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Abstract: The purpose of this article is to determine the size and place of different components in microgrids (MGs) 
including renewable energy resources (RERs). Various factors like reliability, uncertainty of wind speed, solar irradiance, load 
and load growth are considered. The Ekbatan residential complex is studied as the pilot case study placed in Tehran, Iran. 
Ekbatan complex has three separate sets of buildings called phase 1, 2 and 3 considered as smart MGs. The multi-objective 
optimization problem is solved considering RERs uncertainties, improving reliability and power quality and minimizing power 
loss by particle swarm optimization (PSO) algorithm. Different constraints in terms of voltage and frequency as well as 
resources and ESSs capacity are taken into consideration. The effect of load growth, photovoltaic (PV) and energy storage 
systems (ESSs) placement, changing the capital cost of RERs and demand response (DR) of controllable loads are studied on 
optimal sizing and siting. The proposed method is tested on a WT/PV/FC/hydrogen tank MGs system, and the optimal sizing 
and siting of mentioned sources can decelerate the rate of increase in the total cost of MG considering the load growth. 
 

Nomenclature
NPC Net present cost 
N Number (unit) or the capacity of 

components  
CC Capital cost (US$/unit) 
RC Replacement cost (US$/unit) 

O&MC Annual operation and maintenance cost 
(US$/unit-year) 

R Project lifetime 
Ir Real interest rate 
irnominal Nominal interest rate 

Fuelcost  
Cost of fuel which is only considered for 
MT 

F Annual inflation rate 
PWA Annual payment present worth  
K Single payment present worth 
L Useful life of a specified components 

Y Replacement number of specified 
components 

Cshedd 
Average of penalty cost to load curtailment 
(US$/kWh) 

I Components in smart MG 

NPCSA, n  Net present value of  the surplus investment 
cost of the nth smart components 

∑푁푃퐶   Net present cost value of distribution 
transformer  

푁푃퐶 .  Net present value of nth smart appliances 
incentive 

SACi  
 

Surplus cost which should be paid for ith 
appliance (e.g., washing machine). 

푁 (푠푡푎푟푡 − 푎푣푒)   Average usage number of ith smart 
appliance for one year 

푁 (푎푣푙)  Number that ith appliance is available 
푁 (푠ℎ푖푓푡)   Shifting number of ith appliance annually 

 푃 (푡) /  푃 (푡) Amount of power bought/sold from/to the 
network at t 

푃푟푖푐푒 (푡)  
 

Price of electricity bought from distribution 
network per kWh 

 푃푟푖푐푒 (푡) Price of electricity sold to distribution 
network per kWh 

휃   Installation angle of the PV array 

푁 (푚푎푥) Maximum capacity of distribution 
transformer 

ELF  Equivalent loss Factor 

Q(t)  Amount of load which is lost (is not 
supplied) (kWh) 

D(t)  Amount of demand (kWh) 
REPP Renewable energy penetration percentage 
PREN-Direct  Produced power of the RERs 
Vj(t) Voltage of bus jth at t 
Ploss / Qloss  Active/reactive power loss 

푃 (푡) / 푃 (푡) Active power consumed and produced 
respectively in jth bus at t  

푄 (푡) / 푄 (푡)  Reactive power consumed and produced 
respectively in jth bus at t 

 TCij  
Total cost of movement including lost 
energy and cost of changing location 

 DCiab  
 

Cost of changing location ith DG from 
location (a) at (j-1)th year to location (b) at 
(j)th year 

LDGij Cost of lost energy 
ℎ .   Required time for transporting ith DG 

EPj  
Price of buying energy at jth year from 
distribution grid 

퐺 .    Rated power of ith DG 
Nbus  Possible places for installation of DG 
NDG  Number of DG types 
a  Load growth rate 
LP0  Initial peak load 
LPj  Peak load at jth year 
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1. Introduction 
In a smart microgrid (MG), when wind turbine (WT), 

photovoltaic cell (PV), backup system, energy storage 
system (ESS) and demand response (DR) resources are used, 
the optimization problem is too complex. It is because of 
calculating the power of the mentioned sources with the 
objective function that minimizes the total cost and power 
loss, while improves reliability and power quality. 

The power of the backup system should be 
considered in an acceptable amount to supply the emergency 
loads because of the intermittent nature of RERs. MGs 
connected to a network are able to sell/buy energy from/to 
the network, which increases the complexity of the 
optimization problem that should be solved at all hours of 
the day. RERs development has a destructive effect on 
financial, reliability and DR aspects. These problems can 
mitigate by optimal sizing and siting of RERs, which is also 
suitable in minimizing the loss and increasing the 
competitiveness of RERs. Different resources have studied 
the importance of the optimal placement and sizing of RERs.  

In [1], the optimal sizing of RERs has been carried 
out for an industrial MG considering the techno-economic 
optimization. A genetic algorithm has been applied in [1], 
and the optimal size of RERs was determined considering 
cogeneration for compensation of intermittent behavior of 
RERs. In [2], the optimal size of ESSs has been determined 
for WTs considering the statistical modeling based on vine-
copula theory although economic aspects were not 
considered. In [3], the optimal place and size of DGs have 
been investigated to minimize the total cost of an active 
distribution network, and the problem was solved by CVX 
platform and GUROBI solver. The optimal placement and 
sizing of DGs have been carried out by chaos embedded 
SOS algorithm in a radial distribution network with the 
objective of decreasing the power loss and improving the 
voltage stability [4].  

Different methods have been developed for RERs 
optimal sizing and siting in distribution grids. References [5] 
and [6] address a method for optimal location and capacity 
of DGs considering their intermittent nature. In [7], the 
substation has been optimally sized and sited with minimum 
investment, annual operation costs and the cost of land for 
developed urban areas. In [8], two important factors 
including maximum reliability and minimum cost have been 
considered, and the optimal size and place of WT, PV and 
battery ESS have been determined. Two constraint-based 
iterative search algorithms have been introduced in  [8] , in 
which the first algorithm was applied for sources sizing 
while the second algorithm was used for the battery sizing. 
The optimal place and capacity of WT, PV and batteries 
have been similarly specified based on minimizing the total 
cost [9], in addition to cost and environmental 
considerations [10]. 

Determining the ESS size and place is an important 
problem in smart MGs. In [11], the optimal size of PV and 
ESS has been investigated to meet the anaerobic digestion 
generator and PV constraints with the objective to minimize 
the levelized cost of energy. In [12], the optimal sizing of 
PV/diesel with the aim of minimizing cost and improving 
reliability has been studied, and the optimization problem 
was solved by a levy flight-based PSO. The optimal location 
and capacity of ESS have been determined in [13], [14] and 

[15] to achieve the goals of cost minimization, reliability 
improvement and load shaving. In [16], a multi-criteria 
method has been proposed to optimally size WT, PV, FC, 
electrolyzer, Hydrogen tank and batteries, although the 
annual cost and the sources movement have not been 
considered. In [17], the optimal size of PV and hydro 
turbine has been determined based on dynamic 
programming with the objective to minimize the total cost 
and power system loss.  

Different objectives like cost minimization have been 
considered in the literature for the optimization problem. 
The optimal size of PV, WT and ESS has specified in [18], 
[19] and [20] to minimize the total cost. In [21], the 
optimization model based on second-order conic 
programming problem has been presented for sizing and 
siting RERs, electric vehicle charging stations and ESSs. In 
[22], the novel method for sizing batteries with the objective 
of decreasing the load uncertainty considering the 
intermittent nature of wind has been addressed. In [23], a 3-
level learning automata-based methodology in a master-
slave structure has been studied  for RERs siting and sizing. 
The annual forecasted cost has not been considered in these 
references. 

Considering DR programs are important in 
determining the site and size of RERs and ESSs. The 
optimal place and size of plug-in electric vehicles charging 
stations have been specified by using genetic algorithm 
method with embedded Monte Carlo simulation in [24]. The 
incentive-based DR has been considered in optimal 
placement and size of electric vehicle charging stations, 
which has been handled by PSO [25].  

DR programs have been implemented by different 
objectives. In [26], the effect of DR on RERs sizing 
including WT and PV has been studied to minimize the peak 
hourly energy consumption. The impact of DR programs on 
PV-based system management has been addressed in [27]. 
DR programs and energy storages have been applied to 
replace conventional fuels with RERs [28]. Although the 
effect of DR on the optimal sizing and siting of electric 
vehicle charging stations and limited effects on the optimal 
sizing of WT/PV have been studied, the impact of DR of 
controllable loads on optimal placement and sizing of RERs 
and ESSs have not been addressed. 

The contribution of the study can be listed as follows: 
- MGs’ loads are increasing each year, so new 

components should be added to MGs for supplying this 
load growth. The added components at ith year will 
produce power during (n-i+1) years in which n shows 
the lifetime of the project. The optimal capacity and 
location of each source should be annually computed. 
In this paper, the different load growth in developing 
buses comparing to non-developing ones is considered.  

- The capital cost of RERs is decreasing over the time, so 
one of the novelties in this study is considering the 
different annual forecasted capital cost in optimization 
problem at each year, which makes the calculations 
more realistic. 

- Considering the effect of  DR of controllable loads and 
power quality in optimal sizing and siting of RERs 

The rest of the paper is organized as follows. Section 
2 provides the details of the Modeling optimal sizing and 
siting components in MGs. Section 3 is devoted to 
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simulation and result discussion. Finally, section 4 provides 
some relevant conclusions. 

2. Modeling optimal sizing and siting components 
in MGs 

In this section, the optimal size and place of RERs 
and ESSs are specified simultaneously. The objective 
function in this study minimizes the cost of sizing and siting 
of WT/PV/ESSs/FC/Hydrogen tank, which are explained as 
follows. 

The assumptions of this study are as follows: 
- Each phase in the Ekbatan complex is 

considered as an MG, and it is assumed that 
smart homes are equipped with smart meters and 
internet in order to transfer the information. 

- All consumers in MGs use smart washing 
machine, smart dishwasher, smart 
heating/cooling system and plug-in electric 
vehicles. 

- The smart equipment is placed at the start of the 
project, but power resources can be sited based 
on requirements. 

- WTs and PV systems can be disconnected. 
- WTs cannot be moved during the project. 
- In the load flow calculations, WT and PV are 

considered with the fixed power factor. 
- The installation and preparation cost of a new 

place for DGs is assumed 20% of their initial 
cost. 

- In this study, the load growth is saturated after 
10 years. 

 
2.1. The optimal sizing 

The purpose of this section is to optimize the size of 
components in MGs, i.e., the number of WTs, PVs, the 
capacity of electrolyzer, hydrogen tank, fuel cell (FC), micro 
turbine, batteries and DC/AC converter should be specified. 
The cost of the system includes investment net present cost 
(NPC), operation and maintenance, fuel, component 
replacement, smart devices, incentives related to 
participation in DR programs, buying and selling electricity 
and any cost related to power interruption over 20-year life 
cycle. In this problem, the constraint is the maximum 
allowable quantity for the reliability index ELF. However, 
some constraints related to maximum and minimum power 
and energy are considered. 

The NPC related to component i can be calculated as 
follows: 
푁푃퐶 = 푁 × 퐶퐶 + 푅퐶 × 퐾 + (퐹푢푒푙

+ O&푀퐶 )
× PWA(ir. R)                                             (1) 

where, N is the number (unit) or the capacity of components 
(kW or kg), CC is the capital cost (US$/unit), RC shows the 
replacement cost (US$/unit), O & MC determines the annual 
operation and maintenance cost (US$/unit-year), R is the 
project lifetime, which is assumed 20 years in this study, ir 
is the real interest rate (i.e., 6% in this paper) which can be 
calculated based on the nominal interest rate (irnominal) and 
annual inflation rate (f). Fuelcosti shows the cost of fuel 
which is only considered for MT, and it is assumed 0 for 
other DGs.  

ir =
(푖푟 − 푓)

(1 + 푓)                                                                   (2) 

PWA and K indicate the annual payment present 
worth and the single payment present worth, respectively: 

PWA(ir. R) =
(1 + 푖푟) − 1
푖푟(1 + 푖푟)                                                    (3) 

퐾 =
1

(1 + 푖푟) ×                                                                (4) 

where, L and y are the useful life and the replacement 
number of a specified component. The penalty cost for 
shedd load can be calculated as follows: 

퐶표푠푡 = 퐿푂퐸퐸 × 퐶                                                    (5) 
 

In this equation, Cshedd shows the average of penalty 
cost to load curtailment (US$/kWh). 

The objective function is defined as Eq. (6): 
 

푂퐹 = 푀푖푛 푁푃퐶 . + 퐶표푠푡 .

+푁푃퐶 + 푁푃퐶 .

+ 푁푃퐶 . + 퐶표푠푡 .

− 퐶표푠푡 .                                     (6) 

 
where, i shows the components in smart MG, R is the 
project lifetime, NPCSA, n specifies the net present value of  
the surplus investment cost of the nth smart components. 
∑푁푃퐶  represents the net present cost value of the 
distribution transformer. 푁푃퐶 . determines the net 
present value of the nth smart appliances incentive, which 
can be calculated as below: 

푁푃퐶 . = (퐼푛푐푒푛푡푖푣푒_푎푣푙 + 퐼푛푐푒푛푡푖푣푒_푠ℎ푖푓푡 )
× 푃푊퐴                                                         (7) 

where, 퐼푛푐푒푛푡푖푣푒_푎푣푙 and 퐼푛푐푒푛푡푖푣푒_푠ℎ푖푓푡  can be 
calculated by following equations: 

퐼푛푐푒푛푡푖푣푒_푎푣푙 =
1
5

푆퐴퐶
푁 (푠푡푎푟푡 − 푎푣푒) × 푁 (푎푣푙)             (8) 

퐼푛푐푒푛푡푖푣푒_푠ℎ푖푓푡 =
푆퐴퐶

푁 (푠푡푎푟푡 − 푎푣푒) × 푁 (푠ℎ푖푓푡)        (9) 

where, SACi is the surplus cost which should be paid for ith 
appliance (e.g., washing machine). 푁 (푠푡푎푟푡 − 푎푣푒)  
determines the average usage number of ith smart appliance 
during one year. 푁 (푎푣푙)  shows the number that ith 
appliance is available. It is considered in this study that 
smart appliances can receive incentive when they are 
available in specific hours, and 푁 (푠ℎ푖푓푡)  specifies the 
shifting number of ith appliance annually. 
 



4 
 

퐶표푠푡 = 푃 (푡) × 푃푟푖푐푒 (푡)                             (10) 

퐶표푠푡 = 푃 (푡) × 푃푟푖푐푒 (푡)                               (11) 

where, 푃 (푡) and 푃 (푡) show the amount of power 
bought/sold from/to the network at t, while 푃푟푖푐푒 (푡) and 
푃푟푖푐푒 (푡) determine the price of electricity bought or sold 
from/to distribution network per kWh at t. 

In this situation, the surplus power is sold to the 
distribution network, and the shortages are bought from it. 

The objective function should be optimized by 
considering following constraints: 

퐸[퐸퐿퐹] ≤ 퐸퐿퐹                                                                    (12) 
0 ≤ 푁                                                                                          (13) 
0 ≤ 휃 ≤ 휋

2                                                                        (14) 
퐸 (0) ≤ 퐸 (8760)                                                       (15) 
푃 (푡) ≤ 푁 (푚푎푥)                                                              (16) 
푃 (푡) ≤ 푁 (푚푎푥)                                                             (17) 

휃  is the installation angle of the PV array, and 
constraint (15) determines that the saved energy in tank 
should not be lower than the primary energy. This constraint 
guarantees that reliability calculations are performed for the 
worst condition. 푁 (푚푎푥) shows the maximum capacity of 
the distribution transformer. 

퐸퐿퐹 =
1
푁

푄(푡)
퐷(푡)                                                                   (18) 

where, Q(t) shows the amount of load which is lost (is not 
supplied) (kWh), and D(t) shows the amount of demand 
(kWh). ELF is the equivalent loss Factor. Since ELF 
specifies more information about the amount of curtailment, 
it is applied as the main reliability index in this paper. The 
maximum acceptable amount for ELF is equal to 0.01 [29]. 

The renewable energy penetration percentage (REPP) 
can be determined by Eq. (19). 

푅퐸푃푃 =
∑ 푃 (푡)

푃 (푡)
8760    × 100                              (19) 

where, PREN-Direct is the produced power of the RERs, which 
is directly specified to the users. The amounts of REPP in 
three studied MGs are presented in Table 1, which shows 
the high penetration of RERs in this study. 
 

2.2. The optimal siting 

The optimal placement of the RERs in suitable places 
in MG can decrease the amount of losses. Developing an 
appropriate method for optimal siting of RERs in the studied 
MG is necessary for reducing the amount of MG losses. In 
this section, the method is developed to minimize the cost 
during the assessment period (i.e., 20 years in this paper), by 
considering the effect of parameters like load growth. 

In this section, the RERs are optimally placed in 
order to diminish the cost of the network during each year of 
the 20-year period. The optimal place of RERs is specified 
during each year of the 20-year period. 

 

Table 1- The amounts of REPP in three studied MGs 

Smart MG REPP (%) 

MG No.1 66 
MG No.2 69 
MG No.3 57 

 
Although this paper does not discuss the protection 

subjects, it is considered in our problem definition. The 
unidirectional fault-current relay is considered in 
conventional grids, but applying them in microgrids may 
lead to mal functioning of the relays. As a result, 
bidirectional current relays should be applied in microgrids 
especially when the penetration of renewable energy 
systems is high. It is studied in [30] that applying DGs in 
microgrids causes bidirectional fault current which disturbs 
the function of conventional protection relays, and using 
bidirectional relays can be a solution for this problem. 

As the reversal of current flow in microgrid 
distinguishes theses grids with simple radial distribution 
systems, the novel protection method should be applied in 
this case. Considering the sequence data in system applying 
bidirectional relays can be helpful in order to identify the 
fault truly. The directional over-current relay can be used in 
this study, which is considered the positive sequence and 
negative sequence currents in order to detect unbalanced and 
balanced fault [31]. 

The energy management system (EMS) is in 
communication with all of the RERs and protection devices. 
When a fault occurs, the EMS receives all information about 
DGs’ state and protection devices. The directional over-
current relays identify the direction of fault current, and the 
EMS identifies the location of fault by information received 
from relays.  

It is considered that the movement of DGs will be 
possible if this component is applied during MRT period in 
the first place. For example, if the quantity of MRT is 
assumed two years, it means that the place of specified DG 
can be altered every two years. The amount of MRT is 
determined based on the technology of DG, mechanical 
difficulties and portable capability. Aija is a binary variable 
that will be equal to 1 when ith DG is placed in location (a) 
at jth year, nevertheless it will be equal to 0. 

MRT depends on two important parameters: 
- DCiab which is the movement cost of ith DG from 

place a to place b. 
- Hi,trans is the required time for movement of ith DG. 

These two parameters especially the second one are 
dependent on the DG technology. Some technologies like 
MT, FC and PV require less time for movement. For 
example, transporting PV from place a to place b takes 
about one week, so Hi,trans is equal to one week.   
Furthermore, their cost of movement is less in comparison 
with other technologies. In this study, it is assumed that 
these technologies can be moved. On the contrary, other 
technologies like WT cannot be moved due to the long time 
and the high cost of dismantling of WT. 

The objective function minimizes the losses and the 
costs of movement of DGs. In the studied MG, WTs, PVs, 
FC and MT are taken into account, which are divided into 
two groups: 

- 1st type: DGs only inject active power: PVs and FC. 
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- 2nd type: DGs produce active power with constant 
power factor: WTs and MT. 

2.2.1. The network losses: The network loss is annually 
calculated based on Eq. (20) [32]: 

푃 + 푗푄 = 푉 (푡) ∙ 퐼∗(푡)                                (20) 

where, Vj(t) and Ij(t) show the voltage and current of bus j at 
t, and Ploss and Qloss denote the active and reactive power 
loss. The injected power is defined by the difference 
between the produced and consumed power: 
푃 (푡) = 푃 (푡)− 푃 (푡)                                                      (21) 
푄 (푡) = 푄 (푡)−푄 (푡)                                                    (22) 

푃 (푡) and 푃 (푡)  are the active power consumed 
and produced respectively in jth bus at t. Similarly, 푄 (푡) 
and 푄 (푡) denote the reactive power.  
푃

= 훼 푃 (푡)− 푃 (푡) 푃 (푡)

− 푃 (푡) + (푄 (푡) −푄 (푡))(푄 (푡)−푄 (푡)))

+ 훽 ( 푄 (푡)−푄 (푡) 푃 (푡)− 푃 (푡) − (푃 (푡)
− 푃 (푡))(푄 (푡)
−푄 (푡)))                                                                                (23) 

The reactive power is calculated as follows for WT 
and MT considering their constant power factor. 

푄 (푡) = 푃 tan(푎푟푐푐표푠(푃퐹))                                         (24) 

In order to calculate the loss, the bus angle and 
voltage should be determined by the load flow. In this study, 
load flow is carried out by DIgSILENT power factory 
software. 

2.2.2. The cost of DGs movement:  

The cost related to DGs movement is included two 
different parts: 

- The cost of DGs movement (DCiab) 
- The cost of lost energy in this period (LDGij) 

The total cost of movement (TCij) includes the cost of 
changing location ith DG (DCiab) from location (a) at (j-1)th 
year to location (b) at (j)th year and the cost of lost energy 
(LDGij). 

DCiab contains the cost of transporting ith DG from 
the primary place (a) through different routes and the cost of 
preparing a new place (b) in addition to installation cost. In 
this study, the expense of installation and preparing in a new 
place is assumed 20% of initial DG cost. The transporting 
cost of DG depends on the DG weight and the length of the 
path. 

The total cost of movement is calculated as follows: 

푇퐶 = ((퐴 . . × 퐴 . . ) × (퐷퐶

+ 퐿퐷퐺 ))                                                 (25) 

퐿퐷퐺 = ℎ . × 퐺 . × 퐸푃                                         (26) 

where, 퐷퐶  is the transportation cost of ith DG from 
location (a) to location (b), ℎ .  shows the required time 
for transporting ith DG, EPj specifies the price of buying 
energy at jth year from distribution grid, and 퐺 .   
determines the rated power of ith DG. 

To reach this point, the objective function of optimal 
DG placing in smart MG is defined as below: 

푂퐹 = 푀푖푛( 푃 . × 퐴 × 푝푒푛푎푙푡푦

+ 푇퐶 × 퐴 )                                    (27) 

where, R is the number assessment years (20 years in this 
paper), Nbus shows the possible places for installation of DG 
and NDG determines the number of DG types. 

The constraints of this objective function are as 
follows: 

|푉| ≤ |푉 | ≤ |푉|                                                           (28)       
훿 ≤ 훿 ≤ 훿                                                                    (29)                                
퐼 ≤ 퐼                                                                                (30)               
where constraint (28) is related to voltage limitations, 
inequality (29) shows the allowable angle deviations based 
on voltage stability, and constraint (30) determines the 
maximum allowable loading current and thermal limitations. 
It is also assumed that changing the location of WT is not 
possible, but PVs, FC and MT can be moved every 3 years. 

Since the objective of this paper is to determine the 
optimal place and size simultaneously, the objective 
function is defined as below. 
푂퐹 = 푚푖푛 푂퐹 + 푂퐹                                         (31) 
where, X is the vector including the optimization variables 
(optimal place and size). The constraints of this objective 
function are presented in (12)-(17) and (28)-(30). 

The general flowchart for MGs which do not 
participate in a competitive market is presented in Figure 1. 
In this study, Particle swarm optimization (PSO) method is 
applied, and its parameters are presented in Table 2. 

The general flowchart for optimal sizing and siting 
during one year is shown in Figure 2. 

Phase 2 in Ekbatan residential complex is being 
developed now, so two types of load growth are considered 
in this paper. The first type is related to No. 1-8 buses in 
phase 2, and the second type is related to other buses. 

The general flowchart for determining the steps for 
sizing and siting of RERs applying PSO algorithm is 
presented in Fig. 3. The amount of peak load at j year is 
calculated as follows: 

퐿푃 = 퐿푃 (1 + 푎)                                                               (32) 

where, a is the load growth rate, LP0 shows the initial peak 
load, and LPj determines the peak load at jth year. The 
impact of this load growth in the determination of optimal 
location and size is considered. The added components at ith 
year in smart MG produce power during (Nyear-i+1) years. 
The optimization is annually performed to extract the 
optimal size and site considering load growth. 

Table 2- PSO parameters 

Inertia (w) C2 C1 Number of iterations Population 

0.7 2 2 200 30 
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Fig. 1.  The main flowchart for proposed method 
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Fig. 2. The main flowchart for optimal sizing and siting 
during one year 

The price of RERs are decreasing during time 
considering technology development [33], so one of the 
novelties in this section is taking into account the investment 
cost of RERs in the year of installation. For example, if 
there is a need to add PV at 5th year of study to the system, 
the forecasted investment cost at 5th year is considered in 
calculations. As a result, the results are closer to the real 
situation.  

Different reasons including the reduction in labour 
and material, competition in the global market, increasing 
capacity factor and decreasing installed cost,  reducing 
O&M cost are mentioned for this price decrease [33]. 

The investment costs of RERs in the period between 
2010 and 2016 are presented in this report. In order to 
consider inflation in comparing prices in different years, all 
costs are presented in real 2016 USD. All prices are 
considered in 2016 USD value, so they can be compared 
together. The real data is used in this report in order to show 
the decreasing trend of RERs’ costs, which is used in our 
study. In [34], the amount of decrease in the legalized cost 
of energy for residential PV is forecasted 67% by 2030. The 
average worldwide inflation rate in the period between 2012 
and 2017 is announced 4.07% and 3.2% respectively [35], 
so the amount of inflation in next years is estimated based 
on these quantities, which are used in RERs’ price 
projection. 

3. Simulation and result discussion 
The Ekbatan residential complex is considered as the 

research case study. Ekbatan has three separate sets of 
buildings called respectively phase 1, 2 and 3 considered as 
smart microgrids. Although there is no electrical connection 
between them, each of these phases is connected to 63/20 
kV substation by a 20 kV cable. The underground 20 kV 
cables are applied in distribution grid in Ekbatan complex. 
The schematic of this MG is depicted in Fig. 4. To reach this 
point, the electricity tariff in Iran is used. The off-peak rate 
is equal to 0.1 $/kWh while the peak rate is equal to 0.15 
$/kWh.  

The smart microgrid No. 1 consists of WT, PV panel, 
fuel cell, electrolyzer, hydrogen tank, controllable loads 
(washing machine, dishwasher, heating/cooling system and 
plug-in electric vehicles) and uncontrollable loads. The line 
data for this MG is presented in Table 3. The schematic of 
MG No. 1 and the single-line diagram of MG No.1 are 
represented in Figures 5 and 6. 

Generation components in smart microgrid No. 2 are 
WT, PV panel, and battery. Similar to the first smart 
microgrid, the controllable loads are washing machine, 
dishwasher, heating/cooling system and plug-in electric 
vehicles, and its line data is presented in Table 4. The 
schematic of MG No. 2 and the single-line diagram of MG 
No.2 are shown in Figures 7 and 8. 

Table 3- The line data for smart MG 1 

First bus Second bus Resistance (pu) Reactance (pu) 
A1 A2 0.0058 0.0029 
A2 A3 0.0308 0.0157 
A2 A4 0.0102 0.0098 
A4 A5 0.0939 0.0846 
A5 B1 0.0255 0.0298 
B1 B2 0.0442 0.0585 
A3 B3 0.0282 0.0192 
B3 B4 0.0560 0.0442 
B4 C2 0.0559 0.0437 
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Fig. 3. The general flowchart for determining the steps for 
sizing and siting of RERs 
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Fig. 5. Schematic of MG No. 1 
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Fig. 6. Single-line diagram of MG No. 1 
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Fig. 7. Schematic of MG No. 2 
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Fig. 8. Single-line diagram of MG No. 2 

Table 4- The line data for smart MG 2 

First bus Second bus Resistance (pu) Reactance (pu) 
1 2 0.0238 0.0121 
2 3 0.0511 0.0441 
3 12 0.0117 0.0386 
12 13 0.1068 0.0771 
13 14 0.0643 0.0462 
14 15 0.0651 0.0462 
15 16 0.0123 0.0041 
16 17 0.0234 0.0077 
17 18 0.0916 0.0721 
18 19 0.0338 0.0445 
3 4 0.0127 0.0065 
4 5 0.0559 0.0437 
5 6 0.0502 0.0437 
6 7 0.0317 0.0161 
7 8 0.0608 0.0601 
9 10 0.0194 0.0226 
10 11 0.0213 0.0331 
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Table 5- The line data for smart MG 3 

First bus Second bus Resistance (pu) Reactance (pu) 
D1 D2 0.0466 0.0340 
D2 E1 0.0804 0.1074 
E1 E2 0.0457 0.0358 
 
WTs, PV panels, micro turbines and battery are 

generation components in smart grid No. 3. The controllable 
loads of smart microgrid No. 3 are like smart microgrids No. 
1 and No. 2. The parking lot of each MG is located at that 
bus in these three smart microgrids. Furthermore, the 
charge/discharge management of plug-in electric vehicles 
has effects only on that bus. The schematic of MG No. 3 and 
the single-line diagram of MG No.3 are represented in 
Figures 9 and 10. 

Every bus in Ekbatan complex includes some houses, 
which is specified in Table 6. The charge/discharge 
management of the plug-in electric vehicles cost is 
considered in Eq. (6). The effect of the charge/discharge 
management of the plug-in electric vehicles is also 
considered in the annual normalized load curve because the 
load is determined considering the electric vehicle required 
power consumption.  

The assumed constraints in charge/discharge 
management are as bellow: 

- Complete charge at exit time of parking, 
- Number of electric vehicles in the parking, 
- Limitations in charge/discharge times in 

batteries, 
- Battery power level and capacity. 

The total MG's load after electric vehicle 
management is shown in Fig. 13. When the produced power 
of RERs is more than loads, the electric vehicles are charged. 
Electric vehicles can be discharged in a condition that the 
produced power of RERs is less than loads. In our study, the 
main aim of demand response is to utilize the RERs’ 
production as much as possible, so when the production of 
RERs is higher than loads in microgrids, the electric 
vehicles are charged. This issue leads to a decrease in the 
energy bought from the main grid, so the cost of buying 
energy reduces. In fact, the maximum usage of surplus 
energy of RERs in order to charge electric vehicles is 
considered in our study, which causes a decrease in the 
bought energy from the main grid. 

The peak demand in different buses in Ekbatan 
complex is presented in Table 6 without considering 
controllable loads. 

In this section, the optimal sizing and siting for 
assumed smart MGs are carried out by the proposed method, 
and the PSO method is applied for optimization. To reach 
this point, the software developed in Matlab. The 
information related to annual solar irradiance and wind 
speeds are hourly extracted for Ekbatan complex (Figures 
11 and 12). The load profile of Ekbatan complex is obtained 
from the distribution company. The uncertainty of sunlight, 
wind speed and load profile are considered by Copula 
method which is explained in the appendix, and the 
normalized diagram of sunlight, wind speed and load are 
hourly depicted on figures. The base load specification is 
extracted from the IEEE standard [36]. Table 6 determines 
the program inputs, and the nominal amounts are presented 
in Table 9. The expense of load curtailment in base load is 
considered 5.6 US$/kWh. 

Table 6- The specifications of houses and buses in Ekbatan 
complex 

Phase Number of houses Bus Peak load (kW) 
1 517 A1 500 
1 532 A2 500 
1 532 A3 500 
1 532 A4 500 
1 532 A5 500 
1 613 B1 600 
1 613 B2 600 
1 613 B3 600 
1 613 B4 600 
1 514 C2 500 
2 340 1 300 
2 422 2 400 
2 402 3 400 
2 460 4 500 
2 516 5 500 
2 360 6 400 
2 506 7 500 
2 506 8 500 
2 422 9 400 
2 360 10 400 
2 458 11 400 
2 298 12 300 
2 506 13 500 
2 500 14 500 
2 342 15 300 
2 337 16 300 
2 312 17 300 
2 597 18 600 
2 334 19 300 
3 598 D1 600 
3 598 D2 600 
3 445 E1 400 
3 445 E2 400 
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Fig. 9. Schematic of MG No. 3 
 

63/20 kV 
Substation

D1 D2 E1

E2  
Fig. 10. Single-line diagram of MG No. 3 

 
For instance, the results of optimal location and size 

are presented in Table 8 and Figs. 14 to 20 for smart MGs. 
In Table 8, NWind is the optimal number of WTs, NPV shows 
the optimal number of PVs, NMT specifies the optimal size of 
MT, Nbat determines the optimal size of battery, and BPV, 
BWind, BMT and BBat are respectively optimal place (No. of 
bus) of PV, WTs, MTs and batteries. In Table 10, the 
reliability indices are introduced, and it should be notified 
that DR and load growth are not considered in this case. 



9 
 

As it can be seen from normalized load curve Fig. 13, 
the peak load has occurred in the hours 2000th -3000th and 
6000th- 7000th. The study of determining optimal size and 
place is done hourly during one year period, so the peak 
hours refer to the annual peak. This curve is calculated 
based on the residential IEEE P.U. [37]. The base for the 
per-unit values is the sum of all peak load which is 
presented in Table 6, and it is equal to 15200 kW. 

The loading current for lines D2-E1 and E1-E2 are 
shown in Figures 15 and 16. The amount of line current 
should be lower than the specified amount according to Eq. 
(29) (in this paper, 퐼 = 1.05 × 퐼(푃 ∙ 푈) ), and this 
constraint is fulfilled. The maximum current has occurred at 
hours when the loads are in their maximum level.  

 

 
Fig. 11. The annual sunlight in Ekbatan complex 

 

 
Fig. 12. The annual wind speed in Ekbatan complex 

 Fig. 13. The annual normalized load curve 

Table 9- The nominal amounts 
 Input Quantity 
1 Fuel cost ($/Mbtu) 0.12 
2 Inflation rate 0.06 
3 Project life (year) 20 
4 Population 30 
5 Iteration 200 
6 ELFmax 0.01 

 

 
Fig. 14. Convergence curve of PSO algorithm 
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Table 7- The program inputs  

Component Initial cost 
($/unit) 

Replacement cost 
($/unit) Annual O&M cost ($/unit-year) Useful life Efficiency Availability 

WT (50 kW) 75000 40000 750 20 - 96 
PV (1 kW) 2000 1500 20 20 - 96 

Electrolyzer (1 kW) 2000 1500 25 20 75 100 
Hydrogen tank (1 kg) 1300 1200 15 20 95 100 

Fuel cell (1 kW) 3000 2500 175 5 50 100 
Inverter DC/AC (1 kW) 800 750 8 15 90 98/99 

MT (1 kW) 400 340 20 5 30 100 
Battery (1 kW) 500 400 25 3 85 100 

Table 8- The optimal size and location of components smart microgrids  
 NWind NPV Nbat NMT NFC Mtank BPV BWind BMT BBat BFC MG cost ($) 
MG No. 1 265 9886 - - 2150 29975 A2 B1 - - B4 14.8526 × 107 
MG No.2 252 14210 22340 - - - 10 18 - 3 - 19.8249 × 107 
MG No. 3 87 3780 10500 2050 - - E2 E2 D2 E2 - 8.1777 × 107 
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Fig. 15. Loading line current between D2 and E1 bus 
 
 

 
Fig. 16. Loading line current between E1 and E2 buses 
 
 

 
Fig. 17. hourly equivalent loss factor 
 

Figure 17 illustrates MG No. 3 ELF. Since the peak 
load is at 2000th-3000th hour, and the wind speed is low in 
this hour, the ELF is considerable in this period. The same 
situation has occurred for 6000th-7000th hours. In other 
words, the amount of loss in this period increases. The 
voltage profile at bus D1 is shown in Fig. 18. As this bus is 
connected to the distribution network, it is considered as the 
infinite bus.  

0.95|푉 | ≤ |푉 | ≤ 1.05|푉 |                                                     (33) 

The voltage profile at buses D2, E1 and E2 are 
shown in Figures 18-20, and their modifications are in 
allowable range. In this study, the voltage constraint is 
defined as follows, and the minimum voltage has occurred 
at peak hours. 
 

 
Fig. 18. Voltage at bus D2 

 
Fig. 19. Voltage at bus E1 

 
Fig. 20. Voltage at bus E2 
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Voltage bus E2 

Table 10- The optimal size and the annual surplus cost for MG No. 1 
Year Load growth (kW) WT PV Electrolyzer Hydrogen tank FC ELF × 10-3 Cost ($) 

1 0 265  9886  23879 29975 2150 10 710 ×14.8526  
2 108  5 189  450 575 44 10 710 ×0.257052  
3 218  8  386  976 1210 82 10 710 0.512105 × 

4 330  14  543  1342 1781 131 10 710 0.8076589 × 

5 445  21  810  1867 2370 177 10 710 1.123964 × 
6 562  27  1020  2480 3019 223 0 710 1.445771 × 
7 681  32 1239  3005 3615 270 10 710 ×1.773089  
8 802  38  1472  3562 4532 317 8.2815 710 ×2.105886  
9 926  44  1689  4032 5140 370 10 710 ×2.456987  
10 1053  50  1921  4657 5845 417 10 710 ×2.797453  
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3.1. The impact of load growth on optimal sizing 
and siting 

The 1-8 buses in Ekbatan complex are being 
developed but there is no development in other buses. 
Furthermore, there are two types of load growth in this study. 
The first model is related to buses 1-8 (6%), and the second 
model is related to other buses (2%). The peak load is 
calculated by equation 80-4. It is assumed that the load 
growth is saturated after 10 years [36]. 

The load growth has occurred every year comparing 
to previous year, hence new components should be added to 
MG in each year. The added components at ith year will 
produce power for (R-i+1) years (R shows the project life). 
The total investment cost at the beginning of the project is 
calculated as follows: 

푁푃퐶 =
푁푃퐶 ( )

(1 + 푖 )                                         (33) 

The optimal location of smart MG No. 1 is presented 
in Table 11. In Table 12, the optimal size for MG No. 1 and 
the annual surplus cost is determined. The optimal locations 
of smart MG No. 2 and No. 3 are presented in Tables 13-14, 
respectively. 

As it is shown in Tables 11 and 14, the optimal place 
of smart appliances in MG has not changed by load growth 
because of same load growth in all buses. In the MG No. 2, 
since buses 1-8 are being developed, and load growth is 
more in these buses, PV is transferred to bus 7 at 5th year. 
Although the movement of WT is impossible, other 
appliances can be moved every 3 years.  

 
Table 11- Reliability indices for MG No. 3 

ELF  LOEE (MWh/yr) LPSP  LOLE (hr/yr) 
0.00836 57.3726 0.008815 2.96 

 

Table 12- The optimal location of components in smart MG 
No. 1 

Year Location of 
WT 

Location of 
PV 

Location of FC (electrolyzer 
and Hydrogen tank) 

1 A2 B1  B4  
2 A2 B1  B4  
3 A2 B1  B4  
4 A2 B1  B4  
5 A2 B1  B4  
6 A2 B1  B4  
7 A2 B1  B4  
8 A2 B1  B4  
9 A2 B1  B4  
10 A2 B1  B4  

Table 13- The optimal location of components in smart MG 
No. 2 

Year Location of WT Location of PV Location of BT 
1 18 10  3  
2 18 10  3  
3 18 10  3  
4 18 10  3  
5 18 7  3  
6 18 7  3  
7 18 7  3  
8 18 7  3  
9 18 7  3  
10 18 7  3  

Table 14- The optimal location of components in smart MG 
No. 3 

Year Location of WT Location of PV Location of MT 
1 E2  E2  D2 
2  E2 E2  D2 
3  E2  E2  D2 
4  E2  E2  D2 
5  E2  E2  D2 
6  E2  E2  D2 
7  E2 E2  D2 
8  E2  E2  D2 
9  E2  E2  D2 
10  E2  E2  D2 

4. Conclusion 
In this paper, the optimal place and size of WT, PV, 

FC, electrolyzer and hydrogen tank were determined in a 
smart MG. On a case study, the result showed that the 
proposed algorithm based on PSO could optimally find the 
capacity and location of REs and storages, and its efficiency 
on mitigating the total cost along with improved reliability 
was proved. The proposed methodology was applied on 
three different MGs, and optimal place and size of their 
RERs and ESSs were specified. The impact of 2% load 
growth was studied in MG including WT/PV/FC/Hydrogen 
tank/battery. The load growth of 108 kW in the MG at 1st 
year of study led to only 2% increase in the total cost. 
Furthermore, the effect of different load growth (i.e., 6% 
only for some buses of another MG including 
PV/WT/battery) was investigated in this paper. The 
proposed method was applied for WT/PV/FC/hydrogen tank 
hybrid system, which is already one of the most complex 
systems, but this method can be applied for siting and sizing 
of other cases too. 
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Appendix 
The Copula method is the function that connects the 

multivariable probability density function to the one variable 
density function. The mathematical definition of the Copula 
is as follows [38]. 

푪[푭ퟏ(풙ퟏ),푭ퟐ(풙ퟐ), … ,푭풏(풙풏)]
= 푭(풙ퟏ,풙ퟐ , … , 풙풏)                                 (ퟑퟒ) 

The copula method converts different one variable 
probability density functions to the one multivariable 
density function [39]. In order to use the Copula method for 
wind and solar irradiance, the next steps should be applied:  

1) Enter the sample information in the matrix in a 
condition that the columns are the information for 
every hour (nv = 24), and each row is related to the 
one day in a year (ns = 365). 

2) Each column should be modeled with a suitable 
probability density function. One of the unique 
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advantages of the Copula method is that it can use 
different probability density functions. 

3) Calculation of the correlation matrix between 
different probability density functions 

4) Applying the Copula method 
5) Acquiring required information in the defined 

period 
After applying these steps, the probability density 

function for wind and solar irradiance is determined. In our 
study, the real data of hourly variation of solar irradiation 
level and wind speed over the year are extracted using two 
different sensors. A wind speed sensor (Si-RS485TC-2T-v) 
and digital silicon irradiance (Si-RS485TC-T) are applied in 
order to gather wind speed and irradiance data over the year. 
The irradiance and wind speed data for Ekbatan complex are 
shown in Fig.13 and Fig.14 respectively.  
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