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Abstract The purpose of this paper is twofold. We first provide the mathe-
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1 Introduction

For the last 50 years, asymptotic methods have been used to derive and justify
simplified models for three-dimensional solid mechanics problems for beams,
plates and shells. The foundation for these methods was established by Lions
in [7]. Regarding elastic shells, a complete theory can be found in [3].

Recently, in [1] the asymptotic limit of a dynamic problem for elliptic
shells in thermoelasticity has been analyzed. The aim of the present note is
to obtain similar results for thermoelastic shells in contact with a foundation.
Contact problems abound in industry and many other areas in which mathe-
matical models apply, as can tell the growing number of publications on the
mathematical theory of contact (see for example [12] and references therein).
The addition of a contact condition introduces a nonlinearity in the problem
and, thus the methods and arguments needed will differ considerably from
our previous work. Nevertheless, since both problems are cast into the same
framework of the asysmptotic analysis of shells in thermoelasticity, the state
of the art will not be reviewed here again, and we refer the interested reader
to [1] and references therein.

Following the same principle, some notation will not be introduced here,
since all required definitions are available in [1], and we will focus in the nov-
elties due to the contact condition and how it affects the subsequent analysis.

The structure of the paper is the following: in Section 2 we shall describe
the variational and mechanical formulations of the contact problem in carte-
sian coordinates in a general domain, and present a result of existence and
uniqueness of solution for that problem. In Section 3 we consider the par-
ticular case when the deformable body is, in fact, a shell and reformulate the
variational formulation in curvilinear coordinates. Then we give the scaled for-
mulation. To do that, we will use a projection map into a reference domain and
we will introduce the scaled unknowns and forces as well as the assumptions
on coefficients. We also devote this section to recall and derive results that
will be needed later. In Section 4 we briefly describe the formal asymptotic
analysis which leads to the formulation of limit two-dimensional problems.
Then, in Section 5 we prove the existence and uniqueness of solution for the
two-dimensional limit problem and then we focus on the elliptic membrane
case, for which we provide a rigorous convergence result. Finally, in Section 6
we show that the solution to the re-scaled version of this problem, with true
physical meaning, also converges. The paper ends with Section 7, devoted to
the conclusions and future work.

2 A three-dimensional dynamic contact problem for thermoelastic
bodies. The normal damped response case

Let £2¢ be a three-dimensional bounded domain and assume that 2° is the
reference configurarion of a deformable body made of an elastic material, which
is homogeneous and isotropic, with Lamé coefficients A* > 0,1 > 0. Let
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I'® = 982 denote the boundary of the body, which is divided into three disjoint
parts f_i, f“g and f§, where the measure of the latter is strictly positive.

The equations for the three-dimensional dynamic thermoelastic frictionless
contact problem between a regular three-dimensional solid and a deformable
foundation with normal damped response are the following:

Problem 1 Find the stress field ° = (67;), the displacements field 4" = (as)
and the temperature field 9° verifying

65 = N6, (U°) 05 + 2017€5,(0°) — G5 (3X° + 245)9°0;; in 2° x (0,T), (1)

s — dive® = F in 2° x (0,7) (2)

e = 0;(h050°) — 65.(30° + 21°)é5, (6F) + ¢F in O x (0,7), (3)

w*=0on I§ % (0,T), (4)

95 =0on I§ x (0,T), (5)

(6)

(7)

(8)

9)

)

Q>

A =h on I x (0,T),

— 67, = p°(4y), 67 =(65) =0 on I5x(0,7),
kF050°n; = 0 on ('L UTE) x (0,T),

a4 (-,0) = 4°(-,0) = 0 in £2°,

95(-,0) = 0 in £2°. (10

We refer the reader to [1] for the details on the set of equations and conditions
(1)—(10),with the exception of the contact condition (7), on which we elabo-
rate now. We consider that the body may enter in contact with a deformable
foundation which, initially, is at a known distance (or gap) §° measured along
the direction of outward normal vector n° = (1) on I &, and we assume that
the normal response on the contact surface only happens when the surface
element is moving towards the foundation, and vanishes when it is moving
away. Thus to model contact in the normal direction we are using the so-
called normal damped response (see [12] and references therein). Therefore,
p® : R — Ry is a non negative function which vanishes when its argument
(the surface velocity) is nonpositive. Specifically, one may use

Po(r) =Ry, (11)

where #° > 0 stands for the normal damping coefficient, and we denote r, =
max{r,0} for any r € R. The set of mathematical assumptions for p°(:) : R —
R is detailed below:

pe(r) =0if r <0,

There exists L, > 0 such that |p°(r1) — p°(r2)| < Lp|r1 — 72
YV ry,re €R,

(ﬁE(Tl) 7}36(7"2))(7‘1 77"2) >0V r1,T9 € R.

(12)

In particular, hypotheses (12) are verified by (11). For simplicity, we shall
consider that in the reference configuration body and foundation are already
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in contact, thus §° = 0. Now, to derive the variational formulation of the
problem, let

V(%) = (0 = (0f) € [H (@) #° = 0 on [},
S(°) = {47 € H' ()7 = 0 on 5},

which are the Hilbert spaces of admissible displacements and temperatures,
respectively. We define the nonlinear map P°: [H!(£2°)]® — [H'(£2°)]* such
that

<P€(ff),ff> - / P (065 dI Ve, o° € [H ().

Above and below we use the notation for a duality pair (-, -) in V(02 x V(£2¢)
(also for S'(£2°) x S(429)).
Then, it is straightforward to obtain the following variational formulation:

Problem 2 Find a pair t — (4°(&°,t),0°(&,1)) of [0,T] — V(£2°) x S(£2¢)
verifying

5 <uv> +aVE (@, %) — (0%, %) + <P6(éﬁ),@€> - <jf(t),fﬁ> Vo € V(), ae. in (0,T),
(13)

B <1§8,¢6> + a5 (0, %) + ¢ (¢°, 1) = <Q5(t),<,275> Vg© € S(02°), ae. in (0,T),
(14)

with @ (-,0) = @°(-,0) = 0 and 9°(-,0) = 0.

In favour of simplicity, we are going to assume that the different param-
eters of the problem (thermal conductivity, thermal dilatation, specific heat
coefficient, mass density, Lamé coefficients) are constants.

Theorem 1 Let us assume that

feHl(OT[ L2(02°)]%),
h" e H2(0,T; [L?( P<)]3), and h°(-,0) = 0,
€ H'Y(0,T; L2(£)).

Then, there exists a unique pair (4 (x, t), 9 (&,1)) solution to Problem 2 such
that R
a® € L0, T;V(£2¢))
@f € L(0,T; [L2(£2°)]°) N L>=(0,T5 V(£2¢)), (15)
i € L0, T V/(99) 1 L= (0, T3 [LA(2)°),

(16)

0e € L>=(0,T; L2(£2°)) N L2(0, T S(£2¢)),
0¢ € L®(0,T; L2(£2°)) N L2(0, T; S(£29)).
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Remark 1 The regularity results in (15¢) and (16b) imply that the duality
products involving @° ~and 0 in (13) and (14) can be replaced by the usual
inner products in L?(§2¢).

Proof We proceed by following the Faedo-Galerkin method. Let {w;};~, and
{8:};2, be two sequences of functions such that

w; € V(£2°) Vi,

.., Wy, are orthonormal functionsand V,, = (w1, ..., W), Vm

3, € S(02°) Vi,
$1,...,8mn are orthonormal functions and Sy, = (51,...,8m), Vm

(18)
The approximated solutions (%", ?9’”) are defined by the following problem:

Problem 3 Find the functions @™ : [0,7] = V,,, and 9™: [0,T] — Sy, in the
form

wm (&, 1) = Zu;n(t)wi(fc),
O™ (&, t) = Zﬁ:ﬂ(t)gi(i):

such that

5 <ﬁm,@m>+avﬁ(a%@m)—ca(ém,@"L)+<Ps(ﬁm>,@7”> - <j5(t),f/”’>, Vo™ € Vi,

Bs <1§m’¢m> + aS,s(,&m’@m) + CE(@m,’iLm) — <Qe(t)7¢m>’ v@m c S7n~
with the initial conditions
a™(0) = «™(0) =0, 9™(0)=0. (21)

Finding a solution for Problem 3 is equivalent to solving a first order differential
equation system
Z(t) = F(t,Z), Z(0)=0.
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where Z(t) = (vi*(t), ..., v (8), u* (t), . . ., upn (1), 97 (2), . . ., I (1)), with v} (t) =
@7*(t). The Picard-Lindeloff theorem gives a unique absolutely continuous so-
lution in an interval [0, t,,,] which depends on the supreme of function F (which
does not depend on time). Then, being the functions F; uniformly Lipschitz

in the variable Z, if we prove that the solution Z(¢) is bounded, we can extend
the solution to the whole interval [0, T'.

Now the goal is to obtain estimations in appropriate normed spaces for @™,

™, 9™ and 5’”. . R
We can take 9™ = 4™ € V,,, and ¢ = 9™ € S, in (19), (20) respectively,
and adding both equations we have that

5 (A )+ aVe @, wm) + 5 (00 ) + eSS, ) + (PR, )
or equivalently

1d ' 2 ~m ~m Qe
5 {7 [ o], + v @ 0. 0) + 6

ﬁm(t)]z} +aS< (9, 9m)

which, taking into account the monotonicity of p°, becomes

1d (.. R 2 Se [ m I . .

- m 3 m m < € m € m .
o {p 9 (t)’o}—i—a (9m,m) < (o)) + (@ (1), o)

Notice that we shall use the notation | - | for a (vector or scalar) L? norm.
The same applies for || - ||; to denote a H! norm. Integrating in [0,t], taking
into account (21), the coercivity of a">¢, a®*, integrating by parts the term in
fj_ and using Korn’s inequality we get

. 2 ..t
W(t)]0+kc/0

ﬂm(t)‘z +av’5(ﬁ’”(t),ﬁm(t)) +BE

N ; im (g
7 o]+ craron + 77 (5

RG] 7S+ 107 [079) s
(23)

ﬁms‘
0 ()0+

Above and in what follows, C, C denote positive constants whose specific value
may change from line to line, only depending on data. Next, applying Young’s
inequality to each term in the right side in (23) and the continuity of the trace
operator, yields that

. 2 . 2 TR 2
@ ()| + @l + ]W(t)]o+/0 |07 9)||, s

(24)

2
0

< C(F° 1%, ) +é/0 {

)+ 1 G )] s
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which, applying Gronwall’s Lemma, gives

. 2 o 2 PCEE =
W) +1an @I + [0 < OGRS E) + T vm, (25)

from where,
™ € L0, T, [L*(2°)), 9™ € L™(0,T,L*()), @™ € L™(0,T,V(£)).
Further, going back to (24), we have

o™ e L*(0,T, S(£2)),

and going back to (22), repeating the process, but keeping the term
t A . . t .
/ (P(@m), ) dr = / A (G2 dr,
0 0

we find that

(4r)4 € L*(0,T; L*(I'E)).

Note that all the estimates are independent of m. Then

{@™}, is a bounded subset of L=(0, T,V (), (26)

{ﬁm} is a bounded subset of L (0, T, [L?(£2°)]%), (27)

{19’"} is a bounded subset of L>(0,T, L*(2°)) and L?(0,T;S(£2°)),
(28)
{(ﬁ?)Jr} is a bounded subset of L2(0,T; L*(IE)). (29)

We now add equations (19) and (20) and write the result at times ¢ + h,
with h > 0 and 0 <t < T — h, then subtract the resulting equations to get:

p° <ii;"(t +h) — ii;"(t),@;"> +a (@™ (4 h) — ™ (), 0™) — EDO(t + h) — I (t),d™)
+ (PG (14 b)) — P (8), 9™ ) + 5 (9 (¢ + h) = 0™ (1), 6™ )
+a® (O™ (t 4 h) =07 (), ) + (@ W (E 4 h) — 4™ (1))

= [ (e n = ey dit s [ G n) B i+ [ @ - @) dif

0 rs 0

Vo't € Vi, Y™ € S, ace. in (0,T).
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Next we take 9™ = @ (t+h) — " (t) € Vy, and @™ = 0" (t+h) — 9™ (t) € Sy,

to obtain

P <ﬁ;ﬂ(t FR) — G, 87 (4 h) — ﬁ;n(t)> FaVE@M(E+ h) — @M (E), W (E+ ) — 4™ (t))
(PR (¢ + ) = PE(m(6), 7 (¢ + ) — &7 (1) )
+ 5 <1§m(t FR) — 0™ (), 0™t + h) — 19”‘(t)> a5t + B) — 9™(E), I (E + ) — D™ ()

= [ (B = PR e = i) di + [ G ) = OGP ) = )l

+ / (F(t+h) — @)™t + h) — I™(t)) da®.
QE

Further, because of the monotonicity of p¢ we have that

1d

,;e;{)m(tm)—am(t)f}+2dt{avf Tt h) =), " (E+ h) —a™ (1) }

+§$/ B0 (t 4 B) — 0™ (£))2dd" + aSS (0™ (¢ + h) — O™ (8), 0™ (¢ + h) — 9™ (1))

< [P = PO ) =GO i+ [ ) = R 0) G ) — i) dr

=
+

+ / (F(t+h) — @)™t + h) — O™ (t)) di*.
QE

Integrating in time in [0, ¢] we get:

2

(t+h)—u L fam(h)_am(())]

+ ia ( ’H'L(t + h) _ u (t) ’H'L(t + h _ u )) _ lav (u’ln(h) _ u’fﬂ(o)7a7n(h) _ ﬂ’”’b(o))

1
2/) 0

/Bgﬁmwh — ™t /55197”}1 02
+/O a®= (" (r + h) — O™ (r), 0™ (r + h) — 0™ (r))dr
= /ot /Q (o5 (r 4 h) = Fo ()@ (r + h) — 4" (r)) da*dr
’ / /F (h*<(r + ) = h*S(r) (G (r + ) = " (r)) AL dr

+ /0 /Q (GE(r+h) — GE @) (O™ (r + h) — 9™ (r)) ditdr.
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Now, dividing the equation by h? and having in mind (25), we can take limits
when h — 0T to have

S i) - ép )|+ a0, W7 () — ga¥ @ 0),87(0))
3 | Ao d%—% RO R ORI

//f dmgdr—l—//sh” dFEdr—&-//E

Integrating by parts the term on I ¢ above and applying Young’s inequality,
we get

. . t .
Pl ()]G — A7 la™ ) + ™ O + B=0™ (1[5 — BT (0I5 + /0 19 ()5 dr

c(e be i) +c/0 {lEm @) + @) + )R ar. G1)

In order to obtain bounds for |&"(0)|2 and [9(0)|2 we first notice that equa-
tions (19) and (20) hold for ¢t = 0 due to the compatibility required between ini-
tial and boundary conditions. Therefore, taking ¢ = 0 and 9™ = @™ (0) € Vi,

in (19) and ¢™ = 9™(0) € S,, in (20), taking into account the initial condi-
tions, and using Young’s inequality, we obtain

Pl (0)[ = / fe(0)u (0) dit + / BS(0)i (0) A < <O+ Slam O)F,

where 8, and é are sufficiently small positive constants. Next, applying Korn’s
inequality and Gronwall’s lemma in (31) we find

@™ ()] + @™ @)} + 10 (0)1F < C.

Again, all the estimates are independent of m. Then,

{ﬁm} is a bounded subset of L>(0, T,V (£29)), (32)

{ﬁm} is a bounded subset of L>(0, T, [L?(£2°)]%), (33)

m

{19’"} is a bounded subset of L>(0, T, L?(£2)). (34)

) dzdr.
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Observe that (26)—(29) and (3 ) (34) imply that there exists subsequences of
™ and 19’” also denoted by 4™ and 19’” and there exist elements @°, @, @4°

¥¢, 9° and x° such that

am m 4 in L0, T; V(£2°)), (35)
am m as  in L®(0,T; [L2(02°))%) N L®(0, T; V (£2)), (36)
™ nﬁ @ in L(0,T; [L2(02°))), (37)
m m 0% in L0, T; L?(£2°)) N L>=(0,T; S(£2)), (38)
I 0F i L0, T; LA(69)), (39)
(') + — X" inL*0,T; L*(IE)). (40)

In order to show that x© = (45, we first observe that (36) and (37) imply
that
{'&m} is a bounded subset of [H'(£2° x (0,T))]°.
m

Since the trace map is a compact operator from H'(£2° x (0,T)) to L? (I x
(0,T)), we can affirm that there exists a subsequence of u™ (still denoted by
4") such that

u™ — 4, strongly in [L2(I5x(0,T))]?, and then 4™ (y) — 4 (y) a.e.on I'5x(0,T).
Then, being the positive part a continuous function it holds that
(@) — (45) 4 a.e. on T§ x (0,T). (41)
On the other hand, (29) implies that
(™), is a bounded subset of L2(I' x (0,T)). (42)
From (41), (42) and [6, Lema 1.3] it follows that
()4 = (a5)+ in L2(LE x (0,7)).

Since (40) also implies that (7 n)+ — X% in L2(IE % (0,T)), the uniqueness of
weak limits implies that x¢ = (45) 4 and

(n")+ — (5)+ in L*(0,T5 L*(IE)). (43)

n
m—r oo

Consider now 0™ = w; and ¢ = §; in equations (19) and (20) fixed:
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(07, 55) + @SS @™, 55) + ¢ (50, w™) = (Q°(1),54) (45)
Observe that (35) and (36) imply that
aVe (@ ;) — oV (4, w;) and (5, ™) — ¢ (3;,u°) in L>(0,T).

Analogously, from (38) we can state that

a® = (™, 5;) — a”F (9%, s;) and (9", ;) — (9%, w;) in L=(0,T).

Now, from (37) and (39) we have:

<am,fvj> = (@™, @;) — (4%, ;) and <q9'm,si> = (9, s;) = (0%,s;,)  in L0, T).
Also, from (43)

<P€(am),ﬁ;j> — <P€(a€),ﬁ;j> in D'(0, 7).
Then, we can take m — oo in (44)—(45) obtaining that

(85, ) + aV= (0, ) — ¢ (0, ) + <Pf(a€),fuj> = <jf(t),wj>, in D'(0,T),Vj>1,
(46)

(47)

Next, from (17), (18), (46) and (47) we conclude that (13) holds in D’(0,T)
while (14) holds in L>°(0,T). Let us see now that (13) also holds a.e. in (0,T).
Indeed, we have that

<Pf(éﬁ),mj> _ _,sf(af,wj)—av’f(ae,wj)+c€(1§8,mj)+<j6(t),wj>7 in D'(0,T),Vj > 1.

We observe that the left-hand side is in D’(0,7'), while the right-hand side
terms are in L>(0,T), from which we deduce that P¢(uf) € L°°(0,T; V') and
(13) and (14) hold a.e. in (0,T). Besides, since the initial conditions (21) are
null, it is trivial that, when m — oo, the limit functions have null initial con-
ditions as well, which completes the proof for the existence and regularity of
the solutions. We focus now on proving the uniqueness.

Let us assume that there exist two solutions {@!, 95!} and {a*?,9=2}
for Problem 2. Let us define w® = 45 — 45?2 and ¢° = 9=! — Y=, Now,
we consider equations (13)—(14) at time ¢ for {4, 9"}, take as test function
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©° = w*(t) and $° = ¢°(t) for both 7 = 1 and ¢ = 2, and subtract the resulting
equations to find:

/Q pr® ()" ()di® + o' (w® (1), w" (1)) — ¢ (¢°(t), " (1))
+/ (6° (a5, (1) — 07 (a2 (1)), (8 dI* = 0, a.e. in (0,7),
I

o B2 (8)¢° (£)dd” + ™ (9°(), 6°(1)) + ¢ (¢°(¢), w7 (1) =0, a.e. in (0, ).

Adding these last two equations we have

[ o (ds" + oV (w0 0% (@) + |
0 I'é

+ . B2 G5 ()97 (£)daf + a™F(¢°(t),¢°(t)) =0, a.e. in (0,T).

Taking into account the monotonicity of p®,

li 5w (1) ws o aV,e ws we Se e . e
2dt{/!>5p (t)w®(t)dz® + a”*(w(t), w(t)) + QE,Bd)(t)gb (t)d }

+a%%(¢°(t), ¢°(t)) <0, a.e.in (0,T).

Integrating in [0, ¢], and taking into account the initial conditions we obtain:

t
5[t (8)[2 + ||we (8)[|F + %1% (1)[3 + A a®#(¢(r),¢°(r))dr <0, a.e.in (0,7),

from where one easily deduce that w® = 0 and ¢° = 0. ad

3 The three-dimensional shell contact problem

In this section we consider the particular case when the deformable body is,
in fact, a shell. The reader interested in a detailed exposition of the notation
can consult [3] and in the context of contact problems in [10].

Let w be a bounded domain of R2,

and let @ € C?(@;R?) be an injective mapping such that the two vectors
a,(y) := 0,0(y) are linearly independent. These vectors form the covariant
basis of the tangent plane to the surface S := (@) at the point 8(y). We then
define the contravariant basis vectors a®(y), the first fundamental form aqg,
the second fundamental form b, in covariant or mixed components b2 and
the Christoffel symbols of the surface S as I'J5.

We then define the three-dimensional domain §2° := w X (—¢,¢) and its
boundary I'* = 0f2° with the boundary partitioned into I'{ := w x {e},
T :==wx {—¢e}, I§ =0 X [—¢,¢], where 79 C .

Let © : {2° — R3 be the mapping defined by

O(x7) == 0(y) + 25as(y) Va© = (y,25) = (y1.42,25) € 2. (48)

(6% (a5 (1) — B° (a2 (1)) (a5 (1) — @,
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By identifying 2° = ©(2¢), I'* = O(I), [t = O(IF), etc. we cast this
setting into the more general three dimensional framework of the preceding
section, as a particular case. Then, we pass to define the covariant and con-
travariant basis of the tangent space g5 and g*¢, respectively, and from them
we obtain the covariant and contravariant components of the metric tensor
95i» ¢, and Christoffel symbols I’ Z-’;-’E. The volume element in the set @(2°)
is \/g7dz® and the surface element in @ (1) is /g°dI'® where g° := det(g;;).
Let n®(xf) denote the unit outward normal vector on x¢ € I'® and n°(Z°)
the unit outward normal vector on z° = O(x°) € O(I°) (see, [2, p. 41]
for the relation between the two). In particular, on I¢, it is verified that
by = (05RHE) = vinte = —0vf.

We now define the corresponding contravariant components in curvilinear
coordinates for the applied forces densities:

Fo(@): di = f7 (a) g7 (a%) o (@) da®, WS ()il = W' (a)gf (a7) /g2 (@0 )T,

and the covariant components in curvilinear coordinates for the displacements
field:

W (&%) = 45 (&°)e" =: u (x)g"*(xF), with &° = O(x).

Remark 2 Notice that forces and unknowns above depend also on the time
variable t € [0,T7], but we decided to keep it implicit for the sake of readiness,
since the subject of the change of variable is the spatial component. The same
comment applies in a number of situations below.

We also define 9°(x°) := 9°(&°) and ¢°(x°) := §°(2°). Regarding the
normal damped response function, we define p*(r€) := p°(r°). Let us define
the spaces,

V(02°) = {v° = (v) € [HY(2°))} ;v =0on I§}, S(02°) = {p° € H' (2°);0° =0o0n I}

2

Both are real Hilbert spaces with the induced inner product of [H!(£°)]¢,
d € {1,3}. The corresponding norm is denoted by ||-[|; - in both cases, since
no confusion is possible. With these definitions it is straightforward to derive
from the Problem 2 the following variational problem (see [3] for the case in
linear elasticity and use similar arguments):
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Problem 4 Find a pair ¢t — (u®(x®,t),0°(x°,t)) of [0,T] — V(§2°) x S(£2°)
verifying

/ pa(uggaﬁmg+ugvg)\/g?dxe+/ szjkz,sezw(us)ef\U(vs)\/g?dxs
= QE
_/ Oé%(3/\5+2M5)195(egllﬂ(vs)gaﬁ,s+e§”3(vs))\/g>gdxs_/P ps(—ug)vg\/g?dff
¢

= / foviN/gFda® +/ R e v\/gedl™®  Yov© € V(£2°), a.e. in (0,T),
fok <
B0 p° o da® + / k(0507 g° P 050° + 050°050%)/gFda®
2 e
b [ AR 20 ey )" o ()

= / " Vgedr®t Vot € S(2°), a.e. in (0,T),

with 4°(-,0) = u®(-,0) = 0 and ¥*(-,0) = 0.
Above, AWklLe = Ajikle — Aklije ¢ C1((2€), defined by
Aijkl,a = )\gij,egkha +u(gik’8gjl’a + gilﬁagjk,E)’ (49)

represent the contravariant components of the three-dimensional elasticity ten-
sor, and the functions € ;(v®) = €5, (v°) € L?(£2¢) that represent the covari-
ant components of the linearized change of metric tensor, or strain tensor, are

defined by

1
ef;(v°) = 5(@5@5 + 05 v5) — FZ’EUE,
for all v° € [H1(£2°)], where 95 denotes partial derivative with respect to 5.
Note that the following simplifications are verified,

o5 =T =0in 2°, A7 = A*355¢ — 0 in (°, (50)

as a consequence of the definition of @ in (48). The definitions of the fourth
order tensor (49) imply that (see [3, Theorem 1.8-1]) for £ > 0 small enough,
there exists a constant C, > 0, independent of &, such that,

Z [tij|? < CeATRLE ()t iti;, (51)
%]
for all z° € (¢ and all t = (t;;) € S® (vector space of 3 x 3 real symmetric
matrices).

Remark 3 We recall that the vector field u® = (u) : 2° x [0, 7] — R3 solution
of Problem 4 has to be interpreted conveniently. The functions u$ : 2° x
[0,7] — R? are the covariant, time dependent, components of the “true”
displacements field U° := usg™® : 2° x [0, T] — R3.
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For convenience, we consider a reference domain independent of the small
parameter €. Hence, let us define the three-dimensional domain 2 := w X
(=1,1) and its boundary I' = 9£2. We also define the following parts of the
boundary,

I'iy =wx {1}, T¢c:=wx{-1}, Iy:=v x[-1,1].

Let = (1,22, 73) be a generic point in §2 and we consider the notation 9;
for the partial derivative with respect to x;. We define the projection map
w€ : £2 — (2¢, such that

Ws(m) =T = (Iz) = (l’i,I;,Ig) = (Ilax27€‘r3) € ‘ng
hence, 0%, = 0, and 05 = %83. We consider the displacements related scaled

unknown u(e) = (u(e)) : 2 x [0,T] — R? and the scaled vector fields v =
(v;) : 2 — R? defined as

u§ (xF) =1 u;(e)(x) and v (x°) =: v;(x) Vz € 2, z° = 7°(x) € 2°.
Besides, we define the scaled temperature 9(¢) : 2 x [0,7] — R defined as
de)(x) :=9°(x°) Va € 2, where ° = 7°(x) € 2°.

For the sake of simplicity, from now on, we are going to assume that the
different parameters of the problem (thermal conductivity, thermal dilatation,
specific heat coefficient, mass density, Lamé coefficients) are all independent
of e. Also, let the functions, I7%, g%, AY¥"¢ be associated with the functions

ijkl
Ii(e), g(e), A" (e), defined by
— € (€ e €[ mE ijkl . Akl (e
Ifi(e)(x) == I (x7), g(e)(m) := g°(x%), AV" (e)(m) := AV™(x),
for all x € 2, ° = 7n°(x) € °. For all v = (v;) € [HY(2)]?, let there be

associated the scaled linearized strains (e;;(¢)(v)) € [L*(£2)]23, which we
also denote as (e;|;(¢;v)), defined by

1

€al|p(g;v) = 5(%“04 + Oavg) — Fgﬁ(g)vp, (52)
11

eal3(e;v) = i(g(?gva + 0avs) — I'P5(e)vy, (53)
1

es3(e;v) == g83v3. (54)

Note that with these definitions it is verified that

€5, (v) (7 () = e5)(g5v) () Voo € £2.

Remark 4 The functions I} (), g(¢), AWkl () converge in CO(£2) when ¢ tends
to zero.
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Remark 5 When we consider € = 0 the functions will be defined with respect
to y € @. Notice the singularities in (53) and (54) for that case. We shall dis-
tinguish the three-dimensional Christoffel symbols from the two-dimensional
ones associated to S by using I'7s (e) and I'g5, respectively.

In [3, Theorem 3.3-2] we find an important result which shows that under
suitable regularity conditions, take for example 8 € C?(@w;R3), there exists an
€0 > 0 such that A7*!(¢) is positive-definite, uniformly with respect to & € £2
and ¢, provided that 0 < ¢ < gy. Further, the asymptotic behavior of A¥*(¢)
is detailed. Indeed, it is satisfied that

AR () = ATF(0) 4 O(e) and A*P73(e) = A*333(e) = 0,
forall , 0 < € < g, and
A®POT(0) = Aa®Pa’ 4 p(a*aPT + a®"aP?),  AYP33(0) = Na®P, (55)
ABB(0) = pa®?,  A¥B(0) = A+2u, AP7P(0) = A*¥(0) = 0. (56)

Moreover, and related with (51), there exists a constant C, > 0, independent
of the variables and ¢, such that

Z |tl‘j|2 < CeAijkl(E)(w)tkltij, (57)
5]
foralle, 0 < e < g, forall z € 2 and all t = (¢;;) € S®.

Notice that the limits are functions of y € @ only, that is, independent
of the transversal variable x3. We also recall [3, Theorem 3.3-1], which pro-
vides the asymptotic behavior of Christoffel’s symbols I} (¢), g"(g) and g(e).
Indeed, if @ € C3(w; R?), then
Ig(e) = Iig — ewsbila + O(e?),  0sI%4(e) = O(e), Iios(e) = Ifz(e) =0,

(58)
I35(e) = bap — ex3bTbop, I33(e) = —b7, — ewsblb] + O(e?), (59)
g°P(e) = a®f + 2ex3a°7b2 + O(e%), ¢®(e) =6, gle) =a+ O(e), (60)
for all €, 0 < € < g9, where the order symbols O(g) and O(£?) are meant with
respect to the norm ||-||, 5 defined by
[wllp, o0, = sup{|w(z)]; = € 2},
and the covariant derivatives b%|, are defined by
b3la = 0abf + 15, b5 — I5507.

The functions bag, b7, I'5,b5|a and a are identified with functions in ().
Further, there exist constants ag, go and g; such that

0<ap<aly) Yy €,
0<go<gle)(z)<g1Vx€Nand Ve, 0<e< e (61)
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Let the scaled heat source ¢(¢) : 2 x (0,7) — R and scaled applied forces
f(e): 2x(0,T) = R3 and h(e) : Iy x (0,T) — R? be defined by

q¢°(x®) =: q(e)(x) Va € 2, where z° = 7°(x) € 2°,
FE=(f")(xf) =: f(e) = (f'(e))(x) Vx € 2, where z° = 7°(x) € 2°,
h® = (h"°)(z°) =: h(e) = (h'(e))(z) Va € I'y, where ° = n°(z) € I'5.

Regarding the normal damped response function, we define p(e)(r(e)) :=
p°(r¢). Also, we define the spaces

V() ={v=(v) c[H(2)]*v=00n Iy}, S0)={pecH (2);¢=0o0n I},

which are Hilbert spaces, with associated norms denoted by ||-||; ;- The scaled
variational problem can then be written as follows:

Problem 5 Find a pair t — (u(e)(x,t),9(e)(x,t)) of [0,T] — V(£2) x S(£2)
verifying

| plia@)g @os + (@) Vo do + [ A EJewulesule) ey c50) o
= [ ar(@h+ 200 €anio(e50)g™(6) + ol 0)VoENe = [ ple)(ia(@)env/alEIE

n I'c
= [ fie)viv/gle)dz + 1/ h'(e)vin/g(e)dl Yv € V(2), a.e. in (0,T),
2 €Jry
(62)
| Bi@eVae + [ KOui(E)5 @06 + 00(E)0m0)V o) da
‘¥l/;<1T(3A‘+'2M)¢(€auﬁ(€ra(€))ga6(€)4*63H3(€;ﬂ(€)))x/9(5)d$
= /Q q(e)p/gle)dx Vo € S(£2), ae. in (0,T), (63)

with @(e)(,0) = u(e)(-,0) = 0 and 9()(-,0) = 0.

Remark 6 Notice that the time-dependent version of the linearized strain ten-
sor above is well posed when we define

eiflj(e5u(e))(t) = eq(;ule)(t)).

See for example [9]. Further, as commented earlier, we usually omit the explicit
time dependence for the sake of a shorter notation.

Remark 7 The unique solvability of Problem 5 for € > 0 small enough is
similar to Problem 4 and the regularity obtained for the solutions is analogue.
In particular, we find (e)(-,t) € V(£2) and 9(e)(-,t) € S(£2) a.e.in (0,T).

We now present some additional results which will be used in the next section.
In [3, Theorem 3.4-1], we find the following useful result:
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Theorem 2 Let w be a domain in R? with boundary v, let 2 = w x (—1,1),
and let g € LP(£2), p > 1, be a function such that

/ gOsvdz = 0, for all v € C>°(Q2) withv =0 on v x [-1,1].
9]

Then g =0 a.e in (2.

We provide here, as a standalone theorem, a result which can be found
inside the proof of [3, Theorem 4.4-1].

Theorem 3 Let X(02) := {v € L?(2); d3v € L*(£2)} (O3v being a derivative
in the sense of distributions). Then, the trace v(-, z) of any function v € X (£2)
is well defined as a function in L*(w) for all z € [—1,1] and the trace operator
defined in this fashion is continuous. In particular, there exists a constant
c1 > 0 such that

1/2
loll L2 (rporey < @ ([v]5.0 + 1050[5 )
for allv € X(£2). As consequence there exists a constant ca > 0 such that

1/2

||v3HL2(F+UFC) < e Z |€i\\j(5§v)|(2),n Vv € V(£2). (64)
]

4 Formal asymptotic analysis

In this section we briefly describe the formal procedure to identify possible
two-dimensional limit problems, depending on the geometry of the middle
surface, the set where the boundary conditions are given, the order of the
applied forces and, of paramount interest in this paper, the order of the normal
damped response function (the general procedure is described in detail in [3]
and was used for shells in unilateral contact in [10] and normal compliance
contact in [11]). We consider scaled applied forces and heat source of the form

fle)(x) =™ (x), q(e)(x) = e™¢™(x) Yz € 2, h(e)(x) =™ A" (x) Ve € Ty,

where m is an integer number that will show the order of the volume, heat
source and surface forces, respectively. We also define the scaled normal damped
response function p(g)(r(e)) = ™ p™*T1(r(g)). We substitute in (62) to ob-
tain the following problem:
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Problem 6 Find a pair ¢t — (u(e)(x,t),9(e)(x,t)) of [0,T] — V(£2) x S(£2)
verifying

/Q pliia(€)g (€)vs + iia()vs) V/g(E) do + / AT ey s w())eq s (1 0)v/g(@)d
*/QOKT(3>‘+2,H)19( £)(eq)p(e;v)g” P(e g) +e33(e3v) Vg dz*/F P (—iz(e))va/g(e)dl

C

:/ smfi’mvm/g(s)da:+/ emhm T/ g(e)dl Yo € V(£2), a.e. in (0,T),
o ry

(65)
| Bie)evaEits + [ K005 050 + 0:0(E)000)V alEde

+ [ A+ 2u)pleaa(eiie)g™ () + cajales wle))ValE)de

/ Mo /g@)dr Yo € S(2), ae. in (0,T), (66)

with 4(e)(-,0) = u(e)(-,0) = 0 and J(g)(-,0) = 0.
Assume that € C3(w;R?) and that the scaled unknowns u(e), ¥(g) admit
asymptotic expansions of the form
u(e) = u’ +eut +2u*+ .. (67)
I(e) = 90 + ed' + 292 +
where u® € V(02), v/ € [HY(Q)3, ¥° € S(2), ¥/ € H(2), j > 1. The

assumption (67) implies an asymptotic expansion of the scaled linear strain as
follows

L 0
€i||j(5) = eiH]‘(S;U(E)) = geiﬂj + ei||j + 661”] +€ €z||] +€ €z||]
where,

-1 _ 1

€allp = 0, eg”ﬁ = 7(851&0 + &W%) - Fgﬁug - baﬁugv
1

-1 _ 0
€alls = 583%0 63“3 = ((%u + Dqu3) 4 bZul,

-1 _ 0

e3)j3 = O3us, egIIS = 83u3,

1 g g g
eil\ﬂ = 5(851@ + 8au}3) — I’aﬂu(l, — bopus + x3(b5|au2 + 0% bepud),

1
eius = 5(83%21 + Ogquy) + b%ul 4 x3b7 b7 ul

a-T 0'7

1 _ 2
€3H3 = 83'“3.
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Besides, the functions e;;(e;v) admit the following expansion,

1
ez”](g,’v) = gell‘lj(v) + e?llj(’l)) + Eelll‘j(v) + ...
where,

@) =0 0 L o

Callp o eaHB(U) = 5((95’0& + aocvﬁ) - Faﬁva — bapvs,
1

1 4 1 .
6(1“3('0) = 283'%1, e(c)vll?»(U) = 58(11)3 + bav(”

-1

€3)ja(v) = Oss, eg)j3(v) =0,

eéHB('v) = x3b3),V0 + 2303 bopvs,
6&\\3(”) = x3b5b7v,,

e3)3(v) = 0.

Upon substitution on (65) and (66), we proceed to characterize the terms
involved in the asymptotic expansions by considering different values for m
and grouping terms of the same order. In this way, taking in (65) the order
m = —2 and particular cases of test functions, we reason that f 2=pl=0
and p~! = 0, which leads to d3u’ = 0. From (66), we reason that ¢=2 = 0 and
find that 039° = 0. Thus the zeroth order terms of both unknowns would be
independent of the transversal variable z5. Particularly, u® can be identified
with a function £€° € V(w), and ¥° can be identified with a function ¢° € S(w)
where

V(w):={n=(m) € [H (W)]*n =00nv}, Sw):={peH" (w);p=00n7}

Taking m = —1, and using particular cases of test functions, we reason that
' =h° =0 and p° = 0 and we find that

63H3 = 0, )\aa’BegHﬁ + ()\ + 2/1;)6%\3 = OéT(?))\ + 2/14)'[90, egl‘ﬂ = ’Ya[-}(ﬁo),

where
1
Yap(M) = 5(080a + Oanp) — Ipno — basns, (68)
denote the covariant components of the linearized change of metric tensor
associated with a displacement field 7;a’ of the surface S. From (66) we reason
that ¢~' = 0 and find that 859" = 0.

Having these results in mind, for m = 0, developing A**(0) and taking
v=mn€V(w)and p € S(w) leads to the following two-dimensional problem,
to which we may refer as thermoelastic membrane contact problem with normal
damped response:
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Problem 7 Find a pair t — (¢°(y,t),¢°(y,t)) of [0,T] — V(w) x S(w) veri-
fying

2 / p(E2aP s + Edns)ady + / a7 (€% yas () Vady — 4 / g

—/ pl(—ég)n3\/5df=/Fi’Om\/5dy ¥n = (n;) € V(w), a.e. in (0,T),
I'c

w

2 2\
2 / gy CrGAE 2N o ey 1 / k00 Do /ady
w At 2p w
4/ arp(3A + 24)
w A+2p

with €°(-,0) = £€°(-,0) = 0 and ¢°(-,0) = 0.

Above, we have introduced F*0 := f_ll fi’od:vg—l-hj’_l, with h:_l() = ht1(-,+1),

and Q° := fil q°dzs. Also, a®PT denotes the contravariant components of the
fourth order two-dimensional elasticity tensor, defined as follows:

afor .__ 4A,LL

= 2Maa5a” + 2u(a®aP™ 4 a“"aP7). (69)

a
The problem above will be analyzed in more detail in the following section.
There, we shall study the existence and uniqueness of solution under additional
hypotheses of geometric nature and a more suitable set of functional spaces,
and provide a rigorous convergence result. To that end, the following ellipticity
result for the elasticity tensor will be used. There exists a constant ¢, > 0
independent of the variables and e, such that

D ltasl? < cca®®7T (Y)tortas, (70)
e

for all y € @ and all £ = (t,5) € S* (vector space of 2 x 2 real symmetric
matrices).

5 Elliptic membrane case. Convergence

In what follows, we assume that the family of three-dimensional linearly ther-
moelastic shells consist of elliptic membrane shells, that is, the middle surface
of the shell S is uniformly elliptic and the boundary condition of place is con-
sidered on the whole lateral face of the shell, that is, 79 = 7. Further, from
the formal asymptotic analysis made in the preceding section, we assume the
hypotheses which led to Problem 7, namely,

FE)(@) = (=), 9(e)(@) = ¢'(2) V& € 2, h(e)(@) = ch'(2) Yz € I,
p(e)(r(e)) = ep'(r).

arp(3A + 2u)

¢*a*Pvap(n)Vady

£y (€')ady = / Q ovady Vo € S(w), a.e.in (0,7),
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Since there is no possible ambiguity, in what follows we drop the superindices
indicating the order of the different functions.

We also recall that for elliptic membranes it is verified the following two-
dimensional Korn’s type inequality (see, for example, [3, Theorem 2.7-3]): there
exists a constant ¢y = ¢pr(w, @) > 0 such that

1/2

1/2
(Z ||77a||iw + |n3|%,w> < CM Z |706,@ |0 w V" € VM<(’U)’ (71)

where
Vi (w) = H&(w) X H&(w) X Lg(w),

is the right space for the well-posedness of Problem 7. In this section and in

the sequel, C' represents a positive generic constant whose specific value may

change from line to line, independent of £ and the unknowns. Besides, for the

sake of simplicity, we assume that all the parameters involved are constant.

Also, the notation v stands for the average on z3, i.e., ¥ := %f_ll v(x3)drs.
To favour a clearer exposition, let us reformulate Problem 7:

Problem 8 Find a pair t — (£(y,t),((y,t)) of [0,T] — Vi (w) x HE(w)
verifying

/ p(Ena® nﬁ+£3n3)fdy+/ a®P 75 (€)Vap(n)Vady — 4/ w( Pyas(m)Vady

Tt
/ —éy)pav/adl = /Fszdy v = () € Var (), a.e. in (0,T),

(72)
< ;”1 J;?”) )égp\/&dy—kQ / kdaCa®P 950\ ady

3A+2u) : .
4/ OZTM)\(+2 'u)go /3%43(5)\/5@:/@@\/5@ Yo € Hy(w), a.e. in (0,T),

(73)
with £(-,0) = £€(-,0) = 0 and ¢(-,0) = 0.
Above, we have used F' := fil fidxs + hi with h% (-) = h'(-,+1) and Q :=

i _11 qdxs3. The following shows that there is a unique solution for this problem.

Theorem 4 Let w be a domain in R?, let @ € C*(@;R?) be an injective map-
ping such that the two vectors a, = 0,0 are linearly independent at all points
ofw. Let f' and ¢ € H'(0,T; L?(R2)), h* € H?(0,T; L*>(I'y)) and assume (12).
Then the Problem 8, has a unique solution (&€,¢) such that

£ € L>(0,T; Var(w)), & € L®(0,T; [L*(w)]*) N L>¥(0,T; Viy (w)), &€ € L=(0,T; [L*(w))?),
¢ e L=(0,T; L*(w)) N L2(0,T; HE (w)), ¢ e L=(0,T; L (w)) N L2(0,T; H (w)).
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Proof. Like in Theorem 1, we will use a Faedo-Galerkin approach to prove
the existence part. Then, a proof by contradiction will show uniqueness.

Ezistence: Since Vs (w) is a separable space, there exists a countable base
{v"™} C Vis(w) such that

Vu(w) = U Vin, where V,, = span{v!,v? ... v™}.

m>1

Similarly, there exists a countable base {x™} C H}(w) such that

H}(w) = U S, where S, =span{x',x%, ..., x™"}.

m>1
We now formulate Problem 8 for the finite dimensional subspaces:

Problem 9 Find a pair ¢t — (€™ (y,t),(™(y,t)) of [0,T] — V,, X S, verifying

w A2
/ p(—é?)né”\/&dfz/FinZ”\/&dy vn" = (") € Vin, Yt €[0,T7,
C w

m m 7n m apoT m m Qv 3A+2 m
/ p(ETa g + &5 ng )ﬁdy+/a BT Nz (€™ ) Vap (M )ﬁdy—4/ MC a*’yap(n
I

(74)

2,(3) + 2 :
/( e=p w? )gwm\/&dwz/kaagmaaﬂaﬁgom\/&dy
14

3A+2 ;
/aTﬂ( + :“)Samaaﬂ7 5(E m)ﬁdy:/@@m\/&dy Vo™ € Sy, V€ [0,T],

(75)

A+ 2u

with €' (-,0) = &€™(-,0) = 0 and ¢™(-,0) = 0.

Now, the classical theory of systems of ordinary differential equations guaran-
tees the existence and uniqueness of solution for Problem 9. Taking n™ = ém
in (74) and ¢™ = (™ in (75), adding both expressions and integrating the
time variable in [0, ¢] gives

cm 1 2 (3N 4 2p)? K
PE" O+ e+ (54 T2 e+ 26 [ M ONE L ar

/Ot /FC p(—E5(r))Ey (r)Vadl dr = /Ot/wQ(T)Cm\/adydr

+ /O t /w /_ 11 Fi(r)dws&f™ (r)Vady dr + /0 t /F ) Wi (r)EM (r)adI dr, (76)

where we have introduced the following norms:

i [ e+ () ady v € (2,

"™)Vady
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which is equivalent to the usual norm | - |o ,, because of the ellipticity of (a®?)
and the regularity of . Also,

[l = [ a5 e (s ) Vady Vi € Vo),
which is a norm in Vjs(w) because of the Korn inequality (71) and the ellip-
ticity of a®°™ (see (70)). Finally,

Nl = / Batpa® Bpip/ady,

which is a norm in H{(w) equivalent to the usual || - |[1,, because of the
ellipticity of (a®?), the regularity of @ and the Poincaré inequality.

By using the monotonicity of p, then the Holder inequality in the right-
hand side terms of (76), then using Theorem 3 for the terms on Iy followed by
the use of Gronwall inequality, we obtain that the following weak convergences
take place for subsequences indexed by m as well:

" i IO T Vir(w), &7 = Ein LX), (77)

(" ——¢in L*(0, T3 L*(w)), (™ —— (in L*(0,T; Hy(w)), (78)
P—€5") == x in L=(0,T; L*(w)). (79)

Notice that (79) is a consequence of the Lipschitz continuity of p, the fact that
p(0) = 0, and the boundedness of its argument. Using these convergences back
in (74)—(75), we can formulate the following limit problem:

Problem 10 Find a pair t — (£(y,t),((y,t)) of [0,T] — Vi(w) x HE(w)

verifying

arp(3A + 2p)
A+ 2u

- / \nevadl = / Figady = (m;) € Var(w), a.c. in (0,T),
I'c w

2 2\ |
2/ (ﬂ+ W) Cwﬁdy+2/ kDo Ca®’ O pv/ady

+4/ arp(3A +2p)
w A+2p0

2 / p(€aa®Pns + Ens)Vady + / a7 g7 (€)Vap(n)Vady — 4 / CaPyas(n)Vady

paPy,5(€)Vady = / Qovady Yo € Hi(w), a.e. in (0,T),

with £(-,0) = £(-,0) = 0 and ¢(-,0) = 0.

Now we will use an argument of monotonicity (see, for example, [8]). We first
define for any given ¢ € H'(0, T; L?(w)), with ¢(0) = 0, the following quantity:

xm_ /Ot /FC (p(—éé"(r)) - p(-d?(ﬂ)) (Em(r) — ¢(r))vadl dr > 0.
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From (76) we find that

= [ [P evaydr - 0l - 5lem 0l

! m a%(B)\JrZu)Z m 2 ! m 2
[ [awme \/adydr—<ﬁ+w) O =2 [ 1 CIE e

_/Ot/Fcp(—één(r) o(r) dedr—//Fc WE (1) — d(r))adl dr.

Thus, on one hand

t C. . 1
0 <timsup X7 < [ [ P ) Vadydr — pE(o)E. ~ 51E0)1E.

+/t/Q(r)C\/5dydr— (ﬁ+W> IC(t)|§7w—2k/Ot T
//pc fd”’“—/ /FC D (Es(r) — d(r))v/adl dr,

where he have used the weak upper semicontinuity of various terms. On the
other hand, doing in Problem 10 the substitutions n = E, @ = (, then the
summation of both equations, followed by the integration in [0,¢], and using
the resulting identity into the inequality above, we find that

0<— //FC r)és(r \fdrdr_//Fc dedr—//Fc ) (€s(r) — é(r))v/adl dr
//FC —é(r)))(€s(r) — d(r))Vadl dr.

Therefore, by using arguments adapted from those in [4, p. 55|, we deduce
that x = p(—¢&3). Indeed, this is because we can always take ¢ = 3 — ¢ with
¢>0and ¢ € H(0,T; L?*(w)), with ¢(0) = 0, to find

0=- / /p €a(r) +s@(r))¢(r)adrl dr,

and take ¢ — 0, thus

0<- / /F c (—€5(r))¢(r)vadl dr,

from where x = p(—&d) Therefore, we find that Problem 10 is indeed the same
as Problem 8.

We will now prove the additional regularities for é , € and (. First, we add
equations (74) and (75) and write the resulting equation at times ¢ = t 4 h
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and t, with h > Qnand 0 < t < T — h. Then subtract these last two equations
and take n™ =& () — &€ (t) € V, and o™ = ¢™(f) — (™(t) € Sy, to obtain

/ p(EH (D) — € (1)a (€5 (F) — €5'(1)) + (&' (F) — &5 (1)) (&5 (D) — &5 (1)) Vady

m

/ 0T (€7 (1) = €7 () s € () — €7 (1) ady
(D=5 (0) — € ())& D) — (D) adr

C

ﬁ\

+2 anyzQ” ><<'m<f>—@(t))(@’”(f)—cm(t))ﬁdy
o / kO (C (F) — €T (1)a"P 05 (¢ () — ¢ (8) Vady

[0 =P & oway+ [ @@ -u)en® - ¢mw)Vady. e .7,

which, because of the monotonicity of p gives

mo,~

o2 2 }
GO - &R+ 16" ® - 01 + (54 LB Len ) - o
I — DI < [ (FD - FO)ED o) Vady
+ [ @b - @@ - crowady, vie 071

Next, we integrate in [0, ¢] to get
s m o~ . m . m . m 1 ~ 1
pl& (1) =€ (D50 —pl€ (h) =& (0)]7, + S 1€™ @) — SO 1€ (h) — £ 0)]7.

a? 2 = o §
+ (84 T jomd) - cm ol - (8+ T ) o) - mOR.

+2k/ ¢+ ) — ()12 dr<//F’r+h P E(r + h) — € (r)ady dr
// Qr +h) — Q) (C™(r + h) — C™(r)Wadydr, Ve [0,T —h],

and dividing the equation by h? and taking limits when h — 0 we obtain

A% (3X + 2u)?

. 2 t . 2
o) e 0. + 2k [ 1 e

wm 1 .m aZ.(3X +21)2\ . L
<" OB+ 1€ O+ (54 T2 e+ [ [ Féreivaayar

"0+ IO+ (54

+/O AQ(T)Cm(r)ﬁdydr, vt € [0, 7],
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from which, by Young’s inequality, we obtain

. 1 om a2 (3N +21)2\ 1 L
PO+ 1€ O + (5 “EEE2E ) e+ 2k [ N0l ur

.m az 2 .
FLEN O + (/3 ; M) Em(0)2.,

< m 9

C(F, b ) +c/{ |0wdr+/ ém( Ow}dr vt [0,7).
(80)

In order to obtain bounds for [€ (0)2 2w and 1&™ (0 )5, we first notice that
equations (74) and (75) hold for ¢ = 0 due to the compatibility required

byentween initial and boundary conditions. Therefore, taking ¢ = 0 and n™

£7(0) € V,, in (74) and ¢ = {"™(0) € S, in (75) and, taking into account
the initial conditions, we obtain

PE" )2, —/FZ() (0) Vady < 2C+5E" O)3.,

aZ(3A+21)2\ |1, B i LA, 5im
<5+T/\+2u> I¢ (0)|‘2)"”_/WQ(0)< (0)vady < <C+0l¢ O

where § and § are sufficiently small positive constants.
Now, back to (80), taking into account the initial conditions and the bounds
above we have

am 1, .m 2 (3N +2u)%\ | : b
PO+ 1€ O + (5 “EEEEE) e+ 2k [ N0 ar

t t
§C+é/0 {|ém(r)|3,wdr+/o g'“m(r)|g,w}dr, vt € [0,7].

Next, we use the equivalence between then norms | - |, and | - |0, and we
apply Gronwall’s Lemma to conclude that

€" O +I{" (D, < C, VEe[0,T),

and further
1€ +2k/ IEm @R wdr < C Ve e 0,7

Therefore, the following weak convergences take place for subsequences still
indexed by m.

§" ki 120,73 Vu(w), & = Ein L2, T3 (L2 W), (81)

¢" == Cin L2(0, T3 L2 (), (™ —— ¢ in L*(0,T; Hy(w)). (82)
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Uniqueness: We proceed by contradiction. We first assume that there exist
two solutions (¢',¢!) and (&€2,¢2). Define € = ¢' — €2 and ¢ = ¢! — ¢2. Now,
take 17 = £ in the version of (72) for &' and n = —£ in the version of (72) for
£%. We then sum both expresions to find that

2/ P(gaaaﬁgﬁ +§3§3)\/5dy + / GQBM%T(E)%[&(E)\/ECIZ/ - 4/ Nt 20

fﬁ1@0é>—m—£»&wwr:a

Similarly, take ¢ = ( in the version of (73) for ¢! and ¢ = —( in the version
of (73) for ¢2. Then, we sum both expresions to find that

2/ (5+M) 55\/5dy+2/ kaagaaﬂaﬁg\/gdyH/ aTp(3X +2p)

A+ 2p0 A+2p

Then, we add both expressions above and integrate with respect to the time
variable in [0, ¢], to find

o (3X + 2u)?

- 2 Lo 2
DA COR e + 2k [ IO dr

PR + 51O+ (5+
[ [ 6800 -s-on@e) - genvairar <o, s3)

where we have used the monotonicity of p. We deduce from (83) that & = 0
and ¢ = 0, thus showing uniqueness.
O

Now, we present here the main result of this paper, namely that the scaled
three-dimensional unknowns (u(g),¥(g)) converge, as e tends to zero, towards
a limit (u, ) independent of the transversal variable, and that this limit can
be identified with the solution (&,() of the Problem 8, posed over the two-
dimensional set w.

In what follows, and for the sake of simplicity, we assume that for each
€ > 0 the initial condition for the scaled linear strain is

€3 (€)(0,-) =0, (84)

this is, the domain is on its natural state with no strains on it at the beginning
of the period of observation.

Theorem 5 Assume that 0 € C3(w;R3). Consider a family of elastic elliptic
shells with thickness 2¢ approaching zero and all sharing the same elliptic
middle surface S = 0(w). For alle, 0 < e < e let (u(e),V(e)) be the solution
of the associated three-dimensional scaled Problem 6 for m = 0. Assume also
that (12) is satisfied. Then, there exist functions 9,u, € H'(£2) satisfying
9 =0, uy, =0 on vy x [~1,1] and a function uz € L?(2), such that

arp(3X + 2p)

gaa57a5(

3

Eaaﬁ'ﬂxﬁ (E) \/ady

Wady = 0.
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(a) 9(e) =9, ua(e) — uq in H(2) and usz(e) — ug in L?(2) when ¢ — 0
a.e. in (0,T),
(b) ¥ and uw = (u;) are independent of the transversal variable xs.

Furthermore, the pair (u,d) can be identified with the solution of Problem 8.

Proof. We follow the structure of the proof given in [3, Theorem 4.4-1]
for the case of elastic elliptic membrane shells. Hence, we shall reference some
steps which apply in the same manner and omit some details. Also, for the
sake of readability we may use the shorter notations e;;(g) := e;);(e; u(e)).
In addition to that, all references to (65) or (66) have to be considered as
for m = 0 and drop the superindices. The proof is divided into several parts,
numbered from (i) to (vi).

(i) A priori boundedness and extraction of weak convergent sequences. For
€ > 0 sufficiently small, there exist bounded sequences, also indexed by €,
and weak limits as specified below:

Ue () —— uq in L0, T; HY(2)), us(e) ﬁ uz in L>=(0,T; L*(R2)),

e—0 e—

u(e) —— 4 in L®(0, T3 [L*(2)]*), e;;(e) : ei; in L™(0,T; L*(£2))

e—0

I(e) —— 9 in L=®(0,T; L*(2)), 0a0(c) —> Vo in L*(0,T; L*(92)),

e—0 e—

e 1939(e) —— 3,1 in L*(0,T; L*(£2)).
e—0

Moreover, ¥, uq, =0 on Iy.

For the proof of this step we take v = 4(e) in (65) (see Remark 7) and
@ =19(e) in (66) and sum both expressions to find

/pwa( )98 ()itg (&) + s ()3 (2)) /g dH/A”’“ e)er(e)éq i (e)v/g(e)dx

/ﬁﬁ W m+/ (0a9(e)g (s0(<) + - L oy0(

- /F p(—iis(€)is(€) /g ()T

:/ fiai(s)\/g(s)d:z+/ hiai(a)\/g(e)d]”+/ q¥(e) Vg(e)dx.
0 r, 17

(85)

We now introduce the following norms:

[0l50),0 = /Q(vag“ ()vs + (v3)*)V/g(e)dz Vo € [LA(Q)P,

which is equivalent to the usual norm | - |, because of the ellipticity of
(g*8(¢)) and the regularity of @. Also,

o[, = /QA”“(é)ekuz(s;v)emj(é‘;v)\/g(f)dx Vv e V($2),

Fdx
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which is a norm in V' (§2) because of the Korn inequality (see [3, Theorem
4.4-1]) and the ellipticity of A¥k!(¢). Finally,

Nelloe.e = /Q Bac09™ ()050\/ 9 (@ e,

which is a seminorm in S(£2). Because of the uniform ellipticity of the
tensors and matrices involved, and the properties of g(g), we are going to
be able to use constants independent of € in the estimates below. Indeed,
going back to (85), we obtain

D ()20 + 5 (a0} + 5 IO 0} + KIIEON B0+ 1057 o

- / p(—is(e))ia(e)v/g(@)dl + / Fria(e)V/a(E)dr + / Wia(e)v/g(@)dl + / ¢9(e) Vo @) da.
e Q ry Q

Integrating in [0,¢] with respect to the time variable, using the equiva-
lences mentioned above, together with the uniformity with respect to ¢
of the constants involved in those equivalences, integrating by parts the
term with the tractions h?, using Theorem 3 and Young’s inequality, we
find that there exist a constant C' > 0 independent of ¢ such that

() ()20 + [ea; () O + [9() (2.0 + / (10293 2 + =51059(e) (1) )
7/0 /Fcp(ag(s) )V g( dFdr<C’/ |(e) |09dr+/ [9(e) |O_er+/ lea; () ()2 odr

t
+ / £ pdr + / 4R pdr + / ()R dr + () 1)

Hence, by using Gronwall’s inequality and the three-dimensional Korn’s
inequality that can be found in [3, Theorem 4.4-1], all the assertions of
(i) follow.

(i) The limits of the scaled unknowns, u;, 9 found in Step (i) are independent
of x3.

The part corresponding to u; is analogous to the Step (i) in [3, Theorem
4.4-1], so we omit it. Regarding 9, its independence on z3 is a consequence
of the boundedness of {¢1939(¢)}.

(iti) Extracting weakly convergence subsequences on the contact boundary. The
norms |ug(€)|o.re, |4s(€)|o,re are bounded independently of €,0 < ¢ <
g1 almost everywhere in (0,T). Moreover, there exist subsequences, also
denoted (u3(€))eso0 and (u3(e))eso such that us(e) = uz and us(e) —
123 m LOO(O T' Lz(Fc)).

The first part is an straightforward consequence of Step (¢) and (64). For
v = uz(e) we find that

|U3(€)|07[‘C < C|6i|‘j(€)‘079 a.e. in (O,T).



Thermoelastic Shells Contact 31

Then, there exists ¢ € L>(0,T; L*(I¢)) such that for a subsequence

keeping the same notation, it holds uz(g) = v in L>(0, T; L*>(I'c)). Since

we are in the conditions of [11, Theorem 3.6], we can identify ¢ = us.
For the second part, we first recall that w(e) € V(£2) and 9(c) € S(£2)
(see Remark 7). Next, we use the technique of incremental coefficients in

the time variable, then integrate on [0, t] to obtain the expression similar
o0 (30) in the scaled framework and without tractions. Indeed,

Sl D~ SplaE) O3 + S0V (@) (1), w(2)(1) — 3a¥ (i(=)(0), 4()(0))
/ BE(E)(1))>de — & / B()(0))2da + / S(0(e)(r), D(e)(r))dr

/ / Fir r) dzdr + / / r) dadr. (86)

Then, we use Korn’s inequality on the left-hand side and apply Gron-
wall’s inequality to obtain that |e;;(it)(¢)[§ , is bounded independently
of . Then can proceed like in the first part using (64) for v = u3(e) to

show that w3(g) = a3 in L>®°(0,T; L*(I'¢)).

(iv) The limits e;)|; found in (i) are independent of the variable x3. Moreover,
they are related with the limits w := (u;) and ¥ by

1
Calls = Vap (W) 1= 5 (Gatip + Optua) — ITgus — bapus,
€ql3 =0, (87)
ar(3A+2p) A
A+ 24 A+2u

63”3 = aaﬁeanlg. (88)

Indeed, first considering v = wu(e) in (52) and n = w in (68) (par abus
de langage, since u is independent of z3, but actually u € [Hl(.())} X
L%(£2)), taking into account Step (i) and the convergences 17 5(e) —

and I735(e) = bap in C°(£2) given by (58)-(60), we have that

ealp(e) = %(%ua(s) + Oaup(e)) = Ihg(e)up(e) = €a)ip = Yap(u) in L*(2) a.e. in (0,7T).

Moreover, e, g are independent of z3, as a straightforward consequence
of the independence on x3 of u; (Step (44)). In addition, let v € V(£2).

As a consequence of the definition of the scaled strains in (52)—(54), we
find

1
geq)8(g;v) — 0 in L2(2), geq)3(e;v) — 5831101 in L?(12),
eeg)3(e;v) = Osv3 in L(2), for all € > 0.
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Now, for all v € V(£2), in (65) we can take as test function ev € V(£2).
Then, taking into account (50), we have

e / pliia (€)™ (€)vs + iia(e)vs) /(@) do + € / A () ey u()en (6 0) Vo de
2 (9]
- /Q ar(3) 4 24)9(E) (e 51 0)g™ (€) + cesyales v) VaE)dx — < / p(—it3(€))vsv/g(E)dT
:5/ fivin/g(e)d.
(9]

Passing to the limit as ¢ — 0, decomposing A“*!(¢) into the components
with different asymptotic behaviour (see (55)—(56)), the properties of
g(e) (see (61)) and the convergences in Step (i), we obtain the following
equality:

/ (2107 eq303v5 + (A + 2p1)e3)305v3) Vadz + / Aa*P ey 50503V adz
1] 1]

- / ar(3)+ 21)00svss/ads v € V(). ae. in (0,T).  (89)
(9}

By taking particular test functions and using Theorem 2, we deduce (87).
Then, we go back to (89) and use again Theorem 2 to deduce (88). The
independence of e3)3 on 3 is a consequence of this relation, as well.

We find a limit two-dimensional problem verified by functions w = (u;)
and 9. In particular, since the solution of this problem is unique, the
convergences on Step (i) are verified for the whole families (u(€))e>0
and (9(€))eso0. We have that u(t) = (u;(t)) € Var(w) and 9(t) € S(2)
a.e. in (0,T).

By using [3, Theorem 4.2-1] (parts (a) and (b)), and Step (i7) we find
that @, € H}(w) and ¥ € Hi (w). Therefore, u € Vys(w) a.e. in (0,T).
Now, let v = (v;) € V(£2) be independent of the variable x3. Then, the
asymptotic behaviour of the functions I'};(¢) and I'J3(¢) (see (58)—(60))
implies the following convergences when ¢ — 0 (see (52)—(54)):

1 .
eq||8(&;v) = Yap(v) := 5(5)&03 + 9gvy) — 7505 — baguz in LQ(Q)7
(90)

1
eq|3(e;v) — 5aav3 + b, in L?(£2),  e)3(e;v) = 0. (91)

Having this in mind, let now v = (v;) € V({2) be independent of z3 in
(65) and take the limit when ¢ — 0. In the process, we make use of the
asymptotic behaviour of A%*!(¢) (see (55)-(56)) and g(e) (see (61)), take

into account the weak convergences e;|;(g) = e;; in L=(0,T; L*(12)),
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simplify by using (87) and consider the precise limits of the functions
eili(g;v) in (90)-(91). As a result, we obtain the equality

/ pliiaa®Pvg + iizvs)vade + / (Aa*Pa’" + p(a*?a’ + a®"a"%)) e, Vap (v)Vada
17} 17}

+ / Xa*Pe3)37ap(v)vadz — /

Q .

C

:/ fivi\/(idac+/ h'viv/adl, a.e. in (0,T), (92)
0 ry

xwav/adl = [ ar(3h-+ 200 05(0) Vads
(0]

where we also used Step (ii4) and (12) to find that there exists x €
L>®(0,T; L*(I'c)) such that p(—is(e)) = x. Using (88) and since u, v
and ¥ are all independent of x3 (see Step (i%)), we can identify them with
their averages and we obtain from (92) that

arp(3A + 2p)

2 [ pliaa® s + iava)Vady + [ @70 @nas(o)ady — 4 | T g 0) ady
1
—/ Xﬁg\/&dF:/ </ f’dx3> 17i\/5dy+/ h'v;v/adl, a.e. in (0,T),
I'c w —1 Iy
(93)

where a®?7 denotes the contravariant components of the fourth order
two-dimensional tensor defined in (69). Now, given n = (1;) € [HJ (w)]3,
we can define v = (v;) such that v(y,x3) = n(y) for all (y,x3) € 1.
Then v € V(£2) and it is independent of z3; hence, as a consequence of
[3, Theorem 4.2-1], the variational problems above are satisfied for v = 7).
Since both sides of the equation above are continuous linear forms with
respect to 03 = 13 € L?(w) for any given v, € H{(w), these expressions
are valid for all n = (;) € Vas(w), since H} (w) is dense in L?(w).
Similarly, let ¢ € S(£2) be independent of z3 in (66) and take the limit
when ¢ — 0. We take into account the weak convergences in Step (i),
simplify by using the time derivative of (88). As a result, we obtain the
equality

23X 4 20)2\ - _
2 / (5+ W) do/ady + 2 / k02 Da® 0P Dy pr/ady
w M w

4/ arp(3A + 24)

ey waaﬁvaﬁ(ﬁ)x/adyz/wa/ﬁdy Vo € Hy(w) a.e. in (0,T),

(94)
hence obtaining (73), with ¢ identified with 4.
(vi) The weak convergences are, in fact, strong.

For this step we first consider a case without tractions, that is, we take
h = 0. Then we will show the changes to be made for the case with
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tractions. In both cases we are using a monotonicity argument. We define
the quantity:

A6 = [ (liale) = ii)g™ (i) = ) + (ia(e) = ) Ga) = ) V/o(F) o
/A”kl &) (exin(e) = exin) (éj5(e) — éi)Vg(e)da
- [ 0ia(e) — (i) i) )T
/ BOE) — D)(9() — 0)V/9(E)de
[ K0u(0(6) = )" (€)05(0(0) = ) + 5 (00(9) = D)} oG

On one hand, we integrate with respect to the time variable in [0, t] and
take into account (84) and the initial conditions in Problem 6 to obtain

/ /QP €) — ta) g™ () (s (e) — ig) + (us(e) — u3)?) Vg(e) d
/A”kl (&) (exyu(e) — exp)(eq;(e) — e)Vg(e)dn

“/0 /FC p(=ts(e)) — p(—is))(—is(e) + i3 \/gTdrdr+/ B(0(e) — 9)*\/g(e)dx

w2 [ [ ka0 - g @0s(006) 0) + @ (0(6) )V,

(95)

and as consequence of the monotonicity of p, (57) and (61), we find

t
/0 Ae)ds > C(|u(e) — ilg o + leay;(€) — el +19() = II5 o

t 1 t
+ / 9at(€) = 0I3 ods + / 1050(2) — D302, pdls. (96)
0 0
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On the other hand, from the expression of A(¢) and making use of (65)—
(66) for v = u(e) and ¢ = ¥(e), we deduce that

:/ fiui(g)\/@dx—%/ Ai"’“’(fs)ekw(E)ez‘w\/g(T)dw+/ AT (e)er ey sV g(e)de
0 2
_4 Pua uﬁ\/id$+/ PﬁagaB(E)uB\/@dx

dt

d ..
~a ), puz(e)uz/g(e) dx —|—/ plistizr/g(e) dzx

+/F p(—u3)(us(e) —u3)\/g dF+/ p(—usz(e))uz\/g(e)dl’
+ / qﬁ(s)\/g(s)dm—% / B9(e)0/9(E)dx + / 809+/9()dz

/ka 9P ()0 )/ g( dw—/ k0a9(e)g*? (€)0p9+/ g(e)dx
_61 / kD5005(9(2) — 9)\/ g d:c—— / kD50(2) 050/ 9 (2) dr.
(97)

Integrating with respect to the time variable in [0,¢] and taking into
account the initial conditions given in Problem 6 and (84) we obtain

/Ot A(e)drzf/ fiui(g)Jg(T)dxdr—/ Aif“(g)ekw(s)eiUJg(?)dH/Ot/QAHM(e)eMle”ngTs)dxdr
/pu uBFder//puag e)igy/g(e) dzdr
/ piis(e)iz\/g(e) dz + / piistiz\/g(e) dadr
//FC —13)(03(2) — 13 Fdfdr+// 3(e))is\/g(e)ddr
4 / / 9(e) /(@) dwdr — / B9(e)9y/g(e)dz + / / B99/g(&)dadr
/ / kD99 (€)05 (0 )/ g(e)dxdr — / / ka0 (e) g™ (£)Dp9/ g(e)dadr
/ / k3003 (0 9/ g(e). dwdr — — / / kD30 (e)D59/g()daxdr.

Take into account that 031 = 0, and let € — 0. Then, because of the weak
convergences studied in steps (), (¢i7) and (v), the asymptotic behaviour
of the functions A¥*!(¢) and g(¢) (see (55)—(56) and (61)) and by using



36

M.T. Cao-Rial et al.

the Lebesgue dominated convergence theorem, we find that

t
lim [ A(e dr—/ / flulfdxdr—/ /pua ugfda:dr—/ /pU3U3fdxdr
0

e—0

—/ /Aijkl(O)ekWéiHj\/&dxdr+// Xug\/&dfdr—i-/ / g9/ adxdr
0 Ja o Jre 0 Jo

t t
- / / B9 adxdr — / / kBy9a®P 050/ adxdr. (98)
0 2 0 JN

Moreover, by the expressions of AY*(0) (see (55)-(56)) and using (87)
we have

/ AT0)ex ey vade = / (Aa®aT + p(a®°a”" + a®aP)) eq) by gV adz
0 0
+ ‘/.Q Aaaﬂegngéan[;\/&d:c + ‘/Q ()\a‘”eaHT + ()\ + 2#)63”3) é3||3\/&d$.

Then, using (88), we find that (98) is actually null, since its expression
above coincides with the result of adding (93) for v = w to (94) for p =9
(both integrated in [0, ¢]). Indeed,

¢ ¢ ' 1
lim A(E)dTZ/ (/ f’ai\/ﬁdx—/ pﬂaaaﬁa,@\/&dx—/ pﬁgug\/&dx—f/ aaﬁ”eﬂhéang\/&dm
0 0 \Ja fo) Q 2 /)0

e—0
2 2\ |
+ / igv/adl + / qIv/adz — / (5 + Ww) 9/ adz — / kaaﬁaaﬁaw\/adx)dr —0.
I'c Q 19, A+2p 19,

(99)

Now, for the case where tractions are not null, in (97) we have an addi-
tonal term

hii;(e)\/g(e)dT.

ry

We integrate (97) in [0, t] and integrate by parts the terms with tractions
corresponding to the first two components, which can be displayed as

t
—/ he(r v g( drdr+ )/ g( dF+/ h3(r )\ g(e)dI dr.
0 Jry

Iy

When passing to the limit € — 0, the terms with u, () above converge
by using compactness arguments, since u,(¢) € H*(£2 x (0,7)) and the
trace into L2(I" x (0,T)) is a compact operator (see [8, p. 416]). For the
term with u3(e), we omit the details for the sake of briefness, refer the
interested reader to [1] and provide the following sketch the proof. We
proceed like in the second part of Step (ii:), with the difference that
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now there are tractions on the right-hand side. Indeed, instead of (86)
we obtain

S LD~ SplaE O3 + g0V (@) (1), w(2)(1) — 3o (@(:)(0), 4()(0))

2

/B dz:—f/ B d:c+/t a5 (9(e)(r), D()(r))dr

//fl dacdr—k//mhl dFdr+//

On the right-hand side we integrate by parts the term on the boundary
Iy, use Theorem 3 combined with Young’s inequality and use Korn’s
inequality on the left-hand side. Next, apply Gronwall’s inequality to
obtain that |e;;(1t)(¢)[3  is bounded independently of e. Then we rea-

son like in Step (iii) with I'c replaced by I'y and find that uz(g) =
a3 in L>=(0, T; L?(I'y)). Besides, we use Lebesgue Theorem where needed,
as well. Thus, the limit of the terms with traction is

_ /Ot /F+ ;’La(r)ua(r)\/gdrdr+/F+ h“(t)ua(t)ﬁdf—i—/ot /F+ R3(r)as(r)v/adl dr.

We can undo the integration by parts, then reason like in (99).

The strong convergences e;;(¢) — e;; in L>(0,T; L2(£2)) also imply
the strong convergences for u;(¢), by following arguments not depending
on the particular set of equations, but on arguments of differential ge-
ometry and functional analysis which do not differ from those used in [3,
Theorem 4.4-1]. Therefore, we just omit them and refer the interested
reader to the book.

It only remains to show that xy = p(—us). To do that we can reason like
in Step () in [11, Theorem 5.3].

a

Remark 8 Notice that unlike what happens in the references [5, 8], cited several
times in this work, we cannot use compactness arguments for the convergence
of all the contact boundary terms, since in our functional framework (that of
linearly elliptic membrane shells) we do not have enough regularity to conclude
that uz(e) € HY(£2 % (0,T)). Indeed, we have found no uniform upper bounds
for Oqus(e). Furthermore, the trace defined in Theorem 3 is not a compact
operator.

6 Back to the physical framework

It remains to be proved an analogous result to the previous theorem but in
terms of de-scaled unknowns. We shall present the limit problem in a de-
scaled form. The scalings in Section 3 suggest the de-scalings &5 (y) = & (y)
and (°(y) = ((y) for all y € @. This way, from Problem 8 we can derive

r) dxdr.
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Problem 11 Find a pair t — (£°(y,t),(%(y,t)) of [0,T] — Vasr(w) x H(w)
verifying

2¢ / p(Eaa’ng + E5ns)Vady + ¢ / P77y () Yas (M) Vady — / PF(—€5)n5Vadl

C

ari(3N+ 2 c o i€
745/ %C a ﬁvaa(n)\/&dy:/F’ mivady ¥n = (n;) € Vi (),

26/ ( 3/\—|—2u) )g’e@\/ady+25/k82CsaaB85‘P‘/5dy
g A+2p w

arp(3A+2 :
+4€/ W%a“ﬂvaﬁ(ﬁs)\/&dy: / Q°pVady Vy € Hy(w),

with £5(-,0) = £€°(-,0) = 0 and (*(-,0) = 0.

Above, we have used F¢ = [*_ fiedz§ + h%°, with h%}°(-) = h¥(-,¢), and
QF = ffe q°dx§. Moreover, the convergences uq(¢) — u, in H'(2) and
us(e) — ug in L?(£2) from the Theorem 5 and [3, Theorem 4.2-1] together
lead to the following convergences:

1 [° 1 f* 1 ¢
% uf drg — &, in H' (), % / usdrs — & in L(92), % ¢édx§ — ¢in L*(2) a.e.in (0, 7).

—€ —€ —E€

Furthermore, we can prove the convergences of the averages of the tangential
and normal components of the three-dimensional displacement vector field. To
this end, we can use the same arguments as in [3, Theorem 4.6-1].

7 Conclusions and Outlook

We have found and mathematically justified a two-dimensional limit model
for thermoelastic shells in contact with a deformable foundation, where the
contact is modeled by using a normal damped response function, in the par-
ticular case of the so-called elliptic membranes. To this end we used the insight
provided by the asymptotic expansion method and we have justified this ap-
proach by obtaining convergence theorems. We have also proved existence,
uniqueness and regularity results for both three and two-dimensional prob-
lems by combining Faedo-Galerking techniques, monotonicity and compacity
arguments.

Future work will be devoted to the study of alternative limit contact mod-
els, possibly thermoelastic flexural shells, which would be found under a dif-
ferent set of hypotheses for the order of the functions involved or the geometry
of the middle surface. Further, we are interested in cases when contact is not
frictionless, and further, models where it is coupled with other effects like wear,
adhesion or damage.
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