
Framework change for modernization of
webservice

Master of Science Thesis
University of Turku
Department of Future Technologies
Software Engineering
2020
Alice Thomas

Supervisors:
Ville Leppänen
Jarko Papalitsas
Artem Goutsoul

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Future Technologies

Alice Thomas: Framework change for modernization of webservice

Master of Science Thesis, 68 p.
Software Engineering
December 2020

Software companies that provide Software as a service, constantly seek to improve
their product, by adding features according to the customer’s needs. In an attempt
to meet all the deadlines set by the customer, an important aspect of software devel-
opment that gets neglected is code maintenance and code modernization, since this
is not something that a customer demands of the software. But from a developer’s
stand point, a good software is one that is easy to work with and easy to maintain.
In the long term ignoring code modernization will produce legacy code. Legacy code
need not be code that is old, instead it can be code that is written in an outdated
language, or has libraries that are no longer vendor supported. Legacy code then
leads to different types of technical debt. This inadvertently affects the customer,
because as the technical debt of the codebase increases, new feature development or
maintenance will become more expensive and time consuming.
This was the situation in the chosen case study company. This thesis focuses on
studying the different types of technical debt and the possible code modernization
methods and strategies that could be applied to a legacy system and possibly re-
duce technical debt and make the code more maintainable and modern. For this
thesis, the modernization process selected is the Chicken Little methodology. This
technique allows both the legacy system and the target system to run in parallel by
using gateways, and this is an important feature for this project. Especially during
the client-testing phase or in the first few months after the new system is taken
into production, if there are any issues with the system, customers can be directed
to the old system without losing business. In each step of this technique minimal
functionality is selected, there by reducing the chance of risk.
By following the steps of the chosen methodology to change the framework, the
benefits identified were, easier code re-usability and thus code maintainability,
reduced lines of code, more unit test cases and many more. Thereafter, concluding
the thesis.

Keywords: Legacy code, technical debt, framework change, code modernization
strategies, chicken little

Contents

1 Introduction 1

1.1 Goal . 2

1.2 Problem Definition . 2

1.3 Scope . 3

1.4 Thesis structure . 3

2 Web Development 4

2.1 Web Frontend technologies . 4

2.1.1 HTML . 4

2.1.2 CSS . 5

2.1.3 DOM . 8

2.1.4 JavaScript . 8

2.1.5 TypeScript . 10

2.2 Web Frontend frameworks . 11

2.2.1 Backbone.js . 12

2.2.2 Angular . 13

2.3 Web Backend Technologies . 15

2.3.1 Server-side languages . 15

2.3.2 Servers . 16

2.3.3 Databases . 16

i

2.4 Web application structure . 16

2.4.1 Traditional web application 16

2.4.2 Native application . 18

2.4.3 Single page application . 19

3 Case Study Company 23

3.1 Enkora Oy . 23

3.2 The Software Product . 24

3.3 Current state of code . 25

3.3.1 Enkora’s codebase . 25

3.3.2 Why the need for a change 26

4 Legacy Systems, Technical Debt and Modernization Techniques 28

4.1 Overview of Legacy systems . 28

4.2 Technical Debt . 30

4.3 Modernization strategies . 32

4.4 Modernization methods . 34

4.4.1 Chicken Little and Cold Turkey Methodologies 34

4.4.2 Renaissance . 38

4.4.3 The Butterfly Methodology 41

5 Implementation Plan 44

5.1 Enkora’s Reservation System . 44

5.2 Problems in the current state of code 46

5.3 Modernization plan . 49

6 Evaluating the plan 54

6.1 The process . 54

6.2 Benefits . 62

6.3 Disadvantages . 64

6.4 Problems faced during the implementation 65

7 Conclusion 67

References 69

List of Figures

2.1 Traditional web application architecture [15] 17

2.2 Native applications [15] . 19

2.3 Front-end and back-end architecture of a single page application [15] 22

3.1 Enkora Oy Solutions . 24

3.2 Online Reservation System . 26

3.3 Online Reservation System 2a . 27

3.4 Online Reservation System 2b . 27

4.1 An example of Chicken Little’s General Migration Architecture[42],

[41] . 37

4.2 Renaissance overview [44] . 39

4.3 Finding candidates for evolution [44] 40

4.4 Butterfly methodology [41] . 43

5.1 Intellisense in IDE . 48

5.2 Intellisense errors . 48

6.1 Pictoral representation of the components/modules in shop module . 55

6.2 Calendar module . 57

6.3 Example of specs file for a module 60

6.4 Github pull requests[49] . 66

iv

1 Introduction

Any company that retails a product is always looking to improve the product and

provide better versions of the same to their customers. This is true in every field.

When it comes to a software product, a new and improved version is identified

through the added features that the product provides. Very often, in an attempt to

keep up with the consumer needs, whether it be feature development, or bug fixes

or just product maintenance, there is not enough time (if any at all) assigned for

codebase modernization. This is not something that the customer usually concern

themselves with, so, this is given a lower priority. The absence of periodic measures

towards code maintenance and code modernization gives birth to the “legacy code”.

Legacy code and its problems are not a newly uncovered topic. In 1995, Ben-

nett[1] discussed what legacy code was and what measures could be taken to handle

it. A codebase is not a legacy system just because it is old (with respect to age).

The term legacy can also be defined as a system’s inefficiency at meeting the orga-

nization’s needs and requirements, or if certain components (hardware or software)

of the system lack of vendor support [2]. Bennett described a legacy system as a

system using “state of the art” technology during its creation, but, due to the lack

of timely “remedial actions”, the codebase has become outdated[1].

The case study company chosen is Enkora Oy. Enkora Oy is a company located in

Helsinki, that provides software and hardware solutions to multiple client companies

in Finland. Some of their software products include Booking or Reservation Systems,

CHAPTER 1. INTRODUCTION 2

Time tracking systems, Point of Sale systems, Information and marketing channels

etc. Their hardware products are Lockers, self-service terminals, RFID Bracelets,

Card or Bracelet collectors, etc.

They have a significant client base that includes health and fitness centers, swim-

ming halls, and construction companies.

1.1 Goal

This thesis aims to study how code modernization can be done on a large codebase

and understand its effects while providing the case-study company (Enkora Oy) with

an updated web frontend framework that is Angular based. Currently, a large part

of the code base is in CoffeeScript which implements the Backbone.js framework.

This CoffeeScript and Backbone based code has to be transitioned to TypeScript to

implement the Angular framework.

Also, a study on the technical debt acquired by the legacy code is done to further

understand the benefits of updating and modernizing the code.

1.2 Problem Definition

At Enkora Oy, their code base is quite large. This company has been running for

more than 10 years and providing software solutions during that period. Their

code base uses CoffeeScript, TypeScript and regular JavaScript to provide frontend

solutions and their backend solutions are written in PHP. Ultimately moving into

TypeScript benefits the company, since this provides a more homogeneous frontend

solution, and they get all the benefits of using TypeScript, like static type-checking.

CHAPTER 1. INTRODUCTION 3

1.3 Scope

Transitioning the whole of Enkora’s codebase is not in the scope of this thesis. In

this thesis, the “reservation system”, a significant part of the Enkora product - which

is a portal where customers can view the different lessons or courses provided by

a client company and make reservations to these, or where products can be listed

which can be purchased by customers, will be under study, to understand the effects

of transitioning from one framework to another.

1.4 Thesis structure

This thesis is structured so that firstly in Chapter 1, a general idea regarding this

Masters Thesis is described and the scope of the thesis is set. Next, Chapter 2,

provides a basic theoretical study on the various frontend and backend technologies

that Enkora uses in their codebase, also, the various frontend framework options

are studied. Chapter 3, then progress to give a description about the Case study

company - Enkora Oy and their software product. Also, a description of why this

modernization or code change is needed by the company is provided in that chapter.

In Chapter 4, topics such as Technical debt, modernization techniques and few

important modernization methods are described. From this list of modernization

methods, one is chosen to implement the framework transition for the case study

company. Next in Chapter 5, the problems in the current legacy code are discussed,

and an appropriate modernization plan is chosen, for the migration process. In

Chapter 6, the process of implementing the plan for Enkora is explained, and the

advantages and disadvantages of this plan are discussed. Lastly, in Chapter 7, the

overall outcome of this thesis is given in brief, and thereby concluding the thesis.

2 Web Development

When creating Web based projects, choosing the right platform is very important.

Prechelt[3] describes platform as “a combination of technological ecosystems con-

sisting of a programming language (and possibly alternatives), one or more Web

development frameworks, and a large set of reusable libraries and components and

also a development culture consisting of styles, priorities, process preferences”[3]

2.1 Web Frontend technologies

For Web Frontend development there are many options on the combinations of

technologies that can be used. Some of the most common technologies that are used

in almost every frontend development discussed in detail below.

2.1.1 HTML

One of the basic components in the construction of a functioning web page is the

Hypertext Markup Language or HTML. HTML is used to structure the different

components of a web page.

In their book “The Essential guide to CSS and HTML Web Design”, Grannell

and Craig define HTML documents as “text files that contain tags, which are used to

mark up HTML elements”[4]. These documents are saved using the .html extension.

An HTML tag is represented using angle brackets. A tag usually has a start tag

and an end tag. The end tag is written essentially the same as the start tag except

CHAPTER 2. WEB DEVELOPMENT 5

for the forward slash which is inserted before the tag name[5]. The start tag is also

called the opening tag and the end tag is called the closing tag.

There are few tags that are essential in every HTML document for it to be valid,

like <html> (this represents the root element of the HTML page, which means that

all the other elemnts and tags of the HTML document are within this HTML tag),

<head> (contains the metadata of the page) and <body> (represents the content

part of the page).

Web browsers interpret the HTML documents and display the content. Only the

content within the body tags are displayed on the web page. The code is interpreted

to a DOM tree, which is then rendered graphically. Some examples of Web browsers

are Edge, Internet Explorer(IE), Mozilla Firefox, Google Chrome etc.

But in the latest version of HTML (HTML 5), even these essential elements can

be omitted, since by default they will be added by the web browsers if they are

absent in the document.

In a perfect world an HTML document would render the same on the different

browsers, but that is not the case for now[6]. Cross-browser compatibility is an issue

that most developers have to address every time they develop a web application[6].

This is because even though there are rules for defining and writing an HTML doc-

ument, the same cannot be said for the engines or interpreters of the Web Browsers.

For developers of browsers there are only suggestions which are made. For example,

the HTML5 specification is well over 900 pages of which only around 300 pages are

of relevance to web authors and the rest is for developers of browsers, telling them

how to parse markup and even bad markup[7].

2.1.2 CSS

If only tags and elements were used to describe an HTML page, then it would look

quite mundane and bland. Every website would look like a document with links

CHAPTER 2. WEB DEVELOPMENT 6

and they would not be as accessible as they are today. Adding style to an HTML

document is required to give the page the intended look and feel, which is also an

important factor when it comes to conveying a message through a web page.

Cascading Style Sheets or CSS is the language used for defining styles that

can be applied to HTML[8]. The World Wide Web Consortium writes the CSS

specifications and maintains them. CSS3 is the latest version of CSS.

There are three ways to add style elements to an HTML page. These are:

Inline style: Here the style is added within the tag of an element. This way of

defining the style is used when the style needs to be applied to a limited

section and when our requirements are small. The keyword ’style’ has to be

specified in the tag and within quotes the property, colon and value. Multiple

property value pairs are separated by semicolon.

For example, <p style='color: blue;'>. Here the property text-color which

is specified by “color” is set to “blue” for a specific “p” selector or that para-

graph.

Internal style sheets: In this method the styles are specified in the same HTML

document but not within the targeted HTML tag. The styles are clubbed

together within the style tag which is placed in the “head” of the HTML

document as shown in Listing 1. Here the HTML document’s body background

color is set to green and all the paragraphs have a text size of 13px.

External style sheets: Here the styles are written into a separate file. This file

is saved with the .css extension. This external file is then referenced in the

HTML document according to need as shown in Listing 2 using the “link” tag.

By mixing up structure (HTML) and presentation (CSS) in each document, it

gets difficult to maintain the pages. Such is the case when using inline and internal

CHAPTER 2. WEB DEVELOPMENT 7

<html>
<head>

<title>Internal CSS</title>
<style>

body {
background-color: green;

}
p {

font-size: 13px;
}

</style>
</head>

</html>

Listing 1: Internal css

<html>
<head>

<title>External CSS</title>
<link type="text/css" href="../css/test.css"

rel="stylesheet">↪→

</head>
</html>

Listing 2: External css

styles. By using Cascading Style Sheets as external style sheets there are multiple

advantages.

• A CSS can be shared across multiple pages[8]

• The web pages become easier to maintain and are more flexible

• The styles applied can be customized to suit different environments and de-

vices.

Even though CSS3 is the latest version of CSS, it builds on its predecessors. For

CHAPTER 2. WEB DEVELOPMENT 8

example, shortcomings found in CSS 2 were fixed in version 2.1. Later more features

were added and CSS 3 was created. Although features may become deprecated, they

would still work in existing browsers because new versions only add new functionality

or refine existing definitions [8].

Nowadays web applications can be accessed through different media devices

which have different screen sizes. And, a webpage which looks and works well

on the laptop may look distorted on a mobile phone. In CSS3 there were media

queries added which allowed to address this. Media queries can be used to identify

the screen size of a user and an appropriate style sheet is loaded based on the screen

size.

2.1.3 DOM

The DOM or Document Object Model is a standard interface for representing XML

and HTML documents[9]. It is a language independent interface that grants pro-

grams and scripts rights to access and update the content and style of documents[10].

This means that the commands to access different nodes or elements of the DOM

are the same in any language or platform. A programmer can easily navigate and

manipulate the data, via the generated tree of objects, which is obtained from pars-

ing the data[9]. The global variable document can be used to access the objects

within the tree[11]. The first version of the DOM (level 1) was released in 1998 by

the World Wide Web Consortium.

2.1.4 JavaScript

In 1995 Sun Microsystems and Netscape released a scripting language which they

first called LiveScript and then later renamed it to JavaScript[12]. Even though it

started off as a scripting language, it later evolved into a complete programming

language. JavaScript is an interpreted object-oriented programming language which

CHAPTER 2. WEB DEVELOPMENT 9

works along with HTML to create interactive pages[13]. It is used to write client

side applications, which means that the code written is sent to the user’s computer

when the page is loaded[13]. When dealing with JavaScript, it is also important to

know about ECMAScript. It is part of ECMA, the institution that standardizes the

JavaScript language under the ECMAScript specification[14]. The current version

of ECMAScript is ES10 which was released in 2019. Since 2015, when the ES6

was released lots of new features were added to JavaScript. Some of these include

functions, closures, loosely typed language, dynamic objects etc [15].

The interpreter within the user’s web browser executes the code line by line and

generates the intended interactions of the web page. JavaScript can be included in

an HTML file using script tags. The script tags can be used in two ways.

Writing JS(JavaScript) code within the script tag: An example for this is

shown below in Listing 3. An initialization function is added in the head

of the HTML program within the script tag.

<html>
<head>

<title>Example with 'script' tag</title>
<script>

function init() {
document.writeln('Hello World');

}
<script>

</head>
</html>

Listing 3: JavaScript ‘script’ tag

Referencing the path to the .js file: This is another way to include JS in an

HTML page. The JavaScript is written in a separate page and saved with the

.js extension. This is then referenced in the script tag of the HTML page,

CHAPTER 2. WEB DEVELOPMENT 10

within which we mention the path to the js file using the tag “src” as seen in

Listing 4.

<html>
<head>

<title>Example with 'src' within `script'</title>
<script language="JavaScript" type="type/javascript"

src="test.js">↪→

<script>
</head>

</html>

Listing 4: JavaScript ‘script’ tag with ‘src’

2.1.5 TypeScript

TypeScript is an open source programming language, that was created to overcome

the shortcomings that came when working with JavaScript on large projects. It

was developed and is maintained by Microsoft[16]. It is a statically typed com-

piled language that generates JavaScript code that can be used in cross-platform

scenarios[17]. TypeScript can also be thought of as a super set of JavaScript, so any

JavaScript program would also be a valid TypeScript program.

TypeScript improves the JavaScript development model by adopting object-

oriented concepts like Inheritance, Encapsulation and Abstraction and making it

easier to implement. TypeScript introduces many concepts which are present in

other object-oriented languages such as static typing (where the parameters of a

function can specify their type like boolean, string etc, and this allow type checking

at compile time), classes, interfaces, generics, modules. TypeScript adds a layer of

static typing on top of JavaScript that is run through a compiler, which parses the

TypeScript code and converts it to regular JavaScript [17]. The addition of type

CHAPTER 2. WEB DEVELOPMENT 11

safety and code compilation allows errors to be caught sooner and bugs to be elimi-

nated without having to deploy a line of code unlike while using regular JavaScript,

where the changes need to be deployed/ run before even syntax errors are caught

[17]. Classes and Modules make the development of large scale applications much

easier [17]. The usage of generics and interfaces in the type system allows easier

creation of components and libraries which can be used with other objects as well

[17].

2.2 Web Frontend frameworks

Developing applications in JavaScript has always been a challenge, this is mainly be-

cause of its malleable nature and lack of type checking[18]. There are many libraries

in JavaScript that provide simple constructs which help in effectively reducing the

number of lines written. An example of these libraries are jQuery, Underscorejs

etc. But one thing that these different libraries lack is structural guidance, and this

is especially important when the project code has grown too big[18]. This is what

lead to the emergence of frameworks in JavaScript. Many of these frameworks use

a design pattern called Model-View-Controller(MVC), which separates the elements

of the application into more manageable pieces[18]. Rodzvilla[19] describes design

pattern as “reusable solutions in software development for dealing with common

problems or needs in the software design”[19] and Addy Osmani describes MVC

as “an architectural design pattern that encourages improved application organiza-

tion through a separation of concerns, this means that it enforces the isolation of

business data(models) from user interfaces(views), with a third component (con-

trollers)traditionally managing logic, user inputs and coordination of models and

views”[20]. Based on the documentation provided by Backbone.js and Angular, we

know that the Backbone framework and Angular framework are based on different

implementions of the design pattern MVC.

CHAPTER 2. WEB DEVELOPMENT 12

With the emergence of technologies such as Web Components and newer versions

of JavaScript(ES2015), a new design pattern was introduced, this was the compo-

nent pattern[18]. In software development components are logical units that can be

combined to form larger applications[18]. They have internal logic and properties

that are shielded or hidden from the larger application[18]. The larger application

can make use of these components through interfaces, which only exposes certain

information/data that is needed to use this component. In this way, the compo-

nent’s internal logic can be altered without affecting the larger application, as long

as the interface isn’t changed[18]. Angular 4 and above make use of this Component

pattern in their framework.

2.2.1 Backbone.js

Backbone is a framework, where data is represented as models. These models can

be created, destroyed and saved to the server. When a user interacts with the

interface and clicks or does any action that initiates an action/change, which causes

a change in the data that was saved. A ”change” event is triggered by the model,

then the ‘Views’ get the state change information, and a corresponding response is

generated[21]. The view is then re-rendered with this new response information. In

a finished Backbone app, there is no need for code that reads from the DOM to find

an element with a specific id, and update the HTML manually — when the model

changes, the views simply update themselves[21].

Backbone provides structure to web applications using the following

Model: stores the data as key-value bindings[21].

View: The user interface that is generated based on a specific model.

Collection: Related Models can be grouped together to form a Collection. This

is useful when saving new models to the server, as the collection acts as a

CHAPTER 2. WEB DEVELOPMENT 13

focal point to notice any change that might occur to any model within that

collection[21].

2.2.2 Angular

Angular is a platform or framework for building single page web applications in

HTML and TypeScript[22].

Angular has come out with many releases. Its first version was called Angular

1 or AngularJS and it was based on model-view controller whereas from Angular 4

onwards it was based on component based structures. Components as mentioned

earlier are the basic building blocks of an Angular application[18]. These components

are organized together in the Angular modules to form a complete application. Every

Angular application will have one or more modules that contain its components.

In Angular we have NgModules, which collects related code into functional sets[22].

Every app has a root module, and conventionally its named AppModule and is saved

in a file named ’app.module.ts’. This module provides the bootstrap mechanism that

launches the application[22]. Like in JavaScript modules, NgModules can import

functionalities from other NgModules and also export them. An example of a root

NgModule definition is shown in Listing 5.

import { NgModule } from '@angular/core';

@NgModule({
imports: [...],
declarations: [AppComponent],
exports: [AppComponent],
bootstrap: [AppComponent]

})
export class AppModule { }

Listing 5: NgModules

CHAPTER 2. WEB DEVELOPMENT 14

Some important properties of NgModules are

Declaration: Shows the components,pipes and directives that belong to this mod-

ule.

Exports: Contains the subset of the declarations that should be visible and usable

in the components of other NgModules.

Imports: Lists out the modules whose classes are required by the components

declared in this module.

Bootstrap: From the online Angular documentation we know that “The main ap-

plication view, called the root component, which hosts all other app views.

Only the root NgModule should set the bootstrap property”[23].

A Component defines and controls a certain portion of the view of the application,

it allows modifications based on the program logic defined in it. The @Component

decorator specifies its metadata within it [22]. The class below it becomes the

component. Within the component, the class contains the application data and

logic, and this is linked with an HTML template that describes the view which

will be displayed in a target environment[22]. The Angular markup along with the

HTML elements that it can modify are combined in the template[22]. Application

data is connected to the DOM by using data binding. There are two types of data

binding:

Event Binding: Based on the user input, the application data is updated.

Property Binding: Allows interpolation of values that are computed from the

application data into the HTML.

Angular also supports Two-way Binding which means that changes in the DOM,

generated by user actions or preferences are also reflected in the program data. The

CHAPTER 2. WEB DEVELOPMENT 15

[()] syntax combines the brackets of property binding, [], with the parentheses of

event binding, ()[22].

2.3 Web Backend Technologies

The Backend of a website refers to the web-server and the database and their connec-

tions. Backend technologies refer to these and the languages used to communicate

with the server and database. A website which is open on the web browser, commu-

nicates with web servers using the Hypertext Transfer Protocol (HTTP)[24]. When

a link on a webpage is clicked, or a search is run, an HTTP request is sent from the

browser to the target server[24]. These servers then receive these requests, process

them and return an HTTP response message. The response contains a status line

indicating if the request succeeded (e.g. ”HTTP/1.1 200 OK” for success)[24].

2.3.1 Server-side languages

Some popular server-side languages used for writing server-side code are PHP,

Python, Ruby and Node.js. In this thesis PHP is used for connecting to the database.

PHP: This is an open source, general purpose scripting language. This means that

PHP can be used to write scripts, which are small pieces of code that tell

the system to do something, like, display “Welcome” on the screen or add

two numbers, and store the value in the database. PHP has wide popularity

because of many reasons such as, a large technical community following that

can help in providing support and guidance when needed. It is also secure, as

long as the scripts are written correctly, the PHP code is never seen on the

site.

CHAPTER 2. WEB DEVELOPMENT 16

2.3.2 Servers

The Dictionary of Computing defines a web server as “a server on a TCP/IP network

that listens for HTTP requests addressed to it and performs the appropriate action.

Basic web servers do this by transmitting a copy of a pre-prepared static web page.

However, many modern web servers can create dynamic web pages and host web

applications”[9].

2.3.3 Databases

Any systematised storage of data and facts, can be called a database. In Soft-

ware context we have Database Management Systems to access the data within the

database. The Dictionary of Computing defines the Database Management System

as “a software system that provides comprehensive facilities for the organization and

management of a body of information required for some particular application or

group of related applications” [9]. Some popular relational database systems include

ORACLE, INGRES, Sybase and Microsoft SQL Server, INFORMIX, MySQL, and

PostgreSQL [9].

2.4 Web application structure

Web applications can be divided into 2 main types, they are traditional web appli-

cations and the modern single page applications. But, for better understanding of

the single page applications, native applications are also discussed below.

2.4.1 Traditional web application

Server-centric web applications can also be called the traditional web application

which are browser-based applications that do not need any client installation [15].

When an HTTP request is made from the browser to the server, the rendered pages

CHAPTER 2. WEB DEVELOPMENT 17

are sent back as an HTTP response. This response causes a whole web-page refresh,

i.e. the whole web page is replaced by a new page [15]. Since this is server-centric,

the weight on client side development is very small. As seen in Figure 2.1[15], most

Figure 2.1: Traditional web application architecture [15]

of the application logic is stored in the web server and the client side is used only

to render the web pages it receives.

There are a few problems that come with these kind of applications, the most

pressing being the waiting time involved every time the web page is re-loaded. Han-

dling events on the server can be very long and until the result comes, the web

application will not be responsive. Another aspect to think of when creating a

CHAPTER 2. WEB DEVELOPMENT 18

server-centric application is, state persisting and data management [15]. This means

that any time the user state or application state changes (which are handled on the

server-side using sessions) or any new data is required, queries need to be sent to

the server and these queries may take some time, which again means that the user

is sitting and waiting for the application to refresh and show the new webpage.

Business data can be stored on the server using database software. The database

software stores application data to the disk on the server it is running on [25]. The

most common type of database used is a relational database which stores data in

tables.

2.4.2 Native application

Native applications are those executable applications that need to be installed

first[15]. They run on a specific platform or a device [26]. It can use device-specific

hardware and operating system. As seen in the Figure 2.2[15], the application is

created as a single piece of software that contains all the logic. One of the main

problems of this is the dependency on the operating system. With all the different

OS options for eg. Windows, UNIX, Android etc, to reach more clients, different

versions of the same application would have to be created which would work on

these different operating systems. But one advantage that native applications have

over the traditional web application is that native applications can keep their state

by using local databases, this allows for a richer user experience because accessing

local resources are faster [15].

An example of a native application is the game ’Pokémon Go’. It first has to

be installed on the device and then it efficiently accesses system functionalities like

GPS for mapping locations, the camera for augmented reality, and the accelerometer

to measure acceleration to give the user the best experience possible [26].

CHAPTER 2. WEB DEVELOPMENT 19

Figure 2.2: Native applications [15]

2.4.3 Single page application

A single page application (SPA) is a web application that does not require page

reload during different clicks of the user. It uses a single HTML web page as a shell

for all the application’s web pages [15]. Gil Fink and Ido Flatow explain that “SPAs

resemble native applications in their behavior and development, but they run inside

a browser process as opposed to native applications, which run in their own process”

[15]. Most of the development happens on the front end, unlike the traditional web

apps which are heavily dependent on the server.

The main SPA building blocks include

1. JavaScript Libraries and Frameworks: Choosing the right JavaScript library is

CHAPTER 2. WEB DEVELOPMENT 20

important to give the user the best possible experience while using the appli-

cation. Using libraries that are used by well known sites, is a good indicator.

2. Routing: In an SPA, since there is only one page, steering from one view to

another, where the different views/pages may have a different look and feel

when compared to the starting page, would need to be handled differently

than in the traditional web applications. Many questions like ’How do you do

deep linking?’ or ’How can search engine optimization be done?’ may seem

complicated to answer for SPAs[15]. But most of this can be handled by the

HTML5 History API.

3. APIs: There are many APIs that HTML5 provides that can be leveraged

to implement SPAs. For example, the regular communication between the

SPA and servers can be accomplished using Ajax and XMLHttpRequest ob-

ject. The HTML5 connectivity APIs, add new ways to enable better web

server communications. This API includes WebSockets, Server-Sent Events

and CORS(cross-origin resource sharing). Another example of an interesting

API is Web Workers. They help in improving the performance of these ap-

plications. Web Workers are a simple means for web content to run scripts

in background threads.[27] These background tasks run by the worker don’t

affect the user interface.

4. Client-Side Template Engine: In a Single Page Application there are certain

portions of the page that will have to be re-rendered every-time due to user

interaction[15]. Client side template engines can help here. They help in cre-

ating a more maintainable code by separating the view mark up from the view

logic. Some examples of template engines are libraries like Underscore.js and

Handlebars. Underscore.js gives you access to its APIs by using the underscore

sign[15].

CHAPTER 2. WEB DEVELOPMENT 21

5. Server back end API and REST: Even though the SPAs rely heavily on the

logic being on the client side, it doesn’t mean that servers aren’t required

but instead the web server’s role is changed[15]. Here, the web server helps

by delivering the web page to the client and makes the relevant resources

that the client needs, like templates available to it[15]. An added function of

the web server is to make the web API available for the SPA, to do server

functions like authentication, authorization, back-end database manipulation

etc [15]. These web APIs expose endpoints to enable create, read update and

delete operations and they mostly align to the REST architecture style. REST

(Representational State Transfer) is an architectural style that describes the

constraints that need to put in place while creating Web services.

CHAPTER 2. WEB DEVELOPMENT 22

Figure 2.3: Front-end and back-end architecture of a single page application [15]

3 Case Study Company

3.1 Enkora Oy

Enkora Oy is a SaaS (Software as a Service) provider located in Helsinki. The

company is a leading provider of modern customer service solutions in Finland.

They operate by providing software and hardware solutions to their clients. The

software and hardware products created, help their customers sell their services,

accept payments, control access, view reports, manage reservations of resources, and

allow self-service for end-users. Some of the hardware solutions provided by Enkora

are smart lockers, RFID devices, turnstiles, self-service kiosks etc. The solutions

they provide can be broadly split into Customer Flow Solutions and Market Flow

Solutions as shown in Figure 3.1.

Few examples of Customer Flow Solutions can be seen in the Wellness/Fitness

industry with the use of POS (point of sale) devices, access control devices, reser-

vation systems etc. These systems are used everyday by customers and employees

of the client company to purchase courses, add agreements, make subscriptions etc.

The workplace solution implementations can be seen in the construction industry,

more specifically at the construction yards. Examples of services and resources used

there are access control devices and software, time and attendance applications etc.

They help to keep track of their employees who are working at a particular worksite

and helps them keep track of the work hours.

CHAPTER 3. CASE STUDY COMPANY 24

Figure 3.1: Enkora Oy Solutions

One of Enkora’s product concept is such that they have a basic product which

can be used off the shelf to produce a working webshop and reservation system.

This can also be tweaked/customized according to the needs of the client and their

business model. More information about their reservation system is provided in the

next chapter.

3.2 The Software Product

Enkora’s codebase is nearly 14 years old. One of Enkora’s more popular software

products is the customizable online reservation system. The reservation system

can be configured for reserving courses at a particular place, or with respect to

resources like badminton courts or for reserving a one time session, like, a massage.

Screenshots shown in Figures 3.2, 3.3 and 3.4 represent two different clients using

the same Enkora product, but customized according to their needs.

The clients have the option of choosing either the default, which is Enkora’s

general style template, for their version of the web reservation system, or else they

may prefer having a customized look, which is saved in a custom CSS file.

CHAPTER 3. CASE STUDY COMPANY 25

Each service provided by the client company (as seen in Figure 3.3) may have

a different business logic when it comes to creating a course/lesson and making a

reservation for those lessons.

The online reservation system also allows the client’s customers to create their

own accounts, which allows them to make reservations in their name and view these

reservations later on. This is particularly useful when the clients want to offer

discounts to their members or customers who have an account with them. But some

clients also allow the usage of “guest” accounts, where the customer is not required

to create an account to make a reservation.

There is another side to this reservation system and that is - the configuration

portal. This is mainly used by the employees of the client company. This portal

allows registered employees to create courses/lessons which will be visible for book-

ing in the reservation portal. It can also be used (by the employees), for helping

customers find information about their reservations, or to create reservations for the

customer. The configuration portal provides the client with a wide range of tools to

allow them to modify the reservation system to their needs. For example, they have

a tool in the configuration portal which allows creating and editing translations, for

a particular phrase or word, which is used in the reservation system. This allows

the reservation system to be used in multiple languages. There is also a tool which

allows the setting of parameters which can control, the visibility and functionality

of different features in the reservation system.

3.3 Current state of code

3.3.1 Enkora’s codebase

Due to Enkora’s software-product providing a large number of features, the current

code base is quite large. It uses languages like PHP and JavaScript and different

CHAPTER 3. CASE STUDY COMPANY 26

Figure 3.2: Online Reservation System

frameworks like Bootstrap, Backbone and Angular and also multiple libraries like

jQuery, Underscore.js etc. to bring about a working final product. The frontend is

implemented using TypeScript, CoffeeScript and regular JavaScript.

3.3.2 Why the need for a change

Challenges with the current code are mostly realized when customization is required

or new features are to be implemented. In the current code base, some of the

features are implemented using TypeScript and Angular, and some of the older

features are implemented using CoffeeScript and Backbone. The aim of this thesis

is to migrate code from CoffeeScript to TypeScript and study the advantages and

disadvantages (if any) of converting some parts of the Backbone/CoffeeScript code

to Angular/TypeScript.

Implementing this change would bring about a more uniform code base across

features, making it easier to understand and customize code periodically. The other

effects of this change are also to be studied. More details are provided in Chapter

5.

CHAPTER 3. CASE STUDY COMPANY 27

Figure 3.3: Online Reservation System 2a

Figure 3.4: Online Reservation System 2b

4 Legacy Systems, Technical Debt

and Modernization Techniques

In this chapter we discuss in detail about Legacy Systems and Technical debt. This

gives us a background understanding of what kind of issues can be be seen in the

Enkora project. The modernization techniques discussed later, provide ideas on

what kind of solution plan can be taken to tackle these problems.

4.1 Overview of Legacy systems

Different researchers have different descriptions of what a legacy system is. For

example Bakar and Razali[28] describe a legacy information system as “an ‘old’

information system that remains in use in an organization. These systems have been

developed in the past, and are critical to the business operations but are difficult

and expensive to maintain”[28].

In their paper, Khadka and Jansen[29] describe a legacy system as “a business

critical software system that significantly resists modification and whose failure can

have a serious impact on the business”[29].

The definition of a legacy system that Crotty and Horrocks described in their

paper, also applies to this paper. They described it as “a system that is business

critical and demonstrates one or more of the following additional characteristics: old

age, obsolete languages, poor if any documentation, inadequate data management, a

CHAPTER 4. LEGACY SYSTEMS, TECHNICAL DEBT AND
MODERNIZATION TECHNIQUES 29

degraded structure, limited support capability and capacity, increasing maintenance

costs, and lacking the necessary architecture to evolve”[30].

From the interviews conducted by Khadka and Jansen[29] we know, that the

usual reasons the Legacy Information Systems are kept for as long as they are, are

because they are usually business critical, i.e. they have been tested and have been

working in production for so many years and hence proven to be reliable systems.

With the world moving towards the next phase of the industrial revolution, where

“smart” is used to illustrate the intelligence in the smart products, smart facility

etc[31]. Organizations will need to use state-of-the-art technology if they want to be

part of the revolution and reap the benefits. This is one of the reasons that legacy

systems may need to be modernized.

The other reasons for change are: [29]

To remain agile to change : As mentioned earlier customers would benefit from

the system being flexible and using the latest technology.

High maintenance cost : High maintenance cost goes hand in hand with legacy

systems. This is one of the most common motivations to modernize an old

system.

Lack of knowledge : Sometimes it is the difficulty in finding personnel who know

how to work with the legacy technology.

Prone to failures : Even though these systems have been running in production

for ages, and are seen as reliable, they can also be prone to failures after a

while, for example when the legacy system environment runs out of support.

To reduce technical debt : This can be defined as the technical compromises

made during the software life cycle knowingly or unknowingly to yield short

term benefits. We will discuss this further below[32].

CHAPTER 4. LEGACY SYSTEMS, TECHNICAL DEBT AND
MODERNIZATION TECHNIQUES 30

4.2 Technical Debt

In most software companies, and in any software that is expected to run for a

long time and cater to multiple clients, technical debt is an aspect that cannot

be escaped. As mentioned earlier technical debt can be defined as the technical

compromises made knowingly or unknowingly, that can yield short term benefits

but cause bigger problems to the project/software in the long run[32]. In an IEEE

software engineering article, author Sven Johnson describes Technical Debt as ’not-

quite-right’ code and that building on top of such a codebase would be expensive

later on.

Technical Debt is analogous to Financial debt[33]. This can be explained with

an example. It is common practise now for a person to take a loan from a bank, but

when he does so, he incurs a debt. The incurred debt in itself is not a bad thing,

as long as the installments are paid off regularly. But when installments are not

paid off at the right time, then interest on the loan starts adding up, and later this

amount becomes so large in comparison to the loan taken, that, it can lead a person

to bankruptcy.

In a similar context, in software development, when a feature needs to be pushed

into production soon or a critical bug is hampering the use of an application, a

developer may choose to opt for a quick fix or a hack and later improve the code, so

as to reduce the inconvenience to the customers. If the code is updated regularly,

then the debt can be written off soon. But when the developer forgets about this

incurred debt, this keeps increasing over time with each change to the software

making it more expensive to pay off. In their book Girish Suryanarayana et al.

describes a situation where “the acquired technical debt is so huge that it cannot be

paid off anymore and the product has to be abandoned. Such a situation is called

technical bankruptcy”[33].

In 1992, Ward Cunningham was the first to draw a comparison between technical

CHAPTER 4. LEGACY SYSTEMS, TECHNICAL DEBT AND
MODERNIZATION TECHNIQUES 31

complexity and debt, when he said

“Shipping first time code is like going into debt. A little debt speeds

development so long as it is paid back promptly with a rewrite. Objects

make the cost of this transaction tolerable. The danger occurs when the

debt is not repaid. Every minute spent on not-quite-right code counts as

interest on that debt. Entire engineering organizations can be brought to

a stand-still under the debt load of an unconsolidated implementation,

object- oriented or otherwise”

[34].

When developers are overburdened with development tasks, or they lack expe-

rience in applying design principles or awareness of design smells and refactoring

methods, the outcome is poor quality code. Low quality code is an indicator of

technical debt[33].

Technical Debt can be incurred from multiple sources. Below is a list of debts

that are loosely based on the sources of debt.

Requirements TD - This technical debt develops when, requirement prioritiza-

tion decisions are made, which in turn creates a product which is either not

necessary or does not meet the need of the customer[35].

Architectural TD - Internal quality of a software is linked to its ability to be

maintained and scaled. But when architectural decisions hamper these abili-

ties we incur this debt.

Design TD - These are a result of shortcuts taken during the design phase

Code TD - Below par code that violates best coding practices or coding rules, like

avoiding copy-paste of code which may lead to code duplication.

CHAPTER 4. LEGACY SYSTEMS, TECHNICAL DEBT AND
MODERNIZATION TECHNIQUES 32

Test TD - Shortcuts during the testing phase, like not including acceptance tests

or unit tests can lead to Test TD.

Documentation TD - Lack of relevant code comments and incomplete documen-

tation of the code base, can leave developers struggling on similar issues and

spending time on issues which have been solved by other developers and thus

collecting debt.

Self Admitted Technical Debt [36] - Most of the above debts would require

someone who can review the code and decipher what kind of debt is being

created. Then there is a type of technical debt that does not need to be

deciphered, since while writing the code, the developer has added comments

such as ’todo’, or ’fixme’ or something more verbose like ’Modify this block,

currently works, but it’s a hack!’

When understanding Technical Debt (TD), it is also important to understand

what things are not TD. Some examples of non-TD are defects, features that have

not been implemented yet, lack of helpful processes, unfinished tasks in the devel-

opment process, trivial code quality issues, and low external quality[32].

4.3 Modernization strategies

Even though Legacy systems cause technical difficulties, they are an important asset

to the organization[31]. These systems cannot be fully eliminated because they

contain essential business information and any failure caused by the systems will

have serious consequences in running daily business tasks[31]. So the organization

using such a legacy system, constantly finds itself battling the technical issues that

arise, since the uninterrupted running of the system is more important.

Software Modernization can be defined as the process to re-develop existing

legacy software by developing, or migrating software modules and libraries, when

CHAPTER 4. LEGACY SYSTEMS, TECHNICAL DEBT AND
MODERNIZATION TECHNIQUES 33

new features can no longer be viably developed[37].

Modernization of a Legacy system can propose plenty of challenges, based on

the size and complexity of the system. Some strategies for software modernization

discussed by Khadka[37] are:

Replacement strategy : In this strategy a legacy system is retired or replaced

with a more up to-date Commercial off the shelf package(COTS). In this case,

either none or a very small part of the former system is continued to be in use.

Two significant risks of the replacement strategy as mentioned by Almonaies

et al.[38] are: the maintenance of the new system, which will not be as familiar

as the old system; and the lack of a guarantee that the new system will be as

functional as the original.

Wrapping is a popular modernization strategy that allows the possibility of en-

capsulating existing legacy software for reuse in a new target architecture[37].

Wrapping is a quick strategy that can be used when the legacy system has

a high business value and is most suitable for smaller programs since identi-

fying and exposing business functions can be time-consuming[38]. However,

wrapping does not reduce maintenance cost, but rather increases it as the en-

terprise has to maintain the interface (wrapper) layer as well[37]. Almonaies

et al.[38] mentions that the main problem with this strategy is that it does

not change the fundamental characteristics of the legacy applications that are

being integrated. Wrapping will not solve problems already present, such as

problems in maintenance and upgrading [38].

Redevelopment proposes the redevelopment of legacy system functionalities. Al-

monaies et al.[38] described redevelopment as a reengineering approach in-

stead, where the application is first studied and then adjusted, so that it can

be represented in a new form. To reach this new form, activities like redesign-

CHAPTER 4. LEGACY SYSTEMS, TECHNICAL DEBT AND
MODERNIZATION TECHNIQUES 34

ing, restructuring and re-implementing software can be done[38]. However,

the possibility of failure is usually quite high for organizations to seriously

consider this approach and it may also require a significant amount of invest-

ment[37]. In this strategy, the existing system/assets may not be reused or if

reused, it will be very sparingly.

Migrations are usually done when a system needs to be run in a different envi-

ronment during a system’s life[39]. Almonaies et al. use the term migration

when referring to any approach which moves the entire legacy system and its

core framework to the new environment[38]. The migration strategy tends to

be costly and time-consuming compared to other strategies. However, a mi-

gration strategy gradually allows to internally restructure, reuse and modify

the legacy systems into a new target system. Thereby, potentially reducing

maintenance costs associated with legacy systems in the long run[37].

4.4 Modernization methods

Based on the above strategies many researchers have devised modernization meth-

ods. A few are discussed below.

4.4.1 Chicken Little and Cold Turkey Methodologies

A modernization method discussed by Brodie and Stonebaker[40] during their pio-

neering DARWIN project, was based on the Chicken Little strategy, which concerns

migrating the legacy software, by small incremental steps, until the final desired

objective is reached. Every step necessitates a smaller investment, a shorter time,

and produces a quantifiable result[40].

To understand why the Chicken Little strategy was adopted, they compared it

to the Cold Turkey strategy and discussed its benefits. The Cold Turkey strat-

CHAPTER 4. LEGACY SYSTEMS, TECHNICAL DEBT AND
MODERNIZATION TECHNIQUES 35

egy involves re-writing the entire legacy system from scratch to produce the target

information system using modern software techniques and hardware of the target

environment[40]. But there are many risks involved with the Cold Turkey strategy

which Brodie and Stonebaker[40] cite as follows:

A better system must be promised : In a redevelopment process, if the only

benefit to such a big expenditure, is the promise of lower maintenance cost in

the future, then it may almost seem an unnecessary expense to the manage-

ment paying for this endeavour, unless new features were also added during

this process. Thereby, increasing the risk of failure[40].

Business conditions never stand still : Usually migration of large information

systems take years to reach completion. While the legacy IS rewrite proceeds,

the original legacy IS evolves in response to maintenance and urgent business

requirements, and by midnight functions (i.e., features installed by program-

mers in their spare time). It is a significant problem to evolve the developing

replacement system in step with the evolving legacy system[40].

Specifications rarely exist : Many times the only documentation for old legacy

systems is the code itself, and in such cases the exact purpose of many aspects

of the legacy system would have to be decrypted from the code, which adds

to the complexity of the whole replacement process.

Undocumented dependencies frequently exist : As the legacy information

system has been operational for a long time, other systems grow dependent on

the legacy information system and unexpected dependencies cause additional

complexity to the redevelopment process[41].

Legacy information systems can be too big to cut over : Most Legacy in-

formation system have so much data that it would need a long time to transfer

CHAPTER 4. LEGACY SYSTEMS, TECHNICAL DEBT AND
MODERNIZATION TECHNIQUES 36

the data to the new environment. And business may not be able to survive

the downtime that this transfer would require.

Lateness is seldom tolerated : All the problems cited above can cause the project

to be delayed and this may in turn lead to its termination.

Large projects tend to bloat : There is a tendency for large projects to become

bloated with nonessential groups or people[40]. These groups may be a part of

an exploration strategy that the organization wants to try in their project. But

this increases the cost of the project and may in turn lead to its termination.

[40]

The Chicken Little legacy system migration involves iterative selection and mi-

gration of parts of the legacy system to become new parts of the iterative target

system[40]. During the migration, the legacy system and the target system form a

composite system which run in parallel to collectively provide the mission- critical

system function[40]. The iterative nature of the Chicken Little strategy provides

two ways to reduce risk.

• First, a fallback position should be set, incase a step fails.

• Second, the functionalities selected for a step should be minimal, so that the

effective risk is zero.

[40]

With the completion of the Darwin project, Brodie and Stonebraker proposed a

11 step generic migration strategy, where each step is an incremental one.

1. Analyze the legacy information system

2. Decompose the legacy information system structure

3. Design the target interfaces

CHAPTER 4. LEGACY SYSTEMS, TECHNICAL DEBT AND
MODERNIZATION TECHNIQUES 37

Figure 4.1: An example of Chicken Little’s General Migration Architecture[42], [41]

4. Design the target applications

5. Design the target database

6. Install the target environment

7. Create and install the necessary gateways

8. Migrate the legacy databases

9. Migrate the legacy applications

10. Migrate the legacy interfaces

11. Cut over to the target information system

[43], [41].

CHAPTER 4. LEGACY SYSTEMS, TECHNICAL DEBT AND
MODERNIZATION TECHNIQUES 38

In the beginning, the new system will be small, but when the migration process

advances, the growth of the target system will continue progress untill it has call

the functionalities of the legacy system. This inter-operate-ability is provided by

a module known, in general, as a gateway, “a software module introduced between

operation software components to mediate between them”[42]. A gateway can be

used at any level. If used between an application and the DBMS, then it is called a

database gateway. If used between the interface and the rest of the system then it

is called an interface gateway. Then a 3rd type of gateway is the IS gateway, this is

placed at a higher level, it encapsulates the entire legacy system.

A pictorial representation of the Chicken little method using two alternatives

of database gateway is shown in Figure 4.1. In the figure there are 2 gateways

being used. The forward gateway is designed so that it constitutes a translator that

receives and transforms database service calls from legacy applications into calls

to the target DBMS on the server machine(s)[43]. The reverse gateway contains

a decoder that receives and transforms calls to the modern DBMS from the new

applications and maps them into calls to the legacy database service[43]. In the

Figure 4.1 there is also a coordinator being used. The coordinator maps calls from

the legacy and target applications to any of the following, legacy database, the target

database, the reverse gateway or the forward gateway[43].

4.4.2 Renaissance

Battaglia, M. et al[44] discuss a step by step methodology which they called RE-

NAISSANCE. The overall process can be seen in Figure 4.2.

There are 4 main phases to this methodology. They are:

1. Evolution Planning: Here the ’what to do’ is decided. In this method, it is im-

portant to reduce the cost of assessment, by reducing the scope of assessment

to only the required components that can benefit from reengineering[44]. First

CHAPTER 4. LEGACY SYSTEMS, TECHNICAL DEBT AND
MODERNIZATION TECHNIQUES 39

Figure 4.2: Renaissance overview [44]

decisions need to be taken at what level the legacy system will be assessed,

e.g. will it be a quick top level assessment or will it be a detailed assessment of

a certain component of the system[44]. Once it is decided which parts of the

system will be assessed, the focus is limited further, to only those components

that will benefit the evolution.

As seen in Figure 4.3 the candidates are assessed further based on their tech-

nical quality and their value to business. Components that have high busi-

ness value, but contain lower technical quality, are good candidates for evolu-

tion[44].

2. Evolution Implementation. Implementation is different when compared to a

traditional information system project because there is already a system in

place(the legacy system). To begin the implementation, a detailed structure

and behaviour of the system would have to be deciphered, and this may be

CHAPTER 4. LEGACY SYSTEMS, TECHNICAL DEBT AND
MODERNIZATION TECHNIQUES 40

Figure 4.3: Finding candidates for evolution [44]

difficult in a legacy system, as the information may be scattered[44]. Re-

naissance provides an extensive group of procedures for technical modelling,

thereby creating multiple views of the old and new system, using the Unified

Modelling Language[44]. Special techniques are elaborated that can be used in

evolution projects, for example “cohesive batches” of components are identified

that can be migrated together to the new system in an orderly and incremen-

tal fashion[44]. Continuous testing would have to be done and accordingly

the component batches are integrated[44]. The result of this controlled im-

plementation process is a transformed and fully tested system, ready for final

installation and acceptance testing[44].

3. Delivery and Deployment. These are the last two phases of this method. In

the delivery phase, the new system is given to the final users, who migrate the

enterprise data to the new system[44].

Firstly, install the new system on the actual hardware on which it will operate,

with the actual software packages, etc[44]. Then, is the changeover design

i.e. deciding between operations change over from the legacy to the new

CHAPTER 4. LEGACY SYSTEMS, TECHNICAL DEBT AND
MODERNIZATION TECHNIQUES 41

system incrementally, or in one single step? This task is often ignored in other

reengineering methods, but not in the Renaissance method[44].

4.4.3 The Butterfly Methodology

The Butterfly Methodology was developed as part of the MILESTONE project, in-

volving Trinity College Dublin, Broadcom Eireann Research, Telecom Eireann, and

Ericsson in 1996[42]. In this method, the premise is that, the information within

the legacy system is the crucial part of the system and from the target system’s

development aspect, it is not the dynamic legacy information that is important, but

instead its schema[42]. The Butterfly Methodology divides the target system de-

velopment from the data migration phases, hence, removing the need for gateways.

When comparing the Chicken Little approach and the Butterfly approach, one no-

ticeable difference is that the latter is designed so that, at the same time both the

legacy and target system cannot be accessed[41]. The data is the last aspect that

is migrated, so as long as the migration has not been completed, the data will be

stored in the legacy system[41].

The 6 phases of this methodology as described in the paper described by Bing

Wu et al.[42] are:

Phase 0: Prepare for the migration

Phase 1: Understand the semantics of the legacy system and develop the target

data schema(s).

Phase 2: Build up a Sample Datastore, based upon the Target Sample Data, in

the target system.

Phase 3: Incrementally migrate all the components (except for data) of the legacy

system to the target architecture.

CHAPTER 4. LEGACY SYSTEMS, TECHNICAL DEBT AND
MODERNIZATION TECHNIQUES 42

Phase 4: Gradually migrate the legacy data into the target system and train users

in target system.

Phase 5: Cut-over to the completed target system.

[42]

In Phases 0 to 2, Wu et al. starts by understanding the user requirements and

what the benchmarks would be for determining if a migration is a success or not.

Then they try to understand the legacy interfaces, legacy applications and the legacy

data. In phase 2 a Sample dataStore is built, which will be used to develop and test

the target system. [42]

In Phase 3, using the Sample dataStore built in phase 2, a ’design-develop-test’

approach will be used. This phase is mainly for the target system development.

The legacy interface and legacy application will be migrated or developed partially

and then tested using the Sample dataStore and then Validated against the User’s

requirements[42].

In Phase 4, the migration of data is the most important aspect. To facilitate this

gradual data migration, The Butterfly Methodology proposes the following concepts:

Data Access Allocator (DAA): The Data Access Allocator, redirects all manipula-

tions on the legacy data[42].

Legacy Data Store: When the legacy system requests data that is unaltered from

this point forward, the DAA will direct the request to the legacy data store[41].

TempStore :The results of the data manipulations are stored in the latest Temp-

Store by the DAA[42] These are auxiliary dataStores.

Data-Transformer (DT): This is employed to migrate the legacy data to the target

system[42]. It is responsible for transforming the data from the legacy format

to the target system format. This will depend on the legacy and target schemas

[42].

CHAPTER 4. LEGACY SYSTEMS, TECHNICAL DEBT AND
MODERNIZATION TECHNIQUES 43

Termination Condition (TC): The Termination Condition helps to determine if the

data migration has reached the final stage[42]. These iterations will continue

until the TC is complete and the legacy system can be closed[41]. After this,

the final cut-over can be done. Based on Sami Peräsaari’s paper we know

“A Threshold Value (TV) is the maximum admissable amount of data of the

final TS. TV is derived from the maximum time that the legacy information

system can be shut down without a significant impact to the business. Thus,

if size(TSn) <= TV, then the n’th iteration is the final iteration of the data

migration”. [41].

Figure 4.4: Butterfly methodology [41]

In Phase 5, since the target system is now ready and the interfaces, applications

and data has been transferred, the new system is ready to run. Based on his research,

in his own thesis, Sami Peräsaari states that “the original data and its modifications

would still be found from the legacy datastore and the TSs”[41]. This is helpful if a

rollback is necessary. Figure 4.4 shows an overview of the concepts and components

of the Butterfly methodology.

5 Implementation Plan

Any software company that hopes to keep up with the demands of its customers

and have their product labeled smart needs to be agile to change. Moreover, every

company desires to have easily maintainable and well documented software product.

This is what Enkora is striving towards.

Both frameworks (Backbone and Angular) have their own advantages and this

need for change is not to showcase any one framework’s advantage over the other.

It is the project/software that dictates what kind of framework would suit it.

In this chapter we cover the modernization plan that is suggested for Enkora’s

reservation system. So in Section 5.1 Enkora’s reservation system is discussed fur-

ther. In Section 5.2 the problems with the current code base are explained and in

Section 5.3 a step by step plan is suggested which is used to implement the code

change.

5.1 Enkora’s Reservation System

14 years ago when Enkora started their codebase, they used a combination of tech-

nologies and around 7 years later they decided to continue the frontend development

using CoffeeScript. This was because CoffeeScript was quite a popular language at

the time and its syntax style which is similar to Python and Ruby also provided

certain features which were not available in JavaScript at the time. This made it

more attractive for development purposes. CoffeeScript and its advantages served

CHAPTER 5. IMPLEMENTATION PLAN 45

its purpose for a long time. Later, with ES6/ECMAScript6 providing many of the

same coding features as CoffeeScript, like arrow functions, classes, inheritance, us-

ing “let” to define variables etc, there was nothing special being brought to the

table anymore, by using CoffeeScript. And now with the project growing larger, the

combination of CoffeeScript and Backbone did not seem to work for the project.

First a brief examination is done of how Enkora’s codebase looks. Currently

Enkora’s reservation system uses the Backbone framework in most of its implemen-

tation. The data which is to be used in the views are defined as models. Each type

of data is defined as a unique model and is saved as a separate CoffeeScript file. For

example every reservation is defined as a reservation model which is identified by a

unique reservation-id and this structure is saved in a file named reservation.coffee.

Similarly, each event, product etc. has a separate model defining it. In the codebase,

these models are put together in a models folder.

A collection folder contains structures which can accommodate multiple models

within itself. For example a collection cart is written in a file named cart.coffee and

models of structure cartitem can be inserted into it.

Another folder named views contains all the files which will help in creating each

view. They link the model and the HTML template into which the model’s data is

inserted. Together they display the necessary view + information on the screen.

One problem that I noticed when trying to understand the system, is trying to

pinpoint the model which provides the data to a particular view. Many models are

initialized inside a view, since the data that needs to be displayed may be more

spread out.

As mentioned previously in Chapter 3, Enkora’s reservation system has two parts

to it. One is the portal used by the customers, where they can log into their own

account and do one of the following actions:

• Edit their info

CHAPTER 5. IMPLEMENTATION PLAN 46

• View their reservations

• View their unpaid receipts

• Browse through the different services

• Reserve a course or reserve a timeslot for a service like massage or reserve a

court/hall for an activity etc

The other is a portal that is used by the employees. Employees include anyone

who has a valid username and password for this portal. This also includes the staff

at Enkora, who can log into this portal and help when necessary. This portal is

more of a tool where the following actions can be done. View and edit customer

Info, create products like gift cards, multi-tickets etc. which can be purchased from

the shop portal, create and modify lessons and courses, reserve a user to any of these

lessons and courses, assign instructors to lessons and courses, assemble and view re-

ports such as sales reports, receipt reports, event reports etc. More than 25 different

subheadings are present in this portal, each of which can perform multiple differ-

ent functions. Some of these subheadings include - Users, User Parameters, Fare

Products, Reservations, Manage Reservations, Translations, Fields, Cache Reset,

etc.

5.2 Problems in the current state of code

There are a few things that could be improved in the current codebase. This list was

aggregated by interviewing the Senior Software Developer and the Chief Technical

Officer at Enkora. My experience of working with this code for the past 2 years has

also allowed in identifying some of the issues mentioned. The interviewed developer

was the one who initially instigated the need for a framework change and had already

started moving some of the modules to the new framework 2 years ago.

CHAPTER 5. IMPLEMENTATION PLAN 47

Some of the problems noticed are listed below,

1. Use of Templating engines

In a project when HTML files need to be linked in multiple places, Backbone

uses a templating engine. In Enkora, for this purpose the Underscore[45]

library’s _.template method was used as a templating engine. It compiles

JavaScript templates into functions that can be evaluated for rendering[45].

An example from the current code base is shown here. A piece of code is saved

in an html file, named as _participant_select.html. This is required by 4 other

files _eventgroup_buy.html, _product_buy.html, event-page.html, resource-

page.html. In the Listing 6, the example of how this template is linked is

shown. Linking complex html pages using the Backbone templates causes the

loading of the page to get slower.

_.template(jQuery('#template__participant_select').html(), {
data: data })↪→

Listing 6: Template

2. Bugs and regressions

One problem that I have noticed quite often with the old code is, with every

new feature created, there are regressions occurring, which are not caught

during the testing phase. It is not easily detected which modules will reference

the changed piece of code, so at times only one out of the multiple use cases

are tested. Also, it is not easily visible from the code what kind of data is

provided by the model. The old code has a mixture of PHP + HTML and

Backbone + CoffeeScript.

3. Intellisense

CHAPTER 5. IMPLEMENTATION PLAN 48

Intellisense is a general term that references to a collection of features that

allow the editing of code, in an IDE like parameter info, code completion and

quick info[46]. Enkora has a lot of code that uses a combination of PHP,

jQuery, JS and HTML in the same file. In such cases the IDE’s intellisense

cannot help in suggesting the right code to be written or in pointing out the

errors in code. For example in Figure 5.1 (this snippet of code is taken from

Enkora’s codebase), the code runs without any errors, but the intellisense of

the IDE highlights certain lines as errors which can be confusing and mislead-

ing for developers. The errors and warnings are shown in Figure 5.2.

Figure 5.1: Intellisense in IDE

Figure 5.2: Intellisense errors

4. Use of outdated php library as CoffeeScript transpiler

CoffeeScript is not natively browser supported, so a transpiler is required.

The current code uses a php library for transpiling its CoffeeScript code to

JavaScript. This php library that is used as a transpiler is no longer supported

CHAPTER 5. IMPLEMENTATION PLAN 49

and is now being maintained by the developers at Enkora. This is quite a

hassle, as they would rather be spending the time creating and maintaining

their features.

5. Code Technical Debt

In the current code, in the combination of Backbone and CoffeeScript, there

are many custom jQuery AJAX calls which go against the spirit of Back-

bone, which follows a REST based approach and handles POSTS in its REST

interface.

6. Lines of code

In the current code there are a few files that when compiled give generated

JavaScript files which contain up to 30,000 lines of code. This is too large a

number and is not the best practise. This can also contribute to the Code

Technical debt.

7. Test Technical Debt

The current bits of front-end code implemented in CoffeeScript do not have any

unit tests associated with it. Initially, in an attempt to get a viable working

product, few tests are only in place for the backend/server side code. The

project would benefit from more frontend tests, so that errors can be isolated

earlier before being visible to the users.

5.3 Modernization plan

Transitioning the code is done based on the modernization strategies and methods

discussed in Chapter 4. A plan is created that best suits Enkora. The plan chosen

is the Chicken Little method. This plan was chosen because, one necessity was that

both the old system and the new target system should be able to run in parallel,

CHAPTER 5. IMPLEMENTATION PLAN 50

atleast for a while until it is sure that the new system can run without any problems

and meets all the client requirements. This is made possible because the Chicken

Little method uses gateways either at the database level or at higher levels to do

the switching. This feature was not available in the Butterfly method, where the

possibility of using gateways to switch between the old and new system is completely

eliminated. The Renaissance method provided information at a very high level and

so it did not provide enough information for practical implementation.

Details of the Chicken Little method are discussed in the Section 4.4.1. The

Chicken Little method is not followed completely since certain steps are not required

in the Enkora project. For example, in Section 4.4.1 you find steps that are dedicated

for designing the target database(step 5) and migrating the legacy database(step 8)

which is not required in this project, since no database change is required.

The steps to the plan are as follows.

1. Step1: Iteratively analyze the legacy information system

In this step, first capture all the functionalities that are currently in the module

that is going to be changed. This is important during the redevelopment or

wrapping process so no feature / functionality is lost in the transition.

2. Step2: Iteratively decompose the legacy information system structure

The dependencies between the modules must be studied, so that it is deter-

mined by changing the module, what and how other modules will be affected.

It should be ensured that well-defined interfaces(if required) are present be-

tween the modules and between this module and the database service.

3. Step 3: Iteratively design the target interfaces

Writing each new module as a component in Angular also allows for creation

of useful interfaces to the objects being used in these components. The inter-

face changes will be made based on what features can be put into individual

CHAPTER 5. IMPLEMENTATION PLAN 51

components. This makes the code more readable and maintainable, even later

on. These components encapsulate a small portion of the user interface, which

can be reused through-out the project. This helps in fixing the maintainability

issue mentioned previously.

4. Step4: Iteratively design the target application

The target application will be designed based on the Angular framework rules,

but also the services previously provided by the module should be retained by

the target system. The services should be structured into smaller components,

so that they can be reused. These components should be named appropriately

so that it is understood what function it does /service is provided by the

component.

5. Step5: Iteratively design the target database

For Enkora, no database change will be done. So the target database will be

the same as the current database.

6. Step6: Iteratively install the target environment

The target environment is one where the Angular framework is installed. In

Enkora’s case, the target environment was already set up since the code tran-

sition was started some time ago.

7. Step7: Iteratively create and install the necessary gateways

The gateway created here is more of an application/interface gateway (since

no change is happening in the database level, there is no need for a database

gateway). A parameter is created and set to true, if the target module is

ready for use by the clients. This parameter will direct the clients to the new

environment for use. In case any issues are noticed, the clients can easily be

directed back to the legacy module usage. Initially both the legacy system

CHAPTER 5. IMPLEMENTATION PLAN 52

and target system will have to run side by side until a few iterations are run

and it is clear that no service was lost during the transition and all interfaces

work as they should.

8. Step8: Iteratively migrate the legacy databases

There is no need for this step to be done at Enkora, since no database changes

are made.

9. Step9: Iteratively migrate the legacy applications

The module of the legacy application which is to be migrated is selected and

then re-written in TypeScript, following the rules of the Angular framework.

At this point an extra step taken is to make sure that unit tests are written

for each new Angular component created. This will help in clearing some of

the Test based technical debt that the legacy code had acquired.

10. Step10: Iteratively migrate the legacy interfaces

By doing the previous step, all the user interfaces of the legacy module will

be migrated. But care has to be taken to also make sure that the interface

between modules is also handled. Since no more CoffeeScript is being used in

these modules, the dependency on the outdated php library which transpiles

code from CoffeeScript to JavaScript is reduced.

11. Step11: Iteratively cut over to the target information system

If the target system works with no issues, then after a set period of time, the

legacy module can be retired and the parameter which served as a gateway to

switch between the two can be deleted as well.

The above process is then repeated for every module/feature that needs to be

modernized until the whole legacy system is moved to the target system. Initially

CHAPTER 5. IMPLEMENTATION PLAN 53

the modules which have interfaces with the chosen module will be chosen for the

transition.

6 Evaluating the plan

By implementing the modernization plan suggested in Section 5.3, some of the issues

noticed in the legacy code, (mentioned in Section 5.2), were handled and thus solved.

In this chapter, an attempt is made to apply the different steps of the proposed

modernization plan on one module of the reservation system. The description of the

process is explained in Section 6.1. All the steps were not applicable to the module

I worked on, so I have tried to find examples of pieces of code that were worked

on by other developers at Enkora, reflecting the changes required/suggested in the

plan. The benefits of the plan are discussed in Section 6.2. The disadvantages of

the code change (if any) are discussed in Section 6.3.

6.1 The process

Efforts to modernize the legacy code were streamlined according to the moderniza-

tion steps discussed by the Chicken Little method in Section 5.3. For this purpose

the title of each step is kept the same as that of the Chicken Little Method and the

explanation below it describes what actions I have taken to implement the step.

The system that will be modernized is part of Enkora’s reservation system.

Enkora’s reservation system was described in detail in Section 3 and Section 5.1. The

reservation system/ shop (as referenced in the codebase) uses a calendar through

which events can be clicked and reserved. This calendar module is going to be

migrated for the purpose of this thesis. The steps followed are described below.

CHAPTER 6. EVALUATING THE PLAN 55

1. Iteratively analyze the legacy information system

Enkora is currently in the process of migrating the shop component of the

reservation software. Migrating the whole module is quite a large undertaking

as it has many functionalities like showing different services, login module,

viewing the user’s details, viewing the user’s reservations, receipts etc. These

can be divided into smaller working components. Few of the modules are

shown in Figure 6.1. The Chicken Little method suggests migrating smaller

modules to reduce the risk in case the migration fails.

Figure 6.1: Pictoral representation of the components/modules in shop module

I begin by choosing a smaller module and understanding all the features/services

provided by that module. To understand what a certain module does, discus-

sions were held with the senior software engineer who started this process and

I was assigned a module for implementation. I start by clicking around in the

legacy module’s user interface, to see what it does.

For the purpose of this thesis, the chosen module is the calendar view in

the webshop. Here, customers can navigate to any week of the year and the

CHAPTER 6. EVALUATING THE PLAN 56

calendar will display all the events at a specified location for a chosen service.

It also has the feature of providing Week, Month or Day views. The displayed

event for each date and time can have events for multiple resources at the

location. And they would be coloured according to availability. If the event

is green/available, then by clicking the event, we get the options of “Reserve”

or “Cancel”. On hovering over an event, it should open a pop-up modal which

gives information about the price for different resources for that particular

date and time.

2. Iteratively decompose the legacy information system structure

For this step, I first tried figuring out how to define what the boundary of this

module would be. Since Angular uses components to encapsulate views and

its function, it is important to decide what features could be grouped together

as part of the module. I decided to have the calendar as a component, which

should accept data in a certain format and display the events based on the

data provided.

In Figure 6.2 the hierarchy of the different modules are shown. The Shop

module contains the Resource module which contains information about the

location selected and the resource availability for the location. The Basic

module modifies the events received from the resource module and makes it

suitable to be used by the calendar module.

3. Iteratively design the target interfaces

Here, I was trying to design the inter-module interface and the user interface

for the component.

The calendar module would be referenced/called in a parent module. The

information that would be required by the calendar module, which will be

passed from the parent to this module, was designed and will be referenced in

CHAPTER 6. EVALUATING THE PLAN 57

Figure 6.2: Calendar module

the inter-module interface. For this purpose the documentation of the chosen

3rd party calendar component will need to be referenced. The resource module

contains information about the availability of the resources and time for which

they are available. The resource-availability information needs to be formatted

to be visible in a chosen calendar.

One of the requirements was to get a calendar widget/library that easily in-

tegrates with Angular and provides TypeScript support. This was not as

straightforward, since initially my assumption was that any calendar library

would integrate with any version of Angular. But after few tries with 2 dif-

ferent calendar libraries, I realized that my previous assumption was wrong.

It was important to know what version of Angular Enkora was already using

and then based on that version, a calendar library needed to be found and

CHAPTER 6. EVALUATING THE PLAN 58

taken into use.

Since Enkora was trying to use the latest version of Angular, there was also

the added doubt if the chosen calendar will be able to support all the features

that the current calendar provides.

Each time-slot in the calendar shows availability of multiple resources for a

location for the specified time. Making that possible for the chosen calendar

was a little difficult. The calendar documentation and StackOverflow were

referenced when attempting to implement this. Understanding how this 3rd

party component should integrate with the in-house components took some

time.

4. Iteratively design the target application

This calendar module is part of a bigger module which is the shop module.

But within this calendar module I did not feel the need to break it further

into smaller components. So work was continued in developing this compo-

nent. The events received from the Resource module had to be redesigned

to suit the calendar. This would be done in the Basic component. Having

smaller components makes it more re-usable. So the calendar module could

be referenced in any other module when needed.

5. Iteratively design the target database

There was no work done towards this step. The APIs to the database were

not changed since no database changes were required. The components are

expected to access and receive the data same as the legacy code did.

6. Iteratively install the target environment

The target environment was already set up since this project of transitioning

the framework was started 2 years ago. So I have not had to make any new

CHAPTER 6. EVALUATING THE PLAN 59

changes here. But in brief the target environment involves installing the An-

gular CLI so that components can be created. The following information was

gathered on interviewing the Senior Software Engineer. In order to start mov-

ing code, non-REST backend functions were created that produce the same

data as the standard call API. An Angular service was created that sits over

the CallService (the above non-REST backend functions) in the legacy code,

so if there is a cart or a product list, we can get it from the backend and

update, reload and access it from any part of the new code. Also routing code

was written so that when the change from the legacy code to the new code

happens, in the website the url paths would not be changed drastically.

7. Iteratively create and install the necessary gateways

In this project, access is restricted to the target system by use of parameters.

This serves the same purpose as the gateways described in the Chicken Little

method. The parameter created here is “turn on new ng shop”. If set to true,

then the old URL will be redirected to the new shop and if false it will be to

the legacy shop. And if set to “-1” then both the legacy shop and angular

shop will run in parallel. This was set to -1 during the development process.

8. Iteratively migrate the legacy database

This step was not required for this project since no database changes were

made as described previously in Step 5.

9. Iteratively migrate the legacy application

In this step the component is created using the Angular CLI. Angular doc-

umentation defines the angular CLI as a command-line interface tool that

can be used to initialize, develop, scaffold, and maintain Angular applica-

tions directly from a command shell [47]. The application module which was

designed in Step 4 is now created. When the component is created it also

CHAPTER 6. EVALUATING THE PLAN 60

creates a .specs.ts file in the folder which contains some basic unit tests for the

component. An example of the specs file that gets created for the calendar

component is shown in Figure 6.3. It checks whether the CalendarComponent

gets created. This is a basic test created for each new component created.

Further tests can be added when this component is completed and more fea-

tures are implemented. Adding simple unit tests to these components makes

it possible to catch bugs as the complexity increases.

Figure 6.3: Example of specs file for a module

10. Iteratively migrate the legacy interfaces

Since this module is only one small part of a bigger module (the shop module)

the calendar module interacts with other modules within the shop module.

CHAPTER 6. EVALUATING THE PLAN 61

The parent module (named as basic.component) calls the calendar module.

The events for the selected location and the date are passed to the calendar

component from basic.component. Thus the inter-module interface designed

previously is implemented.

When the legacy application is migrated, the created interfaces are also mi-

grated.

At this time we also try to create interfaces for the arguments that the func-

tions within the applications use. This will make the code more readable and

thus more maintainable.

11. Iteratively cut over to the target information system

As each smaller module becomes ready, they are given to the product team

for testing.

But once the shop module is completed, more extensive testing will be re-

quired. The cutover will only happen after the shop module is reengineered.

The migration of the shop module was not possible during the thesis period,

due to the time constraint. But in theory, the parameter which acts as an

application gateway switching between the legacy and target version would

be removed once the target version is well tested and the target system does

everything that the legacy application did, and thus completing the modern-

ization process for the module.

To understand all the benefits of this change, the effects of this change would

have to be studied for a longer time. By using Angular and TypeScript, some

immediate benefits are already noticed which were problems in the legacy code like

no templating engine is required now to serve the html pages and more test cases

are present. More details about the benefits are explained in the Section 6.2.

CHAPTER 6. EVALUATING THE PLAN 62

6.2 Benefits

By choosing to use Angular, a Component-based software engineering (CBSE) ap-

proach is employed, where each data structure which does a specific action can be

implemented as a unique component and these components can be reused in differ-

ent parts of the code when necessary. So by changing to the framework-language

combination to Angular and TypeScript, the project benefits in the following ways:

1. Code reuse is easier

Once a component is created, it can be used and reused throughout the project,

reducing code repetition and development time. The associated data and data

handling for a template is stored within the component, making it easier to

identify how the data is obtained and manipulated.

2. Data Binding

Angular provides a Data Binding feature. Data Binding is a technique of

linking the data to the view layer. This could only be reproduced in Backbone

with a lot of written code.

3. Lines of code

Angular uses components to define the data and structure that is to be dis-

played on each view of the screen. Each component generates fewer lines of

JS code, which is less than 100 lines of generated code.

4. No template engine used

Angular does not need any templating engine to display the html pages. This

takes care of displaying even the most complex html pages. Angular’s doc-

umentation describes the functionality of the Angular ahead-of-time (AOT)

compiler as “converting the Angular HTML and TypeScript code into effi-

cient JavaScript code during the build phase before the browser downloads

CHAPTER 6. EVALUATING THE PLAN 63

and runs that code”[48]. It is possible to render the pages to the browser

faster because the application is compiled during the build process.[48]. The

client browser that opens the web application, gets the pre-compiled version

of the application.[48].

5. Better security

The Ahead-of-time (AOT) compiler also gives the added benefit of provid-

ing fewer opportunites for injection attacks since HTML templates and com-

ponents are converted to JavaScript files and there are no requirements for

client-side HTML or JS evaluations[48].

Another security feature that comes along with Angular are “route-guards”.

Angular’s route-guards are interfaces which can tell the router whether or not

it should allow navigation to a requested route.

6. Easier Maintenance and Testing

Currently, the codebase has multiple languages and frameworks which together

make up the frontend code. Some of the code is already implemented in

TypeScript and Angular, so if all the frontend code is implemented in the

same way, it provides uniformity in the code base, making it easier to read and

maintain code. Code reuse also allows for easier maintenance. A maintainable

code base helps in reducing the future possibilities of technical debt. That is

something that this new code base can help achieve.

Since the code is more modular in smaller components, it is easier to create

unit tests for each component. Reducing the scope of the test and therefore

the complexity of the tests.

7. Better tool support

TypeScript is best when static type checking and better tool support is re-

CHAPTER 6. EVALUATING THE PLAN 64

quired. Since CoffeeScript is not well maintained anymore, the tools are get-

ting old and out of date. For the backend code Enkora uses PHP and the

CoffeeScript is compiled using a PHP library that is not maintained anymore.

So if the compiler has any issues, there will not be any further updates made

to it and then for the compiler to work, debugging and fixing would have to

be done in-house.

8. Larger online community

Based on Github’s programming language-based pull requests for 2020 shown

in Figure 6.4, we notice that TypeScript has an increase of 7.4% in the number

of pull requests, whereas CoffeeScript has an increase of only 0.246%. Cof-

feeScript has a dwindling online community now, whereas TypeScript has a

larger following and a larger company backing it (Microsoft). This is especially

useful during the development phase, help is required in figuring out how to

get something implemented or to find out how certain things work. During

such times, its beneficial to have a wider community to discuss these with.

9. Lower costs

Having to maintain fewer language- framework combinations will lower devel-

opment costs. By removing the use of languages that have a lower backing/

following, we increase the chance of finding more developers with the necessary

skill level.

6.3 Disadvantages

On interviewing the Senior Software Engineer, I was able to learn that one dis-

advantage for developers was the requirement to compile the Angular code by the

developers which requires some waiting time and having to commit the generated

CHAPTER 6. EVALUATING THE PLAN 65

build files. This does have an advantage for the end user, since the website will be

loaded faster as the compiled files are served.

Another disadvantage is that if some error occurs in this new code, it points to

the compiled (minimized) code which is difficult to decipher.

6.4 Problems faced during the implementation

Since this project was started some time ago, certain parts of the shop module

were already done by different developers. So while trying to understand which

component within the shop module to start with for this thesis, it was important

to figure out how much of the shop module was already done and not waste efforts

towards a module that was already implemented in some part.

Understanding the features of a module just by clicking around on the user

interface partially worked for the chosen module. But to further understand some

of the reasons behind having certain features implemented a certain way, time was

required from the product team who work with this software more frequently. This

was not always possible, owing to their busy schedules.

Also another aspect was understanding what functions should be grouped to-

gether in a component. This was quite confusing, since we also needed to think

from the point of making them reusable.

Another hindering factor during this implementation was my lack of experience

working with Angular. More time was spent on figuring out how components work

and understanding the different ways of including events and data to these compo-

nents.

CHAPTER 6. EVALUATING THE PLAN 66

Figure 6.4: Github pull requests[49]

7 Conclusion

The aim of this thesis was to study how code modernization can be done on a

legacy code base, while also providing the case study company - Enkora Oy - with

an updated front-end framework which is Angular based.

Since the code base was nearly 14 years old and it had a 3rd party CoffeeScript

compiler library that was no longer supported by the vendors, it was important to

update the codebase by moving away from using CoffeeScript towards a modern lan-

guage that had more benefits. Material was gathered on the latest web development

technologies that are available. The technologies which would be used for imple-

menting the code changes were studied, like HTML, TypeScript and the Angular

Framework.

Since legacy code modernization was the requirement, popular modernization

strategies and methodologies were also discussed. The modernization steps of the

Chicken Little Method were chosen to be implemented with Enkora’s code base. As

Enkora’s code base is quite large, and implementing these steps on all the modules

was outside the scope of this thesis, these steps were only used on one module of

the system. The process of implementing these steps were recorded.

All in all, this code and framework change did bring some benefits to the mod-

ule and also helped in reversing some of the problems seen in the legacy system.

Some of the advantages were, reduced code repetition and therefore increased main-

tainability, no need of external template engine and better tool support. But for

CHAPTER 7. CONCLUSION 68

understanding all the benefits and disadvantages of this language and framework

change, it would have to be implemented throughout the system and then studied

while being taken into use for a while.

References

[1] K. Bennett, “Legacy systems: Coping with success,” vol. 12, 1995.

[2] “Legacy system,” [Online]. Available: https://www.techopedia.com/definition/

635/legacy-system.

[3] L. Prechelt, “A web development platform comparison by an exploratory ex-

periment searching for emergent platform properties,” vol. 37, 2011.

[4] C. Grannell, The Essential guide to CSS and HTML Web Design. 2007.

[5] Html introduction. [Online]. Available: https://www.w3schools.com/html/

html_intro.asp.

[6] M. West, HTML5 foundations. 2012.

[7] R. S. Bruce Lawson, Introducing HTML 5. 2011.

[8] I. Lunn, CSS3 Foundations. 2012.

[9] E. W. John Daintith, A Dictionary of Computing. 2008.

[10] Javascript html dom. [Online]. Available: https://www.w3schools.com/js/

js_htmldom.asp#:~:text=%22The%20W3C%20Document%20Object%20Model,

and%20style%20of%20a%20document.%22.

[11] M. Haverbeke, Eloquent JavaScript: A modern introduction to programming.

No Starch Press, Incorporated, 2014.

[12] D. Goodman, Javascript Bible. John Wiley and Sons, 2010.

https://www.techopedia.com/definition/635/legacy-system
https://www.techopedia.com/definition/635/legacy-system
https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/js/js_htmldom.asp#:~:text=%22The%20W3C%20Document%20Object%20Model,and%20style%20of%20a%20document.%22
https://www.w3schools.com/js/js_htmldom.asp#:~:text=%22The%20W3C%20Document%20Object%20Model,and%20style%20of%20a%20document.%22
https://www.w3schools.com/js/js_htmldom.asp#:~:text=%22The%20W3C%20Document%20Object%20Model,and%20style%20of%20a%20document.%22

REFERENCES 70

[13] D. R. Brooks, An Introduction to HTML and JavaScript for Scientists and

Engineers. Springer, London, 2007.

[14] P. N. Mohan M, Learn ECMAScript - Second Edition. Packt Publishing, 2018.

[15] I. F. Gil Fink, Pro Single Page Application Development. Apress.

[16] [Online]. Available: https://en.wikipedia.org/wiki/TypeScript.

[17] C. Nance, TypeScript Essentials. Packt Publishing, Limited, 2014.

[18] K. H. Chandermani Arora, Angular 6 by Example: Get up and Running with

Angular by Building Modern Real-World Web Apps. Packt Publishing, Limited,

2018.

[19] J. Rodzvilla, “A review of ”learning javascript design patterns”,” 2012.

[20] A. Osmani, Developing Backbone.js Applications: Building Better JavaScript

Applications. O’Reilly Media, 2013.

[21] Backbone.js. [Online]. Available: https://backbonejs.org/.

[22] Introduction to angular concepts. [Online]. Available: https://angular.io/

guide/architecture.

[23] Introduction to modules. [Online]. Available: https://angular.io/guide/

architecture-modules.

[24] Introduction to the server side. [Online]. Available: https : / / developer .

mozilla.org/en-US/docs/Learn/Server-side/First_steps/Introduction.

[25] A. Sinisalo, “Web frontend component quality model,” M.S. thesis, 2017.

[26] M. Rouse, Native app. [Online]. Available: https://searchsoftwarequality.

techtarget.com/definition/native-application-native-app.

[27] Using web workers. [Online]. Available: https://developer.mozilla.org/

en-US/docs/Web/API/Web_Workers_API/Using_web_workers.

https://en.wikipedia.org/wiki/TypeScript
https://backbonejs.org/
https://angular.io/guide/architecture
https://angular.io/guide/architecture
https://angular.io/guide/architecture-modules
https://angular.io/guide/architecture-modules
https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Introduction
https://searchsoftwarequality.techtarget.com/definition/native-application-native-app
https://searchsoftwarequality.techtarget.com/definition/native-application-native-app
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers

REFERENCES 71

[28] H. K. A. Bakar and R. Razali, “A preliminary review of legacy information

systems evaluation models,” in 2013 International Conference on Research

and Innovation in Information Systems (ICRIIS), 2013, pp. 314–318.

[29] R. Khadka, B. V. Batlajery, A. M. Saeidi, S. Jansen, and J. Hage, “How do pro-

fessionals perceive legacy systems and software modernization?” In Proceed-

ings of the 36th International Conference on Software Engineering, ser. ICSE

2014, Hyderabad, India: Association for Computing Machinery, 2014, pp. 36–

47, isbn: 9781450327565. doi: 10.1145/2568225.2568318. [Online]. Avail-

able: https://doi.org/10.1145/2568225.2568318.

[30] I. Crotty James ; Horrocks, “Managing legacy system costs: A case study

of a meta-assessment model to identify solutions in a large financial services

company,” 2017.

[31] H. K. A. Bakar, R. Razali, and D. I. Jambari, “A guidance to legacy systems

modernization,” International Journal on Advanced Science, Engineering and

Information Technology, vol. 10, no. 3, pp. 1042–1050, 2020, issn: 2088-5334.

doi: 10.18517/ijaseit.10.3.10265. [Online]. Available: http://ijaseit.

insightsociety.org/index.php?option=com_content&view=article&id=

9&Itemid=1&article_id=10265.

[32] P. L. Zengyang Li Paris Avgerioua, “A systematic mapping study on technical

debt and its management,” 2015.

[33] T. S. Girish Suryanarayana Ganesh Samarthyam, Refactoring for Software

Design Smells : Managing Technical Debt. Elsevier Science & Technology,

2014.

[34] W. Cunningham, The wycash portfolio management system, 1992.

[35] E. N.A, “On the role of requirements in understanding and managing technical

debt,” IEEE, 2012.

https://doi.org/10.1145/2568225.2568318
https://doi.org/10.1145/2568225.2568318
https://doi.org/10.18517/ijaseit.10.3.10265
http://ijaseit.insightsociety.org/index.php?option=com_content&view=article&id=9&Itemid=1&article_id=10265
http://ijaseit.insightsociety.org/index.php?option=com_content&view=article&id=9&Itemid=1&article_id=10265
http://ijaseit.insightsociety.org/index.php?option=com_content&view=article&id=9&Itemid=1&article_id=10265

REFERENCES 72

[36] Z. Yu, F. M. Fahid, H. Tu, and T. Menzies, “Identifying self-admitted technical

debts with jitterbug: A two-step approach,” IEEE Transactions on Software

Engineering, pp. 1–1, 2020. doi: 10.1109/TSE.2020.3031401.

[37] R. Khadka, Revisiting legacy software system modernization, 2016.

[38] J. R. C. Asil A. Almonaies and T. R. Dean, Legacy system evolution towards

service-oriented architecture, 2010.

[39] “Iso/iec/ieee international standard for software engineering : Software life

cycle processes - maintenance,” Tech. Rep., 2006.

[40] M. S. Michael L. Brodie, Darwin: On the incremental migration of legacy

information systems, 1993.

[41] S. Peräsaari, “An agile approach to system migration,” M.S. thesis, UNIVER-

SITY OF TURKU, 2013.

[42] Bing Wu, D. Lawless, J. Bisbal, R. Richardson, J. Grimson, V. Wade, and

D. O’Sullivan, “The butterfly methodology: A gateway-free approach for mi-

grating legacy information systems,” in Proceedings. Third IEEE International

Conference on Engineering of Complex Computer Systems (Cat. No.97TB100168),

1997, pp. 200–205.

[43] M. S. Michael L. Brodie, Legacy Information Systems Migration: Gateways,

Interfaces, and the Incremental Approach. 1995.

[44] M. Battaglia, G. Savoia, and J. Favaro, “Renaissance: A method to migrate

from legacy to immortal software systems,” in Proceedings of the Second

Euromicro Conference on Software Maintenance and Reengineering, 1998,

pp. 197–200.

[45] Underscore.js. [Online]. Available: http://underscorejs.org/#template.

https://doi.org/10.1109/TSE.2020.3031401
http://underscorejs.org/#template

REFERENCES 73

[46] Intellisense. [Online]. Available: https://code.visualstudio.com/docs/

editor / intellisense# : ~ : text = IntelliSense % 20is % 20a % 20general %

20term,%2C%20and%20%22code%20hinting.%22.

[47] Cli overview and command reference. [Online]. Available: https://angular.

io/cli.

[48] Ahead-of-time (aot) compilation. [Online]. Available: https://angular.io/

guide/aot-compiler.

[49] Githut 2.0. [Online]. Available: https://madnight.github.io/githut/#/

pull_requests/2020/3.

https://code.visualstudio.com/docs/editor/intellisense#:~:text=IntelliSense%20is%20a%20general%20term,%2C%20and%20%22code%20hinting.%22
https://code.visualstudio.com/docs/editor/intellisense#:~:text=IntelliSense%20is%20a%20general%20term,%2C%20and%20%22code%20hinting.%22
https://code.visualstudio.com/docs/editor/intellisense#:~:text=IntelliSense%20is%20a%20general%20term,%2C%20and%20%22code%20hinting.%22
https://angular.io/cli
https://angular.io/cli
https://angular.io/guide/aot-compiler
https://angular.io/guide/aot-compiler
https://madnight.github.io/githut/#/pull_requests/2020/3
https://madnight.github.io/githut/#/pull_requests/2020/3

	Introduction
	Goal
	Problem Definition
	Scope
	Thesis structure

	Web Development
	Web Frontend technologies
	HTML
	CSS
	DOM
	JavaScript
	TypeScript

	Web Frontend frameworks
	Backbone.js
	Angular

	Web Backend Technologies
	Server-side languages
	Servers
	Databases

	Web application structure
	Traditional web application
	Native application
	Single page application

	Case Study Company
	Enkora Oy
	The Software Product
	Current state of code
	Enkora's codebase
	Why the need for a change

	Legacy Systems, Technical Debt and Modernization Techniques
	Overview of Legacy systems
	Technical Debt
	Modernization strategies
	Modernization methods
	Chicken Little and Cold Turkey Methodologies
	Renaissance
	The Butterfly Methodology

	Implementation Plan
	Enkora's Reservation System
	Problems in the current state of code
	Modernization plan

	Evaluating the plan
	The process
	Benefits
	Disadvantages
	Problems faced during the implementation

	Conclusion
	References

