
Cloud migration

Master of Science in Technology Thesis
University of Turku
Department of Future Technologies
2021
Jere Lehtinen

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin
OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Future Technologies

JERE LEHTINEN: Cloud migration

Master of Science in Technology Thesis, 55 p.
January 2021

Migrating on-premises applications to cloud environment has become a popular task for
organizations. In this thesis, cloud migration is defined to be an action where one or
more parts of an application are migrated to a cloud platform. Multiple motivations are
mentioned for such migration like reducing costs, flexibility, and scalability of the appli-
cation. This thesis also goes through different strategies for cloud migration. After that,
a literature-based, generalized migration process for cloud migration was created. This
created migration process was then validated against case process.
Phases in the case process were investigated through interviews. Interviews were done in
two parts. First, all interviewees were interviewed one at a time. From these interviews, a
draft of the case process was done. This draft was then validated and supplemented with
a group interview.
After creating both processes, they were compared. It was found that the literature-based
process had a lot of similarities with the case process. Also, it was found that the case
process had a few tasks that were not mentioned in the literature-based process. These
tasks were discussing future of the application, estimating workload and project end date,
defining migration scope, and familiarizing customers with application. These can be
said to be important tasks, and they should have been in the literature-based process too.

Keywords: cloud computing, cloud environment, cloud migration, cloud migration
strategies, cloud migration process

TURUN YLIOPISTO
Tulevaisuuden teknologioiden laitos

JERE LEHTINEN: Cloud migration

Diplomityö, 55 s.
1 2021

Pilviympäristöjen kehittyessä asiakkaan omalle palvelimelle asennettujen ohjelmistojen
migraatio pilviympäristöön on muodostunut suosituksi toimenpiteeksi. Tässä tutkiel-
massa pilvimigraatio määritellään olevan toimenpide, jossa yksi tai useampi osa ohjelmis-
tosta siirretään käyttämään pilvialustaa. Pilvimigraatio tuo monia etuja, kuten kustan-
nusten väheneminen, sekä ohjelmiston joustavuus ja skaalautuvuus. Tässä tutkielmassa
esitellään myös erilaisia strategioita pilvimigraatioon. Tämän jälkeen tutkielmassa esitel-
lään kirjallisuuteen perustuva yleistetty pilvimigraatioprosessi. Tämä yleistetty prosessi
vahvistetaan esimerkkitapauksella.
Esimerkkitapauksen vaiheet on selvitetty kyselytutkimuksella, joka koostui kahdesta os-
asta. Ensimmäisessä osassa jokainen haastateltava haastateltiin erikseen. Ensimmäisen
kierroksen jälkeen oli mahdollista tehdä luonnos esimerkkitapauksen vaiheista. Tätä
luonnosta vahvistettiin ja täydennettiin kyselytutkimuksen toisella kierroksella, missä
kaikki haastateltavat kutsuttiin samanaikaisesti haastateltavaksi.
Lopuksi yleistetty prosessi, sekä esimerkkiprosessi olivat selvillä ja niitä vertailtiin
keskenään. Tämän vertailun tuloksena huomattiin, että prosessit muistuttivat paljon
toisiaan. Esimerkkiprosessissa oli myös joitain vaiheita, joita ei ollut kirjallisuudessa
huomioitu. Nämä vaiheet ovat sovelluksen tulevaisuuden suunnittelu, migraation
työmäärän ja päättymispäivämäärän arviointi, migraation laajuuden määrittely, sekä uu-
den sovelluksen esittely asiakkaalle.

Asiasanat: pilvilaskenta, pilviympäristö, pilvimigraatio, pilvimigraatiostrategiat, pil-
vimigraatioprosessi

Contents

1 Introduction 1

2 Web-based systems 3

2.1 Cloud computing . 3

2.1.1 Essential cloud characteristics 4

2.1.2 Cloud service models . 5

2.1.3 Cloud deployment models . 6

2.1.4 Microsoft Azure . 7

2.2 On-premises environment . 8

2.3 Cloud environment versus on-premises environment 8

3 Cloud migration 11

3.1 Migration . 11

3.1.1 What is cloud migration . 12

3.1.2 Why should cloud migration be done 12

3.2 Architecture . 14

3.2.1 Six R’s of migration strategies 14

3.3 Migration process . 16

3.3.1 Planning . 17

3.3.2 Migration . 18

3.3.3 Deployment . 19

i

3.3.4 Maintenance . 20

4 Case description 22

4.1 About Aveso . 22

4.1.1 Aveso Data Quality Tool . 22

4.1.2 Aveso DataHub . 23

4.2 Research method . 24

5 Case study: migrating Data Quality Tool 28

5.1 Case process . 29

5.1.1 Planning . 29

5.1.2 Migration . 30

5.1.3 Deployment . 33

5.1.4 Maintenance . 34

5.2 Case architecture . 35

5.2.1 Architecture before migration 35

5.2.2 Architecture after migration . 37

5.3 Benefits of cloud environment . 39

5.4 Specialties of this migration . 39

6 Case results 41

6.1 Process comparison . 41

6.1.1 Planning comparison . 42

6.1.2 Migration comparison . 44

6.1.3 Deployment comparison . 45

6.1.4 Maintenance comparison . 47

6.1.5 Summary . 48

6.2 Architecture comparison . 50

6.2.1 Relationship between migration strategy and process 51

7 Conclusions 53

References 56

1 Introduction

In the early stages, the standard way to deploy web-based systems was to deploy them

on-premises of the user organization. The process of buying software started by buying

one or more server machines. After that, the new application could be installed on those

servers. The organization also had to buy perpetual software licenses and personnel to

install and maintain servers and software in them. With bought servers, organizations got

a fixed amount of computation power. When the organization needed more computation

power, they had to buy more server machines.

On-premises environment has some problems that are not present in cloud environ-

ment. For example, with cloud environment, it is not needed to buy server machines.

Resources that the organization needs from the cloud are paid and bought by their needs.

Especially smaller companies and other entities that cannot invest in their own hardware

benefit from this arrangement. Also it is easy to monitor and scale resources in cloud

environment.

Deploying web-based systems to cloud environment has become a standard way to

deploy applications, because of the benefits that the cloud offers. Besides deploying new

applications to the cloud, migrating old on-premises applications to cloud has become

popular too. After doing such migration, applications will also gain the benefits that cloud

environment offers. Migration process must be well-defined and feasible for companies

since cloud migrations have become popular.

The object of this thesis is to view different migration strategies and to create a gen-

CHAPTER 1. INTRODUCTION 2

eralized description of migration process from the literature. Generalized description of

migration process is important due to increasing interest in cloud migrations. Created de-

scription is then validated by comparing it with migration that Aveso did when migrating

their on-premises software. Based on this object, three research questions are presented.

Research question (RQ) 1: What tasks have to be done in cloud migration process? RQ2:

What different types of cloud migrations there are and how they affect the architecture of

the application? RQ3: Which cloud migration types benefit from model process?

Cloud computing and on-premises environment are described in chapter two. Af-

ter explaining these environments, their benefits and challenges are compared with each

other. Chapter three goes through what cloud migration is and why it should be done.

After that, it explains what strategies there are for migration and what is the migration

process like. Fourth chapter introduces case and research method. Fifth chapter explains

everything that was done during case migration, its benefits, and its specialties. In sixth

chapter, case process is compared with general migration process which was described

in chapter three. After that, changes in case architecture are compared with migration

strategies that were also introduced in chapter three. Chapter seven contains conclusions

of the work.

2 Web-based systems

Web-based systems are systems that are accessed through web browser. These systems

can have a lot of functionalities that are controlled with a browser. For example, there

are web-based CRM systems, web-based Microsoft Office, and more. With web-based

systems, users don’t have to install client native applications on to their devices, since

these systems are accessible by using only browser.

Web-based systems can be hosted in different ways. In this thesis, we only focus on

two different environments. These environments are cloud and on-premises.

2.1 Cloud computing

First virtual machines were created by IBM in the 1970s but the term “cloud” was not

introduced until the 1990s by telecom companies. In 2006, Amazon introduced its cloud

services and Google introduced Google Docs. Cloud computing has become the standard

way to implement web-based systems nowadays. Cloud computing has experienced some

changes during its lifetime to get to this position where it stands now. [1]

The modern definition for cloud computing is from the National Institute of Standards

and Technology (NIST): “Cloud computing is a model for enabling ubiquitous, conve-

nient, on-demand network access to a shared pool of configurable computing resources

(e.g., networks, servers, storage, applications, and services) that can be rapidly provi-

sioned and released with minimal management effort or service provider interaction. This

cloud model is composed of five essential characteristics, three service models, and four

CHAPTER 2. WEB-BASED SYSTEMS 4

deployment models.” [2]

This chapter is going to go through those essential characteristics, service models, and

deployment models that are mentioned in the definition of cloud computing. There exist

multiple cloud computing service providers, thus Microsoft’s Azure will be presented as

an example.

2.1.1 Essential cloud characteristics

NIST definition for cloud computing mentions five essential characteristics of cloud.

These characteristics are listed here.

1. On-demand self-service. This characteristic means that user or customer has the

access to the service without anyone manually granting it.

2. Broad network access. This means that user should be able to access the service

without a large amount of bandwidth.

3. Resource pooling, which means that users do not have dedicated resources, since

they will not need all their available resources simultaneously. This means that

unused resources can be used by another user, and so the provider can serve more

users at the same time.

4. Rapid elasticity. Rapid elasticity means that cloud service needs to grow easily and

rapidly, whenever user demands or needs it.

5. Measured service, this means that the usage should be able to measure. This can be

achieved, for example by measuring usage time.

CHAPTER 2. WEB-BASED SYSTEMS 5

2.1.2 Cloud service models

Figure 2.1: Cloud service models [3]

Service models are probably the best known by their abbreviations: SaaS, PaaS, and

IaaS. These abbreviations stand for Software as a Service, Platform as a Service, and

Infrastructure as a Service, respectively. Figure 2.1 presents these three layers in order

of the available control. On SaaS-layer user has almost no control over the application

whereas on IaaS-layer user has the most control. SaaS-layer is usually meant for end-

users, whereas IaaS is meant for IT administrators. Service models are also presented in

[2].

1. Infrastructure as a Service is the lowest layer of cloud services. IaaS provides direct

access to the provider’s hardware, virtual machine, networking, or storage. When

utilizing IaaS, one or more of the mentioned services are used.

2. Platform as a Service is a service that provides the operating system, storage,

database, and middleware for development, like Java or .Net Runtime. PaaS pro-

vides an easy way to develop applications since you do not have to think about the

infrastructure.

CHAPTER 2. WEB-BASED SYSTEMS 6

3. Software as a Service provides applications for end-users. This is the original ser-

vice model and it is still the most used model. Examples of SaaS applications are

Google Apps and Dropbox.

2.1.3 Cloud deployment models

Cloud computing can be utilized for multiple purposes, therefore it is sensible that it can

be deployed in different ways. NIST has defined four different deployment models [2].

These models are developed to fulfill different needs, but they also have different costs.

Deployment models are called public, private, community, and hybrid.

1. Public cloud environment is cloud environment that is open for everyone to use.

Public cloud provider is usually business, but it can also be some academic or gov-

ernment organization. This cloud model is hosted on the premises of the provider.

Usually, when referring to cloud computing in literature or spoken language, public

clouds are meant. This is also the case in this thesis.

2. Private cloud environment is an environment that provides services exclusively for

certain client or clients. Usually, private cloud exists on the premises of its users

but it can also exist off-premises. With private cloud some responsibilities are not

present with public cloud, for example, purchase of the hardware and the adminis-

tration of it.

3. Community cloud provides services for a certain community of users. This com-

munity consists of users that have some shared interests. A community cloud is

hosted and maintained by some entity or entities of the community, a third party, or

some mix of them.

4. Final cloud deployment model is called hybrid. Hybrid clouds consist of at least two

different cloud deployment models. In hybrid cloud different cloud environments

are connected.

CHAPTER 2. WEB-BASED SYSTEMS 7

2.1.4 Microsoft Azure

As mentioned at the start of this section, there exist several cloud platform providers,

for example Amazon Web Services, Google Cloud Platform, and Microsoft Azure. Case

study of this thesis uses Microsoft Azure so it is introduced here shortly. Also, it is

introduced, since it is an example of cloud platform.

Microsoft Azure is a cloud platform by Microsoft. According to Microsoft, Azure has

more than 200 products and cloud services [4]. These include services like AI, machine

learning, IoT, blockchain, virtual machine, mixed reality, web applications, containers,

databases, and so on [5]. So, Azure has a really wide supply of cloud services and a

portfolio of clients too. According to Microsoft, 95 percent of Fortune 500 companies

use Azure services [4].

Microsoft offers a tool called Azure Portal for managing cloud applications in Azure.

Azure Portal is a web-based application that can be used with a browser. Azure Portal

allows users to do things like build, manage, and monitor for all different applications

that are deployed to Azure cloud. [6]

When deploying more traditional web applications to Azure, interesting services are

for example, App Service and Azure SQL. Azure App Service is a cloud service for

hosting web applications [7]. App Service supports multiple languages and can be run on

Windows and Linux based environments [7]. For App Service, one can create WebJobs

[8]. WebJobs are back-end tasks related to the App Service application. WebJobs are run

in the background and can be monitored via Azure Portal.

Azure SQL provides a couple of products that use SQL Server database engine [9].

This means that these products are almost entirely compatible with existing SQL Server

databases, that are used for example on-premises. App Service can also be connected to

Azure SQL Server Database. This is done by using user-defined connection string [10].

This way the web app and the WebJobs in the App Service both have access to cloud

database in Azure.

CHAPTER 2. WEB-BASED SYSTEMS 8

2.2 On-premises environment

On-premises web-system is the traditional way to implement web-systems. This means

that a company buys an application, which is then installed on servers that the company

owns. The company must also buy the servers and the knowledge to install and maintain

them. [11]

As mentioned in previous chapter, deploying applications to cloud has become the

standard way to implement web-based systems. Before the era of cloud, the standard

way for deploying web-based systems was to deploy them on-premises. When consid-

ering pre-cloud web-systems, the assumption is that they are working on an on-premises

environment.

When looking back to the year 1995, a speech by Professor Sa’ad Medhat was given

on international seminar, arranged by IBM [12]. Medhat discusses distributed systems

and thin clients. Medhat mentions that in the future as personal computers get more

popular, some parts of that computation should be moved from server to client.

Saetent et al. discuss thin client development in their article [13]. They define thin

client as a client that does almost nothing but shows information provided by resource

server. This server handles all computation and then serves this content to the thin client.

Thin client and resource server communicate with each other within the same network.

In this thin client-server model, most of the computation was handled by a single

centralized host computer. It is obvious that this is far from ideal. As Medhat suggested,

more computation was moved to the client-side of the application as technology allowed

it. As the client-side got even more duties, a new concept of thick client emerged.

2.3 Cloud environment versus on-premises environment

For this comparison, two different sources have been studied. These sources have quite

similar analysis on this matter, which makes sense. Differences between cloud and on-

CHAPTER 2. WEB-BASED SYSTEMS 9

premises should be similar, no matter who makes the comparison.

First article is from S. Bibi et al. [14]. They discuss differences between cloud and

on-premises environments in their article about whether to acquire on-premises or SaaS-

based solutions. This article is inspired by the trend to migrate applications to cloud

environments. They also provide a SWOT-analysis of cloud versus on-premises. The

second source is from Rabetski and Schneider [15]. They have written an experience

report about migrating an on-premises application to cloud. In this report, they also rec-

ognize the benefits and problems of on-premises deployments. Figure 2.2 shows the main

differences identified in these studies.

Figure 2.2: Differences in cloud environment and on-premises environment presented

shortly

One big strength of cloud environment, which is mentioned in both sources, is small

capital expenses. When going with the on-premises environment there is a big up-front

payment, since the company must buy the servers and the software. The company must

also have the technical knowledge to run and maintain these servers. With cloud environ-

ment, there is no need for additional hardware. Also, cloud environments have flexible

pricing, like pay-per-use. Pay-per-use is especially useful pricing method when the appli-

cation is not needed on a daily basis. [14] [15]

Managing resources and scale of instances in cloud environment is something that is

significantly easier than in an on-premises environment. In [14] it is mentioned as strength

of cloud environment. This means that it is easy to scale instances horizontally and verti-

cally. Horizontal scalability means the number of instances and vertical scalability means

CHAPTER 2. WEB-BASED SYSTEMS 10

the size of those instances.

Deploying applications on-premises offers some benefits too. One being that code and

data of the company are physically close, unlike with cloud. If the code or data, or both

are sensitive in nature this can be important. With an on-premises system, it is possible

that the data never leaves the network of the organization. [15]

Both sources also mention that cloud applications suffer from latency issues. These

sources are from the early 2010s, so this issue might not be that relevant anymore in

2020. In fact, a study published in 2019 does not have full consent of this. Pelle et al.

write about latency-sensitive cloud-native applications [16]. They come to a conclusion,

that when selecting cloud services carefully, it is possible to use cloud in latency-sensitive

applications too.

3 Cloud migration

In this chapter, there is discussion about what cloud migration is and why it should be

done. After that, changes in architecture are discussed. The last part of this chapter

addresses migration process. It goes through what parts and what tasks the migration

process contains.

Before starting cloud migration, companies face decision-making process. Whether

they should migrate their application to cloud or not. There is a lot of academic research

on this subject that should help with that decision. Assumption in this thesis is that this

decision has already been made. Therefore, the decision-making process is not addressed

at all. Excluding the decision-making process, this chapter should give a thorough under-

standing of cloud migrations.

3.1 Migration

When considering cloud migration, it is important to understand how it is done. What

does the process of migrating an application to cloud contain and how does it change the

architecture of the application? However, before thinking about how to do it, it is impor-

tant to understand what cloud migration is and why it should be done. In this section, the

"what" and the "why" are discussed.

CHAPTER 3. CLOUD MIGRATION 12

3.1.1 What is cloud migration

In their study Al-Azzoni et al. discuss performance of the software migration [17]. Mi-

gration is said to be the activity where parts of a legacy application are migrated to a more

modern platform. One or more parts can be migrated from the legacy application. Parts to

migrate can contain hardware, operating system, source code, languages, and databases.

This study describes software migration in general, but the same definition can be used

with cloud migration too.

Müller explains re-engineering strategies for software migrations in his study [18].

This study identifies what challenges there are in software migrations. These challenges

are found to be the scale of the legacy application, corruption of the legacy application,

outdated documentation, and implementation technologies that have aged.

There are a lot of legacy applications that could benefit from migrating to cloud envi-

ronment. Often these legacy applications are hosted in on-premises environments. While

cloud computing is rapidly growing and evolving, it is becoming even more interesting

topic for a lot of researchers and companies to figure out what it would take to migrate

these legacy applications to cloud environments.

3.1.2 Why should cloud migration be done

Before making the first step to migrate the application to cloud environment, companies

face a decision-making process whether the migration should be done at all. Research

field has a lot of support for making this decision. In 2013 was made systematic review

[19] on existing cloud migration researches, and it was found, that majority of cloud

migration-related researches focus specifically on this topic. To be exact, 14 out of 23 (61

%) reviewed researches focused on decision making.

In a study about why companies migrate to cloud [20], it is found that there are a

couple of different motivating factors for companies to migrate their legacy applications.

Factors that are found in literature are IT costs, flexibility and scalability of the applica-

CHAPTER 3. CLOUD MIGRATION 13

tion, faster time-to-user, and reducing IT complexity. The study also contains two case

studies, that both have one motivating factor, that literature did not mention. This is the

need to improve or innovate business processes.

Marston et al. have identified the strengths, weaknesses, opportunities, and threats of

cloud computing in their paper about the business perspective of cloud computing [21].

For this paper, they have interviewed multiple executives that have a deep understanding

of this subject. For key advantages, they have listed four different things.

1. It makes it a lot easier for small companies to gain access to compute-expensive

processes. These processes are often a rather short time only and as cloud services

have pay-per-use politics, it is more suitable for smaller companies too. Cloud

computing can be also useful in developing countries that have fallen behind in the

IT revolution. Cloud computing provides computing power to places that would

have otherwise lacked it.

2. Access to hardware resources is immediate and demands no up-front investments.

Unlike on-premises environment that demands those up-front investments to get

things running.

3. With cloud computing, services can be scaled easily. When there is demand for

more computing power, it can be deployed fast and easily. Resources can also be

viewed accurately through systems that cloud provider offers. An example of such

system is Azure Portal, that is introduced in 2.1.4.

4. With cloud computing it is possible to create different types of applications that

were not previously possible. For example, with internet access it is possible to

read emails and access personal files on any computer.

CHAPTER 3. CLOUD MIGRATION 14

3.2 Architecture

Migration of legacy application can be done in different ways since it is not always desired

to migrate the entire application stack as-is. Term application stack refers to common

three-tier architecture, that consists of presentation layer, business layer, and data layer.

Migration types can be sorted in different ways. However, when considering different

migration strategies, five R’s or six R’s of migration strategies are often mentioned. Six

R’s are presented to answer RQ2.

3.2.1 Six R’s of migration strategies

Five R’s of migration strategies were first introduced by research company Gartner in

2011. After that they have appeared in multiple academic researches, usually as six R’s of

migration strategies1. Names of those six R’s might change a bit in different sources, but

the content stays more or less the same. Ahmad et al. (2018) [23] define these six R’s to

be Rehost, Replatform, Repurchase, Refactor, Retain, and Retire. Figure 3.1 shows these

six R’s in short.

Rehost is also called “Lift-and-shift”, which means migration that is done on IaaS-

level. In Rehost, the whole application is migrated from non-cloud environment to cloud

environment. This migration type doesn’t require changes to the architecture of the appli-

cation. Rehosting can be carried through with little or no reconfiguration. Since the entire

application is only rehosted, this migration strategy is relatively fast and easy. [22]

In Replatform strategy, one or more of the three layers of the application stack are

converted to use PaaS offerings. Small changes to architecture are possible, to fully utilize

cloud environment. This migration process might contain some optimizations to code and

other configurations to fully utilize the features of the cloud. When considering amount

of work in migration, replatforming is middle ground for rehosting and refactoring. [23]

1Sources, where six or seven R’s are mentioned: [22], [23], [24]. These strategies are also identified in

many unacademic sources, such as Forbes [25] and Amazon [26]

CHAPTER 3. CLOUD MIGRATION 15

Figure 3.1: Six R’s

Repurchasing means replacing the application with SaaS-service. The new applica-

tion should replace the legacy application and contain similar features and characteristics

that can be found from the legacy application. Preferably with improvements, of course.

One example of such migration would be changing complex customer relationship man-

agement platforms to Salesforce. [23] [22]

Refactor means migration where services of the application are refactored to leverage

cloud-native options. To fully leverage cloud-native options there are a lot of changes

that need to be done. Architecture, codebase, and even database queries might need some

changes in this migration strategy. Motivation for this strategy is having special needs

for the application such as need for new features, more performance, or other up-scaling.

Unlike rehost-strategy, this migration takes a lot of work. [22] [24]

Retain is a good strategy when migration of legacy application would cause too much

costs, maintenance, or troubles for current users. Of course, migration should not be done

if it does not make sense. When this is the case, migration can be refrained and maybe

revisited later to see if migration has come topical. [23] [22]

Last strategy is Retire. It is found that companies have applications and services that

are no longer in use and therefore are not beneficial. These applications should be retired.

CHAPTER 3. CLOUD MIGRATION 16

[23]

3.3 Migration process

For cloud migration, there exist cloud migration frameworks that provide basic steps that

should be done to achieve successful migration. For this thesis, four models have been ex-

amined and their similarities have been considered. After finding these similarities, three

phases have been defined. These phases are called Planning, Migration, and Deployment.

Jamshidi et al. (2013) wrote a literature study that compared existing studies about

cloud migrations. With this information, they created their own model for cloud migra-

tion. This model is called cloud reference migration model (CRMM). [19]

Second model is called REMICS (Mohagheghi et al. 2010). It is short for Reuse and

Migration of legacy systems to Interoperable Cloud Services. REMICS model provides a

model-driven methodology for migrating legacy systems to cloud. With multiple different

models describing different phases, it is possible to create an exact description of all

phases. Accuracy comes with a price. Since this is model-driven, it is needed to go

through multiple different models, in addition to the actual migration model in order to

use the migration model. REMICS project has been funded by the European Commission.

[27]

Third model is called CloudMIG. CloudMIG is created by S. Frey and W. Hasselbring

in 2011. CloudMIG is also a model-driven methodology for cloud migrations. Similar

to the REMICS-model, CloudMIG also demands users to understand multiple models to

use the actual migration model. Main goal for CloudMIG is to support the migration of

legacy on-premises applications to Paas and Iaas applications. [28]

Last model is not a model but a metamodel for creating migration models. Study

(Panami et al. 2019) goes through existing cloud migration literature and then introduces

metamodel based on that literature. Goal for migration metamodel is to be helpful when

CHAPTER 3. CLOUD MIGRATION 17

creating case-specific migration models. [29]

None of these four models consider what happens when application is in maintenance

phase. Because maintenance is an important part of lifecycle of an application, it is added

as fourth phase to this thesis too. First three phases (planning, migration, deployment)

have been written using these four models but the maintenance phase has its own sources.

Figure 3.2: Migration process

In Figure 3.2, all phases of the process are presented in short. This image shows each

phase and the biggest tasks inside them.

3.3.1 Planning

Planning phase should be done to fully understand what the goal of this migration is and

where does the application stand now. In planning phase, there are three different main

activities that should be done. Each of these main activities contain smaller tasks.

First main activity is extracting the original architecture of the legacy application [27]–

[29]. It is known that the architecture of the application tends to corrode over time [28].

This can be caused by, for example, sudden changes in requirements or features. There-

fore, the original architecture might not be there anymore.

To extract architecture from corroded application it is needed to analyze at least source

code, dependencies, documentation, and knowledge of users and developers. Analyzing

CHAPTER 3. CLOUD MIGRATION 18

these things gives us findings such as knowledge about components in the application,

overall implementation, and business requirements. Business requirements are something

that should be explicitly listed so that they can be used later in the migration phase. [27]

These findings are useful when we try to see if there are some technical requirements,

such as hardware requirements. They can also be used when selecting cloud migration

strategy. Because of this, the mentioned findings should be recognized, even if the old

architecture would not be analyzed.

Second main activity is generating target architecture [19], [27]–[29]. It is needed

to decide cloud migration strategy and then design new architecture after that. Decided

cloud migration strategy will most likely determine a big part of the target architecture.

Whether the strategy is to rehost (“lift-and-shift”) or refactoring, it will determine a big

part of the target architecture.

When considering target architecture, it is good to notice that in some cases it might be

beneficial to add or remove components when migrating to cloud [29]. Target architecture

should be created in a way that the application could maximize the benefits of cloud

environment. All components might not be suitable for cloud environment performance-

wise or they might be completely incompatible.

Third main phase is selecting a provider for the cloud environment [19], [29]. The

provider needs to have services that suit the migration. When selecting a provider, it is

needed to go through issues related to licensing and other things that are specific to a

certain provider.

3.3.2 Migration

Second phase also consists of two main activities, which contain smaller tasks. This is

similar to the planning phase. Goal of the migration phase is to migrate all identified

business requirements successfully from old to new architecture.

First main activity of this phase is to build the architecture that was generated in

CHAPTER 3. CLOUD MIGRATION 19

the planning phase [19], [27]–[29]. Building the architecture is done by applying case-

specific methods and maybe even by replacing components with cloud offerings. In mi-

gration phase, it is possibly needed to add or remove components too.

Building the new architecture often contains adapting the codebase to suite new ar-

chitecture and cloud environment [19], [29]. Also, when architecture changes, there is

usually a need for reconfigurations. And to know how to do reconfigurations, it is needed

to identify which cloud resources will be used.

Second main activity in migration phase is to fully implement business requirements

that were identified in the planning phase [27]. While doing this, there’s also a need

to validate that these requirements are met and that the new application still works as

intended.

Also, often when migrating an application, new requirements for the application have

emerged. This means that while doing a migration, possible new features should be also

implemented.

3.3.3 Deployment

Like the first two phases, deployment phase also contains main activities that have sub-

tasks. There are four main tasks in this phase, that are validating target architecture,

testing, optimizing services for the cloud, and deployment. The first three tasks are prepa-

ration tasks for the deployment.

Validating target cloud architecture is done with the help of target architecture that

was created in the planning phase. To be able to validate created cloud architecture, it is

needed to define validation criteria. Validation criteria should be created from the target

architecture that was created in the planning phase. [19], [27]–[29]

Second main activity is testing. Before actual testing can start, it is needed to create

a test environment. The test environment should be similar to the actual deployment

environment. The application should then be divided into smaller modules that can be

CHAPTER 3. CLOUD MIGRATION 20

tested separately. After finding these modules, it is time to do the actual testing. Test

cases should be such that they can be run on old and new system [27]. This way it is

easier to find the differences between these two systems. [19], [27], [29]

After running tests, the next main activity is to do optimizations for the new system.

Since the old system is an on-premises system and the actual migration work is most likely

done locally there might emerge some optimization needs for the cloud environment. [29]

Final activity of deployment phase is the deployment of the application. Deployment

contains different elements, depending on the cloud provider and migration strategy that

was chosen in the planning phase. Also, configurations are often necessary in the deploy-

ment phase. [19]

3.3.4 Maintenance

Planning, migration, and deployment were phases that were written to this thesis using

earlier mentioned four migration models. However, these models did not contain tasks

that are related to the maintenance of the application. It is known that maintenance costs

are often notable part of total costs in software project [30]. Therefore, maintenance is

also added to this process, even though original models do not have it. This phase is a

compilation of different sources. To make this phase thorough, it was first wanted to find

out what regular software maintenance contains. After that, it was wanted to find out what

maintenance tasks come with cloud environment.

In a publish about maintaining traditional software applications, there are two types

of maintaining works found. These same maintaining types apply for cloud applications.

First type is called perfective maintenance. This type contains work, where functionalities

of the system are enhanced. [30]

When doing enhancements to some application, it might have an impact on other

applications and components that are linked to it too. This leads to more maintenance

work, where you update all linked components to keep them consistent with each other.

CHAPTER 3. CLOUD MIGRATION 21

[30]

In a study about logging framework for cloud applications, it is said that logs are one

of the most important pieces of analytical data in cloud applications. This study finds

multiple use cases where application logging is beneficial: debugging, fault monitoring,

troubleshooting, performance monitoring, and so on. [31]

To enable logging, this study suggests three steps that need to be done. First, enable

logging on all different application components. Next, setup log transport. This means

that logs need to be transferred from the place they are logged to some central place,

where they are easily accessible. Final step is to tune logging. If possible, log messages

should tell what happened, when it happened, who triggered it, and why it happened. [31]

Study about the Quality of Service based cloud application management finds dif-

ferent things that should also be regularly managed in cloud applications. These things

are continuous monitoring of application services and tuning of cloud applications under

different requirements and budget constraints. For example, in Azure environment, mon-

itoring and tuning can be done via Azure Portal. Azure Portal was introduced in chapter

2.1.4. [32]

4 Case description

4.1 About Aveso

Aveso Oy is an IT consulting company that is specialized in data quality, master data

management, internet of things and data warehousing solutions. Aveso was founded in

2014 and it has currently 16 employees. Aveso is Microsoft Analytics Gold partner and

it has developed several products that are used in telecom, manufacturing, and energy

industries. Two Aveso applications are relevant for this thesis, Aveso Data Quality Tool

and Aveso DataHub.

4.1.1 Aveso Data Quality Tool

Aveso has developed application called Data Quality Tool for continuous data quality

management. Aveso Data Quality Tool is an on-premises web-based application, that

offers centralized solution for organizations to manage their data quality process.

Aveso Data Quality Tool was created to support centralized data quality process. Tra-

ditionally data quality has been controlled via system controls, user instructions and data

quality reporting. This has produced little or no quantitative data that could be used to

measure overall data quality in an organization. With Aveso Data Quality Tool, it is pos-

sible to create automated data quality controls and, through time, quantitative metrics to

assess the data quality in a specific environment.

Today, data is considered to be an important asset for companies. Business decisions

CHAPTER 4. CASE DESCRIPTION 23

should be made based on reliable data to improve certainty. Bad data costs money for

companies through manual fixing work, reclamations, and loss of revenue. Digitalization,

AI and robotics require reliable data.

Typical data quality issues are caused by user typos, lack of user instructions, changes

in data quality requirements, and bugs in system integrations. With Aveso Data Quality

Tool it is possible to create data quality rules that expose data quality issues. These SQL

based rules define qualification criteria for data objects. It is also possible to create hi-

erarchical rule structures. After creating such rule or structure, it can be executed and a

result data set is created. These executions can be scheduled, and they can be recurring

for example daily or weekly. Results show error statistics and the actual erroneous data.

Aveso Data Quality Tool has integrated Microsoft Power BI reporting. Via this reporting

tool, it is possible to follow data quality trends for example per system, data domain or

system object. These reports show total number of errors, number of errors within some

time period, and number of errors fixed within time period.

4.1.2 Aveso DataHub

DataHub is the second application from Aveso that is introduced in this thesis. DataHub

is an application that is created for data collection, master data management, to give

reference data, and to correct erroneous data.

Collecting data in ERP-systems is well defined process, unlike collecting data before

entering it to ERP-system. There are often excel-files, emails, or other bad ways to gather

data before it is entered to ERP. When handling data with these methods, some problems

emerge, such as version controlling. These are the problems that DataHub is for.

Aveso DataHub supports data model definition and provides features for managing

and editing data before it is inserted to ERP-system. It is a way to collect all pre-ERP data

to one place for easier management. DataHub is an Microsoft Azure cloud application, so

it can be easily provided for external users, such as suppliers and subcontractors. DataHub

CHAPTER 4. CASE DESCRIPTION 24

also has the ability to export data into Excel, which can then be edited and imported back

into DataHub. DataHub workflow is presented in Figure 4.1.

Figure 4.1: DataHub process

4.2 Research method

The object of this thesis is to create a general model for migrating legacy applications

from on-premises to cloud environments. First task was to find out from literature what

it takes to do such migration. This was done using literature. After that, it was time

to generalize this information and form a model that could be followed when migrating

legacy applications. Next step is to compare this model with what was done in case study.

This comparison gives us insights about the differences between created model and an

example project.

Another interesting topic for this thesis is to find out what happens to application ar-

chitecture when migrating it to cloud environment. Literature provides some architectural

models to describe this change. These are described in chapter 3. Literature based archi-

tectural models are compared with what happened in case migration. Architecture of case

migration is presented in chapter 5 and it is compared with literature in chapter 6.

For these mentioned comparisons it is necessary to get full understanding of how the

case study was conducted. This understanding will be gained through interviews. The

CHAPTER 4. CASE DESCRIPTION 25

migration team is rather small, with only seven people including me. Therefore, the

planned interview process is somewhat unconventional.

Suitable interviewees are selected based on the goal of these interviews. As mentioned

earlier, goals are to find out what was done in the migration project and what were the

architectural changes. This narrows number of suitable interviewees from seven to four.

These four interviewees had different tasks in the project. There were two developers, a

consultant, and a product owner.

First there will be four individual interviews. Goal for individual interviews is to find

out how the migration process went in case study. Each interviewee will answer the same

questions. Questions are about the migration process, what was done in the process, and

what was gained from the process. When doing the interviews, the interviews will be

recorded, and later a summary of each interview will be written. These interviews will

be compared with each other. After comparison, it should be possible to create a timeline

about the process that contains all the things that were part of case migration.

After individual interviews, a group interview should be kept for all interviewees.

There is uncertainty whether only four individual interviews could give thorough answers

about the migration. Therefore, the individual interviews should be verified and possibly

supplemented with a group interview. In group interview, interviewees should see outlines

of their combined answers. They can then discuss and analyse whether the created process

is insufficient or otherwise lacking something. The goal of the group interview is to verify

the timeline that will be created after individual interviews. After the group interview,

there should be clean and verified image of what was done in the case migration and what

were the architectural changes in it. Figure 4.2 summarizes the interview research that

will be used.

It is important to do individual interviews before the group interview since the inter-

viewees have really different backgrounds. For example, one interviewee is a developer

that has been working for five months while another interviewee is product owner. This

CHAPTER 4. CASE DESCRIPTION 26

difference would make it really hard to get honest opinions from the developer in the

group interview. Because of this, it is decided to first ask questions from everyone indi-

vidually and only after that do the group interview.

Figure 4.2: Method for finding migration process in case migration

Another way to conduct this research would have been to do only group interviews.

Creating a couple of homogenous groups of three to five people and let each group discuss

the project could have been a good method too. Unfortunately, the project was not that

big, and it only had seven people working on it. Only four of those seven were suitable

for answering the questions, which meant that group interview method could not be used.

At the time of the interviews, the case migration was almost done. There was nothing

left to do but some cleaning up and final bug fixes. When this thesis was started, the

migration had already passed halfway point of the project. Results of interviews are

explained in chapter 5. Research method described in this section and in Figure 4.2 was

followed precisely when conducting interviews.

If the case had not been started before creating migration process model in this thesis,

it would have been sensible to do the case migration using that model. However, since

CHAPTER 4. CASE DESCRIPTION 27

the case had already gone a long way that was not possible anymore. Therefore, it was

decided that the case migration could be used as a validation for the migration model

created in this thesis.

5 Case study: migrating Data Quality

Tool

For this thesis, it was needed to verify the created process model with some case. Aveso

migrated their Data Quality Tool to cloud environment and that migration is also the case

study in this thesis. This migration is somewhat uncommon since the application was not

only migrated to cloud, but also merged with Aveso DataHub.

When these two applications were merged as one, they were given a new name, Dat-

aPlatform. This name is somewhat problematic since Microsoft has a product with the

same name. Therefore, DataPlatform of Aveso is most likely going to have another name

at some point. When writing this thesis, DataPlatform was not quite ready yet and had no

paying customers.

Since DataHub was already working on Azure cloud it made sense to keep it as a base

project. All references to the name Datahub were changed to DataPlatform in that project.

After renaming, it was time to start merging features from Aveso Data Quality Tool to that

project.

The idea of this chapter is to depict what has been done in this case. All mentioned

things are found through interviews that were held during the research phase. Research

method is explained more closely in 4.2.

CHAPTER 5. CASE STUDY: MIGRATING DATA QUALITY TOOL 29

5.1 Case process

Migration of Aveso Data Quality Tool can be presented in four phases, similar to the

previously created model. These phases are planning, migration, deployment, and main-

tenance. Content of phases has been examined with interview research that was presented

in section 4.2.

5.1.1 Planning

In the planning phase, there were different things that were done. Project participants had

meetings where they discussed current state, technical problems and future requirements.

After these meetings individuals then added details to the bigger picture.

In meetings, there was discussion about the current state of the application. The dis-

cussion based on thorough knowledge of participants and documentation. Functions,

technical implementation, and architectural decisions of the application were revised.

With this revision, it was supposed to find possible technical limitations that may oc-

cur when migrating from on-premises to cloud. In their migration model [29] Panami et

al. also state that it is important to identify possible incompatibilities early.

Some technical problems and limitations were found. For example, Windows authen-

tication can not be used, when the application is deployed to Azure. When going through

the documentation of Microsoft, it mentions that "You can use Windows authentication

when your IIS server runs on a corporate network that is using Microsoft Active Directory

service domain identities...". [33]

After finding these problems, it was needed to bypass them somehow. For example,

since Windows authentication did not work, the application started using a third party

component called IdentityServer. With IdentityServer it was possible to add Azure au-

thentication and local users for the application.

In addition to considering the current state of the application, the meetings contained

CHAPTER 5. CASE STUDY: MIGRATING DATA QUALITY TOOL 30

discussion about future requirements. Aveso has clients who are using Aveso Data Quality

Tool or Aveso DataHub and they have implied their interest in an application that is a

combination of these two. To make a satisfying application that contains functionalities

from both, it was necessary to discuss the future too.

This application had one person who was responsible for the new architecture. Meet-

ings had discussion about the current state, technical challenges, and future requirements

of the application. Based on these meetings, the architect created new architecture for the

application.

The new architecture had more components than the original architecture. This was

done because of technical difficulties and to utilize characteristics of cloud. For example,

the old application had some SQL executions that could be scheduled and executed by

SQL Server. These functionalities were detached from SQL Server and new components

were made for both.

In the planning phase was also a concern about the scope of the migration work. To

keep this scope as small as possible, it was decided that the migration should be done with

as few changes as possible. This meant that all the functionalities should be migrated as-is

and possible changes to them should be done afterward.

Also, in the early planning phase, some preliminary estimate for workload was made.

This first estimate was there to only give guidelines. The idea was to specify the workload

estimate later as the project goes further.

5.1.2 Migration

In this project, Azure DevOps was used for development, project management, and col-

laboration. With Azure DevOps, it is possible to list project work items and to track them

in Kanban style. Each work item can be marked as to do, doing, or done. There are a lot

of customization possibilities with Azure DevOps but for this thesis, it is not relevant to

go through these possibilities.

CHAPTER 5. CASE STUDY: MIGRATING DATA QUALITY TOOL 31

At the beginning of migration work, it was decided that work items could be divided

into different abstraction levels. Abstraction levels were decided as follows: Epic, Issue

(or Bug), and Task. These levels are depicted in figure 5.1.

Figure 5.1: Example of work items

After making this division for work items, it was time to write down all Epics. Epics

were work items that were identified in the planning phase. When it was time to start

implementing some Epic, that Epic was specified all the way down to Task level.

Since the front-end of Aveso Data Quality Tool was developed with a different web-

application framework than the front-end of Aveso DataHub, it was needed to rewrite all

code in the front-end of Aveso Data Quality Tool. Rewriting front-end code gave a chance

to write the code to equate to modern best practices and standards. The front-end code of

Aveso DataHub was also refactored to equate these best practices and standards. Figure

5.2 shows how these two applications were merged.

In on-premises environment, Aveso Data Quality Tool was implemented with software

development framework called Angular and DataHub with framework called React. As

the target was to combine these applications, Data Quality Tool was rewritten with React.

So, the change of the web-application framework was only done to unify it with the

framework that was used in DataHub. This was not a necessary step regarding cloud

CHAPTER 5. CASE STUDY: MIGRATING DATA QUALITY TOOL 32

migration.

Both applications used the same technology for implementing their APIs. This made

it possible to just copy and paste all API related code from Data Quality Tool to DataPlat-

form. Before copying the Data Quality Tool code to DataPlatform, the DataPlatform API

was updated. All code that was copied to DataPlatform after that might have been subject

to small or big changes since the base was updated.

Moving Data Quality Tool API to cloud made no difference in how the API works.

Because of this, all the changes that were done to Data Quality Tool API were done only

because of new features of the updated technique. Not because of migration to cloud

environment.

Both applications also used the same database, which is SQL Server. Almost all

features of SQL Server that work on-premises work on Azure SQL service. Because of

this, the need for changes in the database of Aveso Data Quality Tool was small.

Figure 5.2: Merging two applications in migration phase

To be able to analyze what is happening in the application, it was needed to add

logging for the application. Logging was added to all application components for this

purpose. All application logs can be accessed through Azure Portal.

One goal in the migration phase was to fully implement the new architecture, that was

created in the planning phase. New architecture contains components that were not part

CHAPTER 5. CASE STUDY: MIGRATING DATA QUALITY TOOL 33

of Aveso Data Quality Tool or DataHub originally. These components had to be created

from the beginning.

When developers had some new features ready, they tested it by themselves first. After

that, new features were introduced in weekly meetings. In these meetings, other project

participants had a chance to comment on new features. Finally, when some feature was

thought to be ready it was time for the product owner to test it.

In weekly meetings, Azure DevOps was reviewed every time to see how the project is

going. By following lists, in DevOps, it was possible to make sure that architecture and

all functionalities were implemented as planned.

5.1.3 Deployment

When the application was ready to be deployed, it was time to create a test environment.

Test environment had to be similar to the environment that the application would be de-

ployed on customer cases. Therefore, an App Service plan, SQL Server, and WebJobs for

App Service plan were created to Azure.

Aveso Data Quality Tool has a list of everything that is possible to do in the applica-

tion. This list was updated to equate functionalities that are in DataPlatform. After the test

environment was deployed to Azure, the product owner started to go through this updated

list. When going through this list, it was easy to find all bugs, since the list is thorough.

Also, if something was missing from the application, the list revealed that too.

When deploying the application for a customer, some implementation tasks are needed.

First, the application needs to be connected to the data of the customer. Main idea of the

application is to help with data quality and to pre-process data before entering it into ERP.

Therefore, connecting customer data to the application is an essential step. After this,

there are still some other configurations that need to be done. For example, connecting all

separate architectural components together.

Final step of deployment starts when the application is up and running in the cloud.

CHAPTER 5. CASE STUDY: MIGRATING DATA QUALITY TOOL 34

Since the application is new, it is possible that all users are not aware of its functionalities.

Therefore it might be needed to familiarize customers with the application. This is done

with a user manual and personal assisting.

5.1.4 Maintenance

Maintenance phase contains different kinds of tasks. Some tasks are done regularly

whereas some tasks are initialized by a customer. Aveso can sell DataPlatform as SaaS or

it can be installed into a cloud environment that is owned by the customer. Maintenance

tasks are different, depending on how the application is sold and what kind of agreement

is done with the customer.

When the application is sold as SaaS, it includes more maintenance work than just

selling the application to the environment owned by the customer. The application needs

to be monitored regularly. It is needed to see that the application is still up and running

and that there are enough resources allocated for it. From this monitoring, you can see if

it is needed to scale the capacity up or down. Monitoring state of the application can be

done via Azure Portal. Azure portal is explained in section 2.1.4.

It is understandable, that it does not really make sense to keep checking on the appli-

cation all the time, just to see that it is up and running. Therefore, Aveso will configure

alerts to Azure. These alerts can notify you of several things. For example, if the applica-

tion has stopped or if the usage of CPU or memory has jumped over some threshold. Alert

for stopped application is a really useful feature and it will be configured to DataPlatform,

when it is sold as SaaS.

Customers can report bugs and improvement ideas for the application. These are listed

to Azure DevOps, like in the migration phase. These listed things are considered when

doing version updates. DataPlatform will receive version updates regularly. These new

versions consist of non-urgent bug fixes, improvement ideas, and other updates, such as

updating used technologies. Of course, if a customer reports a bug that is urgent, a hotfix

CHAPTER 5. CASE STUDY: MIGRATING DATA QUALITY TOOL 35

can be sent.

When a customer sends a report of a bug, it will be investigated. When troubleshooting

what is wrong, application logs play an important part. There can be error messages or

other abnormal content that will help to find out what is wrong. As R.Marty mentions

in his study [31], logs are one of the most important pieces of analytical data in cloud

applications.

As explained in this section, different delivery and agreement types have different

maintenance scopes. This is illustrated in Figure 5.3 below. When the application is sold

as SaaS, Aveso will take care of the environment of the application as well as the software.

However, if the application is sold to cloud environment of the customer, then Aveso will

provide only regular software maintenance support.

Figure 5.3: Maintenance scope is different for different delivery types.

5.2 Case architecture

5.2.1 Architecture before migration

Aveso Data Quality Tool and its functionalities were introduced in section 4.1.1. Main

function for Data Quality Tool is the maintenance of data quality. To maintain data quality

CHAPTER 5. CASE STUDY: MIGRATING DATA QUALITY TOOL 36

it is needed to access customer data. This means that the rest of the system is dependent

on that data. In figure 5.4 customer data is depicted as source database.

Before migrating Aveso Data Quality Tool to cloud environment, the architecture had

only five components. These components are illustrated in Figure 5.4 below.

Figure 5.4: Architecture of Data Quality Tool

1. UI Client that runs on web-browser.This is the entrypoint to application.

2. Back-end that runs on servers of a company. Physical server uses software called

Internet Information Services to run the application. Back-end communicates with

UI Client and databases.

3. Microsoft Active Directory is used by client and back-end to authenticate users.

4. DQTool database is a database that is dedicated to the use of the application.

5. Source database is connected to application via DQTool database. It provides nec-

essary data from the customer to the application.

CHAPTER 5. CASE STUDY: MIGRATING DATA QUALITY TOOL 37

5.2.2 Architecture after migration

Migrating Aveso Data Quality Tool to cloud environment meant a lot of changes to archi-

tecture too. As mentioned in section 5.2.1, the application needs to be connected to the

data of the customer. This is the only part of the new architecture that does not have to

be in cloud environment. Azure hybrid connection makes it possible to connect DataPlat-

form to servers of the customer, even if the servers are in on-premises environment. New

architecture is illustrated in Figure 5.5 below.

Figure 5.5: Architecture of DataPlatform

CHAPTER 5. CASE STUDY: MIGRATING DATA QUALITY TOOL 38

1. UI client works similarly in web-browser as it did before migration.

2. UI back-end of the application is now running in Azure. The purpose of this com-

ponent is the same as it was in the original application. The difference is that this is

now deployed to Azure as App Service plan. App Service plan was introduced in

section 2.1.4 and in source [7].

3. As mentioned in section 5.1.1 and in source [33], Windows authentication could not

be used in Azure. This was replaced with IdentityServer that provided a way to use

Azure authentication and local users for the application. IdentityServer is deployed

as a separate App Service plan to Azure. However, it is working under the same

URL as the main application.

4. DataPlatform database was called DQTool database in the original architecture. The

purpose of this component has stayed the same. It is a database that the application

can use for its needs. The difference is that this new component is now Azure

SQL Database instead of on-premises Oracle or SQL Server database. Azure SQL

Database was introduced in section 2.1.4 and in source [9].

5. Execution scheduler is a new component. It schedules executions that are run by

component called Execution engine. Execution scheduler is deployed as a WebJob

under App Service plan of UI. WebJobs were introduced in section 2.1.4 and in

source [8].

6. Execution engine is also a new component. Like execution scheduler, this is de-

ployed as a WebJob too. Execution results from the execution engine are trans-

ported to the source database and ERP of the customer.

7. Source database has the same purpose as it did on the original application. It can

also be deployed on-premises, similarly to the original application.

8. IFS ERP also receives data from DataPlatform and sends data to DataPlatform.

CHAPTER 5. CASE STUDY: MIGRATING DATA QUALITY TOOL 39

5.3 Benefits of cloud environment

In this migration, cloud environment was seen to bring positive change to different things.

These things were related to the business side of the application as well as technical bene-

fits. Found benefits were somewhat different when asked from different people. Business

side benefits were mostly mentioned by the product owner and expert. Technical benefits

were mentioned by developers.

Having an application that works in cloud environment is easier to sell for new cus-

tomers. When the application works on-premises, new customers need to own or buy

suitable server machines and SQL Server licenses. In big customer companies, it can be

a difficult process to buy expensive server machines. It is likely that the procurement de-

cision needs approval from multiple authorization layers in customer organization. How-

ever, cloud application does not need those big financial investments, which can make

buying of the application substantially easier.

When the application is sold as SaaS, it is a lot easier to monitor resources than in

on-premises environment. As mentioned earlier, this can be done via Azure Portal. Also,

it was mentioned as a benefit that scaling instances is easy when the application is sold as

SaaS.

If the application is sold to cloud environment owned by the customer, it is still a lot

easier to operate than the on-premises counterpart. When the application is installed on-

premises, there is often a need to open a remote access connection to the premises of the

customer. If the application is in cloud environment, it is possible to access it with just a

web-browser.

5.4 Specialties of this migration

When considering cloud migration in this thesis, it means migration where an application

is migrated from on-premises to cloud environment. This process contains only phases

CHAPTER 5. CASE STUDY: MIGRATING DATA QUALITY TOOL 40

for converting the application to work in cloud environment. Business requirements are

thought to stay similar, no matter which environment the application is working on.

From this migration definition, it is easy to see the biggest specialty of case migra-

tion. This migration was not only about making Aveso Data Quality Tool work on a new

platform. This migration also contained merging two applications to one completely new

application. If these applications would not have been merged, a lot of work towards the

application could have been skipped. For example, the front-end of the application was

rewritten from Angular to React. This step would not have been necessary, if it would

have been more traditional cloud migration.

Another thing that was quite special in this migration was the motivation. In this the-

sis, the migration is thought to be the migration of a legacy application. That application

is migrated to cloud because it is legacy and should be updated to modern time. However,

in our case study, the application was only a couple of years old. It can hardly be said to

be a legacy application if it has been created within the last five years. The motivation for

this migration came from the need to merge these two applications into a new application.

6 Case results

In this chapter literature-based cloud migration is compared with migration that Aveso did

when migrating their Data Quality Tool. First, similarities and differences between migra-

tion processes are compared. Then architectural changes in case migration are identified

and compared with what was found from literature.

6.1 Process comparison

In this thesis, two different migration processes were described. In this section, these two

migration processes will be referred to as model process and case process.

1. Model process was based on migration models presented in [19], [27]–[29] and

it described general migration process. Selected migration models were chosen

separately from case process and none of them were used in case process.

2. Case process was based on case migration and it described what was done during

the case.

Both processes have same phases which are: planning, migration, deployment, and

maintenance. Each of these phases will be handled separately. At the beginning of each

phase comparison is a figure that compares differences and similarities between model

process and case process. From these figures, it is possible to see all the tasks and their

origin. For example, in Figure 6.1, task Extract original architecture is from model pro-

cess and it is not done in case process.

CHAPTER 6. CASE RESULTS 42

6.1.1 Planning comparison

Figure 6.1: Task comparison in planning phase

As shown in Figure 6.1 The only task, that was completely left undone in case process,

was extracting original architecture. In model process, the idea was, that the application

to migrate is legacy, and the architecture is forgotten or corroded, or both, as mentioned

in [28].

Extracting original architecture was not done in case process, because Aveso Data

Quality Tool is only a couple of years old application and has not changed that much yet.

Also, the application was originally created by the same people who were now migrating

it to cloud environment. This means that the architecture was in the minds of project

participants.

CHAPTER 6. CASE RESULTS 43

These reasons make it justified that extracting architecture was not done in this case

process. Even though it was not done in this case process, it should be in model process.

Extracting architecture is a useful step to have when cloud migration is done for a legacy

application.

In model process, the idea was that after extracting original architecture, it would be

easy to recognize old components, overall implementation, business requirements, and

technical restrictions of the application [27]. As said, this task was left undone in case

process. Recognizing these things in case process happened through meetings. Meeting

participants had a thorough knowledge of Data Quality Tool and also, the documentation

of the application was still up to date.

Creating new architecture was something, that was mentioned in model process and

also done in case process. Model process mentions, that when designing new architecture,

it should be designed in a way that utilizes characteristics of the cloud environment [19],

[27]–[29]. Characteristics of the cloud were also considered in the case process.

Final step in model process is selecting cloud provider [19], [29]. This was not done

when migrating Data Quality Tool. Aveso had done market research before this migration

and found that Azure suits their needs. Also, Aveso is Microsoft’s partner company which

made it even easier to select Azure. Because of these reasons, research on cloud providers

was not done.

Case process had three tasks that were not mentioned in model process. These three

are discussing future of the application, estimating workload and project end date, and

defining migration scope. These three tasks are related to each other. Future of the ap-

plication is discussed to see what should be done for the application overall. Migration

scope is then decided. Migration scope defines what will be done during this migration

and what can be done afterward. Estimating workload and project end date is depen-

dent on the migration scope. All of these are important tasks that should be in the model

process too. Especially, if there are ongoing discussions with potential customers.

CHAPTER 6. CASE RESULTS 44

6.1.2 Migration comparison

Figure 6.2: Task comparison in migration phase

From Figure 6.2 it can be seen that all tasks in model process were also done in

case process. In model process it is mentioned that planned new architecture should be

implemented in migration phase [19], [27]–[29]. In case process creation of new architec-

ture contained things like adding new components, refactoring codebase, updating used

technologies, and changing existing components to cloud equivalents. While doing these

things to implement the architecture, it was obviously needed to do some reconfigurations

too.

Last two things that are mentioned in model process, are implementing business re-

quirements and ensuring that they are met [27]. In model process the idea is that business

requirements are listed before doing the migration. This list can then be used in migration

phase to validate that business requirements are met.

In case process, business requirements were not listed at all. Case process had the idea,

that the application should be migrated as-is. Therefore, business requirements would be

visible in the old system. Also, in the project there were two participants that had good

knowledge of these requirements.

Between these processes, there was a difference in how listing business requirements

and validating them should be done. Usually listing things explicitly is better than trust-

ing that someone remembers everything. Listing business requirements would have been

a better practice in case process too, even though the old system was supposed to mi-

CHAPTER 6. CASE RESULTS 45

grate as-is. It is possible that the old system contains some hidden requirements, or the

requirements are not understood correctly. With explicit listing, these problems could be

avoided.

6.1.3 Deployment comparison

Figure 6.3: Task comparison in deployment phase

From Figure 6.3 it is possible to see that in this phase there was some differences be-

tween processes. Validation of target architecture was the first thing that was mentioned

in model process [19], [27]–[29]. However, it was not done in case process. New archi-

tecture was created by one person and it was not validated. The architecture was created

by following the needs the application had. Therefore, it was thought the architecture

does not need to be validated.

Validating target architecture is probably a phase that is often forgotten. Especially,

when doing cloud migration without guidance that specifically mentions this. Validating

target architecture is still a phase that should be done. It can be that some flaws have found

their way into architecture, or maybe the new architecture offers some opportunities that

were not thought of when creating the architecture.

Application testing appears in both processes. In case process application testing

started with creating test environment. After this, application was tested by using a thor-

ough list of all functionalities in the application. The old version of Aveso Data Quality

Tool has a similar list, with the same functionalities, which makes it easy to compare old

CHAPTER 6. CASE RESULTS 46

and new applications. Comparing old and new applications is mentioned in [27] as an

important thing when doing tests.

In model process, it is mentioned that when testing an application in cloud environ-

ment there might emerge optimization needs [29]. Optimizations are therefore optional

and case-by-case. Case process had no need for optimizations, so they were not done.

However, it is good to notice that DataPlatform is a new application, and it has not been

sold to anyone yet. Aveso will get more data and opinions from daily usage after the first

customer starts to use DataPlatform. It might be that some optimization needs are found

at that time.

Actual deployment of the application was, of course, mentioned in both processes.

In case process the deployment contained few configurations that had to be done. For

example, it was needed to connect the application to the data of the customer.

Familiarizing customers with the functionalities of the application was not done in

model process. In case process this task contains personal assisting and a user manual.

Familiarizing customers with new applications is something that should be in model pro-

cess too. Though it should be only an optional task, because migrations and their scopes

can differ. When doing rehost 1 migration, the application will stay just as it was, and it is

not necessary to familiarize customers again. However, there are migration cases where

the application goes through bigger changes that might affect the functionalities or user

interface, or both. For example, refactor 2 migration means big changes in the application.

These cases are the ones that could benefit from familiarizing customers with application.

1Also known as “lift-and-shift”. Introduced in figure 3.1.
2Also introduced in figure 3.1.

CHAPTER 6. CASE RESULTS 47

6.1.4 Maintenance comparison

Figure 6.4: Task comparison in maintenance phase

Figure 6.4 shows that maintenance phase was similar between processes. In model

process it is mentioned that in traditional software applications there is maintenance that

can be called perfective maintenance [30]. Perfective maintenance appears in case process

as bug fixes, updates to technology, and usage improvements.

Model process refers to a study from R. Marty [31], which states that logs are one of

the most important pieces of analytical data in cloud applications. Logs are mentioned

in case process too. It is said that logs are used for troubleshooting when a customer has

reported a bug.

Continuous monitoring of application services and resources is mentioned in [32] to

be one important maintenance task in cloud applications. In this same source, it is said that

tuning application resources is also an important maintenance task. Monitoring and tuning

are done in case process too. With the case process, it was decided that alerts should be

configured to Azure Portal. Alerts can tell you about the state of the application. Besides

alerts, case process mentions monitoring by hand regularly. From this monitoring, it is

possible to see, if resources need to be tuned or if there is something else that requires

action.

CHAPTER 6. CASE RESULTS 48

6.1.5 Summary

When comparing model process and case process, a lot of similarities were found. It

is good to notice that the generalized model process was made based on literature, and

migration in case process was done before starting this thesis. Therefore, tasks found in

these two processes can be said to be independent of each other.

Figure 6.5: Task distribution between model process and case process.

Figure 6.5 shows that there are total of 25 tasks identified in these processes. There

were 18 tasks that were mentioned in both processes. Besides these 18 tasks, model pro-

cess had 3, and case process had 4 tasks that were only in those processes. Tasks that were

only in model process were extracting original architecture, validating new architecture,

and optimizations to deployed application. It was found that the first two, of those three,

should have been done in case process too. The third task was found to be case-by-case,

thus the absence of that task in case process was not that prominent, and it still remained

relevant for the model process. Tasks that were only in case process were discussing

future of the application, estimating workload and project end date, defining migration

scope, and familiarizing customers with new application. It was found that model process

could have benefited from all four tasks. Though, familiarizing customers with the new

CHAPTER 6. CASE RESULTS 49

application was found to be case-by-case.

After comparing these two processes it was found that model process could benefit

from some tasks that were in case process. Figure 6.6 describes model process after

adding new tasks from case process to it. Added tasks are highlighted. All tasks in original

model process were found to be useful tasks, thus none of them were removed from the

model process. Three of them were not used in case process, but they were still found to

be useful, at least in some cases that have different starting point than Aveso Data Quality

Tool. Case process demonstrated four tasks that are useful in cloud migration, thus they

were added to the original model process.

Figure 6.6: Model process after adding tasks that were found from case process.

CHAPTER 6. CASE RESULTS 50

6.2 Architecture comparison

During this migration, Aveso Data Quality Tool was merged with Aveso DataHub and

migrated to cloud environment. This process caused a lot of changes to the architecture

of Aveso Data Quality Tool, as seen in section 5.2. However, most of the changes to the

architecture were caused by restrictions from cloud environment.

As mentioned in section 5.1.1, windows authentication could not be used in cloud

environment. Because of this, a new component was added to handle user authentication.

Another restriction that cloud environment placed, was about executing data quality rules.

Old version of Aveso Data Quality Tool handled these executions with database function-

alities that are not available in cloud counterpart. Because of this, two more components

were added that would handle scheduling and running these executions.

In section 3.2.1 six migration strategies are presented. These are rehost, replatform,

repurchasing, refactor, retain, and retire. Replatforming is described in [22]–[24] as a

migration strategy where one or more application layers are converted to utilize PaaS.

Replatforming strategy allows changes to the architecture, so cloud offerings can be uti-

lized more efficiently.

During the migration of Aveso Data Quality Tool, three new components were added

to the architecture. In addition to that, all application layers (presentation layer – business

layer – data layer) were migrated to use PaaS offerings. The application now uses App

Service plan and WebJobs from Azure instead of the IIS software server running on-

premises. In data layer, the application uses a database from Azure SQL Server instead

of a database from an on-premises SQL Server. Considering these changes, it can be said

that the migration of Aveso Data Quality Tool was done with the replatform strategy.

CHAPTER 6. CASE RESULTS 51

6.2.1 Relationship between migration strategy and process

Besides architecture, the selected migration strategy also affects whether the model pro-

cess is needed at all. Based on migration strategy descriptions in section 3.2.1, it can be

said that retain, retire, repurchase, and rehost are migration strategies that have low effect

on the architecture whereas replatform and refactor strategies have higher effect on it.

Figure 6.7 describes how much migration strategy effects architecture. Uppermost have

the least effect and lowermost have the most effect.

Figure 6.7: Migration strategy effect on architecture and suitability of model process.

1. In retain strategy, the migration is not done now. Therefore, model process is not

needed at all.

2. In retire strategy, it is found that the application is no longer in use. Therefore, the

application is retired and migration is not done.

3. In repurchase strategy, the organization needs to only find a replacement application

for the old application. It can be useful to go through the planning phase, to see

requirements for the new application, but migration, deployment, and maintenance

phases are not relevant.

4. In rehost strategy the application is migrated as-is. Profitability of model process in

these migrations is case-by-case.

CHAPTER 6. CASE RESULTS 52

5. Replatform and refactor migration strategies require a lot of work and present

changes to the architecture of the application. These strategies will benefit the most

from model process. This was seen with case migration too. It was done with

replatform strategy and the process was really similar to model process.

7 Conclusions

The object of this thesis was to view different migration strategies and to create a gen-

eralized description of migration process from the literature. These objects can provide

important knowledge due to increasing interest in cloud migrations. Based on this object,

three research questions were presented. Research question (RQ) 1: What tasks have to

be done in cloud migration process? RQ2: What different types of cloud migrations there

are and how they affect the architecture of the application? RQ3: Which cloud migration

types benefit from model process?

Different migration strategies were discussed in 3.2 to answer RQ2. It is found that

in literature cloud migration strategies are often presented with six R’s. These six R’s

are Rehost, Replatform, Repurchase, Refactor, Retain, and Retire. They describe shortly

what types of migrations there are, and their possible impacts on the architecture of the

application. Generalized migration process was introduced in 3.3 to answer RQ1. This

migration process contains four phases that are planning, migration, deployment, and

maintenance. These phases were built according to what was found in the literature.

Generalized process used sources from literature that were chosen separately from case

process and none of them were used in case process.

Generalized migration process was compared with the migration, that Aveso did when

migrating their application Data Quality Tool. Generalized migration process could be

depicted with 21 different tasks. It was found that 18 out of 21 tasks were present in case

process. Case process also introduced four tasks that were not included in generalized

CHAPTER 7. CONCLUSIONS 54

process. It was found that these tasks are useful and could be added to generalized process

too. To give a more thorough answer to RQ1, Figure 6.6 shows generalized migration

process, with added four tasks.

The high resemblance between generalized process and case process suggest that gen-

eralized process was outlined well. Also, it can be said that literature offers good support

for cloud migrations since it was possible to create an accurate generalized migration

process based on literature. It was noticed that in some of the migration models in the

literature, the learning curve was steep. This was because these models required the user

to understand multiple different models to be able to use the actual migration model, as

mentioned in section 3.3. While they provide an accurate description of how some phases

can be done, it can be exhausting for the model user. Thus, the main takeaway from this

thesis is generalized migration process, which has an easy learning curve and is validated

with case migration. Price for this easier migration process is decrease in migration phase

description accuracy.

To answer RQ3, section 6.2.1 discusses the relationship between migration strategy

and migration process. It is found that cloud migration types, that require a lot of work

and changes to the architecture of the application, benefit the most from generalized pro-

cess. For example, case process was identified to be done with the replatform strategy,

and it would have benefited from generalized process. The high resemblance between

generalized process and case process also support this proposition.

Probably the biggest restriction in this thesis was how the generalized process was

validated. This was done with a case that was already almost finished. It would have

been interesting to apply the generalized process to some case process from the start.

Case migration was done with no help from academic research. Therefore, it would be

interesting to do another migration with help from academic literature and then compare

these two migrations. Then it would be interesting to see if an academically defined

migration process would bring added value to cloud migration. If it would bring added

CHAPTER 7. CONCLUSIONS 55

value, it would be interesting to see how much and what type of value.

References

[1] A. Agarwal, S. Siddharth, and P. Bansal, “Evolution of cloud computing and related

security concerns”, in 2016 Symposium on Colossal Data Analysis and Networking

(CDAN), 2016, pp. 1–9.

[2] T. G. Peter Mell, “The nist definition of cloud computing”, 2011, pp. 2–3.

[3] Cloud service models (image only). [Online]. Available: https://www.uniprint.

net/en/7-types-cloud-computing-structures/ (visited on 10/25/2020).

[4] What is azure. [Online]. Available: https://azure.microsoft.com/en-

us/overview/what-is-azure/ (visited on 10/17/2020).

[5] Azure products. [Online]. Available: https://docs.microsoft.com/en-

us/azure/?product=featured (visited on 10/17/2020).

[6] Azure portal. [Online]. Available: https://docs.microsoft.com/en-

us / azure /azure - portal / azure- portal - overview (visited on

10/17/2020).

[7] Azure app service. [Online]. Available: https://docs.microsoft.com/

en-us/azure/app-service/overview (visited on 10/17/2020).

[8] Azure webjobs. [Online]. Available: https://docs.microsoft.com/en-

us/azure/app-service/webjobs-create (visited on 10/17/2020).

https://www.uniprint.net/en/7-types-cloud-computing-structures/
https://www.uniprint.net/en/7-types-cloud-computing-structures/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://docs.microsoft.com/en-us/azure/?product=featured
https://docs.microsoft.com/en-us/azure/?product=featured
https://docs.microsoft.com/en-us/azure/azure-portal/azure-portal-overview
https://docs.microsoft.com/en-us/azure/azure-portal/azure-portal-overview
https://docs.microsoft.com/en-us/azure/app-service/overview
https://docs.microsoft.com/en-us/azure/app-service/overview
https://docs.microsoft.com/en-us/azure/app-service/webjobs-create
https://docs.microsoft.com/en-us/azure/app-service/webjobs-create

CHAPTER 7. CONCLUSIONS 57

[9] Azure sql. [Online]. Available: https://docs.microsoft.com/en-

us/azure/azure-sql/azure-sql-iaas-vs-paas-what-is-

overview (visited on 10/17/2020).

[10] How to connect to azure sql. [Online]. Available: https://docs.microsoft.

com/en-us/azure/app-service/tutorial-dotnetcore-sqldb-

app?pivots=platform-linux (visited on 10/17/2020).

[11] P. Buxmann, T. Hess, and S. Lehmann, “Software as a service”, Wirtschaftsinfor-

matik, vol. 50, no. 6, pp. 500–503, 2008.

[12] S. Medhat, “Client/server computing-an engine for change and growth”, in Inter-

national Seminar on Client/Server Computing. Key Note Addresses, vol. 2, 1995,

1/1–120 vol.2. DOI: 10.1049/ic:19951146.

[13] J. Saetent, N. Vejkanchana, and S. Chittayasothorn, “A thin client application de-

velopment using ocl and conceptual schema”, in 2011 International Conference

for Internet Technology and Secured Transactions, 2011, pp. 260–265.

[14] S. Bibi, D. Katsaros, and P. Bozanis, “Business application acquisition: On-premise

or saas-based solutions?”, IEEE Software, vol. 29, no. 3, pp. 86–93, 2012. DOI:

10.1109/MS.2011.119.

[15] P. Rabetski and G. Schneider, Migration of an on-premise application to the cloud:

Experience report.

[16] I. Pelle, J. Czentye, J. Dóka, and B. Sonkoly, “Towards latency sensitive cloud

native applications: A performance study on aws”, in 2019 IEEE 12th International

Conference on Cloud Computing (CLOUD), 2019, pp. 272–280. DOI: 10.1109/

CLOUD.2019.00054.

[17] I. Al-Azzoni, L. Zhang, and D. G. Down, “Performance evaluation for software mi-

gration”, in Proceedings of the 2nd ACM/SPEC International Conference on Per-

formance Engineering, ser. ICPE ’11, Karlsruhe, Germany: Association for Com-

https://docs.microsoft.com/en-us/azure/azure-sql/azure-sql-iaas-vs-paas-what-is-overview
https://docs.microsoft.com/en-us/azure/azure-sql/azure-sql-iaas-vs-paas-what-is-overview
https://docs.microsoft.com/en-us/azure/azure-sql/azure-sql-iaas-vs-paas-what-is-overview
https://docs.microsoft.com/en-us/azure/app-service/tutorial-dotnetcore-sqldb-app?pivots=platform-linux
https://docs.microsoft.com/en-us/azure/app-service/tutorial-dotnetcore-sqldb-app?pivots=platform-linux
https://docs.microsoft.com/en-us/azure/app-service/tutorial-dotnetcore-sqldb-app?pivots=platform-linux
https://doi.org/10.1049/ic:19951146
https://doi.org/10.1109/MS.2011.119
https://doi.org/10.1109/CLOUD.2019.00054
https://doi.org/10.1109/CLOUD.2019.00054

CHAPTER 7. CONCLUSIONS 58

puting Machinery, 2011, pp. 323–328, ISBN: 9781450305198. DOI: 10.1145/

1958746.1958792. [Online]. Available: https://doi-org.ezproxy.

utu.fi/10.1145/1958746.1958792.

[18] H. A. Müller, “Reverse engineering strategies for software migration (tutorial)”,

in Proceedings of the 19th International Conference on Software Engineering,

Boston, Massachusetts, USA: Association for Computing Machinery, 1997, pp. 659–

660, ISBN: 0897919149.

[19] P. Jamshidi, A. Ahmad, and C. Pahl, “Cloud migration research: A systematic re-

view”, IEEE Transactions on Cloud Computing, vol. 1, no. 2, pp. 142–157, 2013.

[20] T. Boillat and C. Legner, “Why do companies migrate towards cloud enterprise

systems? a post-implementation perspective”, in 2014 IEEE 16th Conference on

Business Informatics, vol. 1, 2014, pp. 102–109.

[21] S. Marston, Z. Li, S. Bandyopadhyay, and A. Ghalsasi, “Cloud computing - the

business perspective”, in 2011 44th Hawaii International Conference on System

Sciences, 2011, pp. 1–11. DOI: 10.1109/HICSS.2011.102.

[22] K. M. Kumar, S. K. D., R. P. Sardesai, M. B. S. S. Akhil, and N. Kumar, “Appli-

cation migration architecture for cross clouds analysis on the strategies methods

and frameworks”, in 2017 IEEE International Conference on Cloud Computing in

Emerging Markets (CCEM), 2017, pp. 107–112.

[23] N. Ahmad, Q. N. Naveed, and N. Hoda, “Strategy and procedures for migration to

the cloud computing”, in 2018 IEEE 5th International Conference on Engineering

Technologies and Applied Sciences (ICETAS), 2018, pp. 1–5.

[24] D. S. Linthicum, “Cloud-native applications and cloud migration: The good, the

bad, and the points between”, IEEE Cloud Computing, vol. 4, no. 5, pp. 12–14,

2017.

https://doi.org/10.1145/1958746.1958792
https://doi.org/10.1145/1958746.1958792
https://doi-org.ezproxy.utu.fi/10.1145/1958746.1958792
https://doi-org.ezproxy.utu.fi/10.1145/1958746.1958792
https://doi.org/10.1109/HICSS.2011.102

CHAPTER 7. CONCLUSIONS 59

[25] The best cloud migration path: Lift and shift, replatform or refactor? [Online].

Available: https://www.forbes.com/sites/forbestechcouncil/

2018/03/23/the-best-cloud-migration-path-lift-and-

shift-replatform-or-refactor/?sh=790ae2294f51 (visited on

11/20/2020).

[26] 6 strategies for migrating applications to the cloud. [Online]. Available: https:

//aws.amazon.com/blogs/enterprise-strategy/6-strategies-

for-migrating-applications-to-the-cloud/ (visited on 11/20/2020).

[27] P. Mohagheghi, A.-J. Berre, A. Henry, F. Barbier, and A. Sadovykh, “Remics- reuse

and migration of legacy applications to interoperable cloud services”, vol. 6481,

Jan. 2010, pp. 195–196. DOI: 10.1007/978-3-642-17694-4_20.

[28] S. Frey and W. Hasselbring, “The cloudmig approach: Model-based migration of

software systems to cloud-optimized applications”, International Journal on Ad-

vances in Software, vol. 4, Jan. 2011.

[29] P. Pamami, A. Jain, and N. Sharma, “Cloud migration metamodel : A framework

for legacy to cloud migration”, in 2019 9th International Conference on Cloud

Computing, Data Science Engineering (Confluence), 2019, pp. 43–50.

[30] R. Mookerjee, “Maintaining enterprise software applications”, Commun. ACM,

vol. 48, no. 11, pp. 75–79, Nov. 2005, ISSN: 0001-0782.

[31] R. Marty, “Cloud application logging for forensics”, in Proceedings of the 2011

ACM Symposium on Applied Computing, ser. SAC ’11, TaiChung, Taiwan: Asso-

ciation for Computing Machinery, 2011, pp. 178–184.

[32] V. Podolskiy, H. M. Gerndt, and S. Benedict, “Qos-based cloud application man-

agement: Approach and architecture”, in Proceedings of the 4th Workshop on Cross-

Cloud Infrastructures and Platforms, Association for Computing Machinery, 2017.

https://www.forbes.com/sites/forbestechcouncil/2018/03/23/the-best-cloud-migration-path-lift-and-shift-replatform-or-refactor/?sh=790ae2294f51
https://www.forbes.com/sites/forbestechcouncil/2018/03/23/the-best-cloud-migration-path-lift-and-shift-replatform-or-refactor/?sh=790ae2294f51
https://www.forbes.com/sites/forbestechcouncil/2018/03/23/the-best-cloud-migration-path-lift-and-shift-replatform-or-refactor/?sh=790ae2294f51
https://aws.amazon.com/blogs/enterprise-strategy/6-strategies-for-migrating-applications-to-the-cloud/
https://aws.amazon.com/blogs/enterprise-strategy/6-strategies-for-migrating-applications-to-the-cloud/
https://aws.amazon.com/blogs/enterprise-strategy/6-strategies-for-migrating-applications-to-the-cloud/
https://doi.org/10.1007/978-3-642-17694-4_20

CHAPTER 7. CONCLUSIONS 60

[33] Windows authentication. [Online]. Available: https://docs.microsoft.

com/en-us/iis/configuration/system.webserver/security/

authentication/windowsauthentication/ (visited on 11/13/2020).

https://docs.microsoft.com/en-us/iis/configuration/system.webserver/security/authentication/windowsauthentication/
https://docs.microsoft.com/en-us/iis/configuration/system.webserver/security/authentication/windowsauthentication/
https://docs.microsoft.com/en-us/iis/configuration/system.webserver/security/authentication/windowsauthentication/

	Introduction
	Web-based systems
	Cloud computing
	Essential cloud characteristics
	Cloud service models
	Cloud deployment models
	Microsoft Azure

	On-premises environment
	Cloud environment versus on-premises environment

	Cloud migration
	Migration
	What is cloud migration
	Why should cloud migration be done

	Architecture
	Six R's of migration strategies

	Migration process
	Planning
	Migration
	Deployment
	Maintenance

	Case description
	About Aveso
	Aveso Data Quality Tool
	Aveso DataHub

	Research method

	Case study: migrating Data Quality Tool
	Case process
	Planning
	Migration
	Deployment
	Maintenance

	Case architecture
	Architecture before migration
	Architecture after migration

	Benefits of cloud environment
	Specialties of this migration

	Case results
	Process comparison
	Planning comparison
	Migration comparison
	Deployment comparison
	Maintenance comparison
	Summary

	Architecture comparison
	Relationship between migration strategy and process

	Conclusions
	References

