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Caste-based discrimination, microfinance credit score, and microfinance loan approvals

among females in India

Abstract

We draw on the phenomenon of caste-based discrimination in India and signaling theory to assess

whether microfinance credit scores improve the odds of female micropreneurs from a lower caste

receiving loans and whether visible business characteristics further improve the odds of receiving

microfinance loans.  In a sample of 3,144 female microfinance loan applicants at a female-focused

microloan enterprise in India, females from a lower caste, relative to those from a higher caste,

have lower odds of receiving loans when their credit scores are below the mean. However, when

females from a lower caste have credit scores higher than the mean, the odds of receiving a loan

increase. The practical effect of size is small but meaningful. Loan applicants from a lower caste

with a visible signal of business ability do not improve their chances of receiving a loan relative

to those from a higher caste.
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In 2016, microfinance institutions had 123 million customers with $102 billion in loans

(Microfinance Barometer, 2016). With women from rural areas constituting a majority of

microfinance borrowers, microfinancing has increasingly become a tool for the economic and

social well-being of millions of women around the world. Yet, gender-based discrimination has

been widely documented in microfinancing markets (Agier & Szafarz, 2013). One mechanism to



2

reduce this bias is to rely on microfinance credit scores (Serrano-Cinca et al., 2016). A credit score

is a mode of statistical discrimination or profiling (National Research Council, 2004).

Though credit scores in microfinance are a welcome change, deeply rooted social biases

against females from certain groups in society could limit their efficacy. Caste-based

discrimination and an institutionalized discrimination framework, rooted in ancient, social, and

religious institutions (Deshpande & Sharma, 2013; Jodhka, 2016), may lower the efficacy of credit

scores in microfinancing. Whether the credit score as a financial solution can lower the negative

effects of institutionalized discrimination is an important research question for both academics and

microfinance institutions, especially in the case of India, a leader in microfinance (Microfinance

Barometer, 2016). Additionally, a variety of studies in financial lending have highlighted the value

of business ability as a signal in overcoming labor market frictions (Campbel & Kracaw, 1980).

Signals may help overcome the twofold impediment  being a female and coming from a lower

caste  in lowering information asymmetry. However, the potential of visible signals of business

ability to overcome institutionalized discrimination may be questioned because loan officers may

not rely solely on credit scores to make caste-blind decisions and because caste-based

discrimination may persist, lowering the fidelity of such signals to loan officers.

We draw on caste-based discrimination (Iyer et al., 2013) and signaling theory (Stiglitz,

1990) in posing two research questions: (i) Are female micropreneurs from a lower caste at a

disadvantage relative to females from a higher caste in receiving microfinance loans? and (ii) If

females from a lower caste are indeed at a disadvantage relative to females from a higher caste,

can a signal of business ability improve their odds of receiving microfinance loans? Using a unique

data set of 3,144 female microfinance loan applicants at a female-focused microloan enterprise in

India, we find that caste-based discrimination declines with scores above the mean  possibly
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indicating a transition from taste-based discrimination to statistical discrimination. However,

additional signals of business ability do not necessarily improve the odds of receiving loans for

females from a lower caste relative to females from a higher caste.  Our findings demonstrate

limited efficacy of credit scores below the mean, and the lower complementary value of the

business ability signal, support findings on the persistence of inequality, highlighted in the broader

management literature in general (Bapuji et al., 2019), and sociological studies on caste and

inequality in particular (Jodhka, 2016). Our findings also complement prior research on systemic

hurdles faced by female entrepreneurs (Henry et al., 2016; Justo et al., 2015), delving further into

heterogeneity among female entrepreneurs to augment understanding of an additional layer of

discrimination  caste.

Theoretical Development and Hypotheses

Institutionalized discrimination is rooted in the social dominance theory where social hierarchy

based on social, demographic, and religious dimensions results in the oppression of minorities

(Sidanius & Pratto, 2001). Examples of institutionalized discrimination include racial bias, the

caste system, apartheid, and gentrification. Self-employment could be a dignified and desirable

alternative to wage employment for lower caste individuals. Yet, entrepreneurs from a lower caste

face significant constraints ranging from securing access to resources and capital to economic

dependence on stakeholders from a higher caste (Thorat, 2010). Using the India Economic Census

of 1990, 1998, and 2005, Iyer et al. (2013) found that scheduled caste (SC) and scheduled tribe

(ST) members are less represented in business ownership and the percentage of the workforce

employed by businesses. Self-employed from a lower caste (p. 38) earn less and perceive lower

earnings as remunerative (Goel & Deshpande, 2016) with
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and non-SCSTs [self-employed had (Deshpande &

Sharma, 2016, p. 325). To overcome such caste-based discrimination, credit scores may offer a

viable tool to reduce discrimination in lending to lower caste female micropreneurs.

Caste, Credit Scores, and Female Micropreneurs

Credit scores in microfinancing could lower caste-based discrimination and, thereby, reduce the

borrowing disadvantage in microfinancing, especially for females who face added hardships in

entrepreneurial pursuits in developing countries (De Vita et al., 2014). A credit score provides a

uniform and objective criterion for all loan officers to follow. Rooted in the universalistic model

of creditworthiness (Henderson, Herring, Horton, & Thomas, 2015), microfinance credit scores

aim to reduce the effects of demographic and social attributes in the making of credit decisions. A

body of work has emerged on developing algorithms to determine microfinance credit scores

(Bumacov et al., 2014; Gutiérrez-Nieto et al., 2016; Karlan & Zinman, 2008). However, the credit-

score generation process remains a human-intensive process (Van Gool, Verbeke, Sercu, &

Baesens, 2012) and, while may reduce lending frictions, it must be used judiciously given that the

microfinance-based credit history of an applicant could be limited (Gutiérrez-Nieto et al., 2016).

However, the presence of a credit score may not be strong enough to counterbalance

institutionalized discrimination rooted in socio-religious institutions. In loan decisions, the

decision-makers may harbor implicit and explicit biases against lower-caste micropreneurs. With

surnames often revealing caste, discrimination is further likely in a setting where females are

already discriminated against in business undertakings (Deshpande & Sharma, 2016; Jodhka,

2010). Explicit bias in terms of perceived roles and status can also

fairly assessing the prospects of an applicant. Applicants from the upper caste may be perceived
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as more trustworthy and reliable and, consequently, decisions may reflect a bias against lower-

caste groups. Therefore, despite a comparable credit score, caste-based discrimination would

disadvantage lower-caste female applicants. Further magnifying the effects of discrimination,

microfinance loan officers may consider the under-representation of lower-caste individuals in the

business sector and their smaller, less professionalized, and largely informal enterprises as a

rationale for denying them loans despite comparable credit scores (Deshpande & Sharma, 2013;

Iyer et al., 2013). In proposing the following hypothesis, we expect that institutionalized

discrimination forces will reduce the effectiveness of credit scores:

Hypothesis 1 (H1): Relative to a female applicant from a higher caste, the likelihood of

receiving a loan is lower for a female applicant from a lower caste.

Signaling theory  Visible signals of business ability

While caste-based discrimination can bias loan approvals in favor of entrepreneurs from a higher

caste, asymmetric information theory in loan markets suggests that the availability of additional

signals of business ability should reduce such bias (Cornée, 2017). Our logic for overcoming caste-

discrimination challenges through business ability (2002) argument

borrowers who do receive a loan  (p. 163). Micropreneurs from a lower caste with more visible

signals of their business ability would imply lower transaction and monitoring costs and should,

therefore, help to surmount prejudice and information asymmetry. In a qualitative survey of ninety

Dalit businesses in six states in India, Prakash (2010) found that lower-caste business owners were

obliged to borrow informal loans at a higher rate and that, in the formal loan markets, banks
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discriminate against lower-caste loan applicants (Kumar, 2013). In a sample of microfinance

institutions from Mexico, Bauchet et al. (2018) found that the purchase of life insurance to

accompany the microfinance loan was a costly signal that lowered the odds of default. These

studies add some weight to the case for signaling in microfinance.

Business ability could be signaled by the size of the business and the years in self-

employment, among other indicators. Business size is especially salient given that size remains a

critical constraint for small businesses (Aldrich & Auster, 1986). Loan applicants who can signal

larger business size  an observable costly signal  may be deemed to attract resources and

employees and to have larger buffers against the financial vicissitudes faced by small businesses.

A larger business size signals lower odds of failure (Baum & Shipilov, 2006) and, therefore, higher

odds of repaying microfinance loans. Providing an additional signal of business ability reinforces

the credit score information and improves the odds of receiving a loan. Based on this logic, we

propose the following hypothesis:

Hypothesis 2 (H2): With an increasing microfinance credit score, the likelihood of

receiving a loan will increase for a female applicant from a lower caste, relative to a female

applicant from a higher caste, when complemented with a signal of business ability.

Methods

Data and Sample

To examine these hypotheses, we draw on data from one of the leading microfinance companies

in India. We refer to this company as Microloan Enterprise. With its primary focus on female

micropreneurs, Microloan Enterprise is a pioneer in the microfinance field. It launched operations

almost two decades ago and, by 2018, controlled an exceptionally large portfolio of over 800
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million USD and two million customers. Its operations are spread across the country in over eight

states encompassing the south, the central region, and parts of eastern and western India. Due to

its focus on recording and storing information digitally, we were able to gain access to data on its

customers and its microfinance credit scores for a city in southwestern India. The operations in

this city include eight branches located within and around the city. The evaluation process is very

detailed with many more checks and balances than a group loan, encompassing both personal and

business information that is commonly not found in the context of microfinance. The organization

uses third-party credit scores and has clear policies, standardized guidelines, and uniform loan-

origination processes to ensure that all loan applications are appraised fairly and effectively.

Following case-wise deletion, our final sample includes 3,144 first-time female loan

applicants who have -loan customers for at least two years. The

sample represents the entire universe of individual business loan applications that were received

from female micropreneurs by Microfinance Enterprise in the city. The loan applicants were

engaged in running micro-businesses such as Kirana stores (small, multi-purpose, retail stores),

tailoring services, manufacturing and retailing food products, incense making, carpentry, weaving,

mobile phone retailing, and scrap vending.

Measures

Our main outcome variable is whether an applicant has received a loan (1=yes; 0=no). The

predictor variable is the microfinance credit score, which is provided by a third party  a

specialized agency that provides credit scores based on an individual s microfinance-related

behavior. This credit score captures the individual's previous credit-related behavior in servicing

debt from a recognized microfinance institution. It does not take into account the individual's credit
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behavior in relation to products or services from other consumer financial institutions such as

banks or non-banking financial institutions (NBFCs). This credit score is based primarily on three

factors: (i) the number of previous loan applications that have been rejected by microfinance

institutions; (ii) the number of scheduled loan repayments that have been delayed; and (iii) the

number of defaults in loan repayments.

Given the limited differences between the general caste and other backward castes

(Deshpande & Sharma, 2016), in our test for Hypothesis 1, we code these two categories as zero

and SC/ST categories as one. The moderator is SCST or non-SCST as the members of Other

Backward Caste are closer economically and socially to the general caste category. Although

theologically, caste does not apply to non-Hindu communities, some non-Hindus identify with

certain caste structures due to complex socio-economic and historical factors (see the additional

discussion in the controls and robustness test section).

To test for Hypothesis 2, we use the log of the business premises in square feet. The size

of the business premises, though not ideal, is liable to reduce the misreporting of bias. Business

square feet, controlling for business type, provides a visible signal of business ability and could

help improve the odds of receiving loans in tandem with a higher microfinance credit score, despite

being from a lower caste. Owning or renting real estate is a high fixed-cost expense, and square

footage of the business, controlling for the type of sector (e.g., manufacturing, services, trade) is a

readily verifiable metric of the degree to which the business has overcome the liability of

smallness.

We include a variety of control variables. We include the loan amount requested. We also

include age (in years), education (illiterate; less than 10th grade; 10th pass; 12th pass; graduate; or

post-graduate), marital status (married; separated; unmarried; or widowed), and religion
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(1=Christian; 2=Hindu; or 3=Muslim). Because microfinancing is based on local relationships, we

include the years of residence in the current city as a proxy for residential stability. The sector of

an  (agriculture, manufacturing, other, services, and trading) is also included.

Finally, we add the family type (0=joint; 1=nuclear).

--------------Insert Tables 1-2 and Figure 1 about here----------

Results

In Figure A1 (Online Appendix), we present the quintiles of the credit-score distributions. The

scores are somewhat uniformly distributed across caste categories. However, for the range of 571

to 758, members of the ST category have rather lower scores. In the box-whiskers plot for the ST

category, the interquartile range (the length of the box) is larger. Finally, we present the pie plots

to demonstrate the distribution of credit scores across quintiles.

Table 1 presents the item descriptives. Table 2 presents the results based on odds ratios

from the logit regression. We note that, though the odds ratios for credit scores are small, the

interpretation is for a one-point increase in credit score. In Model 2, a higher credit score is

positively associated with the odds of receiving a loan. Therefore, for a 10-point increase in credit

score, the odds of receiving a loan are 1.04 times greater in Model 8.

Testing for Hypothesis 1, a higher microfinance credit score increases the odds of receiving

a loan to a greater degree for non-SCST applicants up to the mean credit score in the sample (Figure

1 [based on the final Model 7], Model 5). However, after the mean value (~640 score), the odds of

receiving a loan increase for SCST applicants. In other words, for a 10-point increase in credit

score, those belonging to SCST had 1.02 times (1.05 for SCST minus 1.03 for non-SCST) higher
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odds of receiving a loan.1 To compare effects, we have provided OLS estimates in the Online

Appendix, Table A1.

We further delve into the interaction plot in Figure 1. We specify a piece-wise regression

with a subsample SCST vs. non-SCST and, within each subsample, we create two categories at or

above the credit score of 641 or below the credit score of 641. In Figure A2, we present linear and

non-linear fit plots above and below the mean cutoff. For the dashed line (SCST), the odds of

funding are generally higher than those in the non-SCST category, except at low levels of credit

scores. Although the estimates support Hypothesis 2, the nuanced observation is that the odds

improve significantly for female micropreneurs from a lower caste when credit scores are better

than the mean.

Hypothesis 2 on the added benefit of signals of business ability was not supported (Table

2, Model 6). Overall, H1 is supported, but H2 is not. Considering the findings together, when

applicants from a lower caste are well below the mean credit score, candidates from a higher caste

are preferred. However, for applicants from a lower caste with a credit score above the mean, the

odds of receiving a loan are higher than for applicants from a higher caste. Overall, our findings

indicate that improving the credit score above the mean delivers the most pronounced benefit for

female micropreneurs from a lower caste.

1 The effects are calculated as follows from Model 11, based on raw coefficients:
slope for SCST=0:  b[credit score] = .0024; odds ratio = 1.003
slope for SCST=1:  b[credit score] + b[SCST × .credit score] = .0024 + .0030 = .0054; odds ratio = 1.005
intercept for SCST=0:  _cons = -3.475
intercept for SCST=1:  _cons + b[SCST]= -3.475 - 1.897 = -5.372
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Robustness Checks

When controlling for the branch fixed effects (Table A2, Model 1) or specifying probit and

complementary log-log specifications (Table A2, Models 2 and 3) the effects are consistent with

the main effects. We find no support for systematic discrimination in loan sanctioning between

Hindu women and women from other religious minorities exists (Table A3).

In addition to the size of business premises as a signal of business ability, Table A4 presents

the robustness of findings under additional signals of (i) log of annual income; (ii) customer-facing

business; (iii) years self-employed; and (iv) household ownership (ancestral, leased, rented, or self-

owned). In Table A4, consistent with inferences for H2, we find that these signals do not improve

the odds of receiving a loan.

Conclusion

Discrimination against female entrepreneurs is well established (Carter et al., 2007). We find that,

relative to females from higher castes, females from lower castes are less likely to receive loans

until they surpass the mean credit score of 641. Providing visible signals of business ability (square

footage of the business or additional signals) do not help to improve the odds of receiving a loan.

The findings differ from Raj and Sasidharan (2018) who focused on the variations in access to

formal credit for socially disadvantaged groups in India and found that socially disadvantaged firm

owners had a lower probability of obtaining formal credit despite comparable creditworthiness.

Their study focused on formal credit institutions, whereas our study focuses on microfinance, a

distinct credit vehicle. More importantly, our findings do not categorically show that socially

disadvantaged firm owners face systematic discrimination. As demonstrated in Figure 1, with

increased creditworthiness, as represented by a credit score, the odds of receiving a loan increase
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for lower-caste females. Our theoretical context of microfinance is distinct from the formal credit

receipts in the study by Raj and Sasidharan (2018) but, more importantly, our findings highlight

the value of creditworthiness for socially disadvantaged female micropreneurs. We argue that the

credit score as a demand-side signal is a viable approach to improve the odds of receiving a loan.

Related to the limitations of our study, as with several prior studies, we focus on loan-

sanctioning outcomes without considering the subjective processes in loan decision making. The

microloan organization in our sample has clear policies, uniform guidelines, and standardized

loan-origination processes for loan applicants. The complex microdynamics related to homophily

(for instance, loan officers from the same caste), role incongruity (for example, a Dalit woman

opening an eatery vs. opening a sanitation business), and social bias provide some additional

theoretical frameworks for further research. Focusing on intra-national variations future studies

can also explore--do tribal women in tribal-dominated regions still, face discrimination? do

migrants speaking the local language face discrimination in the regions they emigrate to?

Considering matrilineal versus patrilineal institutions as further bases of discrimination would also

be of interest. We call on future studies to assess the combination of remedial, reform, and

revolution approaches (Sutter et al., 2019) from the perspective of how these levers can be applied

to lower-caste-based discrimination. In conclusion, findings call for improved credit-scoring

algorithms that compensate for disadvantages faced by lower-caste females, for enhanced training

of loan officers, and for the development of more caste-blind microfinance loan policies.
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Table 1. Sample Descriptives
variable mean sd 1 2 3 4 5 6 7 8

1 Loan sanctioned 0.44 0.50 1.000
2 Microfinance credit score 641.16 137.15 0.222 1.000
3 SCST = 1 (else = 0 for General

and Other Backward Caste)
2.06 1.19 -0.020 -0.015 1.000

4 Log of business premises size
(square feet)

4.92 1.49 0.049 -0.053 0.008 1.000

5 Loan amount 97,320 18,120 0.025 0.008 -0.006 -0.012 1.000
6 Age 40.48 7.91 0.000 0.049 0.007 0.006 0.001 1.000
7 12th pass (ref: 10th pass) 0.05 0.23 0.008 0.004 0.014 -0.012 0.004 -0.094 1.000
8 Graduate 0.02 0.13 -0.014 -0.017 -0.001 -0.011 -0.001 -0.047 -0.033 1.000
9 Illiterate 0.19 0.39 -0.027 -0.033 0.007 -0.004 -0.032 0.183 -0.116 -0.066

10 Less than 10th grade 0.58 0.49 0.036 0.035 -0.010 -0.012 0.012 -0.031 -0.282 -0.161
11 Postgraduate 0.01 0.09 0.012 0.007 -0.031 -0.012 -0.005 -0.003 -0.023 -0.013
12 Separated (ref: married) 0.01 0.07 0.009 0.014 -0.015 0.033 -0.017 -0.011 0.042 -0.010
13 Unmarried 0.00 0.05 0.001 -0.001 0.007 0.006 -0.022 0.010 0.014 -0.007
14 Widowed 0.04 0.20 -0.030 0.005 -0.038 0.002 -0.031 0.178 -0.028 -0.028
15 Hindu (ref: Christian) 0.52 0.50 -0.113 -0.010 0.342 0.027 -0.076 0.028 -0.005 -0.011
16 Muslim 0.47 0.50 0.118 -0.006 -0.327 -0.040 0.095 -0.033 0.013 0.011
17 Residential stability in the

present city
26.01 12.17 0.002 -0.001 0.005 -0.023 -0.025 0.373 -0.016 -0.025

18 Manufacturing (ref. others) 0.06 0.24 -0.001 0.020 0.001 0.109 -0.055 -0.049 -0.038 -0.015
19 Services 0.41 0.49 -0.057 0.010 0.021 -0.095 0.008 -0.049 0.032 0.017
20 Trading 0.52 0.50 0.059 -0.018 -0.020 0.034 0.019 0.070 -0.013 -0.008
21 Family type 0.77 0.42 0.049 0.003 0.055 0.048 -0.021 -0.051 -0.021 -0.032

variable 9 10 11 12 13 14 15 16 17 18 19 20
9 Illiterate 1.000

10 Less than 10th grade -0.574 1.000
11 Postgraduate -0.046 -0.112 1.000
12 Separated (ref: married) 0.011 -0.021 -0.007 1.000
13 Unmarried -0.026 -0.015 -0.005 -0.004 1.000
14 Widowed 0.065 -0.006 -0.019 -0.015 -0.011 1.000
15 Hindu (ref: Christian) 0.072 -0.054 0.024 0.025 0.004 0.008 1.000
16 Muslim -0.077 0.053 -0.021 -0.031 -0.002 -0.011 -0.966 1.000
17 Residential stability in the present city 0.134 -0.045 -0.031 0.017 0.036 0.141 -0.018 0.011 1.000
18 Manufacturing (ref. others) 0.056 -0.011 -0.024 0.056 -0.014 0.041 0.031 -0.075 -0.009 1.000
19 Services -0.004 -0.062 0.017 -0.060 0.004 -0.070 0.017 -0.006 -0.041 -0.215 1.000
20 Trading -0.029 0.070 -0.004 0.024 0.004 0.051 -0.029 0.039 0.044 -0.269 -0.872 1.000
21 Family type (0=Joint; 1=Nuclear) 0.019 0.017 -0.004 0.039 -0.055 0.037 0.098 -0.110 0.012 0.114 -0.142 0.086

Note.
N = 3,144
Correlations at or above |0.035| are significant at p<0.05 (two-tailed) or below.
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Table 2. Logit Estimates
Loan sanctioned (0=no; 1=yes)

(1) (2) (3) (4) (5) (6) (7)
Microfinance credit score 1.004*** 1.004*** 1.003*** 1.003*** 1.003**

(0.000315) (0.000315) (0.000336) (0.00117) (0.00123)
SCST 1.089 1.093 0.216** 0.0264

(0.116) (0.119) (0.141) (0.0594)
Microfinance credit score × SC/ST 1.002** 1.006*

(0.000967) (0.00323)
Log of business premises size (square foot) 0.993 0.962

(0.153) (0.158)
Microfinance credit score × Log of business
premises size 1.000 1.000

(0.000225) (0.000240)
SCST × Log of business premises size 1.478

(0.596)
Microfinance credit score × SC/ST × Log of
business premises size 0.999

(0.000578)
Loan amount 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(2.16e-06) (2.09e-06) (2.15e-06) (2.10e-06) (2.09e-06) (2.08e-06) (2.07e-06)
Age 1.003 0.999 1.003 0.999 0.999 0.999 0.999

(0.00513) (0.00525) (0.00513) (0.00525) (0.00525) (0.00526) (0.00527)
12th pass (ref: 10th pass) 1.206 1.190 1.199 1.188 1.182 1.212 1.206

(0.221) (0.223) (0.220) (0.223) (0.222) (0.228) (0.227)
Graduate 0.916 0.938 0.911 0.939 0.944 0.966 0.977

(0.267) (0.283) (0.266) (0.284) (0.285) (0.292) (0.296)
Illiterate 1.038 1.080 1.047 1.080 1.069 1.099 1.089

(0.135) (0.145) (0.137) (0.145) (0.144) (0.148) (0.147)
Less than 10th grade 1.166 1.149 1.160 1.149 1.144 1.164 1.162

(0.126) (0.127) (0.126) (0.127) (0.127) (0.129) (0.129)
Postgraduate 1.545 1.476 1.552 1.490 1.514 1.503 1.550

(0.610) (0.604) (0.614) (0.610) (0.622) (0.618) (0.642)
Separated (ref: married) 1.309 1.207 1.316 1.222 1.227 1.157 1.176

(0.665) (0.622) (0.669) (0.631) (0.632) (0.599) (0.608)
Unmarried 1.204 1.215 1.190 1.199 1.167 1.187 1.154

(0.817) (0.848) (0.808) (0.838) (0.814) (0.829) (0.805)
Widowed 0.683** 0.667** 0.700* 0.672** 0.676** 0.668** 0.679*

(0.133) (0.133) (0.138) (0.134) (0.135) (0.133) (0.135)
Hindu (ref: Christian) 1.116 1.421 0.993 1.379 1.352 1.488 1.417

(0.324) (0.419) (0.303) (0.409) (0.401) (0.441) (0.423)
Muslim 1.834** 2.377*** 1.683* 2.383*** 2.332*** 2.512*** 2.473***

(0.536) (0.705) (0.514) (0.707) (0.691) (0.749) (0.738)
Residential stability in the present city 1.000 1.001 1.000 1.001 1.001 1.001 1.001

(0.00326) (0.00335) (0.00326) (0.00335) (0.00335) (0.00336) (0.00337)
Manufacturing (ref. others) 1.966 1.886 1.974 1.903 1.970 1.987 2.070

(1.117) (1.093) (1.121) (1.104) (1.141) (1.155) (1.202)
Services 1.655 1.588 1.667 1.601 1.678 1.792 1.889

(0.912) (0.894) (0.918) (0.901) (0.943) (1.013) (1.066)
Trading 2.049 2.031 2.064 2.046 2.143 2.253 2.369

(1.128) (1.141) (1.135) (1.151) (1.202) (1.271) (1.334)
Family type (0=Joint; 1=Nuclear) 1.324*** 1.334*** 1.322*** 1.331*** 1.336*** 1.329*** 1.330***

(0.118) (0.122) (0.118) (0.122) (0.122) (0.122) (0.122)
Constant 0.162*** 0.0131*** 0.181** 0.0131*** 0.0160*** 0.0111*** 0.0158***

(0.112) (0.00961) (0.126) (0.00960) (0.0117) (0.0117) (0.0172)

Observations 3,144 3,144 3,131 3,144 3,144 3,144 3,144
Chi-2 75.16 245.4 73.92 246.1 253.1 259.4 268.6
p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Pseudo R2 0.0175 0.0570 0.0172 0.0571 0.0588 0.0602 0.0624
Notes.
Odds ratios reported
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
The estimates are consistent for models without controls and are available from the authors
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Fig 1. Moderation plot


