation
details on both registration and authentication operations. Finally it also demonstrates

some WebAuthn features like a concrete extension and some configurations [42].

+ WebAuthn.me. This site provides an interactive WebAuthn tutorial and a debugger,

16

CHAPTER 2. STATE OF THE ART

WebAuthn Test App SIGN OUT Create Credential Options

AP Info | UndefinedReiD ¥
CREDENTIALS

User Info Bob ~
bob@example.com Attachment | CrossPlatform ¥ |

Require Resident Key _Undefined v
. User Verification Undefined ~
2 Attestation Undefined ~
RPID CredProtect Extension Undefined ~
webauthntest azurewebsites net —
AAGUID Enforce CredProtect Undefined v
00 0 —
0

HMAC Extension Undefined i

Credential Creation Data [details]
Key Type: EC Use ES256
Use RS256

Attestation: none

Resident Key: false

Last Authentication Data [details]

Use excludeCredentials
UP=1, UV=1, SignCount=66 O

DELETE
‘CANCEL CREATE

(a) Main dashboard. (b) Registration configuration.

Figure 2.8: WebAuthn Test App.

To use this to test Web Authentication support in Firefox, be sure you're using Firefox 60 or later.

Create Credential

Contacting token... please perform your verification gesture (e.g.,
Note: Raw response in console.

: "None" Attestation Format ::

[PASS] Calculated RP ID hash must match what the browser derived.: pl
[PASS] User presence and Attestation Object must both be set: 65 == (
[PASS] Credential ID from CBOR and Raw ID match: c84406325b2facbbba2:
Keypair Identifier: c84406325b2facbbba22e2e9d3c5272263cfd414b5f4cad3!
Public Key: ©44bf35c453d653a7196aedca728eedf4575d394cc319727898ba943

:: CBOR Attestation Object Data ::

RP ID Hash: a642d21b7c6d55elce23c5399828d2c749bfeabef2fe@3ccIelncdfd(
Counter: @0000000 Flags: 65

IAAGUID:

Figure 2.9: WebAuthn Checker tool.

crafted by AuthO company. The debugger provides all the configuration options (see
figure 2.10a), intended for developers to understand and test the registration and au-
thentication processes. After the process has finished, it shows all related data and
allows downloading it, both in CBOR encoding and in JSON (see figure 2.10b) [9].

2.7 Conclusion

As soon as the W3C got involved in the FIDO2 project, many companies and developers
started to build demonstrations of the new API the consortium was developing: the WebAu-
thn API. This new standard was based on previous works of the FIDO Alliance, a group of

big companies such as Google or Microsoft that started the path towards this new public-

17

2.7. Conclusion

Register New Credentials

DOWNLOAD (JSON)

credentialPublicKey

navigator.credentials.create({
publicKey: {
rp: {
id:
name: | test
}
user: {
4d: | Regenerate binary, andom)
name: | test
displayName: TestUser
}
challenge: (REGEASEERERERAET
clientDataJSON: {
“challenge”

“clientExtens:
"hashAlgorithr

pubKeyCredParams: [

{

(a) Registration configuration. (b) Output information.

Figure 2.10: WebAuthn.me App.

key cryptography authentication. In the first place, the new standards were designed as a
second-factor authentication mechanism, protecting users from phishing attacks. However,
the idea of a “passwordless” authentication flow soon appeared, making these new standards
a potential first-factor authentication mechanism.

At this point, several developers and companies worked to create reference implemen-
tation examples and public demonstrations, to introduce and boost the adoption of the new
protocol. The first working examples and demo web pages are linked with the main compa-
nies involved, like Auth0, Duo Security or Yubico. In parallel, while the main browsers were
implementing the WebAuthn API, some developers created web tools that allowed anyone
to test the protocol. Furthermore, new companies like Solokeys have also shown interest in
building alternative authenticators, as in the first place Yubico was the main actor.

Nowadays, the WebAuthn API has been released as a W3C recommendation and the con-
sortium is working on a Level 2 version to improve it. This situation demonstrates that
there still is a need for flexible and independent testing environments that allow protocol
researchers and browser and authenticator developers to test different use cases. Currently,
there are some tools that offer configuration options, although they do not allow manipulat-
ing every field within the API calls. Also, most of them allow no control over the registered
credentials and they are usually tight with a user account, as their main purpose is not testing,
but to represent a realistic use case. Finally, some of the tools show the details at the end of
the operation and do not allow the developer to stop, modify parameters and replay the API

call during the process.

18

Chapter 3

Planning and methodology

BEFORE getting into details about the tool development and the authenticators testing, this
section will explain the election of the engineering methodology used in this project.

Besides, the project defines a main time and cost estimate, represented in a Gantt diagram.

3.1 Engineering methodology

The methodology used in this project is based on Adaptive Software Development (ASD) [43],
an agile methodology that replaces determinism with emergence. ASD’s main idea is to fo-
cus on collaboration and learning as a technique to build complex systems, introducing the
concept of Speculation in contrast to Planning. During Speculation, the project initiation in-
formation is used to define a set of release cycles or software increments that will be required
for the project.

This degree thesis fits in ASD methodology in two ways. First, there are no initial set
of features but a mission statement. This is due to the fact that the development team does
not have a prior exposure to the used technology, as WebAuthn is a recent standard. After an
initial Speculation phase, there will be defined a set of software increments which are adaptive
to changes on the protocol specification or support. Secondly, the learning cycles are based
on short iterations that involve design, build and review. These short iterations allow basic
functionality to be delivered fast. Besides, during each iteration, the knowledge gathered by
correcting small mistakes lead to greater experience and eventually mastery in the problem

domain: strong authentication.

3.1.1 Tool development

ASD lifecycle is based on an incremental and agile lifecycle. For the development of the tool,
the Systems Development Life Cycle (SDLC) Iterative Incremental model is used [44]. In each

iteration or cycle, a set of requirements are defined, which will be analysed for designing and

19

3.1. Engineering methodology

coding the deliverable solution, which will constitute a software increment (see figure 3.1).
Next iterations will include increased functionality, as well as correcting defects, if any, from

the prior delivery.

Gather
requirements

Examine

Design Test it

Figure 3.1: Iterative cycle in SDLC Iterative Incremental model.

Each iteration of the SDLC Iterative Incremental model will be tracked by using a Kanban
board [45], composed of several columns, which aim to track the amount of Work In Progress
(WIP). The “To Do” column holds the pending features for the iteration, followed by a “In
progress” and a “Test” columns, used for tracking the progress of development of each feature
(see figure 3.2).

Todo + o In progress + o Test + o 5 Done + o

& [Backend] Basic assertion (= [Backend & Frontend] Assertion model

(¥ assertionOptions. (¥ Model encoders and decoders for

s Encrypt certificates. See this

Added by martinord

) (Backend]

Figure 3.2: Kanban board used in the first iteration. Hosted at Github.

At the end of each iteration, integration testing is performed, which is based on End to
End (E2E) tests. E2E testing allows performing, mostly, manual tests to the final software
product. This is specially interesting in this project as most of the features are related with
the integration of the hardware authenticators with the developed system. As a result of the
testing and ASD evaluation, the requirements for the next iteration are defined, correcting
errors and including new features. These new features are included in the Kanban board in a

“Backlog” column, which will be transferred to the next iteration.

Finally, the defined iterations are:

20

CHAPTER 3. PLANNING AND METHODOLOGY

1. Basic operations implementation. Implement REST backend and the minimal fron-

tend to trigger registration and authentication.

2. Displaying information to the user. Show the information involved in the process
at the frontend.

3. Modifiable options. Implement forms for the user to be able to modify the configu-

ration options of registration and authentication.

4. Structuring the displayed data. Parse and structure the involved data and better

display it in the frontend, allowing to copy the data.

5. Support for several registered credentials. Allow registering more than one cre-

dential or authenticator for multi-credential testing environments.

6. Android Safetynet: a new Attestation format. Implement the Android Safetynet

attestation format for using the tool with the Android platform.

7. Improving user experience. Frontend improvements regarding the displayed data,

browser feature detection and instructing the user on how to use the tool.

8. Extending possible tests. Allow deletion of registered credentials and implement

resident credentials support.

Regarding the used tools, the project uses a local Git for the version control, synchro-
nized with a Github remote repository. At the end of each iteration, the git tags are used for
establishing numbered versions, following the format v<main release>.<iteration>.<minor
release>. For instance, the iteration 2 will be tagged as v0.2.0.

During the development phase, some debugging tools are used for white box E2E testing.
The main used tool was Visual Studio IDE in debugging mode for Node]S.

Once an iteration is finished, it will be delivered by deploying on the production server
as explained in the Appendix A. Moreover, for automated deployments, refer to Appendix B,

where it is explained the development with Docker containers.

3.1.2 Authenticators testing

This project also includes the testing of physical authenticators, aiming its feature exploration
and validation. After performing a market study of the most relevant available WebAuthn au-
thenticators, a set of the most relevant devices is acquired (see chapter 6). In order to conclude
the compatibility of each device, some compatibility tests are defined, namely: supported
attestation mechanisms, communication transports, cryptographic algorithms and resident

credentials.

21

3.2. Project planning and monitoring

Therefore, compatibility tests will be applied to the most representative authenticators.
These tests will use features of the WebAuthn standard by using the available options of the
developed tool (DebAuthn), configuring it accordingly and documenting the device response

under equivalent testing environments:

« Chromium browser v83 on Ubuntu 18.04.5 LTS.

« Chrome browser v83 on Android 7.

3.2 Project planning and monitoring

This project is structured taking into account the initial phase of research on WebAuthn for
defining the tool basic functionality.

In coherence to the ASD methodology, the tool implementation is divided in several soft-
ware increments that represent the basic functionality of the tool. As it can be seen in the
project planning, future iterations are expected but not yet defined. The project management
in ASD is based on the fact that many resource management activities are experiments, used
as learning opportunities for the improvements in the future.

The monitoring of the project is performed by doing periodic reviews at the end of each
development iteration. During them, the project manager meets the development team to
evaluate the iteration result and define future functionality increments. In this project, the
role of project manager was shared among the thesis directors and the student. Due to exter-
nal circumstances, most of the review meetings were performed by videoconference.

In terms of time cost and project planning, the following project phases were initially

defined:

1. Researching on WebAuthn.

(a) Study of Relying Party configuration options.
(b) Study of the Authenticator Model implementations.

(c) Study of the client implementations in a form of web browsers.
2. Tool implementation.

(a) Design and analysis: research, technology and compatibility.

(b) Implementation of Attestation and Assertion operations in the server.
(c) Implementation of a web interface for the tool as a client.
)

(d) Software increments: add functionality.

3. Testing the tool with different web browsers: Chrome and Firefox.

22

CHAPTER 3. PLANNING AND METHODOLOGY

4. Testing different physical authenticators.
(a) Testing with different configurations.
5. Documentation.

(a) Writing the dissertation final report.

(b) Writing installation documentation for the use of the open source project.

In terms of project monitoring, the figure 3.3 shows a Gantt diagram with the final time
cost of each project phase at the end of the project. Red week numbers correspond with
delivery times for the project draft and the forecasted degree thesis submission.

At the end of the project, some of these phases changed due to the project needs. For
instance, testing the tool with browsers (phase 3), according to the methodology, was included
in each iteration. Moreover, the implementation of the web interface (phase 2.c) was done in

parallel to the basic operations implementation. Therefore, these phases do not appear in the
Gantt diagram.

5 6 7 8 9 10111213 14 15 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 32 33 34 35 36

0.a State of the Art research 2 weeks
0.b Write project draft 3 weeks
1. Researching on WebAuthn 6 weeks
2.a Tool design and analysis 1 week

2.b Implementation of basic operations 5 weeks
2.d Software increments and funct. 9 weeks
4. Testing authenticators 5 weeks
5.a Degree thesis 15 weeks
5.b Project installation documentation 3 weeks

Figure 3.3: Gantt diagram.

3.2.1 Materials and cost estimate

The project has materials and human resources needs for its completion. This section includes

the allocation of these resources and its associated cost.

Materials and infrastructure The following are the minimal main infrastructure and ma-

terials for the tool development, deployment and test:

« Server for the backend installation. Preferably Linux based, but in any case Node]S and

NPM manager is required.

« Personal computer serving as a testing environment, with USB port and Chromium
>=70 (or Chrome) [46] and Firefox >=60 [47].

23

3.2. Project planning and monitoring

« Physical authenticators compatible with FIDO CTAP1/U2F or CTAP2 (FIDO2) [7].

The cost estimate for the hosting of a Virtual Private Server (VPS) based on a quick market
study would be 38€ per 30 days, 4GB of RAM and 1 assigned CPU. Therefore, 1.26€ a day.
The personal computer used for the development and testing has a rounded cost of 1200€.
Assuming the lifetime of a laptop is four years, it would result in 0.82€ a day. Finally, the
costs of physical authenticators are determined as a fixed cost. The used authenticators are

enumerated in the section 6, resulting in a total cost of 140€.

Human resources For this project, the tem consists of three people. A full stack developer
that also assumes a role of project manager, guided and supervised by two additional project
managers that will assist and guide the research tasks. The associated costs can be based
on the official bulletin release of minimum salaries on the sector [48]. The cost estimate per
8h of daily work would result in: for the project managers or analysts 85€, while for the

development team it would be 65€.

3.2.2 Estimated and monitored cost

The cost estimate would be calculated in terms of the minimal amount of days the resource
was used. For human resources, it is measured in terms of daily work. Every week of the
project it is estimated to take 5 days of work for the development team and 2 for the project

managers. Taking into account the previous sections, the cost estimate is summarized in the

following table:
Description Cost per day Forecasted days Monitored days Forecasted cost Real cost
2 Project managers 170 40 56 6800 9520
Development team 65 100 140 6500 9100
Hosting 1.26 140 196 176.40 246.96
Hardware 0.82 60 84 49.20 68.88
Devices - - - 140 140
TOTAL 13665.60 19075.84

Table 3.1: Cost estimate and monitored cost in euros (€).

In summary, the project was planned to be delivered by June but it was delayed until
August, as shown in the Gantt diagram (see figure 3.3). Delaying the project 8 weeks increased
the associated costs by 39.61%.

24

Chapter 4

Analysis

THIS section analyzes main purpose of the tool and argues the technological and architec-

ture initial decisions, before explaining the development of the tool.

4.1 Mission statement

First of all, it is greatly important to identify the tool’s main purpose. The designed web ap-
plication was designed to serve developers, testers and researchers of the WebAuthn protocol
to design and audit a specific use case, by manipulating the protocol options testing the be-
haviour. This testing environment should be open for anyone and does not attempt to serve,
as other tools, as a proof of concept or demonstration of a concrete production system that
uses WebAuthn as a protocol to authenticate (log in) users in a system.

This approach helps researchers not to be tight to a persistent user account. As seen in
other tools, the user accounts lasted a limited amount of time. Despite this, there were no
restrictions on registering the same user several times for providing support for multiple reg-
istered credentials. In these tools, some usernames could be used by two different researchers
during the same time period so the registered credentials will belong to either of them. That
means that a real user of the system, when requesting authentication with a username also
used by another researcher, will find credentials that they have not registered themselves, but
some others have.

This restriction could have been solved by registering real usernames that are not con-
flicting. However, this solution obligates potential users to create an account for performing
their tests, even if they wish to test a concrete case once. Also, this means persistent storage
is needed at the server side, containing user’s information.

With no doubt, in a web application that uses WebAuthn as authentication mechanism
for user authorization, this persistence is required. In contrast, a web application that does

not use information persistence offers users to perform tests freely with no constraints. For

25

4.2. Actors and use cases

example, by not linking the user to the credentials, a tester could modify the user field when
registering a different credential, and check how credentials that were registered with differ-
ent usernames are allowed to authenticate in the same operation. In fact, the protocol does
not restrict how users are linked with credentials, so by not implementing this link, the tool
becomes more flexible.

Another feature of the tool is to provide the insights of the information treated at the
server side, regardless of the operation result. That is, the tool user may intentionally provoke
a failed validation with the purpose of debugging a specific use case.

In brief, the tool designed here was not intended to provide a demonstration of a real
authentication for users but to serve as a testing environment with no constraints. Therefore,
it was not built to support user accounts in the first place, nor native roaming credentials
among devices.

The application, however, provides an interface to request the creation of new creden-
tials and authentication of registered credentials during a limited amount of time. The server
handles the minimal amount of information that is required by the standard to validate the
authentication of the user and, also, provides the server validation data during the process.

By doing this, the user is able to debug both registration and authentication use cases
as they are informed of successful and failed operations. Then, the tool can serve as a ref-
erence for developers to debug the outcome of authenticators and browsers with different

configurations before starting coding their own implementation.

4.2 Actors and use cases

The debugging tool is intended to serve users with visual feedback of the operations per-
formed in two main operations: Attestation, or registering ceremony and Assertion, or au-

thentication ceremony. Therefore, two main use cases are defined:
« The user uses an authenticator to perform Attestation, registering a credential.
« The user uses an authenticator to perform Assertion, authenticating with a credential.

This tool is conceived as a web application, showcasing the main squema of the WebAu-
thn protocol [6]. The web application is a server-client architecture, consisting of a server,
alias backend, and a client running on a web browser, alias frontend. The user accesses the
application through the user interface, provided by the Relying Party. Therefore, two actors

within the protocol are defined, namely:

« A Relying Party, that supplies information such as randomly generated challenges
through REST endpoints as well as serving the static user interface with client-side

logic to a compatible web browser.

26

CHAPTER 4. ANALYSIS

« The user, that uses an authenticator compatible with the WebAuthn Authenticator
Model.

4.3 Architecture and technology election

Regarding the server-client communication, the application involves the use of a HTTPS/TLS
web browser and a REST server. The server exposes endpoints for requesting and posting
registration and authentication information in form of attestation and assertion WebAuthn
objects.

The server exposing the REST service can be implemented in many languages. One well
known library that enables the use for both serving static web content as well as the exposure
of a REST service is the Express]S library [49], for Node]JS JavaScript framework [50]. This is
a well maintained and widely used server-side JS framework with many pluggable modules
or libraries.

On the other hand, for the frontend, there exists an obvious need for web logic, namely
JavaScript code. This logic is used to interact with the WebAuthn API of the browser. How-
ever, JS can also be used for controlling an asynchronous communication between the server
and the client. This communication involves the registration and authentication information,
which can be represented in JSON files. For this reason, the JS code can make use of AJAX
(Asynchronous JavaScript and XML) requests to the REST endpoints through HTTP.

The user interface aims to dynamically show the information exchanged with both the
Relying Party server and the user’s authenticator. Although WebAuthn does not require an
application to perform asynchronous requests to be compatible, it can be a great improvement

in two ways:

« It would better manage data consistency and user experience.

« It will reduce network traffic as it does not load static web content more often than

required.

Besides, the JS script should be able to modify HTML DOM objects for displaying the
information needed dynamically resulting from the asynchronous requests. This DOM ma-
nipulation can directly be done with JS scripts. However, for this purpose there also exist
two main JS frameworks that provide an extensive tool for reactive elements and routing, im-
plementing a Single Page Application (SPA): ReactJS and Vue]JS. Both of them allow building
minified static files that will compose the SPA with the desired asynchronous functionality.

Additionally, having in mind the original idea of creating an easily extensible tool, it is
a better idea to use a well known JS framework that enables the capability of creating loose

coupled components. In Vue]S [51], each reactive component can be defined in a single file,

27

4.3. Architecture and technology election

binding CSS, HTML and]S logic together. This approach makes the development easily plug-
gable, as well as compatible with the already exposed features needed on the client-side.
Last but not least, the server needs to implement all attestation and assertion operations
defined by WebAuthn. The development of these cryptographic operations is approached by
several libraries in different programming languages, as analyzed in chapter 2.
In this case, the fido2-1ib Node]S library was used, as it provides an open source solution
published as a npm package with online documentation. Nevertheless, as it will be explained

later, it was necessary to adapt and extend the functionality of the library.

28

Chapter 5

Development

CCORDING to the Incremental Iterative Model, the tool, named DebAuthn, is developed
Y, &. in software increments. This chapter includes a section per software development iter-
ation, including the analysis of requirements, technical details and the iteration evaluation or

testing.

5.1 Basic operations implementation

This first iteration aimed to cover as a first step the implementation of basic functionality
of the two main operations: Attestation and Assertion, corresponding to registration and
authentication respectively. Besides, it served as a first experiment on the project domain:
WebAuthn. The first subsection argues the general project setup and architecture while the

following subsections will individually approach registration and authentication operations.

5.1.1 General aspects

Both Attestation (registration) and Assertion (authentication) require an options object that
will serve as input configuration for the WebAuthn API requests to the authenticator. These
requests will answer with the correspondent response from the authenticator, sent back to

the server for validation, as shown in the table 5.1.

Operation =~ WebAuthn API Request Input Output

Attestation ~ navigator.credentials.create() { publicKey: PublicKeyCredentialCreationOptions } PublicKeyCredential
Assertion navigator.credentials.get() { publicKey: PublicKeyCredentialRequestOptions} PublicKeyCredential

Table 5.1: WebAuthn API Requests: Attestation and Assertion.

As said, both create and get WebAuthn API requests require an object as input. This
object contains, as it will be seen later, some configurations or options. Among other

parameters, they include the challenge, which is generated at the server side. Regarding the

29

5.1. Basic operations implementation

rest of the parameters contained in the object, most of them are dependent on the server
configuration. Hence, the whole object will be created at the server side and sent to the client
when requested via a HTTP GET method request.

Secondly, the WebAuthn API requests will return a response from the authenticator,
which needs to be sent to the server in order to obtain the operation result, after valida-
tion. For this purpose, the HTTP POST method is used to send the response object and to
obtain this result from the server. Having in mind the explained design, four endpoints were
defined (see table 7.1).

REST Endpoint Method Request payload Response payload
/attestation/options GET None PublicKeyCredentialCreationOptions
/attestation/result ~ POST AuthenticatorAttestationResponse ~ AttestationResult
/assertion/options ~ GET None PublicKeyCredentialRequestOptions
/assertion/result POST AuthenticatorAssertionResponse ~ AssertionResult

Table 5.2: Initial REST endpoints exposed by the backend for Attestation and Assertion.

The asynchronous implementation of the REST service in Express]S is based on callback
functions, called middleware functions, which serve as handlers for the incoming requests.
These are used for declaring the already mentioned endpoint routing, registering in each
router a controller that will call the specific webauthn validators that will be explained in the
following subsections.

With respect to server information management, session information was used. This is
key for the web server to keep the state of the requests. As explained, when the options
are requested to the server, it creates a challenge, among other parameters. This challenge,
however, is needed for validating when the authenticator response is posted. On the other
hand, when registering a credential in the system, the public key needs to be stored in the
server so it can later be authenticated.

As explained in the section 4, at first, there are no user accounts and the tool does not
manage persistent data, so the registered credential public key should be attached to the user
temporal session.

For the implementation, the selected approach is to store all this data on the server side,
while a client-side cookie holds a session identifier. A technology that implements this is
the Express]S session middleware. It can be configured with many stores, like in-memory
implementations. In this case, in order to allow easy management and storage of data like
Buffer objects in an object-like structure, connect-mongo storage was used. For storing
the session data, it uses an external MongoDB [52], a database based on NoSQL documents.
Connect-mongo library also can be configured with a t ime-to-11ive parameter, deleting

the stored data after a defined time. In this case, the session data will be deleted after 1 hour

30

CHAPTER 5. DEVELOPMENT

so the application becomes more scalable.

The server, apart from exposing the REST service, it should serve as a web server for ac-
cessing static public files. This was achieved in Express]S by the use of the static middleware
provided by the framework. This middleware allows to set a folder within the working direc-
tory to serve the static files, like the HTML, CSS and JavaScript files of a web page. Then, this
middleware was assigned to the °/’ route, so both the REST service and the static content are
served by the same server.

Finally, regarding the WebAuthn Relying Party operations, as it will be explained later,
the server needs some login. The server-side attestation and assertion validation is well im-
plemented in the asynchronous £ido2-11b Node]S library [28], so all library configuration
has been defined in a separate module, importing the WebAuthn operations into the project.
These functions will be used by the REST controllers when receiving the requests from the
client.

On the other hand, the user interface was implemented in Vue]JS, as discussed in the Anal-
ysis section. This iteration involved the implementation of the basic operation of registration
and authentication so, for this reason, only two buttons were required at the user interface.
The logic behind the button triggers the AJAX requests to the defined endpoints by using
the axios library [53]. The scripts will also utilise the WebAuthn API that interfaces with the
authenticator through the browser, as explained later.

Vue]S composes a Single Page Application, enabling a powerful kit for the development of
complex functionalities for later iterations. Accordingly, two main components are defined:
Attestation and Assertion. At this point, each VueJS component only included a
button, and the related JavaScript functions (see figure 5.2a). Figure 5.1 shows the common

steps for both operations, involving the asynchronous REST requests, namely:

1. The user clicks the button.

2. The options are requested to the server.

3. The server generates the options and sends them.

4. The call to the authenticator is done using the requested options.
5. The user performs interaction with the authenticator.

6. The authenticator response is posted to the server.

7. The server replies with the operation result.

8. The result is parsed. If successful, an alert is shown to the user (see figure 5.2b).

31

5.1. Basic operations implementation

Relying Party Browser Authenticator User

¢ I o B

i < 1. Clicks Attestationior Assertien button

<2. Reguest Options

3. Options -

. . ignat
4. call to authenticator '

with Options
2 =

signature : ; . 5. Interactiocn
i verification /

6. Authenticator
Response

-

‘ 6. Authenticator
/ Response
- p

7. Result

-

Figure 5.1: WebAuthn frontend complete flow.

5.1.2 Attestation

Attestation is the process of registering a credential generated by the authenticator in the
system, for later authentication. This process involves signing a challenge together with other
client data as the origin and the operation type, concatenated with the authenticator data (the
generated public key and the authenticator properties). Once the authenticator response is
received, it is validated by the library at the server-side and the result is returned to the client.

In order to send the options and the authenticator result object using a JSON, Buffers
(binary data) such as the challenge should be sent in an encoded form, decoding them at the
other side. For instance, binary buffers can be encoded in base64 format. In this first iteration
it was defined one class per object, with two static methods: encode and decode, that
return the corresponding encoded and decoded object respectively.

On the other hand, two request handlers were defined in the attestation controller, cor-
responding to each endpoint. The beginAttestation handler will send a PublicKeyCre-
dentialCreationOptions object once encoded. Then, this object is decoded at the
client-side component’s logic and passed to the authenticator via the WebAuthn API na-
vigator.credentials.create(). Figure 5.3 shows the prompts displayed by the
browser after the call.

Once the authenticator returns the AuthenticatorAttestationResponse ob-
ject, it is encoded and sent to the server. This object is then handled by the finishAttes-
tation function. It will then decode the object and use the fido2-lib correspondent function

32

CHAPTER 5. DEVELOPMENT

Operations

localhost:5000 says

Attestation successful

Attestation

(b) Alert

Assertion
(a) Attestation and Assertion Vue]S com-

ponents.

Figure 5.2: Basic operations implementation: frontend.

. Allow this site k ity key?
Use your security key with localhost B N SO TIETELIT T

localhost wants to see the make and model of your
security key

Insert your security key and touch it

Cancel Block Allow

Figure 5.3: Browser prompts in Chrome when performing Attestation.

to validate the Attestation.

However, in order for this last function to validate the response from the authenticator,
it needs to correlate both separate requests. For this purpose a new object was designed:
AttestationExpectations. Once the first request is performed, this object contain-
ing the challenge, a factor and an origin configuration is saved by using the session data.
From now on, this data will be referred to as ‘expectations’, as they are the parameters
expected at the authenticator response.

Finally, when the second request arrives, the session information is retrieved and both the
authenticator response and the expectations objects are used for validation by the fido2-lib
library (see figure 5.4). The validation consists in several checks related to the protocol, like
parsing the attestation certificate and checking the signature. By using the expectations, the
library checks that the same challenge was signed in the authenticator response and that the

origin has not changed, detecting a potential MitM attack.

5.1.3 Assertion

Assertion is the process of authenticating using an authenticator holding the private part
of the credential. The process, again, involves signing a challenge provided by the server to

demonstrate the credential authenticity. Therefore, in the same way as it was done during At-

33

5.1. Basic operations implementation

Browser
WebAuthn API

CTAP protocol
SESSION USB/BLE/NFC

registeredCredentials
attExpectations

DebAuthn Architecture
Attestation Ceremony

=2
0

O
of'\s
$° x>
c‘ea
~f—- \, ;: o %cr‘yptograjhic oper‘ationsl
Private\'Key

Figure 5.4: DebAuthn architecture Attestation cermony.

testation, two classes were defined with the correspondent encode and decode static functions,
in order to send the options and the response Buffers. Also, two controllers were implemented
for the correspondent REST endpoints : beginAssertionand finishAssertion.

In this case, PublicKeyCredentialRequestOptions objectis sent to the client
upon a first request and, when the authenticator responds with the AuthenticatorAsser-
tionResponse object, it is sent from the client to the server, in order to be validated.

At this point, the registered credentials are non-resident (see section 2.2.5) due to the
default registration options, as it is done in FIDO U2F (FIDO CTAP1), ensuring that the tool
is working with any authenticator. That means the private keys are not actually stored in the
authenticator but sent encrypted to the server as the credential id. It is only the authenticator
who can asymmetrically decrypt the credential id. Therefore, the original id generated at
attestation operation needs to be returned at assertion so the authenticator can decrypt it to
obtain the private key.

In order to do that, this original id of the registered credential (named rawId) needs to
be stored in the backend so it can be sent back when authenticating. The WebAuthn stan-
dard supports this by allowCredentials Assertion options field. This is a list of all
credential ids of the credentials that can be used to authenticate the given user, by using the
WebAuthn APInavigator.credentials. get () (see step 2 of figure 5.5). Once this

is given to the authenticator, it will extract the needed credential id, decrypt it and obtain the

34

CHAPTER 5. DEVELOPMENT

credential private key, used for completing the operation.

In this iteration, a bug was found in the library. When calling the fido2-1ib library function
that validates the assertion authenticator response, it was giving an error related to the type of
the authenticator response. After some research and testing, this issue [54] was found in the
github repository of the fido2-lib, and a pull request fixing the issue, so that it typecasts the
authenticator data to an ArrayBuffer [55]. However, this pull request has not been yet merged,
so it was necessary to manually patch the Node]S dependency inside the node_modules/
directory.

Finally, just like during attestation, the library function that validates the authenticator
response also required the design of the AssertionExpectations object. Like the
attestation procedure, these expectations are saved upon the first request, saving the chal-
lenge, the origin and the factor parameters, which are later used during the validation (see

figure 5.5).

Browser
WebAuthn API

CTAP protocol
USB/BLE/NFC

SESSION

registeredCredentials
assExpectations

DebAuthn Architecture
Assertion Ceremony

o] .

%E
\ ,:7 %cryp‘togr‘aphic opera‘tions‘
L)
Pr‘ivate\ Key

Figure 5.5: DebAuthn architecture Assertion cermony.

5.2 Displaying information to the user

At this point, the user was able to perform both Attestation and Assertion successfully by
using an authenticator. However, two buttons were not enough for the user to be aware of

the actions performed by the scripts and, should an error occur, no alert is triggered and

35

5.2. Displaying information to the user

displayed to the user. In this second iteration, the main idea was to give some information to
the user, including both alerts and the basic data involved.

To this effect, as there exists a need for further display functionality, it was introduced
the use of Vuetify [56], a Vue]S plugin for reactive Ul components for showing dialogs or
managing routing through the Single Page Application. Also, this module served as a CSS
library with design helpers as its grid system.

5.2.1 Error handlers

Error handling is key in any application and this web application is not an exception, and more
especially in this tool, whose purpose is debugging. Also, as a debugging tool, it is interesting
for the user to visualize all error occurring both at the server during validation and at the
browser during the communication with the authenticator. By having this information, the
user can better debug the complete functioning of the protocol.

For this purpose, error catchers and handlers were included both at the server and client
(see Appendix F). At the server, all validation functions of the library were wrapped with
error catchers, triggering a general callback function acting as handler. This function returns
a HTTP 500 error code to the client with the correspondent message from the event.

At the client, the asynchronous requests need to handle these errors. On error, an alert
including the corresponding error message (see figure 5.6) is rendered. Apart from the catched
backend errors, the WebAuthn API calls were also wrapped around error catchers so, upon

failure, it also prompts an error message using the same alert component.

5.2.2 Frontend routing

The previous user interface was composed of two simple components with a single button in
each. However, next iterations will include more information and controls for users to config-
ure and debug the operations. Also, from the user experience point of view, it is interesting to
divide registration and authentication in two different sections of the tool. For this purpose,
the two operations were separated in two different screens or pages: one for registration of
credentials (Attestation) and one for authenticating with them (Assertion).

For rendering different pages of a SPA, a Vue Router [57] is configured. This module
intercepts the links and renders the correspondent component within the app template. That
means that static components that are common to both pages, namely, the header and the
footer, do not need to be reloaded (see figure 5.10).

Finally, Vuetify tabs were added for allowing the user to switch between the two pages,

triggering the renderization of the correspondent component (see figure 5.10).

36

CHAPTER 5. DEVELOPMENT

5.2.3 Alerts and dialogs

Apart from the dynamic alerts for errors, a success dialog is shown upon success on the
Attestation or Assertion operation (see figure 5.7). The dialog component from the Vuetify
library is displayed after the operation result from the backend is checked. This check is
performed by using the audit data embedded into the backend webauthn library response,

forwarded to the frontend.

A\ expected 'publicKey should be String, got object QI

Figure 5.6: Alert component of the frontend.

Successful

You have successfully registered the credential through Attestation operation.
CLOSE

Figure 5.7: Dialog component of the frontend.

5.2.4 Splitting functionality and displaying information

Finally, both Attestation and Assertion operations are composed of three calls or requests (see

figure 5.8), as mentioned in the previous iteration, namely:

+ Options request to the backend.
« Request to the authenticator through WebAuthn APL

« Authenticator response POST and validation request.

As the tool itself is intended to help with debugging tasks, these three steps were sepa-
rated, instead of having a single button. Having three different sections allows the user to
visualize the protocol flow and to stop at each step to verify all the data involved. For this
first approach, the Vuetify stepper Ul component was used. Also, the function with all func-
tionality was splitted in three, each one containing the logic and data of a request.

Once all the procedures were divided, each step can display the data involved in the cor-
respondent request (see figures 5.9 and 5.10). For instance, when Attestation options are
fetched from the server, they can be displayed to the user before triggering the request to the
authenticator. This was configured with Vue]S data binding.

37

5.3. Modifiable options

Relying Party Browser Authenticator User

3 >« A&

< 1. Clicks Attestation?or Assertion button

STEP 1: Options

<2. Request Options

3. Options

> < 4. Reviews Options &nd Clicks Continue

i 5. call to authenticator STEP 2: Authenticator call

with Options > /4-

L

- 6. Interaction

7. Authenticator
Response

A

@8- Reviews Authent. Reisponse and Clicks Continue |

STEP 3: [Resul .
iy 5 . Authenticator
[- Response
".‘
10. Result > i
‘ - 11. Reviews Result and Clicks Finish
Figure 5.8: Frontend flow with the three steps.
o Request Attestation options ° Post the response and validate
send a req o BRIEIn AnEsE Hen o Request Attestation options Send result and request fts validation
5"6“%‘8“(.’""2 “direct’, "rp": (:nar!we': "DebAu { "audit": { "validExpectations"; true, "vi
"lcr;:l:nge' g “Euf;:rr"'““da‘lar[;2. o © Cellthe authenticator "credentialPublicKeyPem’, "rawClientl
. . 5 o , lerquest authentics 1gh WebA ! " " "o "o o
117, 158, 41,209, 32, 82, 254, 175, 5, 242, 11 ST il Gl el R oy
[object PublicKeyCredential] certification could not be found"], ["x!

}

"basic-constraints”, {} |, ["key-usage”, |
}, "requiredExpectations": ["origin”, "ch
NEXT NEXT "NDrfIK4wVkU940NK3dvHR_sO9mte
(c) Step 3: Send authenti-
cator response for valida-
tion

(b) Step 2: Request to the

(a) Step 1: Options re-
P b authenticator.

quest to the backend.

Figure 5.9: Frontend steps with VueJS components.

5.3 Modifiable options

Dividing functionality in steps made possible to display the data involved within each oper-
ation, including the configuration options of the operation, the authenticator response and
the validation data. In this iteration, the options requested to the backend in the step 1 (see
figure 5.9) for both attestation and assertion options will become editable.

That means that the user can manipulate the configurations once received from the server.

The result of editing the options with research and/or debugging purposes will then be used

38

CHAPTER 5. DEVELOPMENT

DebAuthn @

WebAuthn Authenticator Debugging Tool

ATTESTATION ASSERTION

Attestation operation registers an authenticator in the system

o Request Attestation optiens

¢

REQUEST NEXT

Figure 5.10: Complete frontend with routing and steps.

in the operation, instead of the requested default configurations. This feature had become one
of the main characteristics of the tool.

It is important to mention that the options are modified after having fetched them from the
server, for both attestation and assertion operations. These default options are the ones that
the Relying Party server is using as default and are dependent on the server configuration, so
they should be used for a successful operation.

Despite this, the user may cause the server to fail the validation once they manipulate the
default options. For instance, if the challenge is modified, the server will fail the operation as
the expected and the received signed challenge will not match. Another example can be the
supported signing algorithms. If another algorithm is included and used by the authenticator,

the R.P. server will fail the authenticator response validation as it does not support it.

5.3.1 Enabling the reuse of options at the backend

As discussed in previous sections, the expectations of both Attestation and Assertion are kept
in the session information to perform the validation of the authenticator response. When
this validation occurs, it was found that the fido2-lib was typecasting the factor parame-
ter within the expectations to the correspondent flags as string codes. This implies that the
validation fails, when reusing the same options for repeating the operation and, therefore,

using the same expectations.

39

5.3. Modifiable options

Strictly, the three steps are sequential: request options to the server, call the authenticator
and finish the operation by validating. However, when reusing the same options for repeating
the operation after a successful data validation, the library could not parse the factor inside
the expectations, as it was typecasted to string codes. In order to avoid this, and allow reusing
the same options after a validation, the library code was manually modified to skip the deletion
of factor after translating it.

By doing this, the DebAuthn tool keeps the interesting feature of reusing the very same
options with different authenticators. For instance, when testing several hardware keys, the
tester may use the same registration options for all the keys. Of course, this characteristic
only applies for testing environments so this change in the library does not correct a bug but

adds an interesting feature for implemented tool.

5.3.2 Improving models and encoding in base64url

For the user to edit all the registration and authentication options, this iteration also re-
designed the models to include all the optional fields defined by the WebAuthn standard [6].

Furthermore, this iteration changed the models to better support serialization to JSON by
encoding all binary data like the credential rawld or the operation challenge with the same
encoding and decoding functions, which are also improved.

For DebAuthn to be flexible in its REST design, it is interesting to be compatible with
REST endpoints with encoded data in query parameters'. For this, encoding and decoding
functions were changed to also support another format: base64url. This format is often used
in different implementations around WebAuthn, like the fido2-1ib library and webauthn-json
[58]. base64url is defined by the RFC 4648 [59] in its section 5. The code of both encoding

and decoding functions can be found in Appendix F.

5.3.3 Attestation options form

According to the section 5.4 of the WebAuthn standard [6], the PublicKeyCreden-
tialCreationOptions object has the attributes shown in the table 5.3.

At the first step (see figure 5.12), the required parameters can be loaded into a form allow-
ing the user to directly change them, before passing them to the authenticator (see figure 5.11).
Some fields such as pubKeyCredParams will not be editable at this point, as they cannot
be treated as a string input. The user parameter is used for specifying the username and a
display name and the rp holds the id (usually the domain name of the site) and a name. The
most important is the challenge, which is the binary buffer to be signed by the authenti-

cator.

'For example, /attestation?challenge=c29tZSBleGFtcGx1

40

CHAPTER 5. DEVELOPMENT

rp {id,name}
. user id: Buffer, name, displayName
Required challenge {Buffer = }
pubKeyCredParams Sequence of {type, alg}
timeout Number
excludeCredentials Sequence of {type, id, transports}
authenticatorAttachment: “platform” | “cross-platform”
Optional | authenticatorSelection | requireResidentKey: Boolean

userVerification: “required” | “preferred” | “discouraged”

attestation “none” | “indirect” | “direct”

extensions -

RP.
RPid

localhost

User
User id

Table 5.3: PublicKeyCredentialCreationOptions.

R name
DebAuthn

User name RP. name

AAAAAAAAAAAAAAAAAAAAAA john.p.smith@example.com John P Smith

Challenge

907TXcWql44VMh82jolcNuRw01_JaG9SyINX7IcOBT1osW0aa3GWXnTpU5XwUf-KvWOvjEgHO37GvY6STekejZA

60000

Attestation Conveyance

direct X -

Authenticator Selection

Authenticator Attachment - [Requires Resident Key Authenticator Attachment -

UPDATE CANCEL

Figure 5.11: Attestation form initial implementation.

Finally, all the optional parameters are loaded if present in the options requested from the

server. If they are not present, the user can eventually add them in an empty field.

5.3.4 Assertion options form

The Assertion options defined by the standard [6], are the ones included in the table 5.4.

Similarly, the required challenge field is loaded and becomes editable as a first step

(see figure 5.13). Once this is implemented, the optional fields were loaded if they are present

and, if not, the user will be allowed to add them (see figure 5.12).

41

5.3. Modifiable options

STEP 1: Gprmns

1</att95tatlon/aptlons -
; 2. options | :

—_— i

3. options
nUpdate. options

STEP 2: Authenticator call
4. nav1gator credentials. create(optlons)

>

5. AuthentlcatorAttestatlonReﬁponse
6. re%ponse ?
STEP 3: Validation :
i 7. POST response to ! E
i /ittestation/result ; i
E 8. validation : E
| —p- i
: 9. valﬁdation 5
: >

Figure 5.12: DebAuthn frontend flow for Attestation.

Required | challenge

timeout

rpld USVString

Optional | allowCredentials | Sequence of {type, id, transports}
userVerification | “required” | “preferred” | “discouraged”
extensions -

Table 5.4: PublicKeyCredentialRequestOptions.

5.3.5 User input validation

As explained in the previous subsections, some of the fields were optional, as defined by Web-
Authn. Nonetheless, some of them are mandatory for the authenticator call to be sucessful.
For this reason, the user input should be validated before updating the opreration configura-
tion options. For example, mandatory fields of the object should not be empty.

Implementing this feature improved user experience and usability by using reactive forms.
These forms can highlight an input field if it is not valid, while it deactivates the "Update”
option of the form until all fields are valid (see figure 5.15).

Also, for providing usability a “cancel” button is useful for being able to roll-back the

42

CHAPTER 5. DEVELOPMENT

o Request Assertion options

challenge:
Nf1yFALGjtivzXfXjuokf7d2gKpIQRSRJzCBDk-XFEnaNckITp07yq1itXnbprk_HrTBq_jJ9KNxCyNAJhDPug

Timeout
60000 RP.id User Verification

UPDATE [ISYTVR
[N RELOAD

Figure 5.13: Assertion form initial implementation.

changes in the form. This functionality was achieved by doing a deep copy of the options
to the form when loading them and restoring these options when cancelling the edition. At
all times, the object copy is the updated state of the reactive form and will only be used for
copying this state to the original options object when the user triggers the updated event
via the “update” button.

By using Vuetify form functionality, the forms implemented have become reactive. That
means that, upon the user input on a field, it gets dynamically validated. This validation can
be programmed in validation functions. At this point, all additional validation functions for

all fields are extensible, for future implementations such as the base64 correct encoding.

5.4 Structuring the displayed data

The version of the tool so far had no easy way to check all fields of the object returned by the
Authenticator as a response to the operation, before it is sent to the Relying Party server. On
the other hand, the validation the server was returning had many information that was not
being used and has no meaning for the user. This iteration covered the improvement on how

this data is parsed and shown to the user.

5.4.1 Relying Party validation data processing

Currently, the validation data that the server returns included innecessary data and follows
a structure not coherent with the client needs, as it is directly forwarded from the fido2-lib
library response. For this reason, the information like the operation warnings, the output
were structured in a new data model that the frontend can use for finding the information
needed.

This Validation object contains a boolean stating the validation of the operation,

43

5.4. Structuring the displayed data

STEP 1 Options

|1. /assertion/options

2, options
————

3. options

onUpdate. optlons

STEP A4S Authentlcato* call
4, nav1gator‘ credentials. get(optwns) > i

m < 5 Authentlcator‘Asser‘twnResponse

6. PES onse ;
P - ;

STEP 3: Validation
;. 7. POST response to

‘esser‘tion/r‘esult

i 8. validation
e

9. validation

Figure 5.14: DebAuthn frontend flow for Assertion.

(Challenge >

This field is required

Public Key Credential Parameters:

[object Object][object Object]

- Attestation Conveyance-

| 60000 ;| direct X - Exclude Credentials

Authenticator Selection

| Authenticator Attachment - O Requires Resident Key | Authenticator Attachment -

UPDATE CANCEL

Figure 5.15: Reactive invalid form.

obtained from the audit data contained in the Result object the fido2-lib. Also, this audit data
contains some warnings containing information about the validation process, so they are also
included in this model. Finally, the data object includes the information contained in the audit
data and both authenticator and client data (see table 5.5).

This model is used at the server to send the validation result in both Attestation and

44

CHAPTER 5. DEVELOPMENT

complete | Boolean

warnings | Array of Strings

info Object
data authnrData | Object
clientData | Object

Table 5.5: Designed Validation object as the server response.

Assertion operation. At the client, the complete and the warnings section are used as control
while the data section is directly displayed to the user.

At this point, some data loss was found during serialization. As it can be seen in the
table 5.5, the data fields are Objects. However, the fido2-lib library provides Map objects.
It was found that the JSON. stringify () function, used in serialization of this data as
JSON, did not support this object structure. Therefore, the Map objects were converted to
standard objects before their serialization. This was implemented as a recursive function
that creates plain objects from Map and Set objects, checking that all fields can be correctly

stringified, avoiding any data loss due to serialization.

5.4.2 Operation warnings after validation

According to the validation model and the fido2-lib, the server’s final response may
include some warning messages, containing relevant information for the user to understand
any issues not constituting an error on the operation. For instance, one case considered by
the library not finding the attestation root certificate of an authenticator maker on the server
side so the attestation could not be verified.

The information can be shown to the user by using a warning alert component inside the
dialog showing the operation success. In order to do this, the Vue]JS for directive structure

was used, rendering an alert component for each error message (see figure 5.16).

Successful

You have successfully registered the credential through Attestation operation.

CLOSE

Figure 5.16: Warnings included in the Vue]S dialog.

45

5.4. Structuring the displayed data

5.4.3 Structuring Authenticator response and validation data

Once the output data is available, it should be shown in an ordered way and also allow the user
to copy and navigate through any data that would be useful for the debugging process. For
instance, copying the attestation certificate, the signature or the public key. This applies both
for the Authenticator Response object and the Validation response fetched from the server.
The Authenticator Response would serve the user with the credential id and the response data,
namely the authenticator data and the attestation or assertion object and the client data JSON.
The Validation response would provide the information explained in the previous section: the

validation.

One option to show this data is adding a text field for each piece of data. With this solution,
should the object containing the data change its structure, the frontend code would have to

be updated.

The other option was to build a common solution for all these cases where the user needs
to navigate through some data stored in an object. This information has been represented
with a component that is able to show all object attributes keeping the object structure in a

parent-children tree similar to the JSON structure.

Therefore, the designed component goes through all the attributes of the concrete object,
creating the tree structure component. The attributes serve as the tree leafs, stringifying
their contents. In the case an attribute is itself an object containing more attributes, it is
recursively processed, generating the parent-children aforementioned structure. Also, if the
attribute does not contain information, it is shown with a different icon next to the attribute

name (see left part of figure 5.17).

~ = clientData

{..} challenge

{..} origin
1.} type
B rawClientDataJson

B rawld

Figure 5.17: Object tree component for showing objects at the frontend.

Additionally, for allowing the user to copy the string contained in each of the tree leafs, the
component was implemented to listen to the onClick events. These events trigger a Vuetify

card component that shows the selected data (see right part of figure 5.17).

46

CHAPTER 5. DEVELOPMENT

5.5 Support for several registered credentials

Until this iteration, the system allowed registering a credential with an authenticator and then
authenticating with the credential in the system through the Assertion operation. This regis-
tered credential (the public key) was stored in the session information so it can later be used for
authentication, according to the design explained in the first implementation, where all data
is stored in the session information. However, an authentication system would eventually
allow a user to register more than one credential in a system. This is unusual in password-
based authentication, but it is particularly interesting in systems based on authenticators for
supporting a backup authenticator.

For instance, a user could have a second factor bluetooth authenticator and a backup key
as an usb authenticator, as proposed in the Titan Security Keys from Google [5], in the case
the first registered key is lost, following the FIDO recommendations °.

In order for the system to support having several registered credentials’, it should store all
of them. From a debugging or testing point of view it is interesting, so, when authenticating
in WebAuthn, the credential ids could be included in the allowCredentials optional Assertion
option. This option allows the authenticator to select from several registered available cre-
dentials. Until now, DebAuthn was including a single credential id, as there was only one
registered credential.

Like when registering a credential, during authentication, the server creates some ex-
pectations after generating the challenge when the Assertion options are requested. The
information includes the challenge, the publicKey and the counter, so when validating the
operation that is taken into account. However, due to the implementation of the fido2-lib
library, when generating the expectations needed for validating an authenticator response
in the Assertion operation, only one public key is taken into account. This means the server
needs to know which credential is going to be used to authenticate before the authenticator
response is validated through the Assertion Result function.

For supporting several credentials, first, the user interface was redesigned to include all
allowed credentials during authentication in a list with a form, so the user can modify it and
add new credential ids. Moreover, the server now stores all registered credentials and the

verification process takes now all of them into account.

5.5.1 Allowed credentials in Assertion

Manipulating a list of allowed credentials with variable length is more complex than mod-

ifying a simple text field. This required the design of a new component. Once the allowed

? Although the problem of recovering from a device lost is also treated by the Preemptively Synced Key protocol
[60], the most common solution is the registration of a backup authenticator.
*There can be more than one registered credential in the same authenticator.

47

5.5. Support for several registered credentials

credentials are requested to the server, they are displayed to the user. Also, it can be inter-
esting for the user to remove one or more credential ids from the list. Besides, allowing the
user to append a new credential id can be used to check if a credential is still present at the

authenticator, although removed from the server (see figure 5.18).

PUBLIC-KEY

Credential id

INMEWBX7OKvyipAhlxPnHCYje83XW_gR6WgisATcmogJ40mWDeWIDoxodDOXD2R2YFuPSK6500Yyx5lc87qDHZdjaQkAAA

o

Figure 5.18: AllowCredentials form for the user to add a new credential id.

As there are many elements inside the list fetched from the server, the form needs to ren-
der a card component per credential id. This was implemented by using a Vue]S for directive
structure, looping on the list elements and rendering each of them.

On the other hand, in order to implement the insertion of a new credential id, there should
be a text input for the user to copy and insert the correspondent id. Once validated, the
credential id is pushed into the allowCredentials list of the form. It is worth mentioning that

the credentials included in allowCredentials have the following structure:

1 {
2 type: “public-"key
3 id: pubCredId

i

Additionally, in order to delete an id from the list (see figure 5.19), each card includes a
delete button, represented by a key with an 'x’.

Finally, the model representing the PublicKeyCredentialRequestOptions
has been modified to take into account the existence of multiple credentials in allowCreden-
tials, looping through each of them in order to encode and decode the credential id. Like the

challenge, the credential id is a Buffer, and it is encoded into a Base64Url string.

5.5.2 Registered credentials at the server

The implementation until this point was based on storing a single credential. When a new
credential was registered, it would replace the last registered credential. However, in order
to keep track of the registered credentials for being able to authenticate with any of them, all
of their respective public keys, ids and counters should be stored in the session.

As seen in the figure 5.20, for supporting several credentials, a new component was de-

signed: registeredCredentials. This is a list containing all registered credentials,

48

CHAPTER 5. DEVELOPMENT

PUBLIC-KEY

Credential id

PUBLIC-KEY

INMKWEX7OKvyipAhlxPnHCYje83XW_gR6WgisATecmoqgJ40mWDeWIDoxodDQXD2R2YFuUP5K6500Yyx5lc87qDHZ djaQkAAA

or
x

UPDATE CANCEL

Figure 5.19: AllowCredentials list and the new form for adding credential ids.

™
-I : m — 3

STEP 3; Validation

: P2, attExpectatloqs
L4, attestatlonResult(

; attResponse, 33. finishAttestation (response, expectations)
i " attExpectations) y i i

5. attResult

; /i 7 |registeredcreden§=als1
! ; 3 registeredCredentials |
; i i : 9. result

Figure 5.20: Validation flow at the backend for registering several credentials.

and it is stored in the session information. Then, when registering a new credential through
Attestation, the server needs to add the credential, composed the public key, id and the
counter, to this array, creating a list of all registered credentials.

Despite the fact that the server was keeping the public key and counter of several cre-
dentials, the user had no way of fetching this information. This is interesting so the user
increases their awareness on which information the relying party is storing in the server.
The most relevant may be the counter, as it changes with each authentication.

This feature required adding a new page in the user interface, in this case called Dash-
board, that can be used as the root of the web, enrouted by default (see figure 5.21). The
Dashboard renders a card for each registered credential, like allowCredentials list

shown in the Assertion form, but also showing the counter.

49

5.5. Support for several registered credentials

Registered Credentials
DASHBOARD ATTESTATION ASSERTION ~
PUBLIC-KEY CREDENTIAL

D omictarad T rorantialo . P PEp— . P ' PR
Registered Credentials id: INMKWBX70KvyipAhlxPnHCYje83XW_qR6WgisA

MO REGISTERED CREDENTIALS

PUBLIC KEY
Attestation is the process that registe
authenticate them through Assertion. BEGIN PUBLIC KEY—— MFkwEWYHKoZIzJ0CAQYIKo:

) 3gjQo1IHBUOVIORMEF+YkLEBWYKWNwWEVBRFKENEqS2
Register a credential

(a) No registered credentials (b) One registered credential

Figure 5.21: New Dashboard component: registered credentials.

For fetching these registered credentials, a new GET endpoint is designed (see table 5.6),

which will serve the list of registered credentials to be rendered at the frontend.

Endpoint Method Request payload Response payload

/registered GET None registeredCredentials

Table 5.6: Designed REST endpoint for requesting the registered credentials.

5.5.3 Verifying Assertion

Supporting several credentials involves not only the registration process but also authentica-
tion. As said, the Assertion operation requires a list of the allowed credential ids, correspond-
ing to the registered credentials at the server, which are sent to the authenticator. With this
list, the authenticator will select one of the registered credentials it can use for authentication.
However, in order to validate the authentication, the validation needs the public key and the
last counter of the credential that the authenticator used in the operation *.

This new feature implied a redesign of the authentication flow. As it can be seen in fig-
ure 5.22, now the allowCredentials list is built based on the registered credentials. It is impor-
tant to notice that during step 1 (see figure 5.22), the server does not know which credential
will be selected by the authenticator, so the backend does not create the expectations with a
concrete credential public key and counter. Instead, at this step, the session information was
changed to store only the challenge (together with origin and factor).

Then, during step 3, once the authenticator performs the Assertion, the Authenticator Re-
sponse will include the credential id that was used in the operation. Therefore, this id is used

to find the correspontent public key and counter in the aforementioned registeredCre-

*As an authenticator can have more than one credential registered in the system.

50

CHAPTER 5. DEVELOPMENT

dentials component. Then, these used together with the challenge, origin and factor to

create the Assertion expectations for validation (see figure 5.22).

STEP 1 Opt'!.ons E i /assertion/options i

2 |registeredtredenﬁials|‘ i

4 beginAsse rtlori(registeredcredentials 1

4, assertionOptions()
| -

i 5. options > 6. PublcheyCr‘edentlalRequestOptlons
- i challenge* 5
7. challenge* i
i i ;4 i 8. options i
* also origin and factor but no credential id H H _—— ;

STEP 3: Validation

2. challenge*

3 | registeredcredenﬁ:’.talsl

4. finishAssertion(response, challenge*,

1i Jassertion/result %

|
i 4 -
2. HERE A k Iregisteredﬁredentialsi

5 assResponse, ¢ -

IassEx ectatlonsb :
E 6. attResult
i > / ;

7. r‘ésult

o 8. result

* also Ur;;igin and factor but no credential id

Figure 5.22: Backend flow for authenticating when having several registered credentials.

5.6 Android SafetyNet: a new Attestation format

Attestation formats are used by authenticators to pack the attestation data that is sent to the
Relying Party (see section 2.2.4). In order to read this packed data, the server must be able
to parse and validate the concrete format. So far, the main formats were supported by the
fido2-lib library. However, Android Safetynet is not yet supported.

Adding support for this new Attestation format allows users to use a compatible Android
device (>= v.7) with no need of a physical authenticator. Android SafetyNet attestation format

is mainly used by the Android platform when the device screen lock option is used.

5.6.1 Implementing validation for Android Safetynet attestation format

As the fido2-1ib library does not include support for Android Safetynet, for addding support
of the format, it was necessary to implement a custom validation function that parses and val-

idates the attestation. This attestation format has a different cryptographic schema compared

51

5.6. Android SafetyNet: a new Attestation format

to physical authenticators, as seen in Appendix D. The implementation of the attestation val-
idation was based in this schema.

Once the server receives the response from the client authenticator, it needs to validate
the response. First, according to the format, it is parsed and then verified. In this case, the ver-
ification steps are both included in the Android documentation and the WebAuthn standard,

as mentioned above. Generally, it includes the following steps:

1. “Verify that at t Stmt is valid CBOR conforming to the syntax defined above and per-
form CBOR decoding on it to extract the contained fields”

2. “Verify that response is a valid SafetyNet response of version ver.

3. “Verify that the nonce in the response is identical to the Base64 encoding of the
SHA-256 hash of the concatenation of authenticatorDataandclientData-
Hash”

4. “Let attestationCert be the attestation certificate”
5. “Verify thatattestationCert isissued to the hostname “attest.android.com” ([30]).”
6. “Verify that the ct sProfileMatch attribute in the payload of response is true.”

7. “If successful, return implementation-specific values representing attestation type Basic

and attestation trust path attestationCert”

1| safetynetStmtFormat = {

2 ver: text,
3 response: bytes
4 }

Most of the steps are common to other attestation validations, like the checks on the
attestation certificate or the CBOR decoding, although specific to this format. However, the
response includes two important fields that need to be verified: the nonce and the integrity
verdict ctsProfileMatch.

The nonce is the data sent to the Android SafetyNet API by the browser. This is the infor-
mation that is attested by the Google servers. It is generated, as the protocol explains, with
the concatenation of the authenticator data and the client data hash. Then, this concatena-
tion is hashed and encoded in Base64. Therefore, in order to check the integrity at the server
side it should perform the same operation and check both the generated nonce and the one

provided in the response match.

nonce = sha265(concat(authenticator Data, sha265(client Data))) (5.1)

52

CHAPTER 5. DEVELOPMENT

Furthermore, Android SafetyNet also provides two integrity verdicts. WebAuthn specifies
that ctsProfileMatch should be checked. According to the API documentation, this verdict
states a strict device integrity, as opposed to basicIntegrity verdict.

In order to add an attestation format to the fido2-lib library, it is required a format name,
a parsing function and a validation function. Parsing involves taking into account the format
stated above, with a version and a response field. When validating, the response needs to
be parsed as a JWS (JSON Web Signature) to extract all the fields to perform the validations
explained before.

For this purpose, the jose library [61] is used, as it provides functionalities for JWT,
JWS, etc. Once parsed and verified, the payload field should contain the Android SafetyNet
data. After checking the device integrity with the verdict, the function generates the nonce
from scratch by using the crypto library, together with the raw authenticator and client
data.

Finally, according to the API documentation, the payload includes an error and an advice
field so, should an error occur, an exception is thrown with the advice message, so the R.P.

can better handle it.

5.6.2 Integration of the implementation in DebAuthn

This implementation drived into a contribution to the library used by DebAuthn. As explained
before, the library did not have support for the format. Appendix E explains the contribution,
also describing the unit tests written for this implementation.

It is worth mentioning that, as the main library (fido2-11ib) had no recent mainte-

nance, from now on, the project uses a maintained fork (fido2-1library).

5.7 Improving user experience

This iteration was intended to improve the user interface. Previous iterations were focused
on adding functionality with no instructions to the user on how to use the tool. Also, this
iteration included a new feature for detecting browser compatibility, warning the user be-
fore using the developed tool. Finally, two of the fields inside the registration options were

improved to better display the information and making them editable.

5.7.1 Giving instructions to the user

The current version of the tool at this point did not provide the user any information related
to the tool design and purpose. Showing more information makes the tool more approachable
for non-expert users. This was fixed by making the new Dashboard page a welcome page, as

well as instructing the user on the tool usage in some sections (see figure 5.23).

53

5.7. Improving user experience

DASHBOARD REGISTER AUTHENTICATE

l[come to Debauthn
WHAT IS DEBAUTHN?

DebAuthn serves as a debugger for WebAuthn, a new standard for authenticating identities on the web.

In brief, you can be registered and, afterwards, logged in. In WebAuthn, this means, respectively, registering and
authenticating a credential with an authenticator.

DebAuthn mimics the functioning of the WebAuthn protocol by using session information, storing the minimal
necessary information at the Relying Party server during 60 minutes. This allows testers to perform independent
tests and work with credentials instead of users.

As there are no users in the system, notice that the registered credentials are tight to the session id. That means that
a registered credential in one device will not be available in a different device. Thus, the credentials are not linked to
an user account, making them independent and not reaming credentials.

In order to better understand registering and authenticating operations, both of them are divided in three steps:

1. Options: configure the operation
2. Authenticator: call the authenticator
3. Validation: validate the result of the operation

Registered Credentials
NO REGISTERED CREDENTIALS
Attestation is the process that registers a credential in the system. Then, the registered credentials will
appear in this section and you will be able to authenticate them through Assertion operation. Important:

The registered credentials are stored within the session. This session lasts 60 minutes.

Register a credential

Figure 5.23: New Dashboard page.

5.7.2 Feature detection

A web application running a script should ensure that the code is compatible with the browser,
as to avoid running time errors. In the case of a debugging tool for WebAuthn, which is a
brand-new protocol implemented only in the main browsers, this is particularly useful. By
using feature detection, the web application can warn the user beforehand, so they try with
another browser (see figure 5.24).

The development of this feature can be approached in two main ways: using the user
agent string or using feature detection.

Parsing a user agent gives the name and version of the browser the code is running on.
However, this string is easily modifiable and does not guarantee a correct identification of
the browser. Also, in order to match the browser name and version with the compatibility
information, a database should be often updated to be accurate.

On the other hand, feature detection is totally accurate when checking if a specific feature
is available in a browser, by running some tests before executing the code. In this tool this

is very useful, as it detects a compatible browser independently of the browser name and

54

CHAPTER 5. DEVELOPMENT

version. This means that, if a new browser implements this protocol, the tool does not need

to know this in advance, as it can identify the feature in running time.

Oh no! Your browser does
not support WebAuthn.

You can try with Firefox

(v.60 or later) or
o Your browser supports WebAuthn! You can use the tool!

Chrome/Chromium (v.70 or
later).

(a) Supported browser. Your browser name is
Mozilla/5.0 (Linux; Android

0) AppleWebKi 6

(b) Unsupported browser.

Figure 5.24: Feature detection fontend information boxes.

For this purpose, the developed piece of code checks the availability of the Credential
Management API [13], and also for the PublicKeyCredential class, that is used by

the browser for managing public-key credentials, used in WebAuthn.

5.7.3 Improving two key fields of the attestation options

Previous iterations have included all registration options in the attestation options form.
However, the user could only edit or configure some of them. This iteration involved the
implementation of two registration options fields: pubKeyCredParams and excludeCre-
dentials. After this, the user can select the algorithms requested to the authenticator during
registration and the list of already registered credentials. For example, by allowing the user
to manipulate the list of already registered credentials, the authenticator could be registered

again with a different credential (see figure 5.25).

Try a different security key

You already registered this security key. You don't have
to register it again.

Try again

Figure 5.25: Failure to register an authenticator that was already registered.

Regarding the user interface, both of them were based on the approach designed for al-
lowCredentials when authenticating (see figure 5.19). That is, an input field with an “add”
button and a component rendered for each of the items contained in the list, along with a
delete button (see figure 5.26).

For the public key credential parameters, the cards contain the algorithm identifier ac-
cording to the IANA registries [62]. It is the user responsibility to include a valid identifier.
All the identifiers included here are then attached to the Attestation options so the authen-

55

5.8. Extending possible tests

PubKeyCredParams

BUBLIC-KEY PUBLIC-KEY PUBLIC-KEY

7 257
COSE Algorithm Identifi
[[]

Figure 5.26: PubKeyCredParams new component in the Attestation form.

ticator will know which cryptographic algorithms the Relying Party supports. It is worth
mentioning that the algorithms included in the options fetched by the server are the only
ones supported by the server. Any change on this list may cause an invalid validation due to

unsupported formats when parsing the authenticator response.

5.8 Extending possible tests

This last iteration included the development of a two extra functionalty that extended the
the available testing options of DebAuthn. The most important of them is the support of
resident credentials, which includes this type of credentials available for FIDO CTAP2 [7]
authenticators. On the other hand, a new option was implemented to allow users to delete all
their registered credentials. This is interesting for testers of the protocol that need to register
credentials several times.

Finally, the tool has been published at https://debauthn.tic.udc.es.

5.8.1 Adding support for resident credentials

Resident credentials are compatible with the FIDO CTAP2 authenticators, which store the
private key in the device memory, as explained in section 2.2.5. Currently, not all authentica-
tors, browsers, operating systems and platforms support resident credentials. For DebAuthn,
it is interesting to support registrating an authenticator with a resident credential, demon-
strating its compatibility. As explained in section 2.2.5, this type of credentials are used in
“passwordless” authentication flow, the main idea of the FIDO2 project [11].

This implementation required redesigning the server Attestation and Assertion flow. Also,
it was necessary to patch the fido2-lib library, as explained at the end of this section.

It is worth mentioning that, when authenticating with a resident credential, the authen-
ticator will return a userHandle, set during registration as the user id (see figure 5.28). In the
previous design, the assertion expectations do not include the userHandle, as when authen-
ticating with non-resident credentials the authenticator, this field was null.

Therefore, a redesign was needed for saving the user id, set during registration, together

56

https://debauthn.tic.udc.es

CHAPTER 5. DEVELOPMENT

with the other credential information in the server (see figure 5.27). Moreover, during au-
thentication, the assertion expectations need to include the userHandle as the user id, for its
correct validation of the authentication operation with resident keys.

Usually, in an ordinary WebAuthn flow, the userHandle would serve the system to
retrieve the list of registered credentials for a specific user from the database. In this case,
as the registered credentials are not linked with a user account, this userHandle is saved
together with the id, public key and counter of the credential, inside the registered-
Credentials component.

STEP 1: Optmns 3 i1, /attestation/options :
| | 2. beglnAttestatmn() -4

3. attestationOptions()

5. Publi(Key(r‘eder{tiaKreatiunﬂptions
4. options :

’ i Publi(Key(redentia]ﬁ(reatiUnExpE(tatiuns
A .

> : >
H | H 6. attExpectations

| .

4 I 6. userHandle I

7. options

STEP 3: VMalidation

i ! 1, /attestation/result
_ T |
o i —» H H
: \ 2. userHandle
i 4. attestationResult(| | i —_— i i

attResponse, 'ﬂ.li 3. finishattestation (response, expectations)
attExpectations) ! ;

5. attResult

> . 1
;,";i 6. result,i credential > _
.;‘.- § 7 registeredCredentials %

* contains userHandle

9. result

Figure 5.27: Backend Attestation flow with the user handle to support resident credentials.

Finally, when using resident credentials, the authenticator may return some data in the
extensions. However, as the fido2-library did not support WebAuthn extensions, it was throw-
ing an error during validation of when registering resident credentials.

For this implementation, the Relying Party can ignore the extensions during validation,
as they are optional data. According to the standard, ignoring extensions is not considered
a failure. In order to ignore such extensions, the library code that throws this error was also
patched.

This patch could be done in two ways. First, by contributing to the library code, like in

some previous implementations. Secondly, NodeJS dependencies can be patched by using the

57

5.8. Extending possible tests

STEP 3: Vaudatwn

1. /assertion/result

2. challenge*

3. | registeredtredznt:’ als I

4, finishAssertion(response, challenge*,

\i
5. assertionResult(‘L

registeredCredentials)|
i assResponse, i - ! . !
I assExpectatinnsI |
= | /—_
i 6. attResult i
| / i
7. result
i i 8. result :
| ——

* also origin and factor but no cr'edentia:l id

Figure 5.28: Assertion validation flow with the user handle to support resident credentials.

Delete all registered credentials?
Are you sure you want to delete all registered credentials from the server? It cannot
be undone!

CANCEL

Figure 5.29: Confirmation dialog before deleting all credentials.

patch-package utility [63]. It allows generating and applying patches to the dependen-
cies’ code, once installed in the project. This second option is independent of the library code
and adaptive to changes. Also, previous patches of the library like when allowing the reuse

of the attestation options, explained in the section 5.3, can be included.

5.8.2 Delete all registered credentials

Until now, if a user was registering many times for testing purposes, they would find the
amount of registered credentials are kept and, therefore, returned during Attestation and
Assertion within the options, as described in previous sections.

However, a user may want to delete all registered credentials at some point, cleaning the
workspace. For supporting the deletion of the credentials, a new option was implemented and
added to the developed tool. This triggers a confirmation dialog (see figure 5.29) and, upon
confirmation, an asynchronous DELETE REST request (see table 5.7). At the backend, it will

delete all elements of the registeredCredentials in any case.

Endpoint Method Request payload Response payload
/registered DELETE None None

Table 5.7: New DELETE REST endpoint for registered credentials.

58

Chapter 6

Testing and studying authenticators

HE developed tool (DebAuthn) serves to researchers to test both authenticators and browsers.
This chapter seeks to test interesting characteristics of five physical authenticators (see
figure 6.1) under the same situations by using the available options of DebAuthn, whose de-
velopment was explained in chapter 5. Table 6.1 shows the devices’ details. Finally, in order
to provide more information for helping organisations to potentially select one of the tested
keys, the chapter also studies other additional features. These features are key to understand

complete functionality or capabilities of the studied hardware devices.

Figure 6.1: The five hardware authenticators picture.

The testing environment is important. In this case, Ubuntu 18 Linux operating system has
been used, together with the Chromium v83 browser, which is the best browser regarding the
support of WebAuthn. In order to test the bluetooth capabilities of one of the keys, it was
also used an Android 7 with Chrome v83. Moreover, before each test, the keys were reset to

defaults.

The tests were run on a Linux OS because the browser is the one in charge of implementing

59

6.1. Attestation mechanisms in hardware authenticators

Maker Model Firmware
Yubico Security Key [64] 5.2.4 [65]
Yubico Yubikey 5 NFC [66] 5.2.4 [65]
Google USB-A/NFC Titan Security Key (K9) [32] (version T3)
Google Bluetooth/NFC/USB Titan Security Key (K13T) [32] (version T3)
Solokeys Solo Hacker [67] 4.0.0

Table 6.1: Hardware authenticators tested in this degree thesis.

the CTAP communication. This does not happen in other OSs. Windows and Android, for
example, would limit the tests as browsers interact with authenticators through a platform

implemented by the OS.

6.1 Attestation mechanisms in hardware authenticators

The first of the testing studies covered the attestation mechanisms in hardware authenticators.
As explained in section 2.2.4, the Attestation operation returns an attestation object in one
of the available formats. This formatted object was generated by one of the attestation types:
Basic, Self, CA, ECDAA or None.

This section checks the Attestation formats and types the authenticators use under spe-
cific configurations. Finally, some tests were repeated with a different browser to verify the

differences.

6.1.1 Authenticator compatibility

DebAuthn allows configuring and validating attestation for testing authenticators. Taking
into account the available hardware authenticators, the attestation type and format can be
checked upon validating the registration process. In order to see the differences among them,
they should be tested under the same circumstances. Therefore, the keys should be reset to
the default state.

As expected, when setting the attestation conveyance to “none”, the attestation format
found in the responses from all the devices is “none”. This is used by Relying Parties when
they do not wish to receive attestation information. In order to check the attestation type and
format, the conveyance should be set to “direct” or “indirect”. In this environment and with
the study case, both “direct” and “indirect” answers have given the same result.

The main difference is that both Google Titan Security Keys use “fido-u2f” attestation
format, while both Yubikeys and the Solokey use the “packed” format (see figure 6.2). All keys

are performing, however, the same type of attestation: “basic”. According to the WebAuthn

60

CHAPTER 6. TESTING AND STUDYING AUTHENTICATORS

standard, the only valid algorithm for “fido-u2f” attestation format signature is “ES256” (“-7”
code).

~ E= info
{..} subjeci-key-identifi...
+ Ez basic-constraints

» Bz key-usage _

{..} attestation-type

(a) Attestation type.

~ 'tz authnrData
{.} fmt
» Ezalg
{.} attCert
n x5¢
{.} sig
{..} rawAuthnrData

{.} rpldHash

» Ez flags

(b) Attestation format

Figure 6.2: Attestation type and format with the SoloKey tested in DebAuthn.

For this reason, the experiment was repeated with the Google keys by excluding this
algorithm and maintaining the “RS256” and the “EdDSA” algorithms, trying to force the keys
to select another attestation format. As a result, both keys failed to complete the operation.
While the test on Linux resulted as the key not responding to the request (timed out), the test
on Android 7 with Chrome resulted in an browser error, as none of the algorithms provided
were supported on the device.

On the other hand, Yubikey allows users to activate or deactivate the device’s interfaces
by using their software “Yubikey Manager” [68]. Once deactivated FIDO2 in both Yubikeys,
leaving only FIDO UZ2F, the test is repeated. In this case, like Google keys, responds with “fido-
u2f” attestation format. Also, when excluding the “ES256” algorithm, both Yubikey devices
will timeout the request.

As conclusion, the Google Titan Security Keys appear to be using FIDO U2F, backward
compatible with FIDO2 (see section 2.2.7), while the Solokey and both Yubikeys are using the
optimized “packed” attestation format used in WebAuthn. In fact, the Google Titan Security
Keys are meant for being used as a second factor authentication method in the Google services

and “many other services that support FIDO standards” [32].

61

6.2. Communicating with authenticators: the transports

6.1.2 Browser compatibility

The aforementioned tests were performed on Chromium on a Linux machine. However, when
the tests are performed on Firefox v77.0.1 on the same Linux machine, all attestation signa-
tures are formatted with “fido-u2f”, instead of “packed”.

One of the possible reasons is that this Firefox version does not support FIDO CTAP2, but
it does support FIDO CTAP1 (a.k.a. FIDO U2F) [69].

6.2 Communicating with authenticators: the transports

The CTAP protocol [7] defines how the client or the platform communicates with the authen-
ticators. Also, the standard defines transport-specific bindings for USB, NFC and Bluetooth.

One option for checking the available transports is testing the hardware devices with the
specific protocols they are meant to support. However, there exists an attestation certificate
extension defined by the FIDO UZ2F protocol, called fido-u2f-transports, which is a X.509v3
certificate extension [70]. Therefore, when the certificate is validated at the server, the library
will parse this extension and its details will be included in the validation, sent and shown to
the user.

Taking that into consideration, this experiment has used the displayed information in
DebAuthn to check which transports were included in the attestation certificate extension
and check whether they are the expected available transports.

After the experiment, both Yubikeys and both Google Titan keys successfully included all
their respective available transports (see figure 6.3). For instance, the K13T key from Google,
has included NFC, USB and BLE, while the Yubico Security Key only includes USB. However,
the Solokey device seems not to be using this certificate extension. Currently, the Solo Hacker

is only available for USB transport.

6.3 The cryptography: supported algorithms

This section explains the study that was designed to verify the available algorithms of the
authenticators and identifying the most common ones. The result is interesting for guiding
the Relying Party implementations in supporting these algorithms to be able to allow their
users to use specific hardware authenticators.

An authenticator may implement several cryptographic signing algorithms. These algo-
rithms are registered in the IANA CBOR Object Signing and Encryption registries [62], which
includes the codes for all algorithms. A R.P. would include the supported algorithms in the
Attestation options in a specific order. The authenticator will then use the most preferred

available algorithm and use it to encode the credential public key.

62

CHAPTER 6. TESTING AND STUDYING AUTHENTICATORS

~ E= info

{..} yubico-device-id

~ b= fido-u2f-transports

{.} nfe

{.} usb

{.} fido-aaguid
» 'E= basic-constraints

{.} attestation-type

Figure 6.3: Supported communication transports of the Yubikey5.

The most common algorithms, according to the ones mentioned in WebAuthn and CTAP2
standard, are the ones contained in table 6.2. It is worth mentioning that according to [71],
the RSA and the current ECDAA algorithms are not recommended, being ECDSA and EdDSA
the best options.

Algorithm identifier Algorithm name Description
-7 ES256 ECDSA w/ SHA-256
-8 EdDSA EdDSA
-257 RS256 RSASSA-PKCS1-v1_5 w/ SHA-256

Table 6.2: Main cryptographic algorithms used by authenticators in WebAuthn.

For verifying which are the available algorithms by each hardware key, an experiment
was designed. By using a DebAuthn option during registration, the pubKeyCredParams list
was edited so the tested algorithm will be included while excluding any other algorithm iden-
tifiers. Then, if the authenticator can successfully return a response, then the algorithm will
be available. If the algorithm is not supported, the request will timeout as the authenticator
will never respond to the request.

Regarding the Yubico hardware keys, there is some important information about the algo-
rithms. From the firmware version 5.2.3, Yubico has added support for the Ed25519 algorithms
as well removed support for RSA keys [65]. In this case, the firmware version of the tested
keys is 5.2.4, so these changes are already in place.

Once tested on both Yubikeys, with the same firmware version, it was found that they
both support EADSA and ES256 algorithms, while the RSASSA algorithm is not supported.
Note that, as EADSA is not provided in the default registration (Attestation) options by the

63

6.4. Testing support for resident credentials

R.P., so DebAuthn will fail validation as it does not support the algorithm. This confirms the
tested algorithm is using another format, and that the server would need to support it in order
to validate the authenticator response.

Regarding Google keys, the version T3 of the Google Titan security keys were conclued
with no support EdDSA nor RSASSA algorithms, being ES256 the only supported algorithm,
necessary for the fido-u2f attestation format, as explained in section 6.1. In contrast to the
Yubikeys, Google has no documentation about their authenticator devices. In fact, the author
has not found any information about how to check the firmware version or which character-
istics it has.

The Solokey, although there is no documentation on the supported algorithms, its firmware
is open source. After running the same tests, it only responds when the ES256 algorithm is in
the parameters. Therefore, like the Google devices, it only supports this algorithm in its 4.0.0
firmware version.

Finally it is worth mentioning that, although these tests were performed in Chromium
in a Linux environment, other browser and OS combinations responded in a different way,
possibly because of the fact that the interaction with authenticators is performed by the OS
platforms mentioned before. For example, when performing the same tests in Google Chrome
on Android and in Firefox on Linux, they both rejected any algorithm other than ES256, that
is supported by all tested keys.

In fact, when running the test with Firefox on Android, the OS platform will convert the
request to support only ES256. This was found out when the EdDSA algorithm was requested
to the Google BLE security key and, when checking the validation result, the algorithm used
was “ECDSA_w_SHA256”, also known as ES256. The same test using Chrome on Android did
not succeed as the browser displayed an error message stating that none of the algorithms
requested is supported by the device. This occurs both with EADSA and RSASSA algorithms.

6.4 Testing support for resident credentials

This section studies the support of resident credentials which, as explained in section 2.2.5,
are the ones saved in the authenticator memory. Testing how physical authenticators sup-
port resident keys is key for determining whether the key can be used in a “passwordless”
authentication as a first factor. Apart from the web authentication, this type of credentials
are starting to be used in other systems. For example, resident credentials are used for SSH
authentication with physical security keys since its version 8.2 [72].

As resident credentials are designed for a first-factor authentication flow, the R.P does not
provide the allowed credentials in the Assertion options during authentication. This forces

the authenticator to find a credential in its memory only by the R.P. id, without a credential

64

CHAPTER 6. TESTING AND STUDYING AUTHENTICATORS

id. Then, once Assertion is performed, it will return a user handle (user id) in its authenticator
response.

However, for this type of authentication, the authenticator needs to be protected, as it
will serve as a first-factor authentication method and may serve as the unique factor for au-
thentication in a system. For this reason, when using resident credentials, a R.P. should force
the authenticator to perform user verification during the registration process, explained in

section 2.2.5.

6.4.1 Authenticator compatibility

As explained before, resident credentials is a feature of new authenticators that open new
possibilities. The market differenciates compatible keys by tagging them with "FIDO2 key”
versus "FIDO U2F key”. However, for some authenticators like the Google Titan Security
Keys, do not specify its compatibility with resident credentials. This study has demonstrated
its incompatibility.

This experiment considered keys reseted to defaults. Regarding the required Attestation
options, requireResidentKey is set to true and the userVerification is set to “required”. This
way we ensure the authenticator selection requests a resident key and performs user verifi-
cation. Also, the browser should support user verification. As said, Chromium on Linux is
used to ensure this capability.

Both Yubikeys and the Solokey were proven to be compatible with resident keys, both
having the same behaviour. Firstly, as they were reset and do not have a PIN by default,
when the registration was requested, the browser prompted to set a new PIN, as shown in
the figure 6.4). Once the PIN is set, the authenticator replies and the server validates the
registration successfully.

Moreover, to ensure the key is resident at the authenticator, the authentication operation
was tested. The assertion options should include an empty allowCredentials, so the only way
the authenticator can sign is with a resident credential containing the private key. When the
request is triggered, the dialog prompted by the browser also shows an additional message:
“a record of your visit to this site will be kept on your security key”, referring to the resident
information stored in the key (see figure 6.4).

Also, when checking the authenticator response during authentication, a userHandle
was found. It actually corresponds with the user id set during registration. This user handle
or id is only returned when a resident credential is used, as it is stored along with the private
key in the authenticator memory. As it will be shown in section 6.5, the resident credentials
can be listed by using the configuration manager embedded in Chromium. After performing
the operation, the key can be correctly listed, showing the user information as well as the

web application origin or domain name.

65

6.4. Testing support for resident credentials

On the contrary, when the same registration options were used with the Google keys,
after performing the user presence, the browser shows a failure message: “your security key
can’t be used with this site”. Also it suggests a newer or different key may be required to
perform this type of registration (see figure 6.4).

That concludes that the Google Titan security keys version T3 do not support resident
keys. This result, joint with the study presented in the attestation format section, concludes

that the Google Titan Security Keys do not work with FIDO2 and are FIDO U2F authenticators.

PIN required Use your security key with debauthn.ticudces

EetupRnav B avausecuR Ylkay Touch your security key again to complete the request.

A record of your visit to this site will be kept on your
security key.

i Cancel

(a) Required PIN. (b) Registering a resident credential.

Your security key can't be used with this site

debauthn.ticudc.es may require a newer or different kind
of security key

(c) Authenticator not compatible.

Figure 6.4: Chromium dialogs when registering and authenticating with resident keys.

6.4.2 Browser compatibility

As mentioned before, browsers need to support user verification to be compatible with resi-
dent credentials. The browser used for testing the authenticators was Chromium, which was
compatible. However, this is not the case for other browsers and platforms.

When registering resident credentials in Firefox on Linux the request will timeout in any
case. This is possibly caused by the fact that this browser does not support the CTAP2 opera-
tions for requesting a PIN for the devices. According to the attestation formats section, Firefox
may not support FIDO CTAP2 so far, only supporting FIDO U2F, which does not include user

verification.

66

CHAPTER 6. TESTING AND STUDYING AUTHENTICATORS

On Android 7.1.1, when using Firefox or Chrome with resident keys, the registration pro-
cess did not fail, regardless of the authenticator used. However, when authenticating with an
empty allowCredentials so that the resident key is used, both browsers fail with similar error
messages. They inform the user that the device is not compatible with an empty allowCre-
dentials. Also, when used with a compatible authenticator like the Solokey, the registration
did not request any user verification.

Therefore, regardless of the browser that is used, the tested Android is not supporting
registering or authenticating resident credentials (see figure 6.5), although the registration

operation was not failing.

A NotAllowedError: The request is

A NotSupportedError: Use of an not allowed by the user agent or
empty “allowCredentials’ list is 8 the platform in the current Q
not supported on this device. context, possibly because the

user denied permission.

(a) Google Chrome (b) Firefox.

Figure 6.5: Resident keys fail during Assertion on Android.

6.5 Configuration and management available tools

When using authenticators with a Relying Party like DebAuthn for registration and authenti-
cation there is no need for an additional tool for configuration. The R.P. is responsible for it by
using the WebAuthn API [6]. However, there exist some external tools that allow managing
some aspects of hardware authenticators. This section will explore the most relevant ones for
the tested keys in this work.

One of the most relevant and basic tools may be the Chromium (or Chrome) browser,
as it has a menu for managing security keys (see figure 6.6). This uses common operations
implemented in the CTAP2 protocol [7], which allow to create a PIN, reset a security key
and even retrieve the sign-in data (the resident credentials). As they implement operations
from the CTAP2 protocol, any device that is compatible with it can be configured with these
operations.

All tested keys but both Google Titan keys support these CTAP2 operations. This possibly
means that the Google devices implement CTAP1 instead of the last version of the protocol,
a result coherent with the previous tests.

On the other hand, the hardware authenticator makers can personalise their firmware to
include other configuration operations that are specific to the device make and model. For

example, SoloKey offers a tool called solo-python [73]. This serves both as a programming

67

6.5. Configuration and management available tools

€ Manage security keys

Create a PIN
Protect your security key with a PIN (Personal Identification Number)

Sign-in data N

View and delete sign-in data stored on your security key
Fingerprints

»
Add and delete fingerprints saved on your security key
Reset your security key N
This will delete all data on the security key, including its PIN

Figure 6.6: Chrome security keys embedded manager.

library and a CLI tool, with many options (see figure 6.7). For example, changing the attes-
tation key, changing the PIN or using the generation of random hexadecimal bytes in the

key.

Figure 6.7: solo-python SoloKey CLI manager.

Another example is the Yubikey. Both tested models can use the Yubikey Manager, avail-
able as a CLI and a GUL This tool can be used to verify the device firmware version, change
the PIN, restore the key or set up other additional features available on the device. Besides,
it includes a firmware specific configuration, being able to enable and disable the interfaces
for all supported applications and transports (see figure 6.8). For instance, the Yubikey 5 can

have FIDO U2F via USB and have it enabled via NFC.

Interfaces
4 USB Disable all " NFC Disable all
oTP FIDO2 oTP FIDO2
FIDO U2F OpenPGP FIDO U2F OpenPGP
PIV OATH PIV O0ATH

Figure 6.8: Yubikey Manager: enabling and disabling interfaces.

In addition to the Yubikey Manager, the maker also provides a more advanced tool that

68

CHAPTER 6. TESTING AND STUDYING AUTHENTICATORS

only works with specific models like the Yubikey 5: the Yubikey Personalization Tool (see
figure 6.9). This allows to check all programmable slots and modes, studied in the next section.
For example, the tool allows programming a challenge-response mode in one of the slots. It
is worth mentioning that this tool can also be used for batch programming of many keys,

automatically loading the configuration when inserted.

Challenge-Response

Configuration Slot

Select the configuration slot to be programmed
() Configuration Slot 1 (O) Configuration Slot 2
[] Program Multiple YubiKeys Configuration Protection (6 bytes Hex) @
Automatically program YubiKeys when inserted Yubikey(s) unprotected - Keep it that way -
Parameter Generation Scheme Current AC.CESS S
Use Serial Number
Randomize Secret New Access Code
Use Serial Number
HMAC-SHA1 Parameters
[] require user input (button press) (7}
HMAC-SHAL Mode (® Variable input () Fixed 64 byte input
Secret Key (20 bytes Hex) | 00 00 00 00 00 00 OO0 00 00 00 00 00 OO0 00 00 00 00 UU| Generate 9

Figure 6.9: Yubikey Personalization Tool GUI: program HMAC-SHAL.

Finally, both Google Security Keys do not provide any specific configuration tool.

6.6 Additional features of the hardware devices

Some of the hardware devices compatible with WebAuthn implement other technologies in
their firmwares, all related to keys and security, like OTP codes or PGP key storage. This
section explores these features included in the tested hardware keys. Extra features may be
of interest when selecting a WebAuthn compatible key for an organisation incorporating this
new authentication method, as it can provide extra useful functionality.

After the research, the Yubikey 5 is the only key from the studied hardware devices that
includes additional features not related with WebAuthn. There exist, however, other hardware
devices that include more features, like the OnlyKey from CryptoTrust [74] [34].

One of the capabilities some keys include, like the Yubikey5, is the challenge-response
authentication. As [75] explains in its chapter 10, challenge-response identification is based
on demonstrating the knowledge of a shared secret without revealing the secret itself by using
a time-variant challenge.

The most common algorithm used for challenge-response authentication is the Hash-
based Message Authentication Code, or HMAC [76], which is a specific type of the MAC

69

6.6. Additional features of the hardware devices

algorithms. It is used for verifying both data integrity and the authenticity of the message,
having many applications. As an example, there is a plugin for KeePass password manager,
called KeeChallenge [77]. It allows using the Yubikey to add extra protection for the password
database by using the HMAC-SHA1 algorithm with a shared secret, and can be programmed
by using the Yubikey Personalization Tool, mentioned in the previous section (see figure 6.9).

Figure 6.10 shows the unlock screen of KeePassXC, a fork of KeePass that includes a sim-

ilar approach and also lets using the Yubikey in this mode.

Enter Password:
|| a

Enter Additional Credentials (if any):

Key File: o | Select key file... b Browse...
Hardware Key: @ |YubiKey[12009804] Challenge Response - Slot 1 - Passive - Refresh
X Cancel | ok |

Figure 6.10: Add a hardware key in KeePassXC password manager with HMAC-SHA1.

Another example of the use of HMAC-SHA1 algorithm built into the Yubikey5 is the
Yubico Login for Windows [78], which uses this programmable mode for storing and using
the secret for Windows authentication.

The Yubikey 5 provides functionality to authenticate as a PIV, or Personal Identity Verifi-
cation (FIPS 201), compliant smart card [79]. This feature allows storing certificates to work
with smart card mini drivers in Windows or use public-key authentication through PKCS11
(see figure 6.11). For instance, the device can be listed by pcsc_scan tool on Linux, that
lists all smart cards attached to the system (see figure 6.12). The Yubikey Manager software al-

lows importing or generating certificates stored on the device and setting a PIN for protecting
them.

Certificates

Authentication Digital Signature Key Management Card Authentication
Authentication (Slot 9a)

Issuer: Test B Delete

Subject name: Test

Expiration date: 2021-06-21

Figure 6.11: PIV setup with Yubikey Manager GUL

Apart from the challenge-response, the Yubikey 5 can be configured with some popular

One Time Password algorithms in both programmable slots. These are used for second-factor

70

CHAPTER 6. TESTING AND STUDYING AUTHENTICATORS

Figure 6.12: pcsc_scan detecting the Yubikey5 as a smart card.

authentication in many applications nowadays. Also, the slots can be programmed with a
static password, used for storing a single static password that is typed as keystrokes when
needed.

Finally, the Yubikey 5 also supports OpenPGP as a PGP smart card. For example, it allows
both importing and generating keys on the device. With the gpg —edit-card command it shows
all data related to the card, as well as the PGP keys stored: authentication, encryption and
signature keys. Also, the yubikey manager allows configuring touch-protected OpenPGP, so

when using this feature it requires the user to physically touch the device.

6.7 Device firmware

In addition to the already mentioned features of the tested devices firmware, it is interesting
to highlight the difference between the closed source and open source firmware. From the set
of tested devices, only the SoloKey has open source firmware [33]. Actually, this device also
is well documented on its hardware.

Open source firmware allows cybersecurity experts to audit, test and deploy the code
in order to search for vulnerabilities. This also helps to make sure the firmware inside the
hardware device is doing what it is meant to do, and nothing more. Besides, the project will
also create a community that can build user support.

On the other hand, closed source makes it more difficult to find vulnerabilities. Attackers
would need performing reverse engineering techniques. This is the case of both Yubikeys and
both Google Titan Security Keys.

However, Yubico has built an extensive amount of knowledge base by providing docu-
mentation for users and developers [80], as well as many open-source projects for configur-
ing and interacting with their devices. The Yubikeys documentation contrasts with the one
provided by Google, that is very limited and only provides support for their services. On the
other hand, Solokey has some documentation, but it still lacks firmware details and a better
explained documentation for its configuration tool.

Finally, most of the devices do not allow for firmware upgrades. The Yubikeys, the Google

71

6.7. Device firmware

Titan keys and the standard Solokeys have no way to upgrade the firmware. However, the
SoloKey hacker is built to have an unlocked device for developing purposes. By using its
configuration tool and the official code, a developer can build and load it on the device.

This feature, however, constitutes a security risk. An attacker could manipulate the
firmware and load it on the victim’s device, causing it to run the manipulated malicious
code without the victim’s awareness. This is the reason why most makers lock their devices’

firmware, even from official firmware releases.

72

Chapter 7

Results

ONCE all iterations have been finished, the work resulted in a complete functional web
application tool for debugging and testing purposes on the WebAuthn protocol that
fits the objectives stated at the start of the project.

This web application result of this degree thesis project has been deployed and published
for its open access and usege at ht tps://debauthn. tic.udc. es. This working in-
stance of the tool corresponds to its last version and uses the correspondent public Docker

image (see Appendix B).

It is particularly noteworthy that the tool development, together with the authenticators
testing, made possible a deep study of the protocol and its current implementation by differ-
ent companies. This involves browsers like Firefox or Google Chrome, authenticators as the

Yubikey and server implementations like the fido2-lib.

Moreover, for the development of some of the tool features like the operations valida-
tion, it required to use the code of an existing library (fido2-lib). The fido2-lib library main
developer is one of the WebAuthn protocol engineers at the FIDO Alliance[28]. Notice that,
during this project, the usage of this library was not based in interfacing with documented

operations but adapting, patching and extending it with code contributions (see Appendix E).

In fact, due to the recent publishment of WebAuthn, the related articles and resources are
still scarce. For this reason, along this project it was key the contact with some expert forums
and mailing lists around WebAuthn, like the W3C mailing list [23] or the FIDO Alliance forum
[21].

Finally, during the development of the degree thesis itself, the developed tool (DebAuthn)
has proven to be useful for quickly obtaining information of the authenticators and their
capabilities (see example in figure 7.1). This part involved obtaining knowledge that was not

yet documented as well as verifying the already available one.

73

https://debauthn.tic.udc.es

7.1. Tool implementation

7.1 Tool implementation

Regarding the implementation of the tool, the three concrete objectives have been met. Also,

extra results have been achieved, such as the automatic deployment with Docker.

7.1.1 REST service for the access to Relying Party operations

The first specific objective was to “design and implement a REST service for the access to
Relying Party operations”. The final design of the debugging tool is composed of a back-end
server and a front-end user interface, communicating via an HTTP REST interface.

This REST model includes the endpoints shown in the table 7.1, which make possible
fetching the default configuration options for registration and authentication, sending the

authenticator response in each of the operations and managing the registered credentials.

Endpoint Method Request payload Response payload
/attestation/options GET None PublicKeyCredentialCreationOptions
/attestation/result ~ POST AuthenticatorAttestationResponse AttestationResult
/assertion/options ~ GET None PublicKeyCredentialRequestOptions
/assertion/result POST AuthenticatorAssertionResponse ~ AssertionResult
/registered GET None registeredCredentials
/registered DELETE None None

Table 7.1: All REST endpoints defined in the backend.

7.1.2 User web interface

In order to allow a researcher to check the raw data and debug the configurations, the tool

provides two main features:

1. Configuring registration and authentication operations.

2. Displaying the information involved in an structured manner.

Firstly, the tool requests default registration and authentication options to the server and
allows users to modify all of them, including the arrays of credential ids. Once this is done,
the tool can then trigger the call to the authentiactor through the WebAuthn APIL On the
other hand, the tool displays the authenticator response before posting it to the server for
validation, as well as all errors that occur at the browser during any of the operations. Finally,
the tool registers a credential or authenticates with a registered one, while returning all parsed

validation details to the user.

74

CHAPTER 7. RESULTS

7.1.3 Extensible tool

Another of the objectives was to develop an extensible tool. Consequently, the software was
designed taking into account the loose coupling principle.

On the server side, REST endpoints were defined by using one main router that uses call-
back functions controllers. All these loosely coupled controllers use a combined WebAuthn
library, configured in a single module loaded in all controllers. For this design, Express]S
library was used at the backend in a NodeJS environment. It uses callback functions named
“middleware” functions for these REST controllers, managed by a main router that provides
the HTTP basic operations. Finally, data models are defined as external components, shared
with the client side.

Moreover, on the client side, the design was also built to use loose coupling component
definitions that group together the HTML, CSS and JavaScript logic. For instance, all logic
and design related to the registration form is grouped in a single file, making it easy to change.
For this purpose, Vue]S Single File Components are used.

By using this loose coupling principle on both on the server side and the front-end side,
make the tool flexible and adaptive to future changes, while it easies its maintenance as an

open source project.

7.1.4 Extra results

Executing this web application provides researchers and developers to test both authentica-
tors and browsers, with no need for an ad hoc implementation for a use case. The flexibility is
extended by providing user forms for all WebAuthn registration and authentication options,
apart from the multi credential support which allows selecting the identifiers included in the
request. Also, all registered credentials that reside at the server side can be accessed and
deleted at the client, showing the credential counter, the id and the public key.

Regarding the WebAuthn protocol, the tool is now supporting all the main attestation
formats, including Android Safetynet. This allows to extend the range of authenticators and
allow using compatible Android devices as authenticators.

Moreover, DebAuthn also supports resident credentials, allowing to use and debug the
behaviour of authenticators compatible with this new technology defined by the CTAP2 stan-
dard. This is interesting as in-memory or resident credentials allow authenticators to be used
for many different use cases.

It is worth mentioning that, during the development of the tool, the fido2-lib library was
corrected and extended. Some of the corrections were in form of patches, while others drived
to the contribution of the library (see Appendix E).

Finally, it is also worth mentioning that the tool was published as open-source (GPL-3.0) in

75

7.2. Tests with physical authenticators by using the tool

a public repository in Github, as explained in the Appendix A. Additionally, the deployment of
the project has been automated using a bash script and Docker, so the server can be installed
and deployed in a Docker container. As explained in Appendix B, the project includes a
Docker Compose configuration file to launch the server container together with the required

MongoDB database.

7.2 Tests with physical authenticators by using the tool

The last project objective was to use the developed tool to test different models and brands
of physical authenticators, namely: two Yubico keys, the two Google Titan Security keys
and a Solokey (see figure 6.1). All of them were tested in different use cases under the same
conditions, on a Chromium browser running on Linux.

Firstly, some of the experiments, as said, were designed to conclude the most common
characteristics of the authenticators. One of the performed tests have shown the attesta-
tion format used by each of the keys. Another test directly checked the supported signing
algorithms, concluding that the most common is the ES256 algorithm (a.k.a ECDSA with
SHA-256). Also, the ES256 algorithm is the only available algorithm in the Android platform,
as seen in the tests with different browsers. Moreover, the RS5256 algorithm, which is not

recommended as seen in [71], is not present in any of the tested authenticators.

On the other hand, the authenticators were subjected to a resident credential compatibility
test, as shown in figure 7.1. Resident credential is the feature that adds support for the first

factor authentication method described by the FIDO2 project, as explained in section 2.2.6.

Testing results shown in the table 7.2 can be concluded in the division of the tested au-
thenticators in two groups: authenticators using the old FIDO U2F authentication flow for
second-factor authentication and those that are compatible with a passwordless authentica-

tion flow.

Both Google Titan keys use the old FIDO U2F flow while all the other tested keys were

proven to support resident credentials, which are used in the first-factor authentication flow.

Yubico Security Key Yubikey 5 Google Titan K9 Google Titan K13T Solo Hacker
Attestation format “packed” “packed” “fido-u2f” “fido-u2f” “packed”
Transports USB USB, NFC USB, NFC USB, NFC, BLE USB
ES256 Supported Supported Supported Supported Supported
EdDSA Supported Supported Not supported Not supported Not supported
RS256 Not supported Not supported Not supported Not supported Not supported
Resident Cred. Support YES YES NO NO YES

Table 7.2: Hardware authenticator testing results.

76

CHAPTER 7. RESULTS

Welcome!

Here

o wser supports WebAuthn! You can use the tool!

ALRIGHT

(a) Step 1: Feature detection verifying compatible browser.

Authenticator Selection

Authenticator Attachment User verification
cross-platform X~ Require Resident Key (required X -)

preferred

CANCEL
required

CONTINUE G discouraged

(b) Step 2: Configuration of the registration options.

PIN required Use your security key with debauthn.ticudces

Enter the PIN for your security key Touch your security key again to complete the request.

A record of your visit to this site will be kept on your
security key.

Cancel
Cancel

(d) Step 4: browser asking for user pres-

(c) Step 3: browser asking for user verifi-
ence.

cation (PIN).

~ 'Ez response

{..} authenticatorData
{.} clientDataJSON
{.} signature

{.} userHandle

(e) Step 5: explore details after authentication with the resi-
dent credential

Figure 7.1: DebAuthn usage example: testing resident credentials compatibility of the Solokey.

7.2.1 Extra results

On the other hand, other extrinsic features regarding the physical authenticators were checked,
namely: configuration and personalization tools, additional features and the device firmware.
All result details are grouped in the table 7.3.

After the experiments with different browsers and platforms like Android, it was found

that depending on their implementation they may or may not be compatible with resident

77

7.2. Tests with physical authenticators by using the tool

‘ ‘ Yub. Security Key ‘ Yubikey 5 ‘ Titan K9 ‘ Titan K13T ‘ Solo Hacker ‘
| Can reset | YES | YES | NO | NO | YES \
| Modify PIN | YES | YES | NO | NO | YES \
| Provides ad hoc tool | YES | YES | NO | NO | YES \
‘hmac-secret’.
. Enable and Configure extra Update firmware.
Main extra tool features
. . features of the key Random bytes.
disable interfaces .
Monitor.
Challenge-response. Random bytes
Additi 1 feat PIV: FIPS 201.
itional features OTP.]
OpenPGP smart card. generation
Firmware ‘ Proprietary ‘ Proprietary ‘ Proprietary ‘ Proprietary ‘ Open Source

Table 7.3: Hardware authenticators extrinsic features results.

credentials. The main reason is that the client platform should implement user verification,

usually the device PIN. This is an operation included in the FIDO CTAP2 protocol, so browsers

or platforms not implementing it will not support FIDO2 resident credentials. Not supporting
FIDO CTAP2 while supporting FIDO U2F (CTAP1) means that the only supported algorithm

will be ES256 and the authenticator platform will force devices to use the “fido-u2f” attesta-

tion signature format.

Taking into account these characteristics, the tested browsers implementation of FIDO

protocols and, therefore, its resident credentials support can be summerized in table 7.4.

Browser or platform

FIDO CTAP1 FIDO CTAP2

Firefox v77 on Linux
Chromium v83 on Linux
Firefox and Chrome on Android v7.1.1 platform Supported

Supported
Supported

Not supported
Supported
Not supported

Table 7.4: Browser support for FIDO CTAP1 and FIDO CTAP2.

78

Chapter 8

Conclusion and future research

IMPLEMENTING WebAuthn support is a complex task. This authentication method requires
the server to perform several attestation checks to ensure the keys were actually generated
in a trusted authenticator. Also, users need to own a trusted authenticator to be able to register

it in the compatible web application.

WebAuthn has been designed according to the FIDO2 project, which seeks a first factor
authentication mechanism that pretends to replace the old and traditional password method.
This was the new concept of “passwordless” authentication flow, introduced by the FIDO
CTAP2 protocol. The previous version, the FIDO U2F protocol, was designed to use authenti-
cators as a second factor authentication mechanism which is not compatible with the new fea-
tures. Although WebAuthn has backward support for FIDO U2F, authenticators and browsers
only supporting this U2F standard will not be compatible with the new “passwordless” flows
designed for FIDO CTAP2.

In the next few years, the adoption of the standard with hardware authenticators will pos-
sibly focus on second factor authentication methods, implemented as a security solution for
users to strengthen their account. However, WebAuthn also contemplates the use of software
authenticators, which do not involve the acquisition of a new product, as they are included
in smartphones like Android. This makes software authenticators a more realistic scenario
for users during the following years during an hypothetical transition to a “passwordless”

authentication flow.

Finally, it is worth mentioning that the W3C is developing a second version for WebAu-
thn, with many changes. This makes DebAuthn an useful environment for checking use cases
with browsers and authenticators, as proven in this degree thesis. Also, developers can test
physical authenticators with browsers in order to guide their implementations, knowing be-

forehand the compatibility results with the different configurations.

79

8.1. Future research lines

8.1 Future research lines

Some of the future research lines may group different specific parts of WebAuthn and com-
patible technologies, resulting from this degree thesis work. This section includes some of
them.

+ WebAuthn extensibility. The standard defines optional registration and authentica-
tion extensions that add functionalities to suit particular cases. The research objective
would be the analysis of the different existing extensions and the possible technologies
it can work with, aside web applications. For example, authentication of an Operating

System.

« Updating the developed tool to WebAuthn L2. The W3C is developing the new
version of WebAuthn. It will include some differences, like changes in the values some
options can have. For example, L1 version defines requiring resident credential as a
true/false value. In L2, this option will take values like “preferred” or “required”. Then,
the developed tool should adapt to these changes to continue to be used as a debugging
tool for this new version. The change would involve updating the frontend registration

form and models and a backend implementation if necessary.

« Roaming credentials for the developed tool. The current implementation of the
testing tool does not allow to use a registered credential from another device. Imple-
menting it would require a new identifier not dependent on session information, mak-
ing the information persistent. Also, the frontend should include a way to input this

identifier and link user sessions.

« FIDO Metadata Services. The objective of this research line would be to analyse the
distribution of MDS data and how this is used by Relying Parties to validate operations
occurring in trusted authenticators. This research would focus on the security of the

process and its potential vulnerabilities.

+ WebAuthn platforms and clients. Windows Hello and the Android platform are
client platforms of WebAuthn. They interface between the client, usually a browser,
and the authenticator. The research would have as an objective to study the available

platforms and analyze their main characteristics.

80

Appendices

81

Appendix A

Code base and installation

LL the code developed has been published as an open source project called DebAuthn,
1 & under the GNU General Public License v3.0 license. All the code is available at the

Github platform, hosted at the author’s profile. It is composed of two repositories:

de bAuthn

WebAuthn Authenticator Debugging Tool

- martinord/debauthn-backend [81]. This is the main repository that implements the
NodeJS server, the deployment explained at the Appendix B and contains a git submod-

ule referencing the next repository, the frontend.

+ martinord/debauthn-frontend [82]. The repository contains the implementation of

the user interface in Vue]S.

As explained in the Appendix B, the project can be started by using the deploy. sh
script at the backend repository or deploy it using it Docker. However, it can be manually

installed by running the following NPM scripts:

- npm install

« npm run postinstall

Once the server is installed, the frontend repository should be built by using the following
NPM scripts:

33

- npm install

« npm run build

Finally, copy the dist/ contents to the src/public folder at the backend server, so

it can serve the static user interface.

84

Appendix B
Automating deployment with
Docker

THIS appendix describes the automation of the deployment of the project by using Docker
containers. It was used when delivering the code to production in the server. Also, a
Docker image is generated when the code base (see Appendix A) is updated. This code base

is divided in two projects, namely:

» Frontend: Vue]S scripts and static user interface assets.

« Backend: Node]S server code, that serves both the static frontend files and the REST

endpoints.

B.1 Automating deployment

The process for deployment involved building the frontend project, that will produce the
minified files to be served. This was done by running ‘npm run build’. Then, the dist/
folder is moved to the src/public/ folder of the backend. The web server will then
consider these files as static files. When navigating to the root of the web page, it will serve
the index . html file, and all additional JS and CSS files are kept linked and served through
the same web server.

However, the repositories are not linked. In order to deploy the application, the developer
should work independently on both repositories and move these files around. This can be
solved by linking the frontend project to the backend project with a git submodule. When
the code is cloned, it will recursively clone the frontend project inside a folder.

Once this is done, the deployment can easily be automated, as the frontend code is now
in the same project structure. In this case, a bash script with flags is used, serving as multi

purpose. It automates the following operations:

85

B.2. Deploying in Docker containers

« Install. Installs the backend dependencies and applies the patches.

« Server. Runs the backend server with Node]S.

+ Front. Builds the front and installs it inside the public folder of the backend.

« All Runs install and front operations, ending by running the server with NodeJS.

By doing this, a developer could quickly set up the complete project, after configuring

it by modifying the src/config/ files, that set up the server configuration and the we-

bauthn details, like the R.P. id and name. Nonetheless, there is a configuration option that is

commonly used in Node]S applications: the environment variables.

Then, the configuration files are changed to search for the correspondent environment

variables, having a default value:

1

2

3

10

o

module.exports = {
port: process.env.PORT || 5000,

"mongodb: //localhost/debauthn",
tlsEnabled: process.env.TLS == 'true',
tls: {
privateKey: "tls/private.key",
certificate: "tls/certificate.crt"

secret: process.env.SECRET || "SecretTestForDevelopment",
mongoURI: "mongodb://"+process.env.MONGO+"/debauthn" ||

module.exports = {
rpld: process.env.RP_ID || "localhost",
rpName: process.env.RP_NAME || "DebAuthn"

Then, the server can be started by the following line:

$ RP_ID=debauthn.tic.udc.es npm run start

B.2 Deploying in Docker containers

Docker containers are a standardized unit of software [83]. This packs all dependencies into

a container so it can be run without caring about installing missing pieces of software. Once

this container image is built, it can be run by the Docker daemon in any O.S.

In order to build a container image, Docker needs some instructions, defined in a Dock-

erfile. In this case, it will use an existing container image loaded with Node]JS environment.

86

APPENDIX B. AUTOMATING DEPLOYMENT WITH DOCKER

Then, it will copy the source code and run the install and front scripts mentioned in the pre-
vious section. By doing that, it will save all dependencies and build and install the frontend
files. Lastly, a command is needed to start the server. For this, the aforementioned server

script is going to be used.

FROM node:12

WORKDIR /usr/src/app

COPY .

RUN ./deploy.sh --install

RUN ./deploy.sh --front

6/RUN rm -rf debauthn-frontend/ docs/
7| EXPOSE 5000

sCMD ["./deploy.sh","--server"

)

o

Having the project container image becomes interesting when it can be deployed with the
MongoDB server, required for it to work. This can be done by using docker-compose, which
can configure the deployment of several containers with a configuration file in YML format.
For doing this, the configuration file includes the image name of MongoDB, which is pulled
from DockerHub. Also, it will trigger the build of the project Docker image. Once this is
done, both images can be deployed with some configuration. As now the configuration of the

tool used environment variables, these can be included in the file:

1| version: '3'

2

3| services:

4| debauthn:

5 build:

6 ports:

7 - "5000:5000"

8 environment :

9 - PORT=5000

10 - SECRET="SecretForDeploymentPurposes!"
11 - MONGO=mongo

12 - TLS=false

13 - RP_ID=localhost

14 - RP_NAME=DebAuthn

15 MONgo:

16 image: "mongo:4.2"

17 ports:

18 - "127.0.0.1:27017-27019:27017-27019"

Finally, with ‘docker-compose up -d’ the whole project can be built and deployed in
Docker containers, exposing the server port that was configured, routing internally with

MongoDB. This is also added to the deployment script under the flag --docker’.

87

B.2. Deploying in Docker containers

38

Appendix C

Public key cryptography

EFORE getting into WebAuthn and its details, this Appendix is aims to briefly review
B the basic ideas of cryptography. The following sections will provide the reader a very
general idea, so further research on the topic is advisable.

One of the main authentication and cybersecurity concepts is cryptography. WebAuthn
uses public key cryptography, which is designed to use different keys for encryption and
decryption. Public key cryptography also provides the technology for digital signatures, a

key concept in this project.

C.1 Symmetric and asymmetric cryptography

According to [75], cryptography “is the study of mathematical techniques related to aspects
of in-formation security such as confidentiality, data integrity, entity authentication, and data
origin authentication”. Within the protocol studied in this research, both symmetric and
asymmetric cryptography are used [84].

In 1976 with the publication of New Directions in Cryptography, by Diffie and Helman,
the public-key cryptography was introduced. According to [75], it provided a new method
for key exchange where only the private key must be kept secret while the public key can
be accessible to anyone. This schema allows the owner, first, to sign information so it can be
verified with the public key and, second, decipher information that has been encrypted with
the public key (see fig C.1).

Public-key cryptography, or asymmetric cryptography, is the basis of digital signatures
and digital certificates. Like hand-written signatures, by digitally signing some information,
they provide verifiable authenticity of the information. Digital signatures also provide in-
tegrity proof, as they depend on the signer secret or private key but also on the message
being signed. That is, it guarantees that the data has not been tampered with [85]. As they

are based on asymmetric cryptography schema, this signature is verifiable by using only the

89

C.2. Public Key Infrastructure

Types of Encryption

DES Symmetric Keys
& Encryption and decryption use the same key.

TripleDES

AES SkyView Partners 713wP0~8a'lyUdS -
SEE jh™7GVda0ydh.

Asymmetric keys
+ Encryption and decryption use different keys, a public key and a private key.

SkyView Partners

REA
Elliptic

mm?::::“
SkyView Partners % SkyView Partners
Private Publu:
TG r:wgmz;:ga'
MD5 One-way hash
SHA-1 SkyView Partners | -m 0482'lyUdSLjhA7 Gd25e

Figure C.1: Types of cryptography

public key, without requiring access to the private signing key.

Symmetric cryptography, however, uses the same key for both cipher and decipher data.
As [75] explains, symmetric-key cryptography is currently used for ciphering data to provide
confidentiality between communication entities. In modern systems, it is used in conjunction
with asymmetric cryptography. The main reason is that asymmetric cryptography avoids
the need of both ends sharing a secret before starting the communication. However, it is

inneficient for large volumes of data in contrast to symmetric cryptography.

C.2 Public Key Infrastructure

As Smart [85] explains, in a public key system the system for distributing keys is not assumed
to be secure. That means that there are no implicit means of ensuring that a public key belongs
to someone and has not been spoofed.

This process of linking a public key to an entity or principal is called binding. The main
binding tool is the digital certificate. This will include the public key and the identity binded
to it, signed by a Certificate Authority, or CA. The CA is meant as a trusted authority by all
stakeholders and it is assumed as a signature from the authority is secure.

Digital certificates are present in many systems nowadays, from digital signatures on doc-
uments to the TLS protocol that ciphers the HTTPS web connections along the web. All of
them use a trust system. The most common is Public Key Infrastructure, or PKI, built from a

distribution of trust on several CAs that depend on a common or root CA, constructing a hier-

90

APPENDIX C. PUBLIC KEY CRYPTOGRAPHY

archical tree of trust inside an organisation. Then, these root CAs from different organisations
will be included in operating systems and browsers as trusted authorities.

Therefore, when a stakeholder needs to verify a signature, they will check it with the
public key contained on a digital certificate. This certificate binds the key with the identity it
belongs to. In order to ensure the public key is correct, the stakeholder may also verify the
signature of the CA contained in the certificate with the CA public key. The corresponding
CA public key is meant to be trusted via the PKI hierarchy system.

91

C.2. Public Key Infrastructure

92

Appendix D

Android SafetyNet Attestation

NDROID SafetyNet is an Attestation format included in the WebAuthn standard. It was
developed by Google to be used by the Android platform when using Android devices
as authenticators.
This Appendix summarizes the schema of the Android SafetyNet APIL. During the degree
thesis, support for this format was developed and added to DebAuthn (see section 5.6).

D.1 SafetyNet API protocol

In Android SafetyNet, a Relying Party needs to ensure the device is not compromised, as they
explain in their API [18]. This anti-abuse system “assesses the device integrity” by providing
“a cryptographically-signed attestation”.

The Android Safetynet API protocol, as they explain in the documentation [18], has this

structure (see figure D.1):

Android Device Client Server
Client App ° Client Backend
B E—
(. ©
Tl’ Google
SafetyNet
Attestation API °

Figure D.1: Android SafetyNet APL

Google Play services

Attestation API

Backend

1. The SafetyNet Attestation API receives a call from your app. This call includes a nonce.

93

D.1. SafetyNet API protocol

2. The SafetyNet Attestation service evaluates the runtime environment and requests a

signed attestation of the assessment results from Google’s servers.

3. Google’s servers send the signed attestation to the SafetyNet Attestation service on the

device.
4. The SafetyNet Attestation service returns this signed attestation to your app.
5. Your app forwards the signed attestation to your server.

6. This server validates the response and uses it for anti-abuse decisions. Your server

communicates its findings to your app.

As we can see, this squema is very similar to the attestation process described in WebAu-

thn. Actually, the standard covers the attestation format this API is using in its 8th section

[6].

94

Appendix E

Contributing to the fido2-lib library

HE £1do2-11b is an open source project and has been abandoned for two years. In
fact, some of the last changes are not included in the released npm package, used for
importing the project as a dependency in third parties code, like it is the case of this tool. One
of the last changes was starting to work on Android SafetyNet attestation format, but as it

was not validating the attestation, it was not working.

E.1 Pull Requests and forks

One option is to manually plug the new attestation format implementation in running time
through addAttestationFormat () but this would require removing the existing fail-
ing module. For this reason, an issue was opened [86] together with a pull request including
the implementation explained in section 5.6 [87].

However, as the maintainer has left the project, other developers from the community
have worked on different forks. One of them is James Cullum, developer of the fido2-lib fork,
called fido2-library [68]. Once contacted with him, the same pull request was rebased and
adapted for their version [88], as seen in te figure. The fork also has a npm package so, once

the pull request was merged into the master branch, it was deployed.

E.2 Unit tests and Continuous Integration

In order to better maintain the code, before a merge of the changes, some unit tests were
coded with hardcoded data, to ensure future modifications of the aforementioned implemen-
tation do not provoke unexpected results. The project is using IstanbulJS suite for unit testing.
Within its main test, the attestationResult is tested with some of the supported attestation for-
mats, like ‘none’ and “u2f’. Therefore, in order to test the new implementation, the attestation

data was hardcoded in the test. This data was sampled from a production environment with

95

E.2. Unit tests and Continuous Integration

| fido2-1ib |

npm

android-safetynet

_—

fido2-library |

npm

Figure E.1: Forks of the fido2-1ib library: implementation (author’s fork) and fido2-library from

Cullum.

a CLI debugging tool for Node]JS, after an Android request from Chrome when using the cre-

dential platform with the screen-lock. This environment produced the required authenticator

response with the “android-safetynet” attestation format.

Finally, when doing the Pull Request, these tests were triggered by the Github Actions,

a Continuous Integration (CI) system with many test environments like Istanbul]S [89]. It

also produced a test coverage report, ensuring most of the code has their respective tests.

This Github actions configuration set by the fork maintainer will help them, along with the

implemented tests, to detect any issues with future implementations related to this attestation

format.

96

Appendix F

Code listings

THIS appendix includes some pieces of code that may be of interest for the reader. However,

all developed code is open source and is publicly accessible, as explained in Appendix A.

F.1 Error handlers

This section includes the error handler of the backend with Express]S and the error catching

and handling of the frontend with Vue]S:

app.use(function (err, req, res, next) {

2 console.error(err.stack)
3 res.status(500).send(err.message)
next ()

i)

'S

o

navigator.credentials.create({ publicKey: this.options })

2 .then((response) => {

3 this.response = response
4 i)

5 .catch((error) => {

6 this.onError(error)

7 1)

8 ..

olonError(error) {

10 if (error.response.data) this.error = error.response.data
11 else this.error = error

12 this.showError = true

13 }

97

F.2. Encoding and decoding functions

F.2 Encoding and decoding functions

The buffers are encoded and decoded using ArrayBuffer. The target code is base64url.

Here are the functions:

1| encode (thing) {

2 // Array to Uint8Array

3 if (Array.isArray(thing)) {

4 thing = Uint8Array.from(thing);

5 }

6

7 // Uint8Array, etc. to ArrayBuffer

8 if (thing.buffer instanceof ArrayBuffer && ! (thing
instanceof Buffer)) {

9 thing = thing.buffer;

10 }

11

12 // ArrayBuffer to Buffer

13 if (thing instanceof ArrayBuffer && ! (thing instanceof
Buffer)) {

14 thing = Buffer.from(thing);

15 3}

16

17 // Buffer to base64 string

18 if (thing instanceof Buffer) {

19 thing = thing.toString("base64");

20 }

21

22 if (typeof thing == "string") {

23 // base64 to base64url

24 // NOTE: "=" at the end of challenge is optional, strip
it off here so that it's compatible with client

25 thing = thing.replace(/\+/g, "-").replace(/\//g,
"_").replace(/=*$/g, "");

26 3}

27

28 return thing

w3,

30 decode(thing) {

31 if (typeof thing === "string") {

32 // base64url to base64

33 thing = thing.replace(/-/g, "+").replace(/_/g, "/");

34 // base64 to Buffer

35 thing = Buffer.from(thing, "base64");

98

APPENDIX F. CODE LISTINGS

38 // Buffer or Array to Uint8Array
39 if (thing instanceof Buffer || Array.isArray(thing)) {
40 thing = new Uint8Array(thing);
41 }

42

43 // Uint8Array to ArrayBuffer

44 if (thing instanceof Uint8Array) {
45 thing = thing.buffer;

46 }

47

48 return thing

49 }

99

F.2. Encoding and decoding functions

100

List of Acronyms

R.P. Relying Party.

W3C World Wide fddWeb Consortium.
FIDO Fast Identity Online.

U2F Universal Second-Factor.

CA Certificate Authority.

PKI Public Key Infrastructure.

CTAP Client to Authenticator Protocol.
API Aplication Programming Interface.
E2E End to End.

ASD Adaptive Software Development.
SDLC Software Development Life Cycle.
IDE Integrated Development Environment.
CLI Command-Line Interface.

REST Representational State Transfer.
SPA Single Page Application.

AJAX Asynchronous JavaScript and XML.
JS FavaScript.

UI User Interface.

101

F.2. Encoding and decoding functions

GUI Graphical User Interface.
NFC Near-Field Communication.
USB Universal Serial Bus.

BLE Bluetooth Low Energy.

PIN Personal Identification Number.

102

Glossary

WebAuthn Web Authentication protocol, developed by the W3C. It defines the whole au-
thentication protocol. (a.k.a. WebAuthn API).

Authentication Act of verifying the identity of a computer system user.
Credential Piece of information used for verifying the identity of a user.

Relying Party The entity whose web application utilizes the Web Authentication API to

register and authenticate users.

Authenticator A cryptographic entity used in WebAuthn by a browser to generate a public
key credential during registration and cryptographically signing a challenge during

authentication. When it is a hardware device it is usually called "key’.

Attestation (WebAuthn) The process employed during registration to attest the provenance

of an authenticator and the data it emits.

Assertion (WebAuthn) The cryptographically signed authenticator response returned by

an authenticator during the authentication process.

Cryptography Study of mathematical techniques related to aspects of in-formation security
such as confidentiality, data integrity, entity authentication, and data origin authenti-

cation.

Ceremony A network protocol with human-to-human communication, user interfaces and

transfers of physical objects that carry data.

Application Programming Interface A computing interface which defines interaction be-

tween multiple software intermediaries by specifying the requests involved.

Resident Credential A WebAuthn credential that is stored in the authenticator memory.

103

F.2. Encoding and decoding functions

DebAuthn The developed tool during this project. Available at https://debauthn.
tic.udc.es.

Kanban board An agile project management tool for visualizing the work-in-progress.
Buffer (object) A JS object that represents a bulk of binary data.
Encode Represent binary data in another form or code. Decoding is the inverse process.

Firmware A specific class of software that provides the low-level control for a specific hard-

ware of a device.

Backend The data access layer of a piece of software. Usually refers to the software running

on the server side of a web application. (a.k.a. ’back-end’).

Frontend The presentation layer of a piece of software. Usually refers to the software run-

ning on the client side of a web application, namely a browser. (a.k.a. ’front-end’).

Debugging The process of finding and resolving defects or problems that prevent correct

operation within software or systems.

104

https://debauthn.tic.udc.es
https://debauthn.tic.udc.es

Bibliography

[1] Y. A. Ahmed, M. A. Maarof, F. M. Hassan, and M. M. Abshir, “Survey of keylogger tech-
nologies,” vol. 5, no. 2, pp. 25-31.

[2] ScatteredSecrets.com. How to crack billions of passwords? Library Cata-
log: medium.com. [Online]. Available: https://medium.com/@ScatteredSecrets/
how-to-crack-billions-of-passwords-6773af298172

[3] B. Krebs. Google: Security keys neutralized employee
phishing. [Online]. Available: https://krebsonsecurity.com/2018/07/
google-security-keys-neutralized-employee-phishing/

[4] Discover YubiKeys | strong two-factor authentication for secure login. [Online].

Available: https://www.yubico.com/products/

[5] Titan security key fido u2 f usb c nfc ble. Library Catalog: cloud.google.com. [Online].
Available: https://cloud.google.com/titan-security-key

[6] W., Web Authentication: An API for accessing Public Key Credentials Level 1. [Online].
Available: https://www.w3.org/TR/webauthn/

[7] F. Alliance, “Client to authenticator protocol (CTAP)” [On-
line]. Available: https://fidoalliance.org/specs/fido-v2.0-ps-20190130/
fido-client-to-authenticator-protocol-v2.0-ps-20190130.html

[8] N.Steele. A demonstration of the WebAuthn specification. Library Catalog: webauthn.io.
[Online]. Available: https://webauthn.io

[9] auth0.com. Web authentication (WebAuthn) credential and login demo. Library Catalog:
webauthn.me. [Online]. Available: https://webauthn.me

[10] Web authentication: An API for accessing public key credentials - level 2. [Online].
Available: https://w3c.github.io/webauthn/

105

https://medium.com/@ScatteredSecrets/how-to-crack-billions-of-passwords-6773af298172
https://medium.com/@ScatteredSecrets/how-to-crack-billions-of-passwords-6773af298172
https://krebsonsecurity.com/2018/07/google-security-keys-neutralized-employee-phishing/
https://krebsonsecurity.com/2018/07/google-security-keys-neutralized-employee-phishing/
https://www.yubico.com/products/
https://cloud.google.com/titan-security-key
https://www.w3.org/TR/webauthn/
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html
https://webauthn.io
https://webauthn.me
https://w3c.github.io/webauthn/

Bibliography

[11] FIDO2: Moving the world beyond passwords using WebAuthn & CTAP. Library
Catalog: fidoalliance.org. [Online]. Available: https://fidoalliance.org/fido2/

[12] Universal 2nd factor (u2f) overview. [Online]. Available: https://fidoalliance.org/specs/
fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.html

[13] Credential management level 1. [Online]. Available: https://www.w3.org/TR/

credential-management-1/

[14] FIDO metadata service. [Online]. Available: https://fidoalliance.org/specs/fido-v2.
0-id-20180227/fido-metadata-service-v2.0-id-20180227. html

[15] N. Amiet. FIDO2 deep dive: Attestations, trust model and security. Library Catalog: re-
search.kudelskisecurity.com. [Online]. Available: https://research.kudelskisecurity.

com/2020/02/12/fido2-deep-dive-attestations-trust-model-and-security/

[16] E.Brickell, J. Camenisch, and L. Chen, “Direct anonymous attestation,” in Proceedings of
the 11th ACM conference on Computer and communications security - CCS '04. ACM
Press, p. 132. [Online]. Available: http://portal.acm.org/citation.cfm?doid=1030083.
1030103

[17] A. Enterprise. Android key attestation. Library Catalog: source.android.com. [Online].

Available: https://source.android.com/security/keystore/attestation

[18] SafetyNet attestation API Library Catalog: developer.android.com. [Online]. Available:

https://developer.android.com/training/safetynet/attestation

[19] Yubico | YubiKey strong two factor authentication. [Online]. Available: https:

//www.yubico.com/

[20] FIDO alliance - open authentication standards more secure than passwords. Library

Catalog: fidoalliance.org. [Online]. Available: https://fidoalliance.org/

[21] FIDO dev (fido-dev) - google groups. [Online]. Available: https://groups.google.com/a/

fidoalliance.org/forum/#!forum/fido-dev
[22] World wide web consortium (w3c). [Online]. Available: https://www.w3.org/

[23] public-webauthn@w3.org mail archives. [Online]. Available: https://lists.w3.org/
Archives/Public/public-webauthn/

[24] Duo labs | duo security. [Online]. Available: https://duo.com/labs

[25] AuthO: Secure access for everyone. but not just anyone. [Online]. Available:
https://auth0.com/

106

https://fidoalliance.org/fido2/
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.html
https://www.w3.org/TR/credential-management-1/
https://www.w3.org/TR/credential-management-1/
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-service-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-metadata-service-v2.0-id-20180227.html
https://research.kudelskisecurity.com/2020/02/12/fido2-deep-dive-attestations-trust-model-and-security/
https://research.kudelskisecurity.com/2020/02/12/fido2-deep-dive-attestations-trust-model-and-security/
http://portal.acm.org/citation.cfm?doid=1030083.1030103
http://portal.acm.org/citation.cfm?doid=1030083.1030103
https://source.android.com/security/keystore/attestation
https://developer.android.com/training/safetynet/attestation
https://www.yubico.com/
https://www.yubico.com/
https://fidoalliance.org/
https://groups.google.com/a/fidoalliance.org/forum/#!forum/fido-dev
https://groups.google.com/a/fidoalliance.org/forum/#!forum/fido-dev
https://www.w3.org/
https://lists.w3.org/Archives/Public/public-webauthn/
https://lists.w3.org/Archives/Public/public-webauthn/
https://duo.com/labs
https://auth0.com/

BIBLIOGRAPHY

[26] Solo - SoloKeys. [Online]. Available: https://solokeys.com/

[27] “duo-labs/py_webauthn,” original-date: 2017-11-10T18:02:28Z. [Online]. Available:
https://github.com/duo-labs/py_webauthn

[28] “webauthn-open-source/fido2-lib,” original-date: 2017-02-08T01:56:55Z. [Online]. Avail-
able: https://github.com/webauthn-open-source/fido2-lib

[29] A. Aberg, “abergs/fido2-net-lib,” original-date: 2018-05-31T07:51:51Z. [Online]. Avail-
able: https://github.com/abergs/fido2-net-lib

[30] “cedarcode/webauthn-ruby,” original-date: 2018-05-09T21:49:17Z. [Online]. Available:
https://github.com/cedarcode/webauthn-ruby

[31] “duo-labs/webauthn,” original-date: 2017-10-26T16:15:55Z. [Online]. Available: https:
//github.com/duo-labs/webauthn

[32] Titan security key | google cloud. [Online]. Available: https://cloud.google.com/
titan-security-key/

[33] “solokeys/solo,” original-date: 2018-09-13T22:42:08Z. [Online]. Available: https:
//github.com/solokeys/solo

[34] OnlyKey hardware password manager | one PIN to remember. [Online]. Available:
https://onlykey.io/

[35] Thetis. Library Catalog: thetis.io. [Online]. Available: https://thetis.io/

[36] F. Henneke, “FabianHenneke/WearAuthn,” original-date: 2019-10-27T12:42:48Z. [On-
line]. Available: https://github.com/FabianHenneke/WearAuthn

[37] “duo-labs/android-webauthn-authenticator,” original-date: 2019-01-31T21:36:41Z. [On-
line]. Available: https://github.com/duo-labs/android-webauthn-authenticator

[38] “google/OpenSK,” original-date: 2019-12-17T18:55:43Z. [Online]. Available: https:
//github.com/google/OpenSK

[39] WebAuthn demo. [Online]. Available: https://webauthn.org/
[40] Yubico demo website. [Online]. Available: https://demo.yubico.com/
[41] WebAuthn test app. [Online]. Available: https://webauthntest.azurewebsites.net/

[42] WebAuthn checker - w3c level 1 mode. [Online]. Available: https://webauthn.bin.coffee/

107

https://solokeys.com/
https://github.com/duo-labs/py_webauthn
https://github.com/webauthn-open-source/fido2-lib
https://github.com/abergs/fido2-net-lib
https://github.com/cedarcode/webauthn-ruby
https://github.com/duo-labs/webauthn
https://github.com/duo-labs/webauthn
https://cloud.google.com/titan-security-key/
https://cloud.google.com/titan-security-key/
https://github.com/solokeys/solo
https://github.com/solokeys/solo
https://onlykey.io/
https://thetis.io/
https://github.com/FabianHenneke/WearAuthn
https://github.com/duo-labs/android-webauthn-authenticator
https://github.com/google/OpenSK
https://github.com/google/OpenSK
https://webauthn.org/
https://demo.yubico.com/
https://webauthntest.azurewebsites.net/
https://webauthn.bin.coffee/

Bibliography

[43] J. Highsmith, Adaptive Software Development: A Collaborative Approach to Managing
Complex Systems. Dorset House Publishing Co Inc.,U.S.

[44] A. Cockburn, “Using both incremental and iterative development. 21. 27-30.” vol. 21, pp.
27-30.

[45] M. Rehkopf. What is a kanban board? Library Catalog: www.atlassian.com. [Online].

Available: https://www.atlassian.com/agile/kanban/boards

[46] Chrome 70 beta: shape detection, web authentication, and more. Library Cata-
log: blog.chromium.org. [Online]. Available: https://blog.chromium.org/2018/09/

chrome-70-beta-shape-detection-web.html

[47] N. Nguyen. Firefox gets down to business, and it’s personal. Library Cata-
log: blog.mozilla.org. [Online]. Available: https://blog.mozilla.org/blog/2018/05/09/

firefox-gets-down-to-business-and-its-personal

[48] BOE.es - documento BOE-a-2019-14977. [Online]. Available: https://www.boe.es/
diario_boe/txt.php?id=BOE-A-2019-14977

[49] Express - node.js web application framework. Library Catalog: expressjs.com. [Online].

Available: https://expressjs.com/
[50] Node.js. Node.js. Library Catalog: nodejs.org. [Online]. Available: https://nodejs.org/en/
[51] Vue.js. Library Catalog: vuejs.org. [Online]. Available: https://vuejs.org/

[52] The most popular database for modern apps. Library Catalog: www.mongodb.com.

[Online]. Available: https://www.mongodb.com

[53] “axios/axios,” original-date: 2014-08-18T22:30:27Z. [Online]. Available: https://github.

com/axios/axios

[54] authnrData rawAuthnrData should be ArrayBuffer - issue #23 - webauthn-open-
source/fido2-lib. Library Catalog: github.com. [Online]. Available: https://github.

com/webauthn-open-source/fido2-lib/issues/23

[55] fix: authnrData rawAuthnrData should be ArrayBuffer by goldenbearkin - pull request
#25 - webauthn-open-source/fido2-lib. Library Catalog: github.com. [Online].
Available: https://github.com/webauthn-open-source/fido2-lib/pull/25

[56] Vue material design component framework — vuetify.js. Library Catalog: vuetifyjs.com.
[Online]. Available: https://https://vuetifyjs.com/

108

https://www.atlassian.com/agile/kanban/boards
https://blog.chromium.org/2018/09/chrome-70-beta-shape-detection-web.html
https://blog.chromium.org/2018/09/chrome-70-beta-shape-detection-web.html
https://blog.mozilla.org/blog/2018/05/09/firefox-gets-down-to-business-and-its-personal
https://blog.mozilla.org/blog/2018/05/09/firefox-gets-down-to-business-and-its-personal
https://www.boe.es/diario_boe/txt.php?id=BOE-A-2019-14977
https://www.boe.es/diario_boe/txt.php?id=BOE-A-2019-14977
https://expressjs.com/
https://nodejs.org/en/
https://vuejs.org/
https://www.mongodb.com
https://github.com/axios/axios
https://github.com/axios/axios
https://github.com/webauthn-open-source/fido2-lib/issues/23
https://github.com/webauthn-open-source/fido2-lib/issues/23
https://github.com/webauthn-open-source/fido2-lib/pull/25
https://https://vuetifyjs.com/

BIBLIOGRAPHY

[57] Getting started | vue router. [Online]. Available: https://router.vuejs.org/guide/

[58] “github/webauthn-json,” original-date: 2019-07-01T18:52:54Z. [Online]. Available:
https://github.com/github/webauthn-json

[59] S. Josefsson {\textless}simon@josefsson.org{\textgreater}. The basel6, base32, and
base64 data encodings. Library Catalog: tools.ietf.org. [Online]. Available:
https://tools.ietf.org/html/rfc4648

[60] A. Takakuwa, “Moving from passwords to authenticators,” p. 164.

[61] F. Skokan, “panva/jose,” original-date: 2018-11-06T08:46:01Z. [Online]. Available:
https://github.com/panva/jose

[62] CBOR object signing and encryption (COSE). [Online]. Available: https://www.iana.

org/assignments/cose/cose.xhtml#algorithms

[63] D. Sheldrick, “ds300/patch-package,” original-date: 2017-05-08T20:31:20Z. [Online].
Available: https://github.com/ds300/patch-package

[64] Security key by yubico | two factor security key | USB-a. Library Cata-
log: www.yubico.com. [Online]. Available: https://www.yubico.com/product/

security-key-by-yubico

[65] YubiKey 5.2.3 enhancements to FIDO 2 support. Library Catalog: sup-
port.yubico.com. [Online]. Available: https://support.yubico.com/support/solutions/
articles/15000027138-yubikey-5-2-3-enhancements-to-fido-2-support

[66] YubiKey 5 NFC | two factor security key | USB-a & NFC. Library Cata-
log: www.yubico.com. [Online]. Available: https://www.yubico.com/product/

yubikey-5-nfc

[67] Solo hacker - open source, FIDO2(for developers & makers). Library Catalog:
solokeys.com. [Online]. Available: https://solokeys.com/products/solo-hacker

[68] YubiKey manager. Library Catalog: www.yubico.com. [Online]. Available: https:

//www.yubico.com/products/services-software/download/yubikey-manager/

[69] E. Lundberg, “FIDO2 - yubikey giving different attestation format in firefox
and chrome” [Online]. Available: https://groups.google.com/a/fidoalliance.org/g/
fido-dev/c/ILVVXCIQN_8/m/j-U0PBIHCQA]J?pli=1

109

https://router.vuejs.org/guide/
https://github.com/github/webauthn-json
https://tools.ietf.org/html/rfc4648
https://github.com/panva/jose
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://github.com/ds300/patch-package
https://www.yubico.com/product/security-key-by-yubico
https://www.yubico.com/product/security-key-by-yubico
https://support.yubico.com/support/solutions/articles/15000027138-yubikey-5-2-3-enhancements-to-fido-2-support
https://support.yubico.com/support/solutions/articles/15000027138-yubikey-5-2-3-enhancements-to-fido-2-support
https://www.yubico.com/product/yubikey-5-nfc
https://www.yubico.com/product/yubikey-5-nfc
https://solokeys.com/products/solo-hacker
https://www.yubico.com/products/services-software/download/yubikey-manager/
https://www.yubico.com/products/services-software/download/yubikey-manager/
https://groups.google.com/a/fidoalliance.org/g/fido-dev/c/ILVVXClQN_8/m/j-U0PBlHCQAJ?pli=1
https://groups.google.com/a/fidoalliance.org/g/fido-dev/c/ILVVXClQN_8/m/j-U0PBlHCQAJ?pli=1

Bibliography

[70] FIDO u2f authenticator transports extension. [Online]. Avail-
able: https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/
fido-u2f-authenticator-transports-extension-v1.2-ps-20170411.html

[71] Security concerns surrounding WebAuthn: Don’t implement ECDAA (yet) - paragon
initiative enterprises blog. [Online]. Available: https://paragonie.com/blog/2018/08/

security-concerns-surrounding-webauthn-don-t-implement-ecdaa-yet

[72] OpenSSH - release notes 8.2. [Online]. Available: https://www.openssh.com/txt/

release-8.2

[73] “solokeys/solo-python,” original-date: 2019-02-15T22:09:47Z. [Online]. Available:
https://github.com/solokeys/solo-python

[74] OnlyKey features | docs. [Online]. Available: https://docs.crp.to/features.html

[75] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied
Cryptography, 5th ed. [Online]. Available: http://cacr.uwaterloo.ca/hac/

76] H. Krawczyk, R. Canetti, and M. Bellare. HMAC: Keyed-hashing for message

y Y g g

authentication. Library Catalog: tools.ietf.org. [Online]. Available: https://tools.ietf.
org/html/rfc2104

[77] B. Rush. KeeChallenge. [Online]. Available: http://richardbenjaminrush.com/
keechallenge/

[78] Yubico login for windows configuration guide : Yubico sup-
port. [Online]. Available: https://support.yubico.com/support/solutions/articles/
15000028729-yubico-login-for-windows-configuration-guide

[79] PIV compatible smart cards | yubico. [Online]. Available: https://www.yubico.com/

authentication-standards/smart-card/
[80] Yubico developers. [Online]. Available: https://developers.yubico.com/

[81] martinord/debauthn-backend. Library Catalog: github.com. [Online]. Available: https:
//github.com/martinord/debauthn-backend

[82] martinord/debauthn-frontend. Library Catalog: github.com. [Online]. Available:
https://github.com/martinord/debauthn-frontend

[83] What is a container? | app containerization | docker. Library Catalog: www.docker.com.

[Online]. Available: https://www.docker.com/resources/what-container

110

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-authenticator-transports-extension-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-authenticator-transports-extension-v1.2-ps-20170411.html
https://paragonie.com/blog/2018/08/security-concerns-surrounding-webauthn-don-t-implement-ecdaa-yet
https://paragonie.com/blog/2018/08/security-concerns-surrounding-webauthn-don-t-implement-ecdaa-yet
https://www.openssh.com/txt/release-8.2
https://www.openssh.com/txt/release-8.2
https://github.com/solokeys/solo-python
https://docs.crp.to/features.html
http://cacr.uwaterloo.ca/hac/
https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2104
http://richardbenjaminrush.com/keechallenge/
http://richardbenjaminrush.com/keechallenge/
https://support.yubico.com/support/solutions/articles/15000028729-yubico-login-for-windows-configuration-guide
https://support.yubico.com/support/solutions/articles/15000028729-yubico-login-for-windows-configuration-guide
https://www.yubico.com/authentication-standards/smart-card/
https://www.yubico.com/authentication-standards/smart-card/
https://developers.yubico.com/
https://github.com/martinord/debauthn-backend
https://github.com/martinord/debauthn-backend
https://github.com/martinord/debauthn-frontend
https://www.docker.com/resources/what-container

BIBLIOGRAPHY

[84] FIDO authenticator allowed cryptography list. [Online]. Avail-
able: https://fidoalliance.org/specs/fido-security-requirements-v1.
0-fd-20170524/fido-authenticator-allowed-cryptography-list_20170524.html#

allowed-cryptographic-functions

[85] N. Smart, Cryptography: An Introduction, 3rd ed. [Online]. Available: https:
//www.cs.umd.edu/~waa/414-F11/IntroToCrypto.pdf

[86] Android SafetyNet not working - issue #48 - webauthn-open-source/fido2-
lib. Library Catalog: github.com. [Online]. Available: https://github.com/

webauthn-open-source/fido2-lib/issues/48

[87] Complete android SafetyNet attestation (fix #48) by martinord - pull request #49 -
webauthn-open-source/fido2-1ib. Library Catalog: github.com. [Online]. Available:
https://github.com/webauthn-open-source/fido2-lib/pull/49

[88] Complete android SafetyNet attestation by martinord - pull request #3 - FIDO-
tools/fido2-library. Library Catalog: github.com. [Online]. Available: https:
//github.com/FIDO-Tools/fido2-library/pull/3

[89] Istanbul, a JavaScript test coverage tool. Library Catalog: istanbuljs.org. [Online].
Available: http://istanbul.js.org/

111

https://fidoalliance.org/specs/fido-security-requirements-v1.0-fd-20170524/fido-authenticator-allowed-cryptography-list_20170524.html#allowed-cryptographic-functions
https://fidoalliance.org/specs/fido-security-requirements-v1.0-fd-20170524/fido-authenticator-allowed-cryptography-list_20170524.html#allowed-cryptographic-functions
https://fidoalliance.org/specs/fido-security-requirements-v1.0-fd-20170524/fido-authenticator-allowed-cryptography-list_20170524.html#allowed-cryptographic-functions
https://www.cs.umd.edu/~waa/414-F11/IntroToCrypto.pdf
https://www.cs.umd.edu/~waa/414-F11/IntroToCrypto.pdf
https://github.com/webauthn-open-source/fido2-lib/issues/48
https://github.com/webauthn-open-source/fido2-lib/issues/48
https://github.com/webauthn-open-source/fido2-lib/pull/49
https://github.com/FIDO-Tools/fido2-library/pull/3
https://github.com/FIDO-Tools/fido2-library/pull/3
http://istanbul.js.org/

Bibliography

112

	Introduction
	Objectives
	Structure of the degree thesis

	State of the Art
	Existing standards
	WebAuthn: a W3C recommendation
	General concepts
	Attestation
	Assertion
	Attestation types and formats
	Resident and non-resident credentials
	WebAuthn charecteristics and use cases
	Backwards compatiblity with FIDO U2F

	Projects and companies around WebAuthn
	Implementations of the WebAuthn Relying Party
	Implementations of the WebAuthn Authenticator Model
	WebAuthn testing tools
	Conclusion

	Planning and methodology
	Engineering methodology
	Tool development
	Authenticators testing

	Project planning and monitoring
	Materials and cost estimate
	Estimated and monitored cost

	Analysis
	Mission statement
	Actors and use cases
	Architecture and technology election

	Development
	Basic operations implementation
	General aspects
	Attestation
	Assertion

	Displaying information to the user
	Error handlers
	Frontend routing
	Alerts and dialogs
	Splitting functionality and displaying information

	Modifiable options
	Enabling the reuse of options at the backend
	Improving models and encoding in base64url
	Attestation options form
	Assertion options form
	User input validation

	Structuring the displayed data
	Relying Party validation data processing
	Operation warnings after validation
	Structuring Authenticator response and validation data

	Support for several registered credentials
	Allowed credentials in Assertion
	Registered credentials at the server
	Verifying Assertion

	Android SafetyNet: a new Attestation format
	Implementing validation for Android Safetynet attestation format
	Integration of the implementation in DebAuthn

	Improving user experience
	Giving instructions to the user
	Feature detection
	Improving two key fields of the attestation options

	Extending possible tests
	Adding support for resident credentials
	Delete all registered credentials

	Testing and studying authenticators
	Attestation mechanisms in hardware authenticators
	Authenticator compatibility
	Browser compatibility

	Communicating with authenticators: the transports
	The cryptography: supported algorithms
	Testing support for resident credentials
	Authenticator compatibility
	Browser compatibility

	Configuration and management available tools
	Additional features of the hardware devices
	Device firmware

	Results
	Tool implementation
	REST service for the access to Relying Party operations
	User web interface
	Extensible tool
	Extra results

	Tests with physical authenticators by using the tool
	Extra results

	Conclusion and future research
	Future research lines

	Code base and installation
	Automating deployment with Docker
	Automating deployment
	Deploying in Docker containers

	Public key cryptography
	Symmetric and asymmetric cryptography
	Public Key Infrastructure

	Android SafetyNet Attestation
	SafetyNet API protocol

	Contributing to the fido2-lib library
	Pull Requests and forks
	Unit tests and Continuous Integration

	Code listings
	Error handlers
	Encoding and decoding functions

	List of Acronyms
	Glossary
	Bibliography

