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ABSTRACT 

Insight into genomic mechanisms of phenotypic variation and adaptation is essential 
for understanding evolutionary and population dynamics in wild populations. 
Knowledge about whether it is the same genetic architecture that underlies 
adaptation over different geographical scales and regions, and what role population 
history plays, is paramount for the consequent development of efficient conservation 
practices for the species. 

Salmonid fishes are commonly characterised by a wide geographic range, 
distinct population structure, and high incidence of local adaptation, which makes 
them a great target for studies exploring both the genomic basis of adaptation and 
the comparative significance of loci involved in adaptation within and between 
species. The Atlantic salmon (Salmo salar) populations of northern Europe are 
particularly interesting: they include the least disturbed populations left in the wild, 
belong to several distinct phylogeographic lineages, and exhibit astonishing natural 
variation in response to a salmon ectoparasite, Gyrodactylus salaris, ranging from 
near resistance in the landlocked and Baltic salmon to high susceptibility with 
devastating effect in Atlantic Ocean salmon. 

In this study, I used genome-wide approaches to further characterize the 
population structure and phylogeographic history of northern European Atlantic 
salmon (Chapters I-III). I explored the mechanisms behind the observed variation in 
the levels of susceptibility to G. salaris, by searching for genes playing a key role in 
the response to the parasite (Chapters I and II). Subsequently, I broadened my work 
to search for genomic regions involved in local adaptation in general. I examined 
whether the identified selection targets were similar over a broad geographic range 
and independent studies, and thus whether there are patterns of adaptive divergence 
that could be universal across Atlantic salmon populations (Chapter III). 

To achieve this, I used a large collection of Atlantic salmon samples and applied 
two SNP arrays of varying density to individual and pooled-per-population DNA 
samples. I looked for genomic signatures of directional selection in response to 
specific selective pressures, including G. salaris presence (Chapters I and II). I also 
looked for loci that may underly local adaptation in general by examining signatures 
of divergent directional selection among three geographically and genetically 
distinct sets of populations (Chapter III). To overcome the challenge of correlated 
environmental traits and the confounding effects of neutral evolution I used a careful 
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methodological strategy, taking into account the phylogeographic relationships of 
populations and considering only repeated lines of evidence over multiple analyses. 

Several genomic regions, genes, and single SNP outliers were identified in 
relation to the observed variation in susceptibility to G. salaris, and to other potential 
selective pressures. Analyses of gene functions and comparison to other research 
suggest that the detected loci under G. salaris-mediated selection are participating 
in control of both innate and acquired immune systems. As there were few genes 
involved uniquely in immunity among the parasite-related candidates, my results 
highlight that the immune response in Atlantic salmon may be mediated by a large 
number of multi-functional loci (Chapters I and II). When examining for locally 
adaptive candidates in general, seventeen haploblocks were repeatedly found as 
candidates for divergent selection within different population groups. Several of 
these genomic regions contained loci known to be of large effect and to be associated 
with life-history traits and, interestingly, immunity (Chapter III). 

Overall, this thesis provides evidence that diversification in Atlantic salmon is 
driven both by multiple loci acting in specific population groups, and by few large-
effect loci acting over a wide geographic range. Exploring the effect of these loci on 
salmon fitness would help to validate the importance of identified genes and help to 
assess the long-term viability of northern European salmon.  

KEYWORDS: Atlantic salmon, adaptive diversification, natural selection, 
Gyrodactylus salaris   
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TIIVISTELMÄ 

Jotta ymmärtäisimme luonnonpopulaatioiden evoluutio- ja populaatiodynamiikkaa, 
on ensisijaisen tärkeää selvittää fenotyyppisen vaihtelun sekä adaptaation takana 
olevat geneettiset mekanismit. Suunniteltaessa tehokkaita suojelutoimia on tärkeää 
tietää, ovatko maantieteellisesti eri etäisyyksillä ja alueilla esiintyvissä sopeumissa 
taustalla samat geneettiset rakenteet. Lisäksi on erityisen tärkeää ymmärtää, mikä 
osuus populaation historialla on. 

Lohi-kalat ovat levittäytyneet maantieteellisesti laajalle alueelle, populaatioiden 
rakenteet ovat erilaisia ja paikallinen adaptaatio eli sopeutuminen on huomattavaa. 
Nämä piirteet tekev ät lohesta hyvän tutkimuskohteen sekä sopeutumisen 
geneettisen taustan selvittämiseen että sopeumien taustalla olevien lokusten 
vertailuun, niin lajien sisällä kuin niiden välillä. Pohjois-Euroopan lohi (Salmo salar) 
on erityisen mielenkiintoisia useasta syystä: populaatiot muodostavat useita erillisiä 
fylogeografisia linjoja, ja osaa populaatioista ihmisen toiminta on häirinnyt vain 
vähän. Lisäksi, vasteena Gyrodactulus salaris -ulkoloiselle, Pohjois-Euroopan 
lohipolulaatioissa esiintyy hämmästyttävä määrä luonnollista muuntelua täysin 
vastustuskykyisistä sisävesien ja Baltian alueen populaatioista hyvin alttiisiin 
populaatioihin, joissa loisen vaikutukset ovat tuhoisia. 

Tässä tutkimuksessa käytin koko genomin kattavia menetelmiä selvittääkseni 
Pohjois-Euroopan lohien populaatiorakennetta sekä fylogeografista historiaa 
(Kappaleet I-III). Tutkin G. salaris -alttiuteen vaikuttavia mekanismeja etsimällä 
geenejä, jotka ovat keskeisiä loisten aiheuttamille vasteille (Kappaleet I ja II). 
Laajensin tutkimusta etsimällä genomista alueita, jotka yleisesti liittyvät paikalliseen 
sopeutumiseen. Tutkin, olivatko tunnistamani alueet samoja maantieteellisesti 
laajalla alueella ja olivatko erilliset itsenäiset tutkimukset havainneet samoja alueita, 
eli sisältävätkö eri lohipopulaatioissa sopeutumisen seurauksena eriytyneet alueet 
universaaleja piirteitä (Kappale III). 

Saavuttaakseni em. tavoitteet käytin laajaa lohinäytteiden kokoelmaa; sovelsin 
kahta eri tiheyksistä SNP-sirua DNA-näytteisiin, jotka oli otettu joko yksilöistä tai 
poolattu populaatioista. Etsin genomista merkkejä suuntaavasta valinnasta vasteena 
tiettyihin valintapaineisiin, mukaanlukien G. salaris -loisen läsnäolo (Kappaleet I ja 
II). Lisäksi etsin lokuksia, jotka voivat yleisesti olla paikallisen adaptaation takana; 
etsin suuntaavan valinnan merkkejä kolmesta maantieteellisesti ja geneettisesti 
erillisestä populaatiosta (Kappale III). Hallitakseni korreloivia ympäristötekijöitä 
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sekä neutraalin evoluution haittaavia vaikutuksia käytin analysoinnissa tarkkaa 
metodologista strategiaa: otin huomioon populaatioiden fylogeografiset suhteet sekä 
käsittelin ainoastaan tuloksia, jotka toistuivat eri analyyseissä. 

Tunnistin useita genomin alueita, geenejä sekä yksittäisiä poikkeavia SNP:tä, 
jotka liittyivät havaittuun alttiuteen G. salaris -loiselle sekä myös muihin mah-
dollisiin valintapaineisiin. Geenien toiminnan analysointi sekä vertailu aikaisempaan 
tutkimukseen osoitti, että nyt tunnistetut G. salaris -valintapaineen alaiset lokukset 
osallistuvat sekä sisäsyntyiseen että hankittuun immuniteettiin. Koska vain 
muutamat näistä kandidaattigeeneistä liittyivät yksinomaan immuniteettiin, 
tulokseni korostavat, että lohen immuunivaste saattaa olla usean monitoimisen 
lokuksen aikaansaama (Kappaleet I ja II). Vertaillessani yleisesti paikalliseen 
sopeutumiseen liittyviä kandidaattigeenejä tunnistin toistuvasti kaikkiaan 
seitsemäntoista haploblokkia eri populaatioissa. Useat näistä genomin alueista 
sisälsivät lokuksia, joiden tiedetään olevan vaikutukseltaan merkittäviä sekä liityvän 
niin lajin elinhistoriaan kuin, kiinnostavaa kyllä, immuniteettiin (Kappale III). 

Kokonaisuudessaan tämä väitöstyö osoittaa, että lohen erilaistuminen on sekä 
useiden erilaisten, yksittäisissä populaatioissa vaikuttavien lokuksien että muutaman 
suurella maantieteellisellä alueella vaikuttavan lokuksen tulos. Tutkimalla näiden 
lokuksien vaikutusta lohen elinkelpoisuuteen voidaan varmistaa tunnistettujen 
geenien tärkeys sekä arvioida Pohjois-Euroopan lohien elinkelpoisuutta pitkällä 
aikavälillä. 

ASIASANAT: Lohi, sopeutumisesta johtuva erilaistuminen, luonnonvalinta, 
Gyrodactylus salaris  
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1 Introduction 

1.1 Overview 
Identifying the genomic architecture of phenotypic variation and local adaptation 
across populations and species is a prime focus of evolutionary biology. This 
involves questions such as what types of genetic variation underly traits of interest, 
how this genetic variation is distributed across the genome, and whether it differs 
among populations across time and space. Identifying the molecular basis of 
adaptive and/or phenotypic divergence is an essential step in understanding how 
species adapt to their environment and, consequently, in predicting population 
dynamics in changing environments and in designing effective management 
practices (Bekkevold et al., 2020; Shaw & Etterson, 2012; Waldvogel et al., 2020). 
From a broader evolutionary perspective, it is also essential to understand if the 
same genomic architecture underlies adaptation across different geographic scales 
and regions, what role the history of population demography plays, and what is the 
relative impact of loci of small and large effect on evolutionary processes (Deagle 
et al., 2013; Rissler, 2016; Timpson et al., 2018). 

The first step in identifying the molecular basis of adaptive and/or phenotypic 
divergence is to detect genes that are evolving under selection pressure, by 
distinguishing them from genes evolving only under background neutral genomic 
processes. 

1.2 Detecting directional selection 

1.2.1 Theoretical basis of tests for directional selection 
The availability of large genomic resources that have flourished in the last 15-20 
years has made it possible to use so-called ‘genome scans’ to study genetic variation 
across entire genomes in a search for regions subject to natural selection. Signatures 
that selection leaves in genomes depend on selection type, strength, and time frame 
(Oleksyk et al., 2010). For instance, strong positive selection leads to increased 
frequency or even fixation of beneficial alleles in a population, with simultaneous 
reduction of standing genetic variation in linked neutral sites (processes known as 
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‘selective sweep’ and ‘genetic hitchhiking’) (Manel et al., 2016; Nielsen et al., 
2005). If selection pressure differs across populations, the genetic divergence 
between the populations would increase at selected loci and linked neutral loci, 
compared to the non-selected loci. 

Several approaches have been used to identify signals of genetic divergence and 
potential selection.  The ‘outlier’ methods are based on detecting loci with elevated 
interpopulation differentiation (estimated using FST or similar) when compared to 
an empirical or neutral distribution, and they are widely used to infer local 
adaptation in wild populations and non-model species (Oleksyk et al., 2010). 
However, the results can be difficult to interpret, as those methods give no 
information as to which environmental or life history constraints ‘outlier’ loci are 
related to. Another main type of genome scan methods utilises prior knowledge 
about environmental or phenotypic characteristics distinguishing the populations, 
and is based on the assumption that allele frequencies of selected loci should be 
unusually correlated with the environmental variable exerting selective pressure 
(Coop et al., 2010). 

Even though the mentioned approaches are likely to miss weakly selected loci 
(Whitlock & Lotterhos, 2015), they are efficient in detecting strong selection, and 
are widely used to infer selection and adaptation in domestic and wild populations 
(Haasl & Payseur, 2016), including in salmonid fishes (Elmer, 2016). 

1.2.2 Methods to assess candidate loci validity 
Genome scan methods aim at separating footprints of positive selection from 
baseline variation shaped by neutral processes such as gene flow, inbreeding, and 
genetic drift (Gautier, 2015). These mentioned demographic processes can affect 
allele frequencies in a manner similar to natural selection, and distinguishing 
between the two can be quite challenging, especially in populations with small 
effective population size (Oleksyk et al., 2010). Apart from demography, footprints 
of directional selection can be mimicked by other selective forces acting on a 
genomic region, e.g. balancing selection in regions of low recombination (Matthey-
Doret & Whitlock, 2019; Weigand & Leese, 2018). Moreover, in populations 
varying in their standing genetic variation the same selective pressure may result in 
different loci being associated with the adaptive phenotype, which may complicate 
the detection of selected loci in populations with different phylogeographic histories 
(Przeworski et al., 2005). Another challenge in inferring the genomic basis of local 
adaptation to a particular agent of selection originates from correlated 
environmental pressures commonly occurring in wild populations. For example, 
variation in pathogen communities affecting the hosts is often associated with 
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variation in food regimes and habitat, which complicates identification of parasite-
specific genetic divergence (Karvonen & Seehausen, 2012). 

Due to such challenges, and given the fact that large datasets lead to a large 
number of comparisons being performed in a single analysis, genome scans for 
selection may result in a substantial number of false positives (Weigand & Leese, 
2018). A widely used tactic to strengthen the validity of detected loci is to consider 
only overlapping results after using several alternative methods of loci detection, 
and/or analysing several independent datasets (Hoban et al., 2016; Rellstab et al., 
2015). Loci detected with parallel and independent lines of evidence are less prone 
to type I error and are more likely to be truly important mediators of adaptive 
response. One important step in candidate loci validation is assessing the 
repeatability of results over multiple independent studies of the same populations, 
and of different populations across varying phylogeographic histories. The latter can 
improve our understanding of global evolutionary dynamics, for instance of the 
genetic architecture behind adaptation and diversification across a broad geographic 
scale  (Turner et al., 2018; Yeaman et al., 2018). 

In Atlantic salmon (Salmo salar), while a few loci have been repeatedly 
identified as underlying life-history variation or local adaptation in independent 
studies (Ayllon et al., 2015; Barson et al., 2015; Bourret et al., 2013; Pritchard et 
al., 2018), the majority of candidates remain unique to a single study. It is therefore 
paramount to design further research in a manner that would maximise the chance 
to detect new and validate already identified loci of adaptive importance, in order to 
infer their evolutionary significance at the scale of the whole species. 

1.3 Atlantic salmon (Salmo salar) as a study 
system 

1.3.1 Overview 
Salmonid fishes, including Atlantic salmon, are species with pronounced genetic 
population structuring and widespread local adaptations, which arise from the 
precise homing behaviour that drives fish to return to their natal river for spawning, 
as well as from geographic isolation in different water basins (rev. by Fraser et al., 
2011). Population genetic structure is usually temporally stable (Ozerov et al., 2013; 
Palstra & Ruzzante, 2010; Primmer, 2011) and local adaptation is prominent at 
various geographic scales, ranging from hundreds of kilometres between rivers to 
just a few kilometres between single tributaries (Fraser et al., 2011; Primmer, 2011). 
Salmonids exhibit great ecological, physiological, and life history diversity, and 
local adaptation can arise as quickly as in a few generations (rev. in Primmer 2011). 
This makes salmonids the perfect target for studies looking for the genetic basis of 
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local adaptation and aiming to answer broad evolutionary questions such as what 
genomic architecture underlies adaptive divergence, and parallel and convergent 
evolution.  

Atlantic salmon (Salmo salar) is found in northern Atlantic Ocean and rivers 
flowing into it,  and is a socially, economically and culturally important species with 
high value for commercial and recreational fishing, aquaculture, and local 
communities (Myrvold et al., 2019). Understanding its biology and the genomics 
behind its local adaptation is of utmost importance for species management and 
conservation, especially given the alarming global decline in wild salmon numbers, 
and the fact that this species is endangered or extinct in certain parts of its range 
(NASCO Report, 2019). 

In my thesis I focus on wild Atlantic salmon from northeastern Europe, and use 
a large collection of wild Atlantic salmon samples exceptional both in the number 
of populations studied and in the geographic range covered, as it includes subarctic 
stocks from the Barents and White Seas, Baltic Sea, and freshwater Ladoga and 
Onega lakes. This region contains the last relatively undisturbed rivers of the 
Russian Northwest and is characterised by different post-glacial histories and a 
variety of potentially strong selective pressures, which makes it a unique system to 
study natural adaptation processes. 

1.3.2 Phylogeographic history of northern European Atlantic 
salmon 

The modern basins of the Baltic, White and Barents Seas and Russian landlocked 
lakes were formed gradually, following the retreat of the Scandinavian Ice Sheet 
after the Last Glacial Maximum (~20,000 years ago), and were subsequently 
colonized or re-colonized at different times by salmon from different phylogenetic 
lineages (Patton et al., 2017; Stroeven et al., 2016).  Lake Onega formed first, 
followed by Lake Ladoga and later by the Baltic Sea (Björck, 1995; Saarnisto & 
Saarinen, 2001). These basins were colonized by individuals from an eastern 
freshwater refugium that was isolated from an Atlantic Ocean influence for at least 
130,000 years, with some additional gene flow from the eastern Atlantic Ocean into 
the Baltic Sea (Koljonen et al., 1999; Kudersky et al., 2003; Kuusela et al., 2009; 
Säisä et al., 2005, Figure1). The Barents and White Seas areas were deglaciated 
later, and were colonized by salmon from the eastern Barents Sea refugium and the 
Atlantic Ocean (Asplund et al., 2004; Bourret, Kent, et al., 2013; Tonteri et al., 
2005). This history resulted in strong genetic divergence between the Baltic and the 
Barents & White Seas lineages (e.g. Rougemont & Bernatchez, 2018), as well as in 
high divergence between lakes Onega and Ladoga due to their prolonged isolation 
(Ozerov et al., 2010; Tonteri et al., 2007). 
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Figure 1.  Main directions of post-glacial colonization for Atlantic salmon in northern Europe. Solid 

arrows indicate consensus colonization directions, while dashed lines show routes 
hypothesized only by some studies. Colours highlight different areas of salmon origin. 
The graph does not represent all existing hypotheses, but only those discussed in the 
thesis. Numbers indicate the approximate order in which colonization events took 
place. 

The genetic structure and phylogeographic history of the Barents & White Seas 
lineage are particularly interesting, not least because these last relatively 
undisturbed Atlantic salmon populations in Europe face increasing threats from 
changing environment and growing anthropogenic pressure (Ozerov et al., 2012). 
There is a clear phylogeographic division between salmon rivers opening into the 
Barents Sea and those opening into the White Sea (Asplund et al., 2004; Ozerov et 
al., 2017; Tonteri et al., 2009; Wennevik et al., 2019). Most studies agree that the 
western Barents Sea (northern shore of the Kola Peninsula) was colonized by 
salmon from the eastern Atlantic Ocean (Iberian peninsula, North Sea) (Consuegra 
et al., 2002; Säisä et al., 2005; Tonteri et al., 2005, 2009), with influences from the 
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western Atlantic Ocean (North American coast; Asplund et al., 2004; Bradbury et 
al., 2015; Makhrov et al., 2005). 

The phylogeographic structure of the salmon populations in rivers opening into 
the White Sea is not so clear cut. Many studies identify southern and eastern Kola 
Peninsula salmon as one group distinct from the rest of the White Sea populations 
(Asplund et al., 2004; Tonteri et al., 2009), but others separate Kola rivers into 
multiple separate clusters within the White Sea group (Ozerov et al., 2017). Most 
studies agree that White Sea populations were re-colonized from a glacial refugium 
in the Eastern Barents Sea (Asplund et al., 2004; Kazakov & Titov, 1991; Tonteri 
et al., 2005, 2009). However, some studies suggest that additional refugia, such as 
eastern Atlantic Ocean (Asplund et al., 2004; Makhrov et al., 2005), western 
Atlantic Ocean (Makhrov et al., 2005), and the Baltic Sea (Kazakov & Titov, 1991; 
Makhrov et al., 2005) might have participated in recolonization of the White Sea.  

Altogether, while there is a consensus about major directions of salmon 
recolonization in the region, additional research is required to reach a consensus 
about finer genetic structure and phylogeographic history of the White Sea salmon. 

1.3.3 Threat posed by Gyrodactylus salaris 
Northeastern European salmon populations vary in a number of abiotic and biotic 
traits, but one of the most striking differences is the response to a potentially very 
dangerous parasite, Gyrodactylus salaris. G. salaris is a small monogenean 
flatworm that feeds on the skin and mucus of salmon while the fish is in the 
freshwater habitat (river or lake). 

Baltic lineage Atlantic salmon naturally coexists with the parasite: low-level 
infections are observed in only 1% of fish from lakes Onega and Ladoga, and in 
20% of fish from rivers draining to the Baltic Sea (Kuusela et al., 2009); 
additionally, the parasite has little or no negative effect on the infected fish (Bakke 
et al., 1990). These low levels of susceptibility are thought to be a result of a long 
co-evolutionary history dating back to when salmon and G. salaris co-occurred in 
the eastern freshwater refugium (~130,000 years ago) (Kudersky et al., 2003; 
Kuusela et al., 2007, 2009). Salmon from rivers draining to the Atlantic Ocean, 
including the Barents and White Seas, are not exposed to G. salaris naturally. 
However, if the parasite is introduced, the fish mortality rates reach up to 95% 
(Johnsen & Jensen, 1991). In 1970s, the parasite was accidentally introduced to 
numerous populations in Norway and to one location in the White Sea via stocking 
of infected Baltic salmon, which caused the subsequent annihilation of these stocks 
(rev. in Harris et al., 2011).  

Despite the potentially devastating effect of G. salaris and the everexisting 
danger of further spread of the parasite to the susceptible areas (NASCO, 2018), the 



Ksenia J. Zueva 

16 

biological and genetic mechanisms of the response of S. salar to G. salaris are not 
fully understood. One study has estimated the heritability of survival after G. salaris 
infection in challenge-tests (h2 = 0.32 ± 0.1 on the liability scale) (Salte et al., 2010), 
a few studies have examined differential gene expression profiles in challenge 
experiments (Gilbey et al., 2003; Kania et al., 2010; Matejusová et al., 2006), one 
study using 39 microsatellites markers identified several quantitative trait loci 
(QTL) influencing parasite resistance (Gilbey et al., 2006), and one study looked for 
an association between immune-relevant microsatellites under elevated selection 
pressure in northern Europe and G. salaris-induced mortality rates, but the authors 
did not find a significant correlation (Tonteri et al., 2010). While there is a 
continuous discussion about possibilities for selective breeding for resistance and 
about implications of ongoing natural selection in affected Norwegian rivers 
(Karlsson et al., 2020), the exact genomic basis of the differential immune response 
exhibited by salmon of different origin when exposed to G. salaris remains unclear. 
 
Parasites are one of the major selective forces acting on host populations (Eizaguirre 
& Lenz, 2010; Wilson et al., 2019) and driving divergent evolution and adaptive 
radiation (Karvonen & Seehausen, 2012). Due to the importance of Atlantic salmon 
in aquaculture and commercial fisheries, the molecular basis of its response to 
various hatchery pathogens has been extensively studied (e.g. Holm et al., 2017; 
Moen et al., 2007, 2015; Reyes-Lopez et al., 2015). Studies of the genetic basis of 
co-adaptation between wild salmon and its pathogens, on the other hand, are scarce. 
However, thanks to the strength of selective pressure that G. salaris exerts, looking 
for signals of parasite-mediated directional selection at the genome scale is a 
promising approach to identify the genetic basis of resistance/tolerance to this 
parasite. 

1.3.4 Regional variation in other environmental variables 
Rivers, lakes and marine environments inhabited by Atlantic salmon populations 
in northern Europe also vary in a number of abiotic and biotic features that 
potentially exert strong selection on populations. 

Most obviously, the salinity of the basins that salmon use for their feeding 
migrations differs drastically, ranging from the truly marine Barents and White 
Seas, to the brackish Baltic Sea, and the freshwater landlocked lakes. This is 
reflected in variations in fish physiology and the smolting process (McCormick et 
al., 2019; Nilsen et al., 2003, 2008), and differences in diet (Jacobsen & Jacobsen, 
2001; Salminen et al., 2001). Water temperature regimes also vary among the 
freshwater and marine environments used by northeastern European salmon; and 
given that temperature is known to affect, among other things, metabolism and 
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development (Brown et al., 2004) and overall parasite diversity (Adlard et al., 2015), 
it is also likely to be a strong selective force. In addition, the Barents and White Sea 
salmon exhibit regional variations in average smolt age, age of sexual maturity, and 
timing of the return spawning run (Ponomareva, 2007; Potutkin et al., 2007). 

Wild salmon populations are expected to be under multiple simultaneous 
selection pressures, and it may be challenging to single out the genomic basis of the 
response to one particular selective element. Northeastern European salmon present 
a great opportunity to overcome this obstacle and isolate the genomic basis of 
differential response to G. salaris, by comparing signals of selection present in 
populations from different parts of the region and belonging to different lineages. 
From a broader perspective, the same approach allows to explore whether the 
emerging patterns are consistent with parallel or divergent evolution and to explore 
how universal the genetic architecture behind adaptive diversification is. It would 
also facilitate the development of genetic resources for this species, and increase our 
understanding of the genetic-ecological interactions vital for stock management and 
balance between wild and aquaculture salmon. 
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2 Aims of the Thesis 

This dissertation is organized around four different aims: 

1. Identifying the genomic basis of the remarkable adaptation gradient 
exhibited by Atlantic salmon populations to the parasite 
Gyrodactylus salaris, while accounting for the confounding effects of 
genetic drift, phylogeographic history and correlated environmental factors 
(Сhapters I and II) 

2. Identifying the genomic signatures of directional selection exerted by water 
salinity, temperature, and other abiotic factors varying among the studied 
populations (Chapters I and III) 

3. Examining the repeatability of genomic searches for signals of adaptive 
divergence: loci emerging as locally adaptive across different geographic 
scales, and across independent studies – are they the same? (Chapter III) 

4. Characterizing population genetic structure in relation to existing 
hypotheses of phylogeographic history of salmon populations from 
northeastern Europe (Chapters I, II, and III) 
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3 Materials and Methods 

3.1 Sampling and molecular techniques 
Samples used throughout this thesis were primarily fin clips from wild juvenile salmon 
caught by electrofishing between 1996 and 2008. The Näätämö river and Teno river 
system samples were scales collected from adult fish during spawning migration 
(Aykanat et al., 2015; Pritchard et al., 2016). Altogether, 54 sampling locations and 
more than 2700 individuals were analysed across all Chapters (Figure 2). Throughout 
the thesis, I use the terms ‘population’, ‘river’, and ‘sampling location’ 
interchangeably. 

Specifics of the genomic DNA extraction and sample preparation for genotyping 
and allelotyping are described in detail in the respective chapters. In Chapter I, 472 
individual samples from 12 salmon populations were genotyped with the Illumina 
iSelect SNP array that assayed 6176 SNP markers (as in Bourret et al., 2013). This 
allowed moderate coverage of 1 SNP per every 500 kb of the genome on average. In 
Chapters II and III, I pooled equal amounts of DNA from all available individuals on 
a per-river basis and applied an allelotyping approach to estimate population allele 
frequencies for each SNP, which enabled a substantial increase in the number of 
studied populations. Population pools were allelotyped using a custom 220,000 SNP 
Affymetrix Axiom array (unpublished), which significantly improved the density of 
SNP coverage, with 1 SNP per every 15kb of salmon genome on average. 

The quality control and data pre-processing steps are detailed in respective 
chapters. Briefly, for individual genotype data in Chapter I these steps included 
eliminating SNPs with > 10% missing data and with minor allele frequency (MAF) < 
0.05 across all populations. For the allelotyping data in Chapters II and III I corrected 
the relative frequency of B allele to account for different relative intensities of the A 
and B allele probe signals among different SNPs, controlled for high noise among 
pooling replicates, and removed SNPs with technical genotyping problems and SNPs 
with MAF across all populations < 0.05. 

Unless stated otherwise, all data formatting, quality control, and statistical analyses 
were performed either in R environment (R Core Team, 2019) or using Unix text 
processing command line tools. 
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Figure 2.  Map of the sampling locations. Colours represent different levels of susceptibility to 

G. salaris, while shapes reflect the major phylogeographic lineages. The three small dots 
next to location name represent Chapters I to III, and usage of sampling locations in a 
given chapter is shown with grey colour. 
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3.2 Characterisation of population genetic structure 
Chapter I aims at identifying the genetic basis of differences in parasite response in 
salmon from three distinct geographic regions: Atlantic Ocean (the Barents and White 
Seas), the Baltic Sea, and freshwater lakes. To  evaluate the amount of genetic structure 
present at the population and region levels I used two traditional methods implemented 
in the Arlequin3.5 software (Excoffier & Lischer, 2010). First, I estimated the pairwise 
FST (Weir & Cockerham, 1984), to evaluate the genetic differentiation among all 
studied populations. Further, I used the differential hierarchical analysis of molecular 
variance (AMOVA) (Excoffier et al., 1992) to confirm that overall population genetic 
structure followed geographic regions. 

In Chapters II and III I explored regional population genetic structure using 
principal component analysis (PCA) of the population allele frequencies, implemented 
in the ‘stats’ package and the PCAdapt 4.1.0. (Luu et al., 2017) package within the R-
environment (R Core Team, 2019). PCA can be applied to pooled data, and the top 
principal components (PCs) are viewed as continuous axes of variation that reflect 
genetic variation due to ancestry in the sample. Contrary to AMOVA, PCA does not 
require any grouping of populations prior to the analysis, and this approach is widely 
used to identify and adjust for relatedness among sample individuals and/or 
populations. 

In Chapter III I further  investigated the phylogeographic history of the 
northeastern European salmon populations, using the TreeMix software (Pickrell & 
Pritchard, 2012). TreeMix infers patterns of population splits and mixing events in the 
history of the given population set, and represents the ancestral relationship between 
populations as a bifurcating graph with cross-connections indicating mixing events. 

3.3 Genomic signatures of directional selection and 
adaptation 

The various approaches that were used in this dissertation to detect signals of 
directional selection are summarised in Table 1. The approaches differ in the way they 
detect selection signals. They include methods based on detecting reduced genetic 
diversity, on detecting elevated population differentiation, or testing for environmental 
association of the allele frequencies. Those approaches also differ by whether or not 
SNP position along the genome is taken into consideration. 
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Table 1. Overview of the methods used in the thesis to detect signatures of directional selection 

Method, software & reference Test 
statistics Method details 

Chapters 
in which is 

used 

METHODS BASED ON REDUCED DIVERSITY 

Kernel-smoothing moving average 
(as in Hohenlohe et al. 2010) 

Reduced 
denetic 
diversity (HE) 

Identifies groups of adjacent 
markers showing selection 
signature 

I 

METHODS BASED ON INCREASED DIVERGENCE 

Kernel-smoothing moving average 
(as in Hohenlohe et al. 2010) 

Elevated FST Identifies groups of adjacent 
markers showing selection 
signature 

I 

Arlequin 3.5.0 
(Excoffier & Lischer, 2010) 

FCT, p-value Accounts for hierarchical 
population structure, user defines 
population groups 

I 

Bayenv 2.0 
(Günther & Coop, 2013) 
 
BayPass 2.1 (Gautier 2015) 

Absolute 
XTX   

Account for neutral population 
structure by computing variance-
covariance matrix of population 
allele frequencies 

II 
 
 

III 

BayeScan 2.1 
(Foll & Gaggiotti, 2008) 
 
BayScEnv 1.1 
(de Villemereuil & Gaggiotti, 2015) 

Alpha 
parameter,  
qvalue 

Estimate the posterior probability 
of a given locus to be under 
selection by defining two 
alternative models, one that 
includes the effect of selection 
and another that excludes it 

II 
 
 

III 

PCAdapt 
(Luu et al. 2017) 

Mahalanobis 
distances, 
p-value 

Performs PCA and tests for 
outliers based on the correlations 
between genetic variation and the 
first K principal components 

III 

ENVIRONMENTAL ASSOCIATION 

LFMM 
(Frichot et al., 2013) 

z-score, 
p-value 

Latent factor mixed model. 
Correlations between 
environmental variables and allele 
frequencies are estimated 
simultaneously with inferring 
population structure 

I, III 

BayScEnv 1.1 
(de Villemereuil & Gaggiotti, 2015) 

g, qvalue Tests if values of FST increase 
with environmental differentiation, 
model allows to compute FST for 
each population 

III 

BayPass 2.1 
(Gautier 2015) 
 

Absolute 
Pearson’s 
correlation 
coefficient, r 

Annotates footprints of selection 
by quantifying their association 
with population-specific covariates 

III 
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In Chapter I I applied the genome scan approach based on hitchhiking mapping, 
looking for groups of adjacent SNPs that are characterised by reduced diversity within 
and increased divergence between studied populations. As opposed to methods 
focusing on single SNP outliers which are used further in Chapters I – III, this 
approach takes into account the physical location of SNPs along the genome and allows 
to identify groups of adjacent markers that deviate from the chromosome-wide average 
levels of the statistic being examined. I used locus-specific expected heterozygosity 
(HE), calculated using PowerMarker 3.25 (Liu & Muse, 2005), as a measure of genetic 
diversity (GD); and locus-specific FST (Weir & Cockerham, 1984) calculated using 
Arlequin 3.5. as a measure of inter-population divergence. Smoothed chromosome-
wide distributions of GD and FST were generated using the “locpoly” function included 
in the KernSmooth R-package (Wand & Jones, 1995). Briefly, the contribution of the 
FST or GD statistics to the kernel-smoothed average was estimated using local 
polynomials and a bandwidth of the half-length of the estimated linkage disequilibrium 
in the dataset. 10,000 permutations were used to test whether the observed smoothed 
curves were significantly (P ≤ 0.01) higher or lower than expected by chance within a 
local genome region, and such regions were considered to be under selection. 
 
Throughout Chapters I – III several ‘single-locus outlier’ methods, based on detecting 
SNPs that were extremely differentiated between populations compared to the rest of 
genome, were used. 

Arlequin 3.5 was used in Chapter I to detect signals of selection on a regional 
scale, by estimating locus-specific coefficient of differentiation among groups of 
populations (FCT). The hierarchical island-model implemented in the program leads to 
a reduction in the number of potential false positives and is advantageous when some 
of the sampled populations share recent common ancestry. Prior to analysis the user 
defines the population groups, and the software uses coalescent simulations to estimate 
the p-values of locus-specific FCT-statistics, conditioned on observed levels of 
heterozygosity. 

Bayenv 2.0 (Günther & Coop, 2013), used in Chapter II, calculates a per-SNP 
population differentiation statistics XTX, which accounts for underlying population 
structure. In contrast to the user-defined hierarchical population relationships in 
Arlequin 3.5, Bayenv 2.0 models neutral population structure directly from allele 
frequencies by estimating a genome-wide population covariance matrix. Similar to the 
well-known FST, SNPs with elevated XTX are considered to be candidates for 
directional local selection. A similar approach was chosen in Chapter III, but I 
estimated XTX using a different software, BayPass 2.1 (Gautier, 2015), which is more 
user-friendly and may provide improved estimation accuracy of the population 
covariance matrix. 
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BayeScan 2.1 (Foll & Gaggiotti, 2008), as well as its extension, BayScEnv 1.1 (de 
Villemereuil & Gaggiotti, 2015) were used in Chapters II and III respectively, as 
alternative approaches to outlier detection. These methods use a Bayesian approach 
assuming an island model of migration to separate FST coefficients into a population-
specific component, shared by all loci and a locus-specific component, shared by all 
populations. Departure from neutrality at a given locus is assumed when the locus-
specific component is necessary to explain the observed pattern of diversity. This leads 
to two alternative models for each locus, one that includes effect of selection, and one 
that does not. The software then implements a MCMC algorithm to estimate the 
posterior probability of these models. The method has been suggested to be robust 
when dealing with complex demographic scenarios for neutral genetic differentiation 
(Foll & Gaggiotti, 2008). 

PCAdapt 4.1.0 (Luu et al., 2017), used in Chapter III, provided yet another take 
on identifying loci under selection. PCAdapt assumes that markers excessively related 
to population structure are linked to candidate locally adaptive loci. First, a PCA is 
performed on the centered and scaled genotype matrix. Second, test statistics and p-
values are computed based on the correlations between SNPs and the first K principal 
components (PCs), though it is also possible to perform one genome scan for each 
principal component. The approach can handle data sets containing admixed 
individuals, does not require a priori grouping of the samples, and is most powerful in 
scenarios of population divergence and range expansion. 

 
Another widely applied type of genome-wide approaches looking for signatures of 
directional selection is environmental association methods, which test the association 
between allele frequencies and environmental variables. 

The LFMM (Frichot et al., 2013) method was used in Chapters I and III.  Latent 
factor mixed models are statistical regression models to test associations between allele 
frequencies and variables representing environmental or phenotypic traits, and include 
unobserved variables, called latent factors, that correct the model for confounding 
effects due to population structure and other hidden causes. LFMM software is 
effective in accounting for random effects due to population history and isolation-by-
distance patterns, and does not require a control data set of a priori neutral loci. 

BayScEnv 1.1 and BayPass 2.1, used in Chapter III, were already mentioned 
above. Apart from performing ‘outlier analysis’, these Bayesian approaches also allow 
identification of SNP-specific effects driven by environmental variables. BayPass (as 
well as LFMM) takes into account allele frequency correlations across populations to 
minimize the possible spatial correlations in allele frequencies. BayeScEnv, on the 
other hand, assumes that all populations are independent (de Villemereuil & Gaggiotti, 
2015). 
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The environmental variables of interest were estimates of G. salaris - induced 
mortality rate, surface salinity of the basin, mean surface water temperature, and 
population coordinates (Chapter I); as well as upstream catchment area (Chapter III). 
 
These various methods outperform each other under different scenarios of isolation by 
distance, hierarchical population structures, and situations when an environmental 
selective gradient is confounded with population structure. 

3.4 Methodological approaches to assess the 
validity of detected loci 

I used three major techniques to strengthen the validity of detected candidate loci and 
genomic regions.  

The first approach is to perform independent tests for selection and/or 
environmental association using various statistical methods that utilise and bring out 
different aspects of the data, and to subsequently accept only overlapping results. I 
have used this approach in all three chapters (see Chapters I-III, and section 3.3. for 
details on the used statistical approaches). 

The second approach is to use the same statistical method to test multiple 
population groups or population comparisons that are similar in terms of underlying 
traits or structure composition; and to subsequently compare the results for overlap. 
For example, in Chapter I I looked for genomic regions with elevated FST between 
populations from the Barents Sea and freshwater lakes Onega and Ladoga (design 2, 
see original publication). Six similar, but independent pair-wise comparisons were 
made, in which one population belonged to the Barents Sea, and the other to the lake 
basin. A given genomic region was considered to be under selection only when 
elevated FST was observed in at least two comparisons out of six, and only if both 
Ladoga and Onega populations were represented in the significant comparisons. This 
reduced the chance that observed signals of selections were due to high genetic drift in 
a single landlocked population. I applied a similar logic also in Chapter III, where I 
performed the identical analyses independently for populations from different 
geographic regions, and candidate locally-selected genome regions shared by at least 
two out of three geographic regions were discussed further. 

Lastly, in order to disentangle the effects of correlated environmental traits, 
population structure, and neutral genomic processes, I used the following logic: I 
performed several tests with populations from varying and often contrasting 
environments and phylogeographic histories, and then selected loci detected as outliers 
in some of the performed tests, but absent in the others. For example, in Chapter I 
(design 4) I tried to disentangle the selective pressure due to the presence of G. salaris 
parasite from the pressure due to varying salinity levels. I identified highly 
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differentiated SNPs in the pairwise comparisons between three groups of populations: 
Atlantic Ocean (Barents and White Seas) vs. landlocked lakes, Atlantic Ocean vs. 
Baltic Sea, Baltic Sea vs. landlocked lakes. The Atlantic group is susceptible to 
G. salaris, while populations from the Baltic Sea and lakes can, to some extent, tolerate 
the pathogen. Therefore, only outliers common for both Atlantic Ocean vs. lakes and 
Atlantic Ocean vs. Baltic Sea tests, but not found in the Baltic Sea vs. lakes 
comparison, were considered to be the result of parasite-driven selection occurring in 
landlocked and Baltic populations (rather than due to salinity). The same logic was 
applied in Chapter II that also aimed at identifying signatures of parasite-driven 
selection. The final set of candidate genes was obtained by identifying genes that were 
detected by both Atlantic Ocean vs. Ladoga lake and Atlantic Ocean vs. Onega lake 
comparisons, but that were not present among outliers in the Ladoga lake vs. Onega 
lake test. Since there has been a prolonged isolation of the landlocked lakes from each 
other, this approach allowed me to exclude genomic regions that are likely to exhibit 
elevated levels of differentiation due to genetic drift rather than directional selection. 

3.5 Functional annotation of detected loci and 
related analyses 

Over the duration of this thesis the genomic resources available for Atlantic salmon 
have improved drastically, which was reflected in the methods used for functional 
annotation of the detected candidate loci and related analyses. 

In Chapter I, SNPs were annotated to specific gene ontology (GO) terms by 
performing tblastx and blastx searches (Camacho et al., 2009) of SNP flanking regions 
against the nucleotide and protein NCBI databases (www.ncbi.nlm.nih.gov), and 
consequent retrieval of the corresponding human GO identifiers from the GO database 
(www.geneontology.org, all resources accessed on 3.04.2012). 

By the time of Chapters II and III, the salmon genome build (ICSASG_v2, the 
latest as of 09.2020 RefSeq accession number: GCF_000233375.1) had become 
publicly available, along with the NCBI Salmo salar Annotation Release 100 
(https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Salmo_salar/100/). I mapped 
SNPs to the respective genes with the help of the closest function in BEDTools 2.29.0 
software (Quinlan & Hall, 2010); a gene was assigned with a SNP if the SNP’s position 
in the genome fell within the gene margins (Chapter II), or if it was either overlapping 
(SNP within gene margins) or the closest downstream protein coding gene on either 
strand (Chapter III). To get gene and GO annotations for the ICSASG_v2 build I have 
used the Ssa.RefSeq.db R package (Grammes, 2017) (Chapter II) or the files of the 
NCBI Salmo salar Annotation Release 100 directly (Chapter III). 

In Chapter III I had access to a dataset of individually genotyped fish from the 
Teno river system (combined data from Barson et al., 2015; Pritchard et al., 2016, 
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2018) and thus was able to additionally assess the possibility that the detected SNPs of 
interest occurred within the same haploblock, defined as a physically contiguous set of 
SNPs exceeding a specified linkage disequilibrium threshold. I used 883 individually 
genotyped fish to infer haploblocks for all SNPs used in Chapter III, using PLINK 1.96 
(Chang et al., 2015) and following the procedure detailed in Pritchard et al. (2018). 
Each haploblock that included one of the retained SNPs was annotated with the 
overlapping NCBI coding genes or documented for Atlantic salmon structural variants 
(Bertolotti et al., 2020) using the intersect function of BEDTools 2.29.0. 
 
To investigate whether the detected sets of candidate SNPs (Chapter I) and genes 
(Chapter II) were significantly enriched or depleted for particular GO terms, I 
performed a GO enrichment analysis, using the Cytoscape 2.8.3. (Shannon et al., 2003) 
software and its plugin BiNGO 2.44 (Maere et al., 2005) in Chapter I, and the 
weight01 algorithm in the topGO package in R (Alexa & Rahnenfuhrer, 2016) in 
Chapter II. For the salinity- and parasite-related SNPs identified in Chapter I, I also 
assessed the functional relatedness of GO terms included in both lists of outliers, with 
the help of another Cytoscape 2.8.3. plugin, ClueGo1.7.1 (Bindea et al., 2009). 
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4 Results and Discussion 

4.1 Population structure and phylogeographic 
history of northern European Atlantic salmon 

Both 7K (Chapter I) and 220K (Chapters II and III) SNP chips inferred a similar 
population genetic structure, which is largely in concordance with phylogeographic 
patterns identified previously. 
 
First, patterns of genetic diversity and divergence were consistent across the different 
analyses. The diversity was the lowest, and inter-population divergence the highest, 
for the Onega and Ladoga lakes, followed by the Baltic Sea, the White Sea and the 
Barents Sea. This observation is in line with the suggested patterns of prolonged 
population isolation of Onega and Ladoga (Ozerov et al., 2010; Tonteri et al., 2007), 
and higher incidence of contemporary migration among populations in the Barents 
Sea (Ozerov et al., 2012). 
 
Second, in Chapters I and III, I observed a clear division into two major lineages: 
the ‘Baltic’ clade, including salmon from the Baltic Sea and the freshwater lakes 
Onega and Ladoga, and the ‘Barents-White’ clade, including fish from the Barents 
and White Seas (Figure 3). This division was repeatedly suggested before and is a 
current consensus (Rougemont & Bernatchez, 2018; Säisä et al., 2005; Tonteri et al., 
2005).  

The freshwater Karelian populations that hydrologically belong to the White Sea 
basin (rivers Pisto, Luzhma, Kamennaya) also phylogeographically clustered with 
the ‘Barents-White’ clade (Chapter III), as was suggested previously (Bourret et 
al., 2013; Tonteri et al., 2005). However, there is also some previous evidence for 
the genetic closeness of Karelian stocks with the freshwater Onega and Ladoga lakes 
from the ‘Baltic’ cluster (Ozerov et al., 2013). The TreeMix analysis did not suggest 
gene flow to Karelian landlocked stocks from Onega and Ladoga but did infer 
possible migration from the Baltic Sea populations (Figure 3). Altogether, my results 
contribute to the existing theory of Karelian populations originating later in time than 
populations in the big freshwater lakes and having been re-colonised from the eastern 
Barents refugia, similarly to the anadromous White Sea populations (Lumme et al., 
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2015); but they also add evidence for the possible influence of the ‘Baltic’ lineage 
salmon on the Karelian populations. 

Tree Mix showed no inference of gene flow between the Baltic salmon and the 
White Sea fish, so I have no support for the previously suggested phylogeographic 
connection between these two regions (Kazakov & Titov, 1991; Makhrov et al., 
2005). There was, however, an unexpected evidence for gene flow events from the 
Baltic lineage salmon to the Teno river system (Figure 3); the robustness of this 
result and its implications for phylogeographic history of the region should be 
explored by future studies. 

 
Figure 3.  Population tree inferred by TreeMix. Block colours show geographic regional groupings. 

Branch numbers indicate nodal support based on 100 bootstrap trees without migration, 
Vindel population is used as an outgroup. Red arrows show long-distance gene flow 
events inferred by TreeMix, with numbers indicating migration weight. 

Third, in Chapter III I looked in detail into the genetic structure of the Barents and 
White Sea populations. As found in previous studies, I observed a clear genetic 
transition between the Barents Sea and the White Sea, aligned along the geographical 
border separating these two basins. The White Sea populations were divided into a 
cluster of Kola peninsula rivers, and rivers opening into the South-West and East 
White Sea (Figure 2 in Chapter III). I did not observe further sub-structuring of the 
’Kola’ cluster, suggested recently by Ozerov et al. (2017), possibly due to the fact 
that the Ponoi river system, forming a separate cluster in their study, was represented 
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by only two tributaries in the current study. The SW and E White populations were 
strongly differentiated both from Kola cluster and from each other, and it is likely 
that isolation, strong genetic drift, and anthropogenic influence drove the identified 
structure. However, sampling additional populations from the east White Sea and 
east Barents Sea could increase the robustness of the identified population structure. 
The observed genetic transition between Barents and White Sea salmon is in 
concordance with the concept of secondary contact between eastern and western 
salmon lineages colonizing this area. In Chapter III I investigated the genetic 
architecture underlying this regional division, and identified several genomic regions 
of elevated differentiation between the two salmon groups. Such differentiated 
segments may contain locally adaptive loci, or be a consequence of other barriers of 
gene flow, for example purifying selection acting on areas of reduced recombination, 
e.g. inversions (Lotterhos, 2019; Wu, 2001). Overall, this is an interesting topic, and 
continued research on the nature of gene flow barriers between Barents and White 
Sea Atlantic salmon could improve our understanding of the recent evolutionary 
history of the region. 

4.2 Evidence for parasite-driven natural selection 
A primary goal of this thesis was to investigate the genomic basis of differences in 
susceptibility to the parasite Gyrodactylus salaris that are observed in northern 
European Atlantic salmon populations. A number of single SNP outliers and three 
genomic regions potentially affected by G. salaris-mediated selection were 
identified in Chapter I, and 57 candidate genes were detected in Chapter II. 
Altogether these loci were distributed among 25 out of 29 Atlantic salmon 
chromosomes and were identified as strong candidates based on the combined 
outcomes of several analyses. 

Functional network analysis of SNP outliers detected in Chapter I indicated 
their involvement in two main functional groups: translation initiation and long-
chain fatty-acyl-CoA metabolism. The candidate translation initiation factors are 
involved in several immune processes, including T-lymphocyte activation. 
However, they also control a variety of stress responses, including response to 
pathogen presence, osmotic and temperature stresses, and nutrient starvation (rev. in 
Chapter I). These translation initiation pathways are quite conserved among many 
distant taxa, thus their precise role in the studied Atlantic salmon populations is still 
open for discussion. The second suggested functional group was involved in fatty 
acids synthesis and elongation. Substantial evidence shows that fatty acids play a 
crucial role in the regulation of inflammation and in the balance of cytokines 
secretion, thus modulating innate immune response in vertebrates (rev. in Chapter I). 
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Genes detected in Chapter II were enriched for several GO terms, including 
lymph node development, response to virus, microtubule organization, and 
phospholipase-related activity. Among the particularly interesting genes are three 
copies of mx (myxovirus)-like gene (Figure 3 in Chapter II), as mx genes are part of 
the interferon-mediated innate immune response and are activated in response to a 
variety of viruses (Mitchell et al., 2013). Other promising candidates are T-cell 
leukemia homeobox protein 1 (TLX1)-like gene, involved in the development of 
teleost spleen and the maturation of lymphocytes; and nuclear receptor ROR-alpha-
like gene (RORα), which has diverse functions including regulation of fatty acids 
metabolism and regulation of inflammation cytokines (rev. in Chapter II). Several 
loci potentially involved in the formation of focal and cell-cell adhesions and cell 
signaling were also detected. These include talin-like locus (LOC106561152), talin 
being crucial during phagocytosis and for adhesion of natural killer cells and T-
lymphocytes to the extra-cellular matrix and to target cells; two loci with 
phospholipase activity (LOC106608623 and LOC106588883), phospholipases being 
involved in talin stabilisation, signal transduction in leukocytes, and other 
inflammation processes; and sphingomyelin phosphodiesterase 3-like gene 
(LOC106560916), potentially regulating a crucial part of the innate immune system, 
the Toll-signalling pathway (rev. in Chapter II). Taken together, the results of 
Chapter II present evidence that the set of candidate genes driven by adaptation to 
G. salaris is involved in cell-signalling and regulation during both innate and 
adaptive immune responses. 
 
There was little overlap between Chapters I and II in terms of the candidate genes 
that were detected: only one candidate gene identified in Chapter II fell within a 
candidate region from Chapter I. However, the overall functional patterns of detected 
candidate loci were greatly similar: there was evidence for processes involved in 
innate immunity, such as fatty acids metabolism (Chapter I), regulation of cytokines 
and inflammation (Chapters I and II); and in adaptive immunity, such as lymphocyte 
maturation and T-cell activation (Chapters I and II). It is notable that differential 
cytokine production during the initial stage of the response to G. salaris presence is 
the main difference between susceptible and tolerant Atlantic salmon in infection 
experiments (Kania et al., 2010), suggesting that regulation of the first stage of innate 
immune response may be crucial in controlling parasite abundance and fish survival. 
Experimental research on controlled G. salaris infection has been limited, and future 
studies are needed to explore the relative role of innate and acquired immune systems 
in salmon response to the parasite. 

Many studies support the concept of multiple loci being involved in immunity 
and response to pathogens in Atlantic salmon (Andresen et al., 2019; Matejusová et 
al., 2006; Moore et al., 2017; Tadiso et al., 2011). Taken together, my findings 



Ksenia J. Zueva 

32 

suggest that G. salaris susceptibility and resistance/tolerance in Atlantic salmon also 
has a complex and polygenic basis, and that the observed differences in parasite 
susceptibility levels are mediated by natural selection acting on the regulatory 
mechanisms of both innate and adaptive immune systems. 

4.3 Local adaptation to other environmental traits 
In Chapter I I aimed to separate signals of positive selection in response to the 
G. salaris parasite from responses to other potential selective forces, such as salinity 
and summer temperature of the water basins that fish migrate to, and overall 
geographic location. In Chapter III these likely agents of local adaptation were 
complemented by the catchment area of the home rivers, used as a proxy for expected 
river flow at the sampling site. 
 
Three genomic regions potentially affected by salinity-induced selection were 
identified in Chapter I (Figure 4 in Chapter I) along with several single SNP 
outliers. One of the identified ‘salinity’-mediated regions overlaps with previously 
identified QTL that encompasses a calcium-sensor receptor, CaSR, involved in 
osmoregulation in several salmonid fishes including Atlantic salmon (Norman et al., 
2012). Functional network analysis showed that the GO terms linked with ‘salinity’ 
outlier SNPs were associated with renal absorption and protein kinase B signalling, 
which, among other processes, is activated by cellular stress including 
hyperosmolarity (Konishi et al., 1997). Several molecular components are involved 
in salinity acclimation in salmonids, including Na+/K+ ATP-ase, cortisol and thyroid 
hormones, agents modulating intracellular calcium levels, and multiple other 
proteins (rev. in Chapter I). The salinity-tolerance mechanisms are quite complex, 
and loci identified in Chapter I open discussion on a potential role of salinity-
mediated stress signalling in northern European Atlantic salmon from marine, 
brackish and freshwater environment. 

Only 2 outlier SNPs were uniquely associated with water temperature, and only 
5 with latitude of the sampling location. These are surprisingly small numbers, 
especially since temperature is regularly associated with population genetic diversity 
in salmonids (rev. by Olsen et al., 2010). In turn, a southward latitudal gradient and 
an associated rise in water temperature are often accompanied by an increase of 
pathogen biodiversity, so one could expect a correlated variation of genetic diversity 
of immune-related loci (Dionne et al., 2007). It is possible however, that mean 
sea/lake surface temperatures do not act as a selective pressure strong enough to 
affect survival of adult salmon in studied regions, and natal river temperatures could 
be used instead in future research. 
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In Chapter III I tested for associations between genomic variation and upstream 
catchment area in three regional groups of salmon, given that river landscape plays 
a prominent role in salmon survival (Armstrong et al., 2003), and catchment area in 
particular was shown to be linked to allelic variation in Teno salmon (Pritchard et 
al., 2018). Several candidate catchment-associated haploblocks were identified, but 
only one was shared between two out of three regional groups examined, Kola and 
Teno. This candidate haploblock contained genes numa1 and zfhx3, which were 
previously shown to be highly differentiated between northern and southern 
Norwegian salmon (Kjærner-Semb et al., 2016), and to co-vary with seasonal 
migration timing in the Teno river system (Pritchard et al., 2018). Interestingly, this 
haploblock is also adjacent to the parasite-affected region on chromosome 11 
identified in Chapter I. 
 
In conclusion, I have identified several loci associated with various environmental 
characteristics of northern European salmon habitats. Apart from salinity-related 
loci, the overall number of these loci is quite small however, which may be due to 
properties of the used datasets or may suggest that the studied environmental factors 
do not create strong selective pressures. 

4.4 Repeated signals of adaptive divergence 
across independent studies and geographic 
regions 

In the final chapter of the thesis (Chapter III) I aimed to investigate how repeatable 
are candidate loci identified across different geographic regions, and how they 
compare with other independent studies.  

The same 17 haploblocks containing candidate differentially selected loci were 
discovered in independent analyses of populations in two or three geographically 
distinct regions studied in Chapter III, Teno, Kola, and Barents (Figure 4). Three 
of these haploblocks (on chromosomes 9, 12 and 25) were also detected as 
containing candidate selection targets in other studies of Atlantic salmon. The 
haploblock on chromosome 25 harbours vgll3 and akap11 genes of large effect that 
impact age at sexual maturity across Atlantic salmon populations in Europe (Ayllon 
et al., 2015; Barson et al., 2015) and potentially in North America (Kusche et al., 
2017). The haploblock on chromosome 9 encompassed the six6 gene, involved in 
eye and brain development, co-varying with age at maturity and timing of return 
spawning migration, and being a candidate for differential local selection throughout 
the Atlantic salmon range (rev. in Pritchard et al. 2018). Finally, the third candidate 
region included major histocompatibility complex II, a well known actor of the 
immune system, exhibiting signals of divergent selection in Atlantic salmon (Dionne 
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et al., 2009; Hillestad et al., 2020) and other salmonids (e.g. Larson et al., 2014, 
2019). 

 
Figure 4.  Example of the detected candidate haploblocks identified in Chapter III: a haploblock 

on chromosome 9, encompassing, among others, the six6 gene (haploblock 
boundaries are marked with gray rectangle). Levels of SNP differentiation detected 
by the ’outlier’ tests are presented for the three geographical regions studied 
(Barents, Kola, Teno), and each dot symbolizes one SNP. Dashed and dotted lines 
indicate empirical p < 0.005 and p < 0.001 respectively (where empirical p = SNP 
rank / total number of tests). 

While traditionally the control of complex traits is thought to be polygenic, growing 
evidence across different taxonomic groups suggests that single loci (or blocks of 
linked genes) of major effect are widespread targets of selection (Oomen et al., 
2020). The results of Chapter III contribute to this, as the same gene clusters of large 
effect were identified in salmon population groups from two distinct 
phylogeographic lineages and across a broad geographic scale. These independent 
repeated signals of adaptive divergence may be indicative of parallel evolution 
processes across northern European salmon populations, and are great targets for 
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experimental exploration of their effect on fitness and phenotypic variation in 
different populations. Moreover, theory predicts that variation in factors such as 
migration, selection, genetic drift, and degree of gene pleiotropy may play an 
important role in forming the genetic architecture of local adaptation; for example 
adaptation with migration tends to lead to fewer, larger, and more tightly linked 
divergent alleles (Dittmar et al., 2016; Yeaman & Whitlock, 2011). Thus, identifying 
the relative role of loci with small or large effect may in turn help to understand the 
background population processes and to direct management practices (Prince et al., 
2017). 

4.5 Challenges and perspectives 
The candidate adaptive targets identified over the course of this dissertation are 
based on the overlap of various analyses and methodological designs, which give 
high confidence in the detected loci. However, certain aspects of the study system 
should be kept in mind when interpreting the results. 
 
First, there are some technical limitations. The methodological approaches 
implemented here are designed to detect strong signals of directional selection. It is 
therefore possible that some potentially interesting loci under weaker selection were 
not identified, especially given my tactic of taking only overlapping results across 
several methodological approaches (Whitlock & Lotterhos, 2015). Variation 
between datasets in number of studied populations and in density of SNP coverage 
also may have affected how much statistical power I had for separating signals of 
selection from neutral population processes. In addition, approximately 10% of the 
Atlantic salmon genome retain residual tetrasomy (Lien et al., 2016), and current 
SNP arrays do not allow detection of regions of potential adaptive importance from 
this part of the genome. 

In Chapters II and III I used the allelotyping of the pooled genomic DNA 
approach to infer population-specific allele frequencies. DNA-pooling provides a 
cost-effective alternative to individual genotyping, and it allowed me to drastically 
increase the number of studied populations in Chapters II and III, compared to 
Chapter I. Still, there are some common problems associated with the allelotyping 
of DNA pools, including potentially high error rate when estimating allele 
frequencies, and challenges in estimating linkage disequilibrium in the dataset 
(Ozerov et al., 2013). The first challenge can be solved by applying rigorous quality 
control and allele frequency correction techniques, which allows an accurate 
estimation of population allele frequencies (Ozerov et al., 2013; Pritchard et al., 
2016). Further, complementing the ‘allelotyping’ data with a smaller dataset of 
individually genotyped samples opens additional opportunities, for example a 
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possibility to reliably estimate linkage disequilibrium and to infer haploblocks 
existing in the genome (Chapter III). 
 
Another challenge, relevant for all studies of the genomics of adaptation in wild 
populations, is correlated environmental and life history traits. I have applied 
sophisticated methodological designs contrasting populations by the response to the 
parasite, freshwater vs. marine environment, and phylogeographic lineages, to 
disentangle selection acting upon multiple environmental factors. However, some of 
the loci detected in relation to a particular selective pressure are likely to be linked 
to additional environmental traits (reviewed in Chapters I and II). This may be due 
to methodological limitations, but also due to gene pleiotropic effects. For instance, 
vgll3, the genomic region of major effect for sea age at maturity, is also likely to 
affect parr maturation and multiple reproduction strategy, traits varying across 
geographic regions (Aykanat et al., 2019; Lepais et al., 2017). Thus, gene pleiotropy 
may complicate the interpretation of evolutionary trajectories observed across the 
Atlantic salmon range. 
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5 Conclusion 

The main findings of this dissertation are twofold. 
Firstly, my research suggests a polygenic basis of the variable response of Atlantic 
salmon to the G. salaris parasite, observed in different populations of northern 
Europe. Taken together, the detected candidate genes strongly suggest that the 
regulation of both innate and acquired immune responses contribute to parasite 
resistance and/or tolerance in salmon from freshwater lakes and the Baltic Sea, when 
contrasted against susceptible Barents Sea and White Sea salmon. My results 
demonstrate that a wide range of loci, likely having multiple additional functions, 
can be immunologically relevant in wild populations. To further validate the 
involvement of detected genes in the G. salaris response, one promising tactic could 
be to assess their expression profiles in controlled challenge experiments, as was 
done, for instance, in a study challenging brown trout with a live parasitic nematode 
(Haarder et al., 2013). 
 
Secondly, I demonstrate that across a broad geographic area inhabited by Atlantic 
salmon, the same few haploblocks repeatedly emerge as targets of local selection, 
and there is strong evidence for the encompassed loci to be genes of major adaptive 
importance and likely of large effect. The detected candidate haploblocks were 
identified in salmon groups of different phylogeographic lineages and varying in 
such prominent life-history traits as age at maturity and timing of spawning 
migration, which may attest to parallel evolution processes taking place in salmon in 
northern Europe. 
 
To summarise, my study presents evidence for polygenic basis of local adaptation in 
relation to certain selection pressures (e.g. G. salaris and salinity), and for loci of 
major effect driving diversification on a wide geographic scale. Experimental 
confirmation of the influence of these loci on populations’ fitness will help to further 
understand the evolutionary dynamics of wild salmon of northern Europe and to 
develop measures for its conservation. 
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