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ABSTRACT: 
This thesis examines the forecasting accuracy of implied volatility and GARCH(1,1) model vola-
tility in the context of emerging equity markets. As a measure of risk volatility is a key factor in 
risk management and investing. Financial markets have become more global and the importance 
of volatility forecasting in emerging markets has increased. Emerging equity markets have more 
different risks than developed stock markets. As risk affects the potential return it is important 
to test and study how volatility models are able to forecast future volatility in emerging markets. 
The purpose of this thesis is to study the forecasting abilities and limitations of option implied 
volatility and GARCH(1,1) in the riskier emerging market environment. 
 
The majority of previous studies on volatility forecasting are focused on developed markets. 
Previous results suggest that in developed equity markets implied volatility provides an accurate 
short-term future volatility forecast whereas GARCH models offer a better long-term volatility 
forecast. The previous results in emerging market context have been in rather inconclusive. 
However, there is more evidence of GARCH(1,1) volatility being the most accurate future vola-
tility forecaster. The main motivation behind this thesis is to examine which models is best suited 
for volatility forecasting in emerging equity markets. 
 
The forecasting accuracy of option implied volatility and GARCH(1,1) volatility is tested with an 
OLS regression model. The data consist of MSCI Emerging Market Price index data and corre-
sponding option data from 1.1.2015 to 31.12.2019. In this thesis the daily closing prices of the 
index and option are used to compute daily and monthly implied volatility and GARCH(1,1) 
model volatility forecasts. Loss functions are applied to test the fit of the models.  
 
The results suggest that both models contain information about one-day future volatility as the 
explanatory power of both models is statistically significant for daily and monthly forecasts. The 
GARCH(1,1) volatility is a more accurate future volatility estimate than implied volatility for both 
daily and monthly volatilities. The monthly volatility forecast is more accurate for both models 
than the daily forecast. The results indicate that in both daily and monthly values GARCH(1,1) 
volatility is a more accurate estimate for future volatility than implied volatility. The GARCH(1,1) 
monthly volatility offers the best fit for future volatility with the highest predictive power and 
lowest error measures, suggesting that it is the most appropriate fit for future volatility fore-
casting in emerging equity markets. 
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1 Introduction 

Forecasting equity market risk has held the attention of finance professionals and re-

searchers for over two decades. An accurate estimate of future volatility is a key input in 

investing and risk management. As financial markets have become increasingly global 

and efficient, there are multiple models that can be applied to volatility forecasting. 

However, current research of these models is more focused on developed equity mar-

kets. The application of volatility forecasting models to emerging markets has not been 

widely researched. As emerging equity markets have more risks that affect stock returns, 

it is important to test and study how volatility models are able to forecast future volatility. 

 

This thesis focuses on two most commonly used volatility forecasting methods, the op-

tion implied volatility and Generalized Autoregressive Conditional Heteroscedasticity. 

Implied volatility is calculated from the Black-Scholes (1973) option pricing formula when 

other model inputs, such as option price and underlying price, are known. As a measure 

implied volatility has its drawbacks. The model assumes volatility to be constant over 

option’s life when in reality volatility changes over time and exhibits clustering. Implied 

volatility is also affected by option moneyness. 

 

Although option implied volatility is a widely used model in finance, Engle (1982) devel-

oped Autoregressive Conditional Heteroscedasticity in order to predict time-varying vol-

atility. The Generalized model, known as GARCH, recognises that volatility changes over 

time and exhibits clustering where volatility tends to be high or low for extended time 

periods. Bollerslev (1986) introduced the GARCH(1,1) volatility model which includes lag-

factors for previous return and volatility, taking the clustering effect of volatility into con-

sideration. 

 

This thesis examines the forecasting accuracy of option implied volatility and GARCH(1,1) 

in emerging equity markets. The MSCI Emerging Market Price Index and the correspond-

ing index option are used to compute these model’s volatility estimates which are then 
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compared to one-day ahead realised volatility on a daily and monthly level during 

1.1.2015–31.12.2019.   

 

 

1.1 Motivation and purpose 

Emerging markets experience more volatility than developed markets. The main moti-

vation and purpose of this thesis is to examine whether the most commonly used vola-

tility forecasting models, implied volatility and GARCH(1,1), have informational content 

over future volatility in a riskier environment. A major interest in this thesis is to test 

volatility forecasting models in a market environment that is more volatile than devel-

oped markets. Risk and volatility forecasting have been widely studied in developed mar-

kets and in that environment these models have provided accurate estimates of future 

stock market volatility. However, the research of these models in emerging markets has 

been inconclusive.  

 

Emerging economies have become increasingly significant in global financial growth. 

This makes it crucial to understand the risks in emerging equity markets and how to fore-

cast future volatility. Emerging markets are an interesting topic in risk research as these 

market experience risks that are not as present in developed markets. These include po-

litical, financial and environmental risk factors. These risks are drivers to higher volatility 

levels than in developed markets. The main focus is to study how accurately volatility 

forecasting models can predict future volatility in a more risky environment. 

 

 

1.2 Research question and hypothesis 

This thesis aims to analyse option implied volatility and GARCH(1,1) volatility as forecast-

ing methods in emerging equity markets. The main research question is whether these 

models contain one-day ahead information about future volatility on a daily and monthly 

level. This research question leads to following null hypothesis: 
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H0: Implied volatility and GARCH(1,1) volatility do not contain information 

over realised volatility in emerging equity markets 

 

 The alternative hypotheses are then analysed for both models in terms of daily and 

monthly volatilities: 

 

H1: Daily implied volatility accurately predicts future realised volatility in 

emerging equity markets 

H1: Daily GARCH(1,1) volatility accurately predicts future realised volatility in 

emerging equity markets 

H2: Monthly implied volatility accurately predicts future realised volatility in 

emerging equity markets 

H2: Monthly GARCH(1,1) volatility accurately predicts future realised volatil-

ity in emerging equity markets 

 

The research question is analysed through MSCI Emerging Market Price index and corre-

sponding option price data during the time period of 1.1.2015–31.12.2019. The hypoth-

eses are tested with Ordinary Least Squares regressions and two loss functions are ap-

plied to test the fitting accuracy of these models. 

 

 

1.3 Previous studies 

Figlewski (1994) defines volatility as a statistical risk measure that describes the disper-

sion of asset returns around the mean. It is measured with variance or standard devia-

tion. Abken and Nandi (1996) used logarithmic returns to measure realised volatility 

from market data and Parkinson (1980) presents a range based model that uses the 

change between highest and lowest observed price. Realised volatility or historical vola-

tility can also be used as a long-term future volatility level estimate but research by Ca-

nina and Figlewski (1993) suggest that it offers an inaccurate measure for short-term 

forecasting. 
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In order to better forecast future volatility, Black and Scholes (1973) introduced the op-

tion implied volatility. Implied volatility can be derived from the Black-Scholes option 

pricing model when other inputs of the model, such as market price of the option and 

underlying stock, are observable in the market. As a measure implied volatility is theo-

retically a good estimate since the option price should contain information about future 

price levels until the end of maturity. 

 

A drawback to implied volatility was first described by Mandelbrot (1963). While implied 

volatility model assumes a constant volatility over the option’s life, in reality volatility 

changes over time. In addition to that, volatility has a clustering tendency, which means 

period of high/low volatility are followed by extended period of high/low volatility. Man-

delbrot (2009) notes that in a well-functioning market stock returns should be uncorre-

lated with previous returns. However, there appears to exist autocorrelation between 

absolute periodic returns. Abken and Nandi (1996) suggest there is also another draw-

back to implied volatility as a forecaster: implied volatility changes in accordance with 

option’s moneyness and maturity. 

 

To correct for the implied volatility model’s assumption of constant volatility over op-

tion’s maturity, Engle (1982) introduced the Autoregressive Conditional Heteroscedas-

ticity (ARCH) model. This stochastic model assumes that volatility changes over time and 

that it experiences autocorrelation with previous volatility. Bollerslev (1986) presented 

the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model. The 

GARCH models include more flexible lag component structure and are adaptive to dif-

ferent volatility levels which enables the calculation of long-term future volatility esti-

mates. The GARCH(1,1) is a widely used adaptation of the model that has one lag-com-

ponent for both past return and past volatility. 

 

Implied volatility and GARCH(1,1) have been widely studied in developed equity markets. 

Poon and Granger (2003) suggest that implied volatility is more accurate as a short-term 

forecast and that at-the-money options are less affected by the implied volatility skew. 
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A review by Poon and Granger (2005) concludes that implied volatility dominates histor-

ical volatility, ARCH and GARCH models as a future volatility forecaster. However, Bentes 

(2015) suggests that while implied volatility provides the best short-term forecast, 

GARCH(1,1) model offers the best long-term forecast when data from US and emerging 

markets was compared. 

 

According to Easterly, Islam and Stiglitz (2001) emerging markets experience more risk 

than developed markets as emerging markets have lower trading volume and lower lev-

els of liquidity as well as more risk factors that are country specific, such as political risk. 

These risks make emerging markets an interesting research topic in volatility forecasting. 

The previous results on the accuracy of volatility forecasting models in emerging equity 

markets are inconclusive. Yang and Liu (2012) compared historical volatility, implied vol-

atility and GARCH models in Taiwanese stock market and suggest that implied volatility 

is the most accurate forecast for monthly volatility. Gokcan (2000) compared GARCH 

based models in forecasting emerging market volatility. The results suggest that 

GARCH(1,1) volatility offers the most accurate future volatility forecast in these markets. 

As suggested by Bentes (2015), the best suited model for volatility forecasting depend 

on the forecasting time period. 

 

 

1.4 Structure of the thesis 

This thesis is structured in a manner that theories and terminology of volatility models 

is presented first and that is followed by examination of previous studies results. The 

following section of this thesis introduces the concept of volatility as a risk measure and 

presents the calculation method of realised volatility as well as presenting some results 

on historical volatility forecasting.  

 

The third section of the thesis focuses on volatility forecasting models, most importantly 

implied volatility and stochastic GARCH based models. The advances and drawbacks of 

each model are analysed through existing literature and by reviewing previous studies in 
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forecasting with these models. Based on previous research some conclusion of the re-

search field are drawn. The fourth section introduces the emerging equity markets and 

the risks that arise especially in these markets. Previous results in volatility forecasting 

are presented and analysed. The section also compares the emerging market forecasting 

results to the ones presented in previous section for developed markets. 

 

Data and methodology used in this thesis are described in the fifth section. Based on 

existing literature, appropriate models are chosen to analyse the research question and 

hypotheses. Section six presents the descriptive statistics, empirical results and offers 

topics for future research.  
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2 Volatility as a risk measure 

Volatility is a statistical measure that describes the dispersion of observations around a 

mean. In finance volatility is commonly defined as dispersion of returns around expected 

mean. Volatility is therefore used to measure the amount of uncertainty as to size of 

changes in a security’s price. Forecasting volatility is a crucial part of investment process 

when it comes to asset pricing and managing investment’s risk. Volatility forecasting is a 

useful tool for investors and financial professionals. It has also held the attention of re-

searchers for over two decades, and the research around volatility forecasting is still an 

evolving field of study. An accurate future volatility forecast is a key input in asset pricing 

and investment risk evaluation. 

 

This section of the thesis defines volatility as a measure of risk and introduces calculation 

methods for realised and past volatility. Realised or historical volatility can be measured 

for a sample and it can also hold information about future volatility. This section also 

describes features of volatility that are observed in equity markets. Volatility has a clus-

tering tendency, which is periods of high or low volatility that follow each other. Another 

feature in volatility forecasting is an observed volatility smile, which is described later in 

the thesis. 

 

 

2.1 Definition of volatility 

Volatility is a statistical measure and in finance it is defined as the dispersion of returns 

of a security. It is measured by standard deviation or variance of returns around a mean 

and can be interpreted as the amount of uncertainty in markets as to size of changes in 

a security’s price. A higher volatility indicates a greater uncertainty of a security’s future 

value. Higher volatility means there is a larger spread of security prices, which indicates 

there is a higher risk of price change. An asset with high volatility is more likely to expe-

rience larger price fluctuations during a short time period. A lower volatility indicates 
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that the asset price is relatively stable over a short time period. (Figlewski, 1997; Poon 

& Granger, 2003) 

 

Depending on the information and data available, the variance of a security can be cal-

culated in two different ways. When the probability distribution of returns and expected 

return of a security can be defined, variance is calculated from the stock returns as the 

sum of averaged squared deviations of expected return as follows: 

 

𝜎2 = ∑ 𝑝(𝑠)[𝐸(𝑟) − 𝑟(𝑠)]2                                                                                (1)   

 

where 𝜎2 is the variance of security’s return, ∑ 𝑝(𝑠) is the sum of probabilities for each 

possible return and [𝐸(𝑟) − 𝑟(𝑠)]2  is the squared difference between expected and 

possible return. A larger variance 𝜎2 indicates a larger deviation of possible returns from 

expected return and the risk of price change is greater. A zero variance would indicate 

that there is no risk of price change. (Hull, 2015, pp. 210; Poon & Granger, 2003) 

 

Variance can also be calculated from a data sample. Sample variance measures the 

spread of returns of a security from the data sample’s mean return. It is defined as the 

sum of squared differences between each data point and the sample’s mean: 

  

𝜎2 =
∑(𝑋 − 𝜇)2

𝑁
                                                                                                   (2) 

 

where 𝜎2  is the sample variance, ∑(𝑋 − 𝜇)2  the sum of squared differences of each 

data point 𝑋 from the sample mean μ, and 𝑁 the number of data points in the data set.  

A sample variance of zero would indicate that all the values in the data set are equal and 

there is no price variation. A positive value indicates that there is variance of returns in 

the data sample. The larger the differences of prices from the mean, the larger the sam-

ple variance. (Zhang, Wu & Cheng, 2012) 
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In calculating sample variance, the arithmetic average of squared deviations is often mul-

tiplied by a factor of 𝑁/(𝑁 − 1), where 𝑁 is the sample size. This is due to the use of 

sample mean μ in place of the expected value 𝐸(𝑟). The use of average causes a down-

ward bias in sample variance calculation as in formula 2, which is referred to as degrees 

of freedom bias. By using the multiplying factor of 𝑁/(𝑁 − 1), the sample variance is 

commonly expressed as follows: 

 

𝜎2 =  (
𝑁

𝑁 − 1
) × 

∑(𝑋 − 𝜇)2

𝑁
=  

∑(𝑋 − 𝜇)2

𝑁 − 1
                                                   (3) 

 

Standard deviation is another measure of volatility. It is defined as the square root of 

variance: 

 

𝜎 = √𝜎2 =  √∑ 𝑝(𝑠)[𝑟(𝑠) − 𝐸(𝑟)]2                                                              (4) 

or  

𝜎 = √𝜎2 = √
∑(𝑋 − 𝜇)2

𝑁 − 1
                                                                                     (5) 

 

where 𝜎 is the standard deviation. The interpretation of standard deviation is the same 

as for variance: the higher the standard deviation, the higher the chance of price change. 

(Hull, 2011, pp. 521–522; Poon & Granger, 2003) 

 

Both standard deviation and variance are simple risk measures. Poon and Granger (2003) 

mention a drawback to these measures which is that both tend to put too much weight 

on outliers in the given data set. Outliers are observations that are far from the sample 

mean and may cause the variance to be abnormally large when calculating historical or 

future volatility. Outliers in the data set may lead to an upward or downward bias in 

sample variance. 
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2.2 Historical volatility 

As presented by Abken and Nandi (1996), historical or realised volatility is the observable 

value that can be calculated as the average deviation of realised security returns from 

the realised average return for a time period. It is the simplest measure that can be used 

in estimating or forecasting future volatility of a security. Another method for calculating 

realised volatility is to use the underlying security’s returns of a futures or option con-

tract for a time period and changing the underlying security’s logarithmic price changes 

into yearly volatility. In terms of volatility forecasting, a higher historical volatility would 

indicate a higher expected future volatility. 

 

However, Abken and Nandi (1996) state that historical volatility as an estimate for future 

volatility does not have any indication of the security’s price trend’s direction. Another 

drawback to using historical volatility is that it is a measure of past price movements. To 

determine the correct historical time period that best reflects the future volatility of the 

stock price is difficult and the measure can be deceiving as it only reflects past trends.  

 

 

2.2.1 Calculation of realised volatility 

Mathematically realised volatility is calculated as the annualised standard deviation of 

returns. Hull (2015, pp. 201) has defined that realised volatility is calculated from the 

natural logarithm of daily stock returns: 

 

𝑅𝑡 = ln (
𝑆𝑡

𝑆𝑡−1
)                                                                                    (6) 

 

where 𝑅𝑡 is the daily stock return of day 𝑡, 𝑆𝑡 is the stock price or option or future con-

tract’s underlying price at day 𝑡 and 𝑆𝑡−1 is the stock price or option or future contract’s 
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underlying price at day 𝑡 − 1. Like the mathematical definition of sample volatility, real-

ised volatility is measured by the variance or standard deviation of averaged squared 

deviations from the data sample’s mean: 

 

𝜎2 =  
∑ (𝑅𝑡 −𝑇

𝑡=1 𝑅̅)2

𝑇 − 1
                                                                                             (7) 

 

where 𝜎2 is day 𝑡 realised volatility, ∑ (𝑅𝑡 −𝑇
𝑡=1 𝑅̅)2 is the sum of squared logarithmic re-

turn’s deviation from the sample mean 𝑅̅ and 𝑇 − 1 is the number of days in the sample 

period minus one. Daily realised volatility is often annualised by multiplying the daily 

value with √252 as there are approximately 252 trading days in a year. A monthly value 

can be computed by multiplying the daily realised volatility with√22. (Hull, 2015, pp. 

201–203) 

 

Parkinson (1980) suggests that realised volatility is more accurate when calculated with 

a range based method. A range based method utilises the highest and lowest value of 

the day as follows: 

 

𝑅𝑉𝑡 =  √
∑ ln (ℎ𝑖 − 𝑙𝑖)2𝑇

𝑖=1

4𝑙𝑛(2)
                                                                                  (8) 

 

where 𝑅𝑉𝑡 is the index’ realised volatility, ∑ ln (ℎ𝑖 − 𝑙𝑖)
2𝑇

𝑖=1  is the sum of natural loga-

rithm of the difference between highest and lowest price during the sample period and 

T is number of days in the sample period.  

 

When selecting a sample period for calculating realised volatility, it is relevant to con-

sider the duration of the sample period and the frequency of observation. According to 

Bodie, Marcus and Kane (2014, pp. 737–743) an increased frequency of observations 

does not lead to a more accurate estimation of the data sample’s mean. Lengthening the 
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duration of sample period does however improve the accuracy of the mean, which sug-

gests that a longer sample period would improve the realised volatility measure. Increas-

ing the data observation frequency does in contrast improve the accuracy of the stand-

ard deviation estimate. Standard deviation increases at the rate of square root of time 

(√𝑇). However, in practice it is usually complicated and not necessarily meaningful to 

obtain and use a long sample period. Older data may be less accurate and less informa-

tive, making it not representative of current volatility or future volatility estimates. 

 

 

2.2.2 Forecasting with historical volatility 

As Abken and Nandi (1996) suggest, it is complicated to evaluate whether a historical 

realised volatility value could contain information about future volatility. Poon and 

Granger (2005) indicate several issues with forecasting volatility based on historical vol-

atility. Historical volatility is measured with squared standard deviations of realised re-

turns from the sample period’s mean. According to Poon and Granger (2005) this model 

is not robust to outliers in the data set which contribute to a biased volatility estimate. 

Outliers are abnormally high or low values in the sample period which may, depending 

on the data sample length and frequency, cause a biasness in realised volatility. Another 

issue with using historical volatility in forecasts is defining the correctly representative 

sample period. Does a longer sample period improve the accuracy of historical volatility 

forecast or would a shorter period be more describing of recent volatility expectations 

and market events? 

 

There are several market phenomena that cause outliers in price data. Microstructure 

noise created by extremely high trading frequency is one cause of outliers in stock mar-

ket data. Chan, Cheng and Fung (2010) examined whether the data frequency affects 

historical volatility’s predictive power over future volatility. The results suggest that very 

high frequency market price data, such as 1-minute frequency, causes instability in his-

torical volatility measure. Research results by Aït-Sahalia, Mykland and Zhang (2005) sug-

gest that an optimal data frequency is 5-minutes as this sampling frequency eliminates 
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market’s microstructure noise. The ideal sampling frequency was further studied by An-

dersen, Bollerslev, Francis and Diebold (2007) who found that 5-minute sampling interval 

is robust enough to microstructure noise. When using data with 5-minute frequency, it 

also increases accuracy of historical volatility to use only open hours’ data and eliminate 

the closed market data.  

 

Volatility jumps are another cause for outliers in market price data. Volatility jumps are 

large changes in volatility that are caused by price shocks to stocks. Both firm-specific 

and market events can cause a jump in volatility. Andersen et al. (2007) adjusted their 

historical volatility forecasting model to include a volatility jump component. The results 

suggest that historical volatility is not a robust forecasting method when the data con-

tains outliers caused by volatility jumps. The future predictability of volatility is higher in 

the non-jump component and jumps lead to a biased future volatility estimate. Historical 

volatility models are mean reverse and volatility jumps affect the mean and cause a bias 

in future volatility estimates. 

 

When using historical volatility as an estimate for future volatility, the length of the sam-

ple period is another thing to consider. Figlewski (1994) examined the affects that sample 

period length has to the accuracy of historical volatility. Examining different time periods 

of historical volatility values for the S&P 500 index, the results indicate clearly that the 

longer the time period, the more accurate the historical volatility forecast. The results 

suggest that a five year sample period produces the most accurate future volatility esti-

mate. As long-term volatility exhibits mean reversion, a longer time period (over 1 year) 

leads to an increase in historical volatility’s accuracy as a future volatility forecaster. 

 

When observation frequency and sample length are selected appropriately, historical 

volatility can provide a useful and accurate enough estimate of future volatility. Using UK 

FTSE100 stock returns during 1993–1995, Gwilym and Buckle (1999) compared the fore-

casting accuracy of historical volatility to option implied volatility. The results suggest 

that a one-year historical volatility provide an unbiased estimate of future volatility at 1% 
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significance level. The R2 -value of the model is low and indicates only 3% explanation to 

data variation. The results also indicate that a shorter than one-year sample period pro-

vides a non-reliable estimate for future volatility. In a more recent study Wang (2010) 

studied historical volatility of S&P 500 stocks during 1998–2008. A 60-day historical vol-

atility had only 6.1% explanatory power over a next-day volatility forecast. However, the 

mean square error of 2.49 was lower than for a moving average model.  

 

Fleming’s (1998) results suggest that historical volatility models are inefficient when 

multiple lag-components are used. A 28-day historical volatility of S&P 500 stocks during 

1985–1992 was an inaccurate one-day future volatility forecast with R2 of 2%. Canina 

and Figlewski (1993) report similar results with S&P 100 stocks for time period of 1983–

1987. Concluding that historical volatility is a poor estimate of future volatility, both stud-

ies also suggests that using historical volatility as a future estimate does not provide any 

value to investors when examining trading strategies. 

 

Results by Alford and Boatsman (1995) suggest that taking industry and firm size into 

consideration improve historical volatility’s accuracy as a future volatility forecast. Brous, 

Ince and Popova (2010) found supporting evidence examining S&P 100 stocks during 

1996–2006. The study suggests that historical volatility outperforms implied volatility as 

a future volatility estimate for less-liquid stocks. The results indicate that taking industry, 

firm-size and liquidity into consideration lead to a more accurate historical volatility fore-

cast. A more recent research by Chan, Jha and Kalimipalli (2009) also examined the eco-

nomic benefits of S&P 500 historical volatility as a future volatility forecast. Results sug-

gest no significant economic gains with historical volatility even when model is combined 

with option implied volatility forecast. 

 

As previous results by Figlewski (1994) and Gwilym and Buckle (1999) indicate, the num-

ber one benefit of using historical volatility as a future volatility indicator is that it is easily 

calculated and price data is available almost from every market. Historical volatility in-
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terpreted as a long-run volatility level, when computed from a long time series, can pro-

vide a fairly accurate estimate of future volatility levels. A longer time period mitigates 

the effects of microstructure noise and volatility jumps. However, as results by Canina 

and Figlewski (1993) indicate, historical volatility is not an efficient estimate for one-day 

volatility forecasting. It is more useful for estimating a benchmark-level for long-run av-

erage volatility as it does not offer economical gain when used in investment strategies. 

For forecasting short-term volatility, a more accurate forecast is calculated with option 

implied volatility or a stochastic volatility model.  
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3 Volatility forecasting 

Forecasting the volatility of equity returns is an important part of both investment pro-

cess and management of risk. In addition to using historical volatility as a benchmark for 

future volatility, there are several approaches to future volatility forecasting. This section 

of the thesis presents two of the most commonly used forecasting methods: option im-

plied volatility and Generalized Autoregressive Conditional Heteroscedasticity (GARCH).  

 

The purpose is to describe the theory and assumptions behind these forecasting models 

and their calculation as well as summarising previous results on forecasting with implied 

volatility and GARCH. By examining previous studies this thesis aims to present the 

strengths and possible limitations of these forecasting approaches. The forecasting abil-

ities and shortcomings of implied volatility and GARCH have held the attention of finan-

cial market researchers and professionals for over two decades and is still an evolving 

field of study. 

 

 

3.1 Implied volatility 

The most widely used and well-known measure to future volatility forecasting is option 

implied volatility. It is an option-based model and it is calculated from the Black-Scholes 

option pricing formula. Implied volatility is defined as the volatility level implied by op-

tion’s price. It is calculates from the option pricing model when other factors of the 

model, such as option price and underlying asset’s price, are known. This makes implied 

volatility a forward-looking measure rather than a historical model as it differs from his-

torical volatility in the sense that calculated implied volatility is not based on historical 

information. (Hull, 2015, pp. 203) 

 

Hull (2015, pp. 203–204) views implied volatility as the one variable in Black-Scholes op-

tion pricing model that cannot be observed directly. Derived from observable option 

prices, implied volatility is an estimate of the option’s underlying stock’s volatility. The 
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Chicago Board Option Exchange (CBOE) provides an implied volatility indexes for major 

equity indexes. The VIX index, which is the implied volatility index of the S&P 500 index, 

is commonly used by investors and risk managers to assess stock market volatility. During 

a bullish market implied volatility tends to be low as asset prices are expected to rise in 

a short time period. In a bearish market situation stock prices are expected to fall and 

implied volatility tends to rise due to greater price uncertainty.  

 

 

3.1.1 Calculation of implied volatility 

The Black-Scholes option pricing model was introduced by Fischer Black and Myron 

Scholes in 1973. Implied volatility can be computed through this option pricing model 

when other model variables are known. The Black-Scholes option pricing model is based 

on the assumption that the underlying stock’s price approaches a lognormal distribution 

at the time of the option’s expiration. A lognormal distribution is more skewed to the 

right than a normal distribution. As presented in Picture 1, it can have any value between 

zero and infinity. 

 

Picture 1. Lognormal distribution. (Hull, 2011, pp. 323) 

 

According to Hull (2011, pp. 303–304, 313) stock prices follow in a very short time period 

a Wiener Process, which is a continuous-variable stochastic process with a normal distri-

bution and mean of zero and a variance rate of 1.0 per year. The Wiener Process is used 
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in physics to characterise multiple small shocks to a particle. In option pricing this pro-

cess is used to describe small price shocks to the underlying stock. The derivative’s price 

is a function of stochastic underlying stock’s price. This definition is known as Itô’s lemma, 

and it denotes that at the option’s expiration time the underlying stock’s price, when 

given its price today, is lognormally distributed.  

 

The Black-Scholes option pricing model can be computed for European and American 

call and put options. There are two significant assumptions in the model. First, the risk-

free interest rate is assumed to be constant over the option’s life. The second assump-

tion is that the volatility of the stock price is constant over the life of the option. The 

Black-Scholes option pricing formulas for European call and put options are defined by 

Black and Scholes (1973) and Hull (2015, pp. 603–604) as follows: 

 

𝑐0 =  𝑆0𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2)                                                                            (9) 

 

𝑝0 =  𝐾𝑒−𝑟𝑇𝑁(−𝑑2) −  𝑆0𝑁(−𝑑1)                                                                  (10)                                                                                 

 

where 

𝑑1 =  
𝑙𝑛 (𝑆0 𝐾)⁄ + (𝑟 + 𝜎2 2)𝑇⁄

𝜎√𝑇
                                                                     (11) 

 

𝑑2 =   
ln (𝑆0 𝐾)⁄ + (𝑟 − 𝜎2 2)𝑇⁄

𝜎√𝑇
= 𝑑1 − 𝜎√𝑇                                             (12) 

 

where 𝑐0 and 𝑝0 are the current call and put option values, 𝑆0 is the current price of the 

underlying stock, 𝑁(𝑑1) is a factor by which the present value of a stock’s random price 

exceeds the current stock price, 𝑁(𝑑2) is the probability of the option being exercised, 

𝐾 is the option exercise price, 𝑒 is Napier’s constant that is the base of natural logarithm 

function ln, 𝑟 is the risk-free interest rate, 𝑇 is time to option’s expiration in years and 𝜎 

is the standard deviation of the underlying stock’s annualised, continuously com-

pounded rate of return. 
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Picture 2 further demonstrates the cumulative probability distribution function of 𝑁(𝑑2) 

factor. In the option pricing model the distribution describes the probability of the option 

being exercised. In Picture 2 the shaded area is the probability that the option is exer-

cised. 

 

Picture 2. The 𝑁(𝑑2) function’s cumulative probability distribution. (Hull, 2011, pp. 336) 

 

Implied volatility can be calculated from the option pricing formula by finding the stand-

ard deviation that is consistent with the formula when option price is observed in the 

market. Implied volatility is computed by iteration when all the other inputs of the op-

tion pricing formula are known. This can be done by using a goal-seeking function that 

calculates the option implied volatility. (Black and Scholes, 1973; Hull, 2011, pp. 302–

315, 321–343) 

 

In practice, option implied volatility can be complex to calculate. Li (2005) presents sev-

eral formulas for calculating an approximation of implied volatility for circumstances 

when the option meets certain properties. When the option is at-the-money, that is 

when the underlying stock price is equal to the discounted strike price of the option, 

implied volatility can be calculated for a call option using a model first presented by 

Brenner and Subrahmanyan (1988): 
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𝜎 ≈  √
2𝜋

𝑇
×

𝐶

𝑆
                                                                                                       (13) 

 

where 𝜎 is the approximation of standard deviation, 𝜋 is mathematical constant pi, 𝑇 is 

time to option’s expiration, 𝐶 is the call option’s price and 𝑆 is the spot price. This for-

mula gives a representative approximation of volatility when the option is at-the-money. 

However, when the option is not at-the-money, an approximation formula by Corrado 

and Miller (1996) can be used to compute implied volatility: 

 

𝜎 ≈  √
2𝜋

𝑇
×

1

𝑆 + 𝐾
[𝐶 −

𝑆 − 𝐾

2
+ √[(𝐶 −

𝑆 − 𝐾

2
)

2

−
(𝑆 − 𝐾)2

𝜋
]]          (14) 

 

where 𝜎 is the approximation of standard deviation, , 𝜋 is mathematical constant pi, 𝑇 

is time to option’s expiration, 𝐶  is the call option’s price and 𝑆  is the spot price. This 

model can be used to calculate an approximation of implied volatility for in-the-money 

or out-of-the-money options. Li’s (2005) research suggest that the formula gives a fairly 

accurate benchmark for option implied volatility. 

 

 

3.1.2 Features of implied volatility 

As first described by Mandelbrot in 1963, large price changes of stocks tend to be fol-

lowed by large price changes whereas small asset price changes tend to be followed by 

small changes. This phenomenon observed in equity markets is referred to as volatility 

clustering. There are extended periods of relatively high levels of volatility in markets 

that are then followed by an extended period of relatively low volatility levels. This clus-

tering feature of volatility is an effect that is difficult to capture in volatility forecasting 

as the variance of daily returns can be high in one month and low in the following month. 

(Mandelbrot, 2009) 
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Mandelbrot (2009) specifies that in a well-functioning market stock returns are consid-

ered to be uncorrelated with previous returns. However, there appears to exist autocor-

relation between absolute periodic returns. Volatility clustering is a market characteristic 

that is caused by market’s slow reaction to new information and with large movements 

in price. This suggests that after a market shock that leads to high volatility, more high 

volatility levels can be expected for an extended time period. 

 

Similarly to forecasting with historical volatility, when forecasting with implied volatility, 

clustering of high and low level volatility periods raises the question of how to choose a 

time period that best describes the expected future conditions for which the volatility 

forecast is modelled. As high volatilities tend to be followed by high volatilities and low 

volatilities by low volatilities, should the data time period include observations from the 

recent past or should it include both lower and higher volatility periods? Volatility clus-

tering also raises the question whether the calculated forecast of volatility represents 

the future volatility conditions accurately. It can be complex to determine an appropriate 

volatility forecast that accurately describes future volatility since there is autocorrelation 

between returns during certain time periods. 

 

Another feature of volatility to be considered when forecasting future volatility is the 

implied volatility skew. Abken and Nandi (1996) indicate that when implied volatility is 

calculated from an option pricing model such as the Black-Scholes model, it appears that 

implied volatility changes in accordance with option’s moneyness and maturity. When 

implied volatility is plotted as a function of the option strike price with option maturity, 

the figure represents a volatility smile or volatility skew. This is displayed in Picture 3 

where implied volatility as a function of strike price is shown to have a degreasing skew 

as the strike price increases. 
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Picture 3. Implied volatility skew. (Hull, 2011, pp. 436) 

 

In the Black-Scholes option pricing formula implied volatility is assumed to be independ-

ent of the option strike price for a fixed time to maturity. As a function of strike price, 

implied volatility should yield a flat curve and not a skewed shape. However, Ederington 

and Guan (2002) suggest that in reality option implied volatility has a skew when for 

options of equal maturity the implied volatility of a deeply in-the-money call or out-of-

the-money put is greater than the implied volatility of a deeply out-of-the-money call or 

in-the-money put. 

 

The volatility skew has been observable in equity markets since the market crash of 1987. 

As suggested by Jackwerth and Rubinstein (1996), the skew or smile gives indication 

about investor’s concerns about the possibility of market crashing. Therefore investors 

price options in accordance to expectations of another crash. This theory of crashopho-

bia is supported by evidence that declines in the S&P 500 index are followed by a steep-

ening in the skew and increases are correspondingly followed by a less steepening vola-

tility skew. 

 

Hull (2015, pp. 532–533) suggests that another cause of volatility skew are changes in 

company’s leverage. A decline in company’s equity increases leverage, which causes an 

increase in equity risk and thus an increase in volatility. Vice versa, an increase in equity 
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reduces leverage, which results in a lower volatility. This implies that volatility is a de-

creasing function of asset price, which is consistent with the appearance of skewness. 

 

The lognormality assumption is another factor that may cause bias in implied volatility 

calculation. Markets usually allow implied volatility to depend on the option time to ma-

turity and the strike price. In reality, volatility skew is often less steep as the option’s 

time to maturity increases. This real market phenomenon is referred to as the volatility 

term structure. Liu, Zhang and Xu (2014) examined the skewness of implied volatility. 

The results suggest that the skew is nearly flattened or less steep when investors are less 

informed and becomes steeper when investors have more information and behave more 

collectively.   

 

Similarly to using historical volatility as an indicator of future volatility level, Abken and 

Nandi (1996) depict issues with the model’s assumptions. One considerable assumption 

in the Black-Scholes formula is the presumption of volatility being constant over the op-

tion’s life. Both in theory and in practice this assumption is false.  However, Christensen 

and Prabhala (1998) suggest that implied volatility is a good estimate of short-term fu-

ture volatility since it is likely for volatility to stay close to constant during few trading 

days.  

 

Bollen and Whaley (2004) present another issue with using implied volatility in volatility 

forecasting. There is more demand on the market to some options than others, which 

causes demand pressure that leads to a price premium in option prices. The increase in 

demand raises the option price and thus raises the implied volatility. This can cause an 

upward bias in the future volatility estimate. 

 

When forecasting future volatility with option implied volatility, clustering and skew are 

issues that need to be taken into consideration as well as choosing an appropriate time 

period of data. Stochastic volatility models have been created to correct the autocorre-
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lation between absolute returns and possible biases in the Black-Scholes model. The sto-

chastic models, including Autoregressive Conditional Heteroscedasticity (ARCH) and 

Generalized Autoregressive Conditional Heteroscedasticity (GARCH) were developed to 

solve these shortcomings of option implied volatility forecasting. These models are in-

troduced in chapter 3.2 of the thesis which examines their application to volatility fore-

casting. (Abken & Nandi, 1996) 

 

 

3.1.3 Forecasting volatility with implied volatility 

Implied volatility has dominated other models in volatility forecasting and research on 

volatility. Theoretically it is the assumed future volatility for the remaining time to ma-

turity of option making it by definition a forward looking measure. Previous studies have 

shown implied volatility to be an efficient and accurate forecast of future short term 

volatility and it is easy to compute from option pricing formula when appropriate data is 

available. It is also a key input in both option and stock pricing when interpreted as the 

level of price uncertainty. (Poon and Granger, 2003) 

 

Implied volatility is calculated from the Black-Scholes option pricing model when other 

inputs of the model, such as option price and underlying stock price, are given. According 

to Christensen and Prabhala (1998) in an efficient market implied volatility should con-

tain information about future volatility over the option’s remaining maturity and at least 

all the information that is given by historical volatility. As the maturity of stock options is 

usually relatively short (<1 year), implied volatility should accurately forecast short-term 

future volatility. 

 

Christensen and Prabhala (1998) studied the information content of monthly implied 

volatility calculated from S&P 100 index options in 1983–1995. The study uses non-over-

lapping data and a long time series and captured a regime shift after 1987 market crash. 

The results suggest that before the crash implied volatility is a biased estimate of future 
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volatility due to poor signal-to-noise ratio during the crash and improved market infor-

mation of investors after the crash. Since the crash, the results indicate with an adjusted 

R2 of 62% that implied volatility is an accurate estimate of future volatility and outper-

forms historical volatility as a future volatility forecaster. 

 

Poon and Granger (2003) and Blair, Poon and Taylor (2010) have studied the accuracy of 

implied volatility in forecasting future volatility for S&P 100 stocks after the crash from 

1987 to 1992. The results suggest that implied volatility has the explanatory power of 

12.9% – 35.6% for a future period of 1–20 days. The 20-days forecast provides the most 

accurate volatility estimate and 1-day forecast the least accurate. Poon and Granger 

(2005) concludes that implied volatility calculated from at-the-money options results in 

the most accurate estimates of future volatility. This is due to at-the-money options be-

ing less affected by the implied volatility skew and also having the highest trading volume. 

 

Mayhew and Stivers (2003) examined the predictive power of implied volatility from the 

50 most traded CBOE individual stock options and of the VIX index using daily option 

data from 1988 to 1995 with 22 days to maturity. The findings suggest that implied vol-

atility contains almost all future information for the options with high trading volume. 

The implied volatility of the VIX index serves as a sufficient future volatility estimate for 

stocks with no options. A pre-crisis and after-crisis comparison revealed that the infor-

mation content of implied volatility as a future volatility measure depends on option’s 

trading volume. High trading volume options provide the most accurate forecasts and as 

the trading volume decreases, the accuracy of implied volatility forecast also decreases. 

As the trading volume increases after crisis, so does the informational content of implied 

volatility. Shaikh and Padhi (2015) report similar results around the market crash of 

2007–2009. Studying the S&P CNX Nifty Index option’s implied volatility, the results sug-

gest that after the crisis high trading volume options provide a more reliable future vol-

atility estimate. 
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Taylor, Yadav and Zhang (2010) did a comparison study of at-the-money S&P 100 index 

options and individual stock options during 1996–1999. The explanatory power of im-

plied volatility for the index options is 43% whereas it is between 13–38% for the indi-

vidual stock options. The results indicate that the higher explanatory power of the index 

options compared to individual stock options is due to higher trading volume. Also Han 

and Park (2013) suggest that the VIX index provides the most accurate estimate of future 

volatility since it has the highest trading volume. 

 

Busch, Christensen and Nielsen (2011) examined how implied volatility is able to predict 

future realised volatility and volatility jumps. Using implied volatility calculated from at-

the-money call option data of S&P 500 options from 1990 to 2002, the informational 

content of the measure is compared to realised volatility and volatility jump factors. The 

results suggest that implied volatility has the explanatory power (adjusted R2) of 68% at 

a 5% significance level. Implied volatility contains high amount of information of future 

volatility for the option’s life and the results indicate that it contains most of the infor-

mation of volatility jumps. 

 

Bentes (2015) studied implied volatility’s accuracy in volatility forecasting for several vol-

atility indexes. The research data consist of observations from the US (VIX), India 

(INVIXN), Hong Kong (VHSI) and Korea (KIX) from 2003 to 2012. The results indicate that 

implied volatility has an explanatory power of 45%-62% over historical volatility at 1% 

significance level. The results suggest that for these markets implied volatility is an accu-

rate and unbiased estimate of future volatility. In comparing with historical volatility 

forecast implied volatility outperforms the historical measure. 

 

Implied volatility is a commonly used measure to predict future volatility. It provides a 

more accurate estimate for future volatility than a historical measure. Previous research 

results suggest that the predictive power of implied volatility increases when the op-

tion’s trading volume is higher. Blair et al. (2010) suggest that a forecasting period of 20 
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days provides the estimate with highest explanatory power and Christensen and Prab-

hala (1998) defines implied volatility as a short-term volatility forecaster.  The informa-

tional content and accuracy of implied volatility as a future forecast is higher in the short-

run as options usually mature in the near future.  The assumption of constant volatility 

in the Black-Scholes option pricing model is more accurate for a short-term period. Busch 

et al. (2011) conclude that since option prices contain information about investor’s ex-

pectations, implied volatility should capture the future expectations of volatility level 

and even volatility jumps. Poon and Granger (2005) suggest that using at-the-money op-

tions improves implied volatility’s accuracy since option moneyness may cause skew and 

trading volume may cause biasness in the measure. When the forecasted period, trading 

volume and option’s moneyness are taken into consideration, implied volatility provides 

an accurate and useful measure of future volatility. 

 

 

3.2 Stochastic Volatility Models 

A prominent issue with option implied volatility in future volatility forecasting is the 

Black-Scholes option pricing model’s assumption of constant volatility over the life of the 

option. In order to correct this issue there are several developed stochastic volatility 

forecasting models. These models are more complicated to compute than implied vola-

tility or historical volatility. An advantage of these models is, however, that they resolve 

most of the biases in implied volatility. This chapter of the thesis focuses on the calcula-

tion of Autoregressive Conditional Heteroscedasticity (ARCH) and Generalized Auto-

regressive Conditional Heteroscedasticity (GARCH). With an emphasis on GARCH models, 

this chapter also presents previous results on stochastic volatility forecasting. 

 

Stochastic model is a term for a model that includes a variable that changes over time. 

Stock price and volatility are stochastic continuous variables. Stochastic variables follow 

the Markov process, which indicates that in future forecasting only the variable’s current 

value is relevant and historical values are assumed to be irrelevant. The ARCH and GARCH 
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volatility forecasting models assume non-constant and varying volatilities and correla-

tions. The models recognise volatility clustering where volatility tends to be high or low 

for extended time periods. (Engle, 1982) 

 

 

3.2.1 Autoregressive Conditional Heteroscedasticity 

Robert F. Engle first introduced the Autoregressive Conditional Heteroscedasticity (ARCH) 

model in 1982. The model is specifically developed in order to model time-varying vola-

tility. The basis of ARCH modelling is the least squares estimation model that is widely 

used in time series analysis. The least squares model assumes that the expected values 

for all squared error terms are equal at any given time point in the data. This assumption 

is referred to as homoscedasticity. However, volatility clustering is a phenomenon that 

causes heteroscedasticity in data when analysing future volatility. Heteroscedasticity 

means that the squared variances of error terms are not equal and there is autocorrela-

tion of volatility between time points. (Engle, 1982) 

 

Bollerslev, Chou and Kroner (1992) describe ARCH model treating heteroscedasticity in 

data as the variance to be modelled. The ARCH model’s approach uses maximum likeli-

hood estimation to correct the standard error caused by heteroscedasticity in the least 

squares estimation. The model provides a volatility forecast that is conditional on previ-

ous values as there appears to be autocorrelation between the volatility of returns. The 

maximum likelihood estimation method allows the data to be used to determine appro-

priate weight parameters to past variances in the ARCH model that best forecast the 

future volatility. The ARCH model has several extensions and applications to it. This the-

sis presents the ARCH(1) and ARCH(q) versions of the model. 

 

Engle (1982) first introduced the simplest ARCH model which is the ARCH(1) model that 

consist of one lag-factor. The ARCH(1) is a regression model that consists of two different 

equations. The mean equation computes the mean return for the time series and the 
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variance equation describes the error term variance. The mean equation is computed as 

follows: 

 

𝑦𝑡 = 𝛽𝑥𝑡−1 + 𝜀𝑡                                                                                                    (15) 

 

where the dependent variable 𝑦𝑡 is asset returns, 𝑥𝑡−1 is a lagged return variable with 𝛽 

as a weight parameter and 𝜀𝑡 is the error term called white noise. White noise refers to 

random shocks to a variable that follow the Gaussian process. The error term 𝜀𝑡 is the 

second equation that describes the error term variance: 

 

𝜀𝑡 = 𝑢𝑡√𝛼0 + 𝛼1𝜀𝑡−1
2                                                                                           (16) 

 

where  𝑢𝑡 is the white noise shock effect, 𝛼0 and 𝛼1 are stochastic process weight pa-

rameters and 𝜀𝑡−1
2  is the squared lagged error term. The variance of the error term rep-

resents the time-varying volatility of the ARCH(1) model and is defined as follows: 

 

𝜎2(𝜀𝑡) = 𝛼0 1 − 𝛼1⁄                                                                                            (17) 

 

The ARCH(1) model has one-lag variable. A more general and usable model for volatility 

forecasting is the ARCH(q) model that is a qth order moving average process. According 

to Bollerslev, Engle and Nelson (1994) it differs from ARCH(1) in the sense that it has 

longer lag-variables and it can be computed form different time periods. In ARCH(q) the 

error term of returns is defined as follows: 

 

𝜀𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2 + 𝑢𝑡

𝑞

𝑖=1
                                                                            (18) 

 

where 𝜀𝑡
2 is the squared error term of the return equation, 𝛼0 is a weight parameter, 

∑ 𝛼𝑖𝜀𝑡−𝑖
2𝑞

𝑖=1  is the sum of lagged error terms at time point 𝑡 − 𝑖 and 𝑢𝑡 is the white noise 

shock effect. The volatility formula of ARCH(q) can be computed as follows: 
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𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2
𝑞

𝑖=1
                                                                                     (19) 

 

where 𝜎𝑡
2 is the estimate of future variance, 𝛼0 is a weight parameter and ∑ 𝛼𝑖𝜀𝑡−𝑖

2𝑞
𝑖=1  is  

the sum of lagged error terms at time point 𝑡 − 𝑖. The ARCH(q) models focuses on the 

error term returns and is designed to forecast future volatility. (Bollerslev et al., 1994) 

 

Engle and Mustafa (1992) examined the limitations of ARCH models. The ARCH model 

equations are fitted to returns and despite considering the heteroscedasticity the ap-

proach assumes the market environment to be relatively stable over the forecasting pe-

riod. The model is not able to capture irregularities in the market such as new infor-

mation effects, crashes, opening and closing of the markets or an option’s price changes 

close to maturity. The results suggest that when markets experience unexpected price 

changes, the ARCH model is too conditional to past volatilities. During the market crash 

of 1987 the model’s assumption of persistence of conditionality fails. These issues that 

arise when markets experience unexpected change are taken into account in Generalized 

ARCH models. 

 

 

3.2.2 Generalized Autoregressive Conditional Heteroscedasticity 

Tim Bollerslev (1986) first introduced the Generalized Autoregressive Conditional Heter-

oscedasticity (GARCH) model. Based on Engle’s ARCH model, the GARCH model includes 

more flexible lag component structure. The GARCH model has a learning mechanism 

that makes it more adaptive to different volatility levels and scenarios while still main-

taining an easy adaptation and interpretation of results. The developed models allow 

more lag components with declining weights to be included in the calculation which cre-

ates a memory of past variances. GARCH models are mean reverting with constant un-

conditional variances that enable a longer forecasting period. 

 



37 

 

Bollerslev (1986) introduced the GARCH(1,1) model which is the simplest form of GARCH 

models. The formula has one autoregressive lag term and one moving average lag terms. 

The purpose of the model is to create a one period ahead forecast but also a two-period 

forecast can be made on the basis of the one-period forecast. The GARCH(1,1) approach 

is based on the ARCH process in equations 16 an 17. The variance rate is computed from 

the GARCH(1,1) model as follows: 

 

𝜎𝑡
2 = 𝛾𝑉𝐿 + 𝛼𝑢𝑡−1

2 + 𝛽𝜎𝑡−1
2                                                                                (20) 

 

where 𝜎𝑡
2 is the variance at time point 𝑡, 𝑉𝐿 is the long-run average variance rate, 𝑢𝑡−1

2  

is the lag-term of return at time point 𝑡 − 1 and 𝜎𝑡−1
2  is the lag-term of variance time 

point 𝑡 − 1 . The parameters 𝛾 , 𝛼  and 𝛽  are weights assigned to the long-run average 

variance, return lag-term and variance lag-term. These weights sum to one (𝛾 +  𝛼 +

𝛽 = 1). The term 𝛾𝑉𝐿 which is the long-run average variance can be also expressed as ω. 

According to Hull (2011, pp. 525) the GARCH(1,1) model is also commonly written as: 

 

𝜎𝑡
2 = 𝜔 + 𝛼𝑢𝑡−1

2 + 𝛽𝜎𝑡−1
2                                                                                    (21) 

 

Bollerslev’s (1986) GARCH(1,1) approach is usually used to calculate daily volatility and 

it is compounded with daily information. The time point 𝑡 in the equation is interpreted 

as today’s volatility or the next day (𝑡 + 1) volatility depending how the time point and 

lag-terms are determined. A volatility forecast can be computed from the model when 

market information on past returns and volatility are known factors. As mentioned by 

Hull (2011, pp. 526–529) the weights𝛾, 𝛼 and 𝛽 are usually calculated with maximum 

likelihood estimation method and have different optimal values depending on the mar-

ket situation. Usually 𝛽 which is the weight assigned to the lagged variance term has a 

significantly larger value that the other weights. Since the lagged variance has a heavy 

weight, the GARCH(1,1) model is theoretically an appropriate forecasting method when 

there is volatility clustering. 
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In order to create forecasts that consider longer time intervals, Bollerslev (1986) de-

signed the more general GARCH(p,q) process, which allows for multiple autoregressive 

and average lag terms to be included. The GARCH(p,q) model is computed as follows:  

 

𝜀𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2
𝑞

𝑖=1
+ ∑ 𝛽𝑗𝜀𝑡−𝑗

2
𝑝

𝑗=1
− ∑ 𝛾𝑗𝑣𝑡−𝑗 + 𝑣𝑡

𝑝

𝑗=1
                 (22) 

 

where 𝜀𝑡
2 is the squared error term, ∑ 𝛼𝑖𝜀𝑡−𝑖

2𝑞
𝑖=1  and ∑ 𝛽𝑗𝜀𝑡−𝑗

2𝑝
𝑗=1  are the sum of lagged 

squared error terms for time points 𝑡 − 𝑖  and 𝑡 − 𝑗  with corresponding weights of 𝛼𝑖 

and 𝛽𝑗 , ∑ 𝛾𝑗𝑣𝑡−𝑗
𝑝
𝑗=1   is the sum of long run variance term at time point 𝑡 − 𝑗  with the 

weight of 𝛾𝑗  and 𝑣𝑡 is the long run variance at time point 𝑡. From this formula Bollerslev 

et al. (1994) compute the volatility forecast as follows: 

 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝑢𝑡−𝑖

2
𝑞

𝑖=1
+ ∑ 𝛽𝑗𝜎𝑡−𝑗

2
𝑝

𝑗=1
                                                        (23) 

 

where 𝜎𝑡
2  is the variance at time point 𝑡 , 𝜔  is the long-run average variance rate, 

∑ 𝛼𝑖𝑢𝑡−𝑖
2𝑞

𝑖=1   is the sum of lagged returns at time point 𝑡 − 𝑖  with a weight 𝛼𝑖  and 

∑ 𝛽𝑗𝜎𝑡−𝑗
2𝑝

𝑗=1  is the sum of lagged variance at time point and 𝑡 − 𝑗 with a weight 𝛽𝑗. 

 

When calculating volatility forecasts with ARCH and GARCH models, the volatility esti-

mate is usually calculated using a statistical programme. These stochastic approaches 

make adjustments to those assumptions made in implied volatility forecasting and cre-

ate a simple solution to correct the models false assumptions about the behaviour of 

market volatility. When information about past returns and volatility are available, it is 

possible to use ARCH or GARCH models to calculate a future volatility estimate. (Hull, 

2011, pp. 540) 

 

 



39 

 

3.2.3 Forecasting volatility with stochastic models 

The key factor in stochastic volatility models in volatility forecasting is that the models 

allow a non-constant volatility. Thus, ARCH and GARCH models are more robust to some 

features of volatility that may cause biasness in implied volatility or historical volatility 

forecasts. The models are more robust to volatility clustering, skewness and outliers in 

the data. Although these stochastic models incorporate the natural behaviour of volatil-

ity, they are more complicated models than implied volatility and historical volatility. 

However, the stochastic models include historical and recent information of market re-

turns and volatility and tend to provide a more accurate long-term volatility forecast than 

other forecasting methods. A review by Poon and Granger (2005) concludes that re-

search on ARCH and GARCH volatility forecasting has provided varying results depending 

on market situation and data properties. This chapter examines the previous results on 

the accuracy of volatility forecasts when using these models. 

 

Blair, Poon and Taylor (2001) examined the forecasting accuracy of simple ARCH models 

with S&P 100 index data from 1987–1992. The results indicate that for a 1 to 20 day 

forecast, the ARCH model has an explanatory power (R2) of 30.7% at 5-10% significance 

level. However, a newer study by Yu (2002) compared volatility forecasting models pre-

dictive power in the New Zealand market with NZSE 40 Index from 1980–1998. The re-

sults for ARCH(q) model has a Theil’s U of 1.1 which suggest that the model provides a 

weaker estimate than random walk. 

 

Alam, Siddikee and Masukujjaman (2013) studied ARCH(1) model’s ability to forecast 

Dhaka Stock Exchange General index’ volatility from 2001–2011. The results indicate that 

ARCH(1) provided the best estimate of future volatility when compared to other ARCH-

based models. 

 

Nelson and Foster (1995) found evidence that ARCH models forecasting accuracy in-

creases when the sample frequency approaches a continuous time series. High-fre-
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quency data includes information of conditional variances which leads to a more accu-

rate future volatility estimate. Andersen and Bollerslev (1998) suggest that using at least 

5-minute data frequency leads to a more accurate ARCH volatility forecast. 

 

Akgiray (1989) examined the volatility of CRSP index data from 1963 to 1986. The study 

concludes that the index returns exhibit significant correlation. When volatility forecasts 

are compared, the GARCH(1,1) model results in the most accurate estimate of monthly 

volatility with lowest mean average error and root mean square error. The GARCH(1,1) 

model results in the best fit especially during periods of high volatility. The results sug-

gest that the ARCH(q) method results in the second best volatility forecast while expo-

nentially weighted moving average and historical volatility are more biased estimates. 

 

Bera and Higgins (1997) studied GARCH(1,1) models performance in comparison to bi-

linear models in volatility forecasting. Using daily S&P 500 data from 1988–1993 the 

models are fitted to data sample and both in-sample and out-of-sample forecasts are 

computed. The results indicate that GARCH(1,1) has lowest root mean square error 

terms (0.489) for both in-sample and out-of-sample volatility forecasts. 

 

Ederington and Guan (2005) studied the predictive power of GARCH(1,1) model for S&P 

500 stocks from 1962 to 1995. The results suggest that even though GARCH(1,1) tends 

to put too much weight to the most recent observation in the data, it still provides better 

future volatility forecasts than historical volatility or exponentially weighted moving av-

erage model.   

 

Andersen, Bollerslev and Meddahi (2004) examined whether adding lag-components to 

GARCH(p,q) model improves its accuracy in forecasting volatility. The results indicate 

that the accuracy of GARCH forecast improves with increasing the number of lag com-

ponents. A model with 39 lag factors provided the most accurate estimate with the pre-

dictive power of 33-34% for a 1-20 week volatility forecast.  
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A more recent study by Bentes (2015) compared GARCH(1,1) model to other volatility 

forecasting models for US, India, Hong Kong and Korea market indexes with observations 

from 2003 to 2012. The results suggest that GARCH(1,1) outperforms implied volatility 

in long-term future volatility forecasting accuracy. The explanatory power of the GARCH 

model is 81%-89.3% at a 5% significance level. The results indicate that GARCH(1,1) pro-

vides an accurate future volatility forecast for a 24-month future period. 

 

The forecasting abilities of ARCH and GARCH based models have been a continuous re-

search topic that has resulted in different results depending on sample period length, 

data frequency and market volatility levels. Figlewski (1997) suggests that GARCH mod-

els’ performance increases when at least daily data is available and the sample period 

included at least five years of data. When examining GARCH(1,1) forecasts of S&P 500 

index from 1959–1993, the results indicate that GARCH(1,1) forecasts have lower root 

mean square error than historical volatility forecasts.  

 

Day and Lewis (1992) studied the GARCH(1,1) model’s accuracy in volatility forecasting 

with S&P 100 index data from 1983 to 1989. The results suggest that the GARCH(1,1) 

model provides a low quality future volatility estimate with the explanatory power (R2) 

of only 3.9%. However, the results indicate that there is no biasness in GARCH(1,1) fore-

casts. Hansen and Lunde (2005) compared the GARCH(1,1) to multivariate GARCH mod-

els in forecasting volatility to IBM stocks from 1990–1999 . The results suggested that a 

multivariate approach is superior to the GARCH(1,1) model.   

 

Glosten, Jagannathan and Runkle (1993) found evidence that monthly conditional vola-

tility is not as persistent as previous research shows. By examining CRSP index monthly 

returns from 1951–1989, the results indicate that positive unanticipated returns result 

in a downward adjustment of conditional volatility whereas negative unexpected returns 

cause a rise in conditional volatility. When GARCH models are modified to allow the ef-

fects of unexpected returns on the conditional volatility (referred to as GJR-GARCH), the 

model provides more accurate monthly volatility forecasts. Further research on news 
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effects by Engle and Ng (1993) suggests that negative return shocks have a greater im-

pact on volatility than positive return shocks when examining Japanese stock returns 

during 1980–1988. When these shocks were included in forecasting data, the GJR-

GARCH outperformed GARCH(1,1) model in volatility forecasting. Franses and Ghijels 

(1999) studied the effect of extreme values in GARCH modelling. The results suggest that 

removing outliers and extreme values from the data result in lower mean square error 

and a more accurate future forecast.  

 

Engle and Patton (2007) examined the predictive power of GARCH(1,1) for Dow Jones 

Industrial Index from 1988–2000 for different data frequencies. The results indicate that 

GARCH(1,1) provides a good estimate of future volatility but the model is affected by 

sampling frequency. The coefficients in GARCH(1,1) while well suited for one sampling 

frequency are misspecified for another sampling frequency. These results suggest that 

GARCH model coefficients should be adjusted accordingly to the sample frequency. 

 

 

3.3 Comparison of volatility forecasting models 

As previous research results indicate, each volatility forecasting model has its own ad-

vantages and drawbacks. The accuracy of the forecasts depends on several market, re-

turn and volatility features. This chapter of the thesis compares historical volatility, im-

plied volatility and GARCH models in terms of forecasting accuracy and suitable forecast-

ing environment. The aim is to capture previous results on which model is best suited 

for different volatility levels and how the data sample affect the forecasting accuracy. 

 

Historical volatility is a model based on previous realised volatilities. Results by Figlewski 

(1994) indicate that a longer sample period (over one year) increases the forecasting 

accuracy of historical volatility. Research by Aït-Sahalia et al. (2005), Andersen et al. 

(2007) and Chan et al. (2010) suggest that increasing the sample frequency up to 5-mi-

nute frequency improves the historical forecast.  Canina and Figlewski (1993) concludes 
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that for individual stocks historical volatility offers a poor future volatility estimate and 

it is best used as an overall volatility benchmark. 

 

A survey by Poon and Granger (2005) indicates that historical volatility is not robust to 

outliers in the data. From 66 studies 76% found option implied volatility to have more 

predictive power over future volatility than historical volatility. Gwilym and Buckle (1999) 

suggest that implied volatility contains more information than historical volatility but im-

plied volatility is also a more biased estimator. However, Christensen and Prabhala (1998) 

conclude that implied volatility is more accurate than historical volatility when using a 

long sample period. As options usually have less than a year to expiration, implied vola-

tility should provide a stable short term future estimate. 

 

Poon and Granger (2003) suggest that implied volatility is best suited for 1–20 day fore-

casts as the Black-Scholes model makes the assumption of constant volatility. Poon and 

Granger (2005) also conclude that at-the-money options are less affected by the implied 

volatility skew and demand pressure. Mayhew and Stivers (2003) and Shaikh and Padhi 

(2015) suggest that a higher trading volume improves the accuracy of implied volatility.  

 

Busch et al. (2011) conclude that implied volatility contains all the information included 

in historical volatility and it captures volatility jumps. For S&P 500 index options implied 

volatility had an explanatory power of 68%. Bentes (2015) reports similar results for mul-

tiple markets. Implied volatility outperformed historical volatility as a future estimate 

with an explanatory power of 45%–62% depending on the market.  

 

Bentes (2015) also compared GARCH(1,1) to implied volatility. Using market index data 

from US, India, Hong Kong and Korea, the results suggest that GARCH(1,1) outperformed 

implied volatility as a long-run forecast with an explanatory power of 81%–89%. However, 

implied volatility proved to be a better estimate for a short-period forecast. The explan-

atory power of both implied volatility and GARCH(1,1) has improved significantly in more 

recent observations. 
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Blair et al. (2010) suggest that implied volatility (VIX) provides more accurate estimates 

than ARCH models. Results by Andersen and Bollerslev (1998) and Nelson (1995) indicate 

that using high-frequency data improve the accuracy of ARCH models. In a review by 

Poon and Granger (2005) historical volatility outperformed ARCH models in 56% of stud-

ies. The results by Bentes (2015) indicate that ARCH volatility forecast for S&P 500 index 

is less explanatory than an implied volatility forecast. 

 

Figlewski (1997) concludes that GARCH(1,1) is more accurate in forecasting volatility 

than historical volatility. The performance of GARCH(1,1) increases when the sample pe-

riod contains daily data for at least a five year period. Similarly, Ederington and Guan 

(2005) suggest that GARCH(1,1) model outperforms historical volatility as a future vola-

tility forecaster but the model puts too much weight on more recent observations. An-

dersen et al. (2004) indicate that a GARCH(p,q) model with multiple lag factors provides 

the most accurate future estimate. Engle and Patton (2007) suggest that the key to an 

accurate GARCH forecast is to adjust the model according to data frequency.  

 

A review by Poon and Granger (2005) concludes that ARCH and GARCH volatility fore-

casting has provided varying results depending on market situation and data properties. 

The study suggest that implied volatility dominates historical volatility, ARCH and GARCH. 

Comparison between GARCH models ad historical volatility is less conclusive. Bartunek 

and Chowdhury (1995) found no statistically significant difference between historical 

volatility, implied volatility and GARCH(1,1) model when comparing volatility forecasts 

for different forecasting period for individual stocks from 1983–1984. However, Bentes 

(2015) concluded that implied volatility provided the best short-term forecast and 

GARCH(1,1) the best long-term forecast when data from US and emerging markets was 

compared. 

 

It is evident that each model has its own benefits and drawbacks when it comes to fore-

casting future volatility. The next chapter of the thesis examines features that differenti-

ate emerging markets from developed markets. Focusing on features of volatility present 
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in emerging market environment, the next chapter discusses the previous results on 

forecasting volatility in emerging equity markets. 
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4 Volatility in emerging markets 

For the past two decades, emerging market economies have grown rapidly and signifi-

cantly. Globalisation of capital and trading has increased the importance of understand-

ing emerging economies as the world economic growth is now more affected by emerg-

ing markets. Over the last decade emerging markets have accounted for three fourths of 

world economic growth. While return and risk have been widely studied in developed 

markets, the research in emerging markets is an ongoing subject that changes over time. 

(Knoop, 2013, pp. 32–34) 

 

Previous results on volatility forecasting give examples of appropriate uses of each 

model. However, majority of the studies are focused in developed markets, especially 

the US market. A major motivation behind this thesis is to examine volatility forecasting 

models in a market environment that is more volatile than developed markets. The fore-

casting methods examined in this thesis have been studied in high volume and liquid 

market environments and the studies lack testing in a more volatile market. Emerging 

markets have risks that are not as present in developed markets which makes them an 

interesting subject for studying volatility forecasting in a riskier market setting. Whereas 

developed markets are often describes as well-functioning, the emerging markets lack 

features that are associated with functioning financial markets. Emerging markets have 

lower trading volumes and lower levels of liquidity as well as more risk factors that are 

country specific, such as political risk. These factors give motivation to study risk fore-

casting in emerging markets. (Easterly, Islam & Stiglitz, 2001) 

 

This chapter describes the behaviour of volatility in emerging equity markets. There are 

several factors that are typical to emerging equity markets that are drivers to higher lev-

els of volatility compared to developed stock markets. These factors include economic, 

financial, political and environmental risks that are more prominent in emerging econo-

mies and affect volatility levels of those markets. This chapter also examines previous 

findings in the field of volatility studies in emerging market context as well as previous 



47 

 

results in volatility forecasting. This thesis defines emerging market economies based on 

existing definitions, more specifically, MSCI Emerging Markets Index. The MSCI Emerging 

Markets Index (MSCI, 2019) includes Brazil, Chile, China, Colombia, Czech Republic, 

Egypt, Greece, Hungary, India, Indonesia, Korea, Malaysia, Mexico, Pakistan, Peru, Phil-

ippines, Poland, Russia, Qatar, South Africa, Taiwan, Thailand, Turkey and United Arab 

Emirates.  

 

 

4.1 Features of volatility in emerging equity markets 

Volatility is used as a risk measure in finance. Emerging stock markets experience eco-

nomic and company specific risks that are not as present in developed stock markets. 

Bekaert, Erb, Harvey and Viskanta (1998) show that whereas developed market stock 

returns follow a relatively normal distribution, the returns of emerging equity do not 

necessarily follow a normal distribution. This is due to the fact that there are risks that 

are more present in emerging markets which leads to more outliers in return data. This 

increased chance of outliers causes the return distribution to have a larger kurtosis and 

skewness. Not only is there skewness and kurtosis in return distributions of emerging 

markets, these distributions change over time. A newer study by Adcock and Shutes 

(2005) shows that more skewness and kurtosis are still present when examining individ-

ual emerging economies. These outliers and more frequent extreme values in price 

changes raise the level of volatility in emerging stock markets.  

 

The risks that are more present in emerging markets than developed markets arise often 

from lower levels of regulation of financial markets as well as political environment. Ac-

cording to Bilson, Brailsford and Hooper (2002) a different political environment that is 

less regulated by laws and more prone to extreme conditions, such as limitation of eco-

nomic activities, changes in country leaders, wars and terrorism. These risks effects the 

market conditions more significantly in emerging markets than in developed markets. 

Political uncertainty causes insecurity in equity markets, which may slow down the econ-

omy and market activity.  
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A country’s political environment also affects the laws and regulations concerning the 

equity market. Klomp and De Haan (2014) state that generally stricter regulation is asso-

ciated with lower uncertainty and risk levels. Loose regulation allows for more freedom 

in all economic activity and also questionable actions. Most emerging economies are less 

regulated than developed economies which raises the risk level associated with emerg-

ing market stocks. Prasad (2010) concludes that while the need to develop financial mar-

ket regulation is not only unique to emerging markets, it is more heightened in emerging 

economies. Emerging markets experience rapid financial development and inclusion via 

globalisation of financial markets while lacking in financial regulation. 

 

Jun, Marathe and Shawky (2003) suggest that assets in emerging markets are less liquid 

compared to developed markets. This means that emerging market stocks have lower 

trading volumes than developed market stocks. The higher liquidity risk raises the overall 

risk level and thus emerging market volatility. Lesmond (2005) found evidence that when 

trading difficulty increases and raises illiquidity of emerging market stocks, the bid-ask 

spread also increases. However, liquidity of emerging market stocks increases when fi-

nancial markets become more and more globalised. A newer study by Lischewski and 

Voronkova (2012) found no evidence of liquidity risk premium in Polish stock market. 

Another form of illiquidity in emerging markets is the illiquidity of domestic banks. Chang 

and Velasco (2001) suggest that illiquidity of domestic banks is a source of market un-

certainty and even crashes. 

 

Das, Papaioannou and Trebesch (2009) find evidence that in emerging economies firms 

experience more difficulty raising capital via external credit or equity issuance than in 

developed markets. Although market efficiency should drive funds to productive com-

panies globally, emerging markets may not attract as many investments as developed 

markets. Hasan, Jackowicz, Kowalewski and Kozlowski (2017) suggest that local banks 

have a significant role in facilitating access to financing in Polish small- and medium-sized 

companies. However, Carvalho (2014) found evidence in Brazil that government control 

over banks increases the unbalance in capital flows as politics influence the allocation of 
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bank lending to specific firms. Fernandes (2011) concludes that as emerging markets 

become more integrated with developed markets, the financial choices of emerging mar-

ket firms increase when global capital becomes more available.  

 

Khan, Sharif, Golpîra and Kumar (2019) suggest that environmental, social and govern-

ance risks have extensive effects to emerging economies. These risks are related to cur-

rent trends in societies and economies and effect on both country-level and firm-level. 

Environmental risks arise from extreme environmental conditions and climate change. 

For example large floods and earthquakes may slow down the functioning of an entire 

country’s economy. Social risks rise from responsibility issues. If a country starts regulat-

ing the labour market to increase social wellbeing, it might cause large changes in the 

entire economy. Regulation also applies to governance risks. Poor corporate governance 

increases the risk of inequality of investors.  

 

ESG risks also affect the firm specific risk as emerging markets have less regulation and 

reporting demands than developed markets. Risks related to corporate governance can 

also be firm specific. Sherwood and Pollard (2017) suggest that taking ESG factors into 

account reduces firm specific risk in emerging markets. Firm specific governance issues, 

corruption and excessive risk taking are risks that exist in every company in every market. 

As emerging market economies are less regulated and supervised by independent au-

thorities, there is a greater chance for firm specific risks than in developed economies. 

 

Emerging market risk and return are linked to developed markets due to globalisation of 

financial markets, currency and capital structure. Sarwar and Khan (2017) studied the 

spill-over effects of US equity market risk to emerging equity markets before, during and 

after the financial crisis of 2008. Using data from 2003−2014, the study examines the 

contemporaneous and delayed risk transition from US markets to emerging markets. A 

multivariate regression analysis is used to determine the relationship between changes 

in VIX Index and MSCI Emerging Market Index. The results indicate that there is a con-

temporaneous negative relationship between emerging market stock returns and 
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changes in VIX before, during and after the financial crisis. The negative relationship is 

also significant for a lag-period, which suggests that the changes in VIX continue to affect 

the emerging market returns on following day. The results show that higher US stock 

market risk transitions to emerging market returns by lowering the mean return and in-

creasing the variance of returns. The study uses GARCH model coefficients to indicate 

that increases in VIX increase the emerging market volatility during all sub-periods and 

that the periods of increased volatility are extended suggesting higher future volatility. 

 

Firm specific difficulties, lack of funding, poor regulation, political environment and 

economy wide phenomena increase the chance of risk in emerging market companies. 

These aforementioned risks increase the volatility in emerging stock markets. As firms 

have even a higher probability of bankruptcy, the emerging stock markets experience 

more volatility than developed stock markets. The next chapter further examines the 

ability to forecast volatility in emerging market environment. The focus of forecasting 

results is on implied volatility and GARCH models. 

 

 

4.2 Volatility forecasting in emerging markets 

The forecasting accuracy of historical volatility, implied volatility and GARCH was exam-

ined by Yang and Liu (2012) in Taiwanese stock market in 2006−2010. The results suggest 

that the option implied volatility outperforms historical volatility and GARCH model as 

30-day volatility forecasts. All models are shown to have statistically significant positive 

correlation with realised volatility at 1% level with implied volatility having the highest t-

statistic (21.7287). These findings suggest that option implied volatility is a simple and 

accurate model also in emerging market context where volatility levels are higher than 

in developed markets. In a contradicting study, Filis (2009) analysed the relationship be-

tween implied volatility forecasts and realised volatility in Greek option market from 

2000–2003. The results suggest that implied volatility is a biased estimate of realised 

volatility.  
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Shaikh and Padhi (2015) studied the Indian S&P CNX Nifty Index option’s implied volatil-

ity during 2007–2013.  The study compared before and after the financial crisis forecasts. 

The results indicate that after the crisis high trading volume options provide a more re-

liable future volatility estimate. The explanatory power (R2) varies between 0.10% and 

0.45% for the whole sample period.  

 

Pati, Barai and Rajib (2018) investigate the information content of implied volatility index 

in contrast to GARCH models in forecasting volatility of Indian, Australian and Hong Kong 

stock markets during 2008–2016. The study computes one-day forecasts using 5-minute 

frequency intraday data.  The results suggest that while GARCH(1,1) provides statistically 

significant forecasts of future volatility, the model is improved when implied volatility is 

included in the regression. Results Bentes (2015) indicate that while implied volatility 

provides the most accurate short-term forecast, GARCH(1,1) model offers the best long-

term forecast in emerging market context. 

 

Gokcan (2000) examined GARCH models in forecasting emerging market volatility. By 

comparing linear stochastic models, ARCH(1,1) and GARCH(1,1), to non-linear EGARCH 

the study examines the predictive power of these models in Argentina, Brazil, Colombia, 

Malaysia, Mexico, Philippines and Taiwan during 1988–1996. The results indicate that 

the linear GARCH(1,1) outperforms other models even when the stock market return 

distribution is skewed. For all countries except for Brazil the mean square error of 

GARCH(1,1) forecast is smaller than the error of non-linear EGARCH. This suggests that 

GARCH(1,1) model is sufficient in forecasting future volatility in emerging markets.  

 

Bley and Saad (2015) approached volatility forecasting in emerging markets by compar-

ing the forecasting accuracy of history-based and conditional volatility models in Saudi 

Arabian stocks between 2004−2013. Despite the shortcomings of historical volatility as 

a future volatility forecaster, the results suggest that history-based models outperform 

ARCH and GARCH models especially when using an exponentially smoothed historical 

returns. The history-based models experience lowest mean absolute error measures 



52 

 

(MAE and MAPE) as well as lowest root mean square error (RMSE). This indicates that 

exponentially smoothed historical values provide a more accurate forecast on future vol-

atility than conditional volatility models. 

 

Pu, Chen and Ma (2016) examined volatility forecasting methods in Chinese stock market 

using high-frequency Shanghai Stock Exchange Composite Index data from 2000–2013. 

The results indicate that GARCH(1,1) and historical volatility are inferior to heterogene-

ous autoregressive models and have rather large mean square error terms.  

 

Huang (2011) compared volatility forecasting models’ results on developed markets to 

emerging markets. Using daily data of 24 emerging market stock indexes and seven de-

veloped market indexes from 2000–2006, the study computes historical volatility, 

GARCH(1,1), Monte Carlo simulation, stochastic model and quantile regression models 

to each market. For multiple emerging countries a historical volatility forecast of 20–60 

provides the best future estimate while GARCH(1,1) is never the superior model. Balaban, 

Bayar and Faff (2006) did a similar study where several markets, both developed and 

emerging, were compared. While ARCH(1) provided the worst fitting volatility estimate 

in terms of mean absolute error for all emerging countries, historical volatility and 

GARCH(1,1) performed better. However, an exponentially smoothed model outper-

formed all GARCH based models.    

 

Miah and Rahman (2016) studied the volatility of four Bangladeshi companies from 2000 

to 2014. The study computes several GARCH(p,q) models with lag components and a 

GARCH(1,1) model. The GARCH(1,1) model outperformed GARCH(p,q) models by having 

the smallest error statistics. 
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5 Data and methodology 

This section of the thesis introduces basic features of the emerging market data and the 

methodology used to model volatility forecasts and measure the predicative power of 

implied volatility and Generalized Autoregressive Conditional Heteroscedasticity. The 

data consists of MSCI Emerging Market Price Index daily closing prices from 1.1.2015 to 

31.12.2019 and a time series of European December and June call option daily closing 

prices of the index for the same time period.  

 

The methods used in this research are aimed to capture the predicative power of both 

volatility forecasting models. Realised volatility is calculated from the index closing price 

data, option implied volatility is calculated from the index price and option price data, 

and GARCH(1,1) forecasts are computed with index price data. To examine the predica-

tive power, an OLS regression against realised volatility is used to measure the accuracy 

of volatility forecasts. Mean absolute error (MAE) and Root mean squared error (RMSE) 

are computed to measure the error terms of both forecasting methods. 

 

 

5.1 Emerging Market Data 

The data of this thesis consists of MSCI Emerging Market Price Index daily closing prices 

from 1.1.2015 to 31.12.2019 and a series of daily closing prices of December and June 

call options on MSCI Emerging Market Price Index with a strike price of USD 1100 from 

1.1.2015 to 31.12.2019. All price data is obtained from Bloomberg database. The time 

period of 1.1.2015–31.12.2019 is chosen based on the existing option data and motiva-

tion to use most recent available information. Options with USD 1100 strike price has 

been available the longest and thus it enables the longest sample period. 
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5.1.1 Index Closing Prices 

The MSCI Emerging Market Price Index (ticker: MXEF) captures large-cap and mid-cap 

companies in 24 emerging market countries. The index is quoted in US dollars. It repre-

sents approximately 85% of the free float-adjusted market capitalization of each country 

featured on the index. The emerging market countries included in the index are Brazil, 

Chile, China, Colombia, Czech Republic, Egypt, Greece, Hungary, India, Indonesia, Korea, 

Malaysia, Mexico, Pakistan, Peru, Philippines, Poland, Russia, Qatar, South Africa, Taiwan, 

Thailand, Turkey and United Arab Emirates. (MSCI, 2019) 

 

The index follows the MSCI Global Investable Market Indexes Methodology (GIMI), an 

approach that allows for adjustments based on market capitalization size, country and 

sector combinations. The MSCI Emerging Market Index is rebalanced in May and Novem-

ber and aims to reflect the underlying equity market in a liquid way. The largest sectors 

are information technology (27.38%) and financials (24.27%). The largest country 

weights are China (30.3%), South Korea (14.45%), Taiwan (11.39%), India (8.17%) and 

Brazil (7.49%). Other countries equal a weight of 28.2%. (MSCI, 2019) 

 

In this research the MSCI Emerging Market Index daily closing prices from 1.1.2015 to 

31.12.2019 are used to compute daily realised volatility levels for this time period as well 

as implied volatility and GARCH(1,1) model volatility forecasts. 

 

 

5.1.2 Option Closing Prices 

MSCI Emerging Market Price Index Options (ticker: OMEF) have been traded in Eurex 

Exchange starting from March 2014. The longest available option type for the entire re-

search period is European December Call Option with a strike price of USD 1100. Euro-

pean June Call Options with the same strike price of USD 1100 are available from June 

2015. The options are rolled so that December Call prices are used between December 

31 and June 30, and June Call prices are used between June 31 and December 30. This 
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creates a continuous daily option closing price data where options have between 169-

353 days until expiration.  

 

The daily option closing prices and daily index closing prices are used to compute implied 

volatility forecasts for the time period of 1.1.2015–31.12.2019. Implied volatility is cal-

culated with Microsoft Excel using the Black-Scholes option pricing model with given op-

tion prices. Implied volatility is then computed with a VBA macro that uses the Excel’s 

goal seek function that iterates the value of implied volatility for each day.  

 

 

5.1.3 Descriptive statistics and market situation 

Five years of MSCI Emerging Market Price Index data is used to analyse the daily volatility 

of emerging markets. Figure 1 presents the daily values and movements of the index. As 

Figure 1 presents, the lowest value of the index was on January 1st 2016 at USD 688.52. 

The index reached its highest value of USD 1273.07 on January 26th 2018.  

Figure 1. MSCI Emerging Market Price Index (Bloomberg). 
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The lowest daily return of the index was -5.00% on April 24th 2018. Highest daily return 

of 3.27% was experienced on August 27th 2015. During the time period of 1.1.2015– 

31.12.2019 there are 1305 days of which 687 days have a positive return and 618 days 

have a negative return. The daily returns are presented in Figure 2 and Figure 3 displays 

the distribution of returns.  

 

As indicated by the number of days with positive and negative returns and Figure 2, it is 

evident that the returns are quite evenly distributed to positive and negative returns. 

Figure 3 further demonstrates the distribution of returns. As Figure 3 presents, the daily 

returns are distributed around a mean return of 0.02%. 

 

Figure 2. MSCI Emerging Market Price Index daily returns (Bloomberg). 
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Figure 3. Distribution of daily returns (Bloomberg). 

 

The yearly returns of the index are presented in Table 1. As Table 1 shows, years 2016, 

2017 and 2019 had positive returns and years 2015 and 2018 had negative returns. The 

most positive year was 2017 with the yearly return of 34.35%. This is also evident in 

Figure 1 that presents the index prices. 

 

Table 1. Index yearly returns (Bloomberg). 

 

 

During the whole sample period the MSCI Emerging Market Price Index’s return is 

16.77%. An annualised return for the sample period is 3.15%. 

 

Year Return

2015 -16.81 %

2016 8.58 %

2017 34.35 %

2018 -16.63 %

2019 15.42 %

Notes: The yearly returns are calculated from the end-of-year closing prices.
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To calculate the option implied volatility of the MSCI Emerging Market Price Index, this 

thesis uses European call options on the index. The MSCI Emerging Market Price Index 

options used are December and June call options with strike price of USD 1100. The De-

cember and June options are rolled in order to avoid implied volatility spiking when the 

option reaches its maturity. December Call prices are used between December 31 and 

June 30, and June Call prices are used between June 31 and December 30. This creates 

a continuous daily option closing price data where options have between 169-353 days 

until expiration.  

 

Figure 4 presents the rolled option prices for the sample period 1.1.2015–31.12.2019. 

The option’s price in Figure 4 also reflects the option moneyness. In Figure 5 the strike 

price of USD 1100 is plotted against the index’s spot price.  

 

Figure 4. MSCI Emerging Market Price Index Option (Bloomberg). 
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Figure 5. Option moneyness (Bloomberg). 

 

When Figures 4 and 5 are compared, it is evident that option price in Figure 4 rises when 

the option is at-the-money and in-the-money. For most of the sample period the option 

is out-of-the-money. Figure 6 further demonstrates the linkage between option’s mon-

eyness and option price that is seen in Figures 4 and 5.  

 

The vertical lines on Figure 6 demonstrate the time points when the option turns in-the-

money. On September 12th 2017 the index reaches a price of USD 1102.26 which exceeds 

the strike price of USD 1100. Beginning from there the option is in-the-money until June 

18th 2018. On December 17th 2019 the index price reaches USD 1102.62 and the option 

is in-the-money until the end of sample period. The spot price is USD 1114.66 at Decem-

ber 1st 2019. During other time points in the sample period the option is out-of-the-

money when the index price is under USD 1100. (Bloomberg) 
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Figure 6. Option price and moneyness (Bloomberg). 

 

The option price in Figure 6 seems to follow the option moneyness. When the index 

reaches its highest price of USD 1273.07 on January 26th 2018, the option also reaches 

its highest value of USD 266.5 during the sample period. That is the time point when the 

option is most in-the-money. On September 11th 2017 the index is very close to being at-

the-money at USD 1099.18 and the option price experiences a jump of 11.41%. 

 

Figure 7 further illustrates the difference between spot price and option strike price. As 

evident, the option is out-of-the-money for majority of the sample period. There are 202 

days when the option is in-the-money and 1103 days when it is out-of-the-money. 
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Figure 7. Difference between spot price and strike price (Bloomberg). 

 

 

5.2 Methodology 

The methodology of this thesis follows previous researches’ methodology on volatility 

models’ predicative power. Following the methods of Christensen and Prabhala (1998) 

and Dutta (2017), OLS regressions are used to measure the predicative power of implied 

volatility and GARCH(1,1) for one-day volatility and a monthly, 22-day volatility. Realised 

volatility, option implied volatility and GARCH(1,1) model’s results are computed with 

Microsoft Excel. The OLS regressions and error terms are computed with EViews. 

 

 

5.2.1 Measures of volatility 

Following research by Parkinson (1980) a measure of Realised Volatility (RV) is computed 

using sample standard deviation of MSCI Emerging Market Price Index daily returns. As 

presented in chapter 2.2.1, the measure is calculated daily and monthly as follows: 
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𝑅𝑉𝑡 =  √
∑ ln (ℎ𝑖 − 𝑙𝑖)2𝑇

𝑖=1

4𝑙𝑛(2)
                                                                                   

 

where 𝑅𝑉𝑡 is the index’ realised volatility, ∑ ln (ℎ𝑖 − 𝑙𝑖)
2𝑇

𝑖=1  is the sum of natural loga-

rithm of the difference between highest and lowest price during the sample period and 

T is number of days in the sample period, which in this research is two for daily volatility 

and 22 for monthly volatility.  

 

Following Christensen and Prabhala (1998), the option implied volatility is calculated us-

ing Black and Scholes (1973) option pricing formula for European call options. The option 

implied volatility is calculated daily for the MSCI Emerging Market Price Index Options as 

the option prices, underlying index price and risk-free rate are known. As presented in 

chapter 3.1.1, the Black-Scholes model the option implied volatility is calculated from 

call option formula as follows: 

 

𝑐0 =  𝑆0𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2)                                                                             

 

where 

𝑑1 =  
ln (𝑆0 𝐾)⁄ + (𝑟 + 𝜎2 2)𝑇⁄

𝜎√𝑇
                                                                       

 

𝑑2 =   
ln (𝑆0 𝐾)⁄ + (𝑟 − 𝜎2 2)𝑇⁄

𝜎√𝑇
= 𝑑1 − 𝜎√𝑇                                              

 

where 𝑐0  is current call option value,   𝑆0  is current stock price, N(d1) is the factor by 

which the present value of a random price of the stock exceeds the current stock price, 

N(d2) is the probability of the option being exercised, 𝐾 is the option exercise price, e 

(Napier’s constant) is a constant and the base of the natural logarithm function, r is the 

risk-free interest rate which is the 3-month T-bill rate, T is the time to option’s expiration 

in years, ln is the natural logarithm function. The implied volatility is represented by σ, 
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which is the standard deviation of the annualized and continuously compounded rate of 

return on the underlying stock: 

 

𝐼𝑉𝑡 = 𝜎𝑡                                                                                                                   (24) 

 

where 𝐼𝑉𝑡 is the option implied volatility measure for day t and 𝜎𝑡  is the calculated value. 

The daily implied volatility is computed for the entire data period. The value calculated 

from the Black-Scholes option pricing formula provides an annualised volatility. In order 

to calculate the daily volatility, the value is divided with √252 as follows: 

 

𝐼𝑉𝑑𝑎𝑖𝑙𝑦 =  𝜎t / √252                                                                                                  (25) 

 

𝐼𝑉𝑚𝑜𝑛𝑡ℎ𝑙𝑦 =  𝐼𝑉𝑑𝑎𝑖𝑙𝑦 ∗  √22                                                                                (26) 

 

The implied volatility measure is computed using a VBA macro (Learn365 Club, 2019) 

that loops Excel’s goal seek function for each row: 

 

Sub Goal_Seek_Range_MultipleGoal() 

'Defining variable k 

Dim k As Integer 

'Looping through each row of the table 

 For k = 2 To 1829 

'Replicate the Goal Seek function via VBA 

      Cells(k, "M").GoalSeek Goal:=Cells(k, "B"), Chang-

ingCell:=Cells(k, "F") 

'Go to next iteration 

 Next k 

End Sub 

 

Following Gokcan (2000), the GARCH(1,1) model is computed as follows: 

 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝑢𝑡−𝑖

2
𝑞

𝑖=1
+ ∑ 𝛽𝑗𝜎𝑡−𝑗

2
𝑝

𝑗=1
                                                        (23) 
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where 𝜎𝑡
2 is the GARCH modelled variance (GV) at time t, 𝜔 is the long-run average var-

iance rate, 𝑢𝑡−𝑖
2  is the lagged time point t-i return and 𝛼𝑖 is the weight assigned to each 

value in the sum, 𝜎𝑡−𝑗
2  is the lagged time point t-j variance term and 𝛽𝑗 is the weight as-

signed to each value in the sum. The ω, α and β are positive constant parameters and 𝜔 

+ α + β = 1.  

 

The daily and monthly GARCH(1,1) volatilities are then calculated with 𝑡 − 𝑖 and 𝑡 − 𝑗 

being one-day lag and monthly forecast is computed by multiplying the daily volatility 

with √22. 

 

𝜎𝑑𝑎𝑖𝑙𝑦 = √𝜔 + ∑ 𝛼𝑖𝑢𝑡−𝑖
2

𝑞

𝑖=1
+ ∑ 𝛽𝑗𝜎𝑡−𝑗

2
𝑝

𝑗=1
                                              (27)  

 

𝜎𝑚𝑜𝑛𝑡ℎ𝑙𝑦 =  𝜎𝑑𝑎𝑖𝑙𝑦 ∗ √22                                                                                   (28)   

 

Following the methods of Hull (2011, pp. 528), the coefficients ω, α and β are defined 

for the whole sample period using maximum likelihood estimation method. By maximis-

ing the likelihood of data occurring, the following equation is maximised using Excel 

Solver: 

 

∑ [− ln(𝑣𝑖) −
𝑢𝑖

2

𝑣𝑖
]

𝑚

𝑖=1
                                                                                        (29) 

 

where 𝑣𝑖  is the GARCH(1,1) calculated variance, 𝑢𝑖  is the index’s daily return and 𝑚 is 

number of observations occurring. The Excel Solver is used to maximise the GARCH(1,1) 

coefficients with restrictions that 0 ≥ ω ≥ 1, 0 ≥ α ≥ 1 and 0 ≥ β ≥ 1. The maximum likeli-

hood estimation method provides the coefficient values in Table 2 that are used to cal-

culate the GARCH(1,1) volatility values daily for the entire sample period: 
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Table 2. GARCH(1,1) coefficient values. 

 

 

 

5.2.2 OLS Regressions 

Following Dutta (2017), the OLS regressions to examine the predictive power of implied 

volatility (IV) and GARCH(1,1) modelled volatility (GV) for daily and monthly volatility 

forecasts are computed as follows: 

 

𝑅𝑉𝑡+1 =  𝛼0 +  𝛽1𝐼𝑉𝑡 + 𝜀𝑡+1                                                                              (30) 

 

𝑅𝑉𝑡+1 =  𝛼0 +  𝛽1𝐺𝑉𝑡 + 𝜀𝑡+1                                                                             (31) 

 

where RVt+1 indicates the 1-day ahead realised volatility. The OLS models are tested for 

the entire time period of 1.1.2015–31.12.2019.  

 

By testing the null hypothesis, whether H0 : β1 = 0, the results indicate if the volatility 

models include information on future realised volatility. If the coefficient β1 is statistically 

different from zero, the results show evidence that implied volatility and GARCH(1,1) 

have significant predictive power over future emerging stock market volatility. (Dutta, 

2017) 

 

 

Coefficient Value

ω 0.000000998

α 0.083

β 0.91

Note: The values of ω, α and β represent the values of maximum likelihood estimation of GARCH(1,1) parameters.
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5.2.3 Error Terms (RMSE & MAE) 

The examination of forecasting accuracy includes also the examination of residuals that 

are the difference between the forecasted value and the observed value. Following Dutta 

(2017), two error statistics, Root Mean Square Error (RMSE) and Mean Average Error 

(MAE), are computed to determine the error between the regression line and realised 

volatility. 

 

The Root Mean Square error (RMSE) is the standard deviation of the residuals. It 

measures how far the residuals are from the regression line’s data points when regres-

sion line is the best fit among the forecasted values. RMSE indicates the mean of squared 

differences between the actual volatility values and forecasted volatility values as follows: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑅𝑉𝑎,𝑡

𝑁
𝑖=1 − 𝑅𝑉𝑓,𝑡)2                                                                   (32)  

 

where ∑ (𝑅𝑉𝑎,𝑡
𝑁
𝑖=1 − 𝑅𝑉𝑓,𝑡)2  is the sum of squarer between the forecasted values 

𝑅𝑉𝑓,𝑡  and actual values 𝑅𝑉𝑎,𝑡  and N is the number of observations. (Barnston, 1992; 

Dutta, 2017) 

 

Another error measure is the Mean Absolute Error (MAE), which measures the differ-

ence between two continuous variables. In this study, following Dutta (2017), MAE is 

used to measure the error between the observed volatility value and forecasted value. 

MAE is calculated for each predicted and realised value. In this case the error of the 

forecast is computed the following way: 

 

𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑅𝑉𝑎,𝑡 − 𝑅𝑉𝑓,𝑡|

𝑁

𝑖=1
                                                                      (33) 

 



67 

 

where ∑ |𝑅𝑉𝑎,𝑡 − 𝑅𝑉𝑓,𝑡|𝑁
𝑖=1  is the sum of absolute difference between the actual value 

𝑅𝑉𝑎,𝑡 and the forecasted value 𝑅𝑉𝑓,𝑡 and N is the number of observations. (Dutta, 2017; 

Wilmott & Matsuura, 2005) 
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6 Empirical results 

This section of the thesis describes the results of implied volatility and GARCH(1,1) fore-

casts in emerging market environment. These volatility forecasting models have been 

widely studied in developed markets and previous results suggest that GARCH(1,1) offers 

better long-term forecasts than implied volatility. The previous results conclude that im-

plied volatility has been the more used and superior model for a shorter 1–20 day fore-

casting period. However, there is a lack of consensus of the forecasting abilities of these 

model in emerging equity markets. Some previous studies have shown that implied vol-

atility and GARCH(1,1) have significant information of future volatility while some have 

found the models to be biased and non-informative.  

 

The next chapter presents an analysis of the data, including sample specific descriptive 

statistics. The following chapters present the forecasting results computed with the OLS 

regressions described in the previous section and the error measures of RMSE and MAE. 

There are four OLS regressions that present the forecasting accuracy of implied volatility 

and GARCH(1,1) for both one-day and 22-day forecasts. Regression results are compared 

to the research questions and hypotheses. The final chapter discusses the results criti-

cally and offers suggestions for future research topics.  
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6.1 Data analysis 

The data that are used covers the daily prices of MSCI Emerging Market Price Index and 

call options of the index. Realised volatility is computed with the Parkinson (1980) range 

based formula, implied volatility is calculated from the Black-Scholes (1973) option pric-

ing formula and GARCH(1,1) following Bollerslev’s (1986) formula. Volatilities are meas-

ured with standard deviation and all values are presented as a one-day volatility and 

monthly, 22-day volatility.  

 

The computed volatility time series covers observations from 1.1.2015 to 31.12.2019. 

Figures 8 and 9 present the calculated time series of daily and monthly values of realised 

volatility, implied volatility and GARCH(1,1) volatility during this time period. From these 

Figures it is evident that GARCH(1,1) volatility appears to be closer to the realised vola-

tility values. Overall the volatility measures appear to follow a similar pattern. 

 

Figure 8. Daily volatilities during 1.1.2015–31.12.2019. 
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Figure 9. Monthly volatilities during 1.1.2015–31.12.2019. 

 

The implied volatility also shows more visible jumps when compared to realised volatility 

and GARCH(1,1).  Based on the time series, GARCH(1,1) daily volatility is on average 0.44% 

higher than realised volatility and on monthly level 1.53% higher. Implied volatility is 1.59% 

higher on daily level and 6.96% higher on monthly level. 

 

The mean daily realised volatility is 0.40%, mean daily implied volatility is 1.99% and 

mean daily GARCH(1,1) volatility is 0.83%. The mean daily volatilities as well as skewness 

and kurtosis of the volatility distributions are presented in Panel A of Table 3 below. All 

daily volatility measures are skewed right, which indicates that the distribution has a tail 

on higher volatilities. The realised volatility skewness is 1.795 and GARCH(1,1) volatility 

skewness is 1.368 which suggests that these measures are more skewed to the right than 

implied volatility which has skewness of 0.460. Table 3 also presents kurtosis for all vol-

atility measures. Realised volatility and GARCH(1,1) volatility show positive kurtosis with 

values of 4.997 and 1.888 correspondingly. This suggest that the distributions are lepto-

kurtic with more values close to the mean and fat-tails indicating fluctuations. However, 
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the GARCH(1,1) appears to be closer to normal distribution. The daily implied volatility 

has a negative kurtosis of -0.147 which indicates a more platykurtic distribution that has 

more values on a broader spectrum of the mean.  

 

Table 3. Summary statistics. 

 

 

The summary statistics of monthly values are presented in Panel B of Table 3. Realised 

volatility is on average 2.83% whereas implied volatility is 9.34% and GARCH(1,1) volatil-

ity is 3.91% on a monthly level. The skewness and kurtosis display similar values as in the 

daily volatility distributions. This further indicates that the realised volatility and 

GARCH(1,1) volatility are more closely similar distributions than implied volatility. 

 

 

  

Panel A. Daily forecasts

Model Mean Skewness Kurtosis

Realised volatility 0.40 % 1.759 4.997

Implied volatility 1.99 % 0.460 -0.147

GARCH(1,1) volatility 0.83 % 1.368 1.888

Panel B. Monthly forecasts

Model Mean Skewness Kurtosis

Realised volatility 2.83 % 1.095 1.121

Implied volatility 9.34 % 0.460 -0.147

GARCH(1,1) volatility 3.91 % 1.368 1.888

Notes: Panel A of Table 3 shows the descriptive statistics of daily volatility measures. 

Panel B of Table 3 shows the descriptive statistics of monthly volatility measures.
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6.2 Regression results 

An OLS regression analysis is performed for each volatility model. The OLS regression for 

implied volatility and GARCH(1,1) as explanatory variables are computed against realised 

volatility as a dependent variable as follows: 

 

𝑅𝑉𝑡+1 =  𝛼0 +  𝛽1𝐼𝑉𝑡 + 𝜀𝑡+1 

 

𝑅𝑉𝑡+1 =  𝛼0 +  𝛽1𝐺𝑉𝑡 + 𝜀𝑡+1 

 

Both regressions are executed for daily and monthly values. The null hypothesis in all 

cases is that implied volatility or GARCH(1,1) do not have statistically significant informa-

tional content over realised volatility. The alternative hypotheses are that implied vola-

tility and GARCH(1,1) do have predictive power over 𝑡 + 1 realised volatility. The hypoth-

eses are presented below in Table 4 in numeric format where H1 is the alternative hy-

pothesis for daily volatility and H2 is the alternative hypothesis for monthly volatility: 

 

Table 4. Hypotheses of the thesis. 

Implied volatility forecasts GARCH(1,1) volatility forecasts 

H0: 𝛽1= 0 H0: 𝛽1= 0 

H1: daily 𝛽1≠ 0 H1: daily 𝛽1≠ 0 

H2: monthly 𝛽1≠ 0 H2: monthly 𝛽1≠ 0 

Notes: The null and alternative hypotheses are further explained in chapter 1.2. 

 

Testing of these hypotheses is executed with OLS regression analysis. The regression re-

sults are presented in Table 5. The Panel A includes the daily forecasting results and Panel 

B the monthly results.  Coefficients, standard errors, F-statistics and a R2 measure are 

presented for all regressions.  

 

As presented in Panel A of Table 5, the regression of daily implied volatility as a  𝑡 + 1 

realised volatility forecast results in significant coefficient of 𝛽1 at 1% level. The positive 
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coefficient indicates a positive relationship between realised volatility and implied vola-

tility. The t-statistic of 𝛽1 is 7.0576 and the p-value is 0 which suggest the rejection of 

null-hypothesis as 𝛽1 is statistically different from zero. However, the R2 measure of daily 

implied volatility forecast is only 3.68% which indicates that the model explains only a 

small amount of 𝑡 + 1 realised volatility.  

 

The daily forecasting results of GARCH(1,1) volatility presented in Panel A of Table 5 are 

similar to the results given by the implied volatility forecast. Again, the 𝛽1 coefficient is 

statistically significant at 1% level which indicates a significant positive relationship be-

tween GARCH(1,1) and 𝑡 + 1 realised volatility. The t-statistic is 8.9046 and p-value is 0 

which suggest the rejection of null hypothesis as 𝛽1 is statistically different from zero. 

The R2 of GARCH(1,1) volatility is slightly higher than implied volatility’s at 5.74% which 

suggests that GARCH(1,1) model includes more information on one-day ahead forecast 

of realised volatility than the implied volatility model. However, the model only explains 

5.74% of variation in realised volatility. The alternative hypothesis H1 is accepted for both 

daily implied volatility and GARCH(1,1) volatility forecasts. 

 

The Panel B of Table 5 presents the regression results of monthly volatility forecasts. The 

monthly volatility forecasts offer more explanatory results than daily forecasts. The 

monthly implied volatility has a positive 𝛽1  coefficient that is significant at 1% level, 

which indicates a statistically significant positive relationship. With a t-statistic of 

20.6726 and p-value of 0 the null hypothesis can be rejected as 𝛽1 is statistically different 

from zero. The explanatory power of the forecast has improved from the daily level. The 

R2 measure is 24.70% which indicates that the model explains over 24% of variation in 

𝑡 + 1 realised volatility. 
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Table 5. OLS regression results. 

 

 

The monthly GARCH(1,1) volatility offers even more promising results. The 𝛽1 is again 

positive and significant at 1% level which suggests there is a positive and statistically 

significant relationship between the variables. The t-statistic of 𝛽1 is 78.1438 with a p-

value of 0 which indicates that the null hypothesis can be rejected at 1% level. The R2 

measure indicates that GARCH(1,1) volatility has an explanatory power of 82.41% over 

𝑡 + 1 realised volatility which suggests that the model is a highly suitable fit. The alter-

native hypothesis H1 is accepted for both monthly implied volatility and GARCH(1,1) vol-

atility forecasts. 

 

Panel A. Daily forecasts

IV Coefficient Std. Error t-statistic Prob.

0.001980*** 0.0003 6.604541 0.0000

0.100699*** 0.014267 7.057934 0.0000

R-squared 0.036823

Number of observations 1305

GARCH(1,1) Coefficient Std. Error t-statistic Prob.

0.001144*** 0.000333 3.43827 0.0006

0.340405*** 0.038228 8.904615 0.0000

R-squared 0.057363

Number of observations 1305

Panel B. Monthly forecasts

IV Coefficient Std. Error t-statistic Prob.

0.012352*** 0.000584 21.14105 0.0000

0.122547*** 0.005928 20.67257 0.0000

R-squared 0.246975

Number of observations 1305

GARCH(1,1) Coefficient Std. Error t-statistic Prob.

0.000065*** 0.000317 0.206093 0.0004

0.606304*** 0.007759 78.14380 0.0000

R-squared 0.824144

Number of observations 1305

Notes: Panel A of Table 5 shows the regression results of daily forecasts for IV and GARCH(1,1).  

Panel B of Table 5 shows the regression results of monthly forecasts for IV and GARCH(1,1). 

The *, ** and *** refer to significance at 10%, 5% and 1% levels.
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A comparison of the regression results suggests that while the daily values of implied 

volatility and GARCH(1,1) volatility are statistically significant and unbiased estimators of 

one-day ahead future volatility, the models are lacking in explanatory power. The 

monthly volatility forecasts offer better explanatory power and appear to be well suited 

for 22-day volatility forecasts. On both daily and monthly levels the GARCH(1,1) model 

results in more accurate fitting forecast. The explanatory powers of daily forecasts do 

not suggest that there is a large difference in the appropriateness of the models. How-

ever, on a monthly level the GARCH(1,1) volatility dominates implied volatility in fore-

casting accuracy of realised volatility.  

 

Overall, the regression results of implied volatility are similar to those reported by Blair 

et al. (2010) in US market context, although the daily forecast is weaker. In emerging 

market context the implied volatility shows weaker results than suggested by Bentes 

(2015). Especially as a daily forecast, the explanatory power of implied volatility calcu-

lated from MSCI Emerging Market index options is weaker than what previous studies 

reported. The monthly implied volatility forecast is similar to what Shaikh and Padhi 

(2015) reported on the Indian market.  

 

The GARCH(1,1) results are quite similar to those reported by Bentes (2015) in Hong 

Kong, India and Korea. While both models show informational content over future vola-

tility, the GARCH(1,1) model performs better than implied volatility. The results are op-

posing to those by Yang and Liu (2012) who suggest that an implied volatility index out-

performs GARCH(1,1) as a monthly volatility forecast in Taiwanese stock market. How-

ever, the results of this thesis offer clarification of volatility model selection in emerging 

equity markets as GARCH(1,1) volatility appears to be the superior forecasting method 

on both daily and monthly volatilities. 
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6.3 Error measures 

To further test the prediction performance of implied volatility and GARCH(1,1) volatility, 

two loss function measures, RMSE and MAE, are computed as described in the previous 

chapter. An in-sample estimation of these error measures are produced for both model 

in daily and monthly volatility forecasts at time 𝑡 + 1. The results of the loss functions 

are documented in Table 6 where Panel A presents the values for daily forecasts and 

Panel B for monthly forecasts. 

 

Table 6. Error measures of the models. 

 

The results for daily forecasts show similar values to both model. The RMSE for implied 

volatility is 0.0035 and for GARCH(1,1) volatility 0.0034. The MAE measures are 0.0026 

for both models. These values of error measures suggest that both implied volatility and 

GARCH(1,1) volatility are well fitted to describe realised volatility. The daily GARCH(1,1) 

volatility has a slightly lower RMSE and MAE value which indicates that it is more accu-

rate than implied volatility. This is consistent with the OLS regression results. 

 

The results in Panel B display the RMSE and MAE for monthly volatilities. Implied volatil-

ity has a RMSE of 0.0068 while GARCH(1,1) volatility has a value of 0.0033. The MAE for 

monthly implied volatility is 0.0052 and 0.0025 for GARCH(1,1) volatility. Consistent with 

Panel A. Daily forecasts

Model RMSE MAE

IV 0.003465 0.002589

GARCH(1,1) 0.003428 0.002572

Panel B. Monthly forecasts

Model RMSE MAE

IV 0.006752 0.005230

GARCH(1,1) 0.003263 0.002545

Notes: Panel A of Table 6 shows the RMSE and MAE loss function values of daily forecasts for IV and GARCH(1,1). 

Panel B of Table 6 shows the RMSE and MAE loss function values of monthly forecasts for IV and GARCH(1,1). 
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the OLS regression results, the difference in fit of the models is clearer in monthly vola-

tility forecasts than in daily volatility forecasts. Both loss function results indicate that 

GARCH(1,1) offers a better estimate of future volatility.  

 

 

6.4 Criticism of results and further studies 

The results presented in this thesis offer clarifying results to previous studies varying 

conclusions. The data period length is sufficient and the observations are relevant and 

include recent. The use of MSCI Emerging Market Index includes an extensive amount of 

emerging market countries making it a good sample of emerging equity markets. While 

it offers interesting results, it is also difficult to conclude whether these results are con-

sistent in single emerging countries or for a single asset.  

 

The accuracy of implied volatility is also dependent on option moneyness. The option 

was chosen for being the closest to at-the-money, however, it is still out-of-the-money 

for majority of the forecasting period. The estimates provided by implied volatility could 

be improved if a more at-the-money option was available. While the GARCH(1,1) volatil-

ity provides a more accurate forecast for both daily and monthly values, an out-of-sam-

ple forecasting period should be tested to further validate the results. Out-of-sample 

testing, testing on different emerging market economies and adjusting the option selec-

tion is left to further research. 

 

A topic for further research is also the comparison of growing research in emerging mar-

ket context to the existing literature of developed market volatility. Although implied 

volatility seems to be a popular volatility forecaster, more recent evidence in emerging 

market research and this thesis suggests that a well-fitted GARCH model is able to pro-

vide a more accurate future volatility forecast. A combination model could also provide 

new informational content on emerging market volatility. 
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7 Conclusions 

The ability to accurately forecast volatility is an evolving field of study in finance as vola-

tility is a key feature in investing and management of risk. Previous studies have shown 

that implied volatility and GARCH based models have dominated volatility forecasting 

both in terms of forecasting accuracy and popularity in using the models. In developed 

market environment, the previous results suggest that implied volatility is an accurate 

short-term forecaster and GARCH models offer a good long-term future forecast. 

 

However, previous studies on volatility forecasting in emerging market environment 

have been inconclusive in terms of forecasting accuracy and model selection. Emerging 

equity markets experience more risks than developed equity markets. These risks arise 

from economic and political uncertainties that are more present in emerging than de-

veloped markets. This makes volatility forecasting in emerging equity markets an inter-

esting field of study, since the significance of emerging economies has grown as financial 

markets are more globalised than ever.  

 

This thesis examined the forecasting accuracy of two models, implied volatility and 

GARCH(1,1) in the context of emerging equity markets. MSCI Emerging Market Price in-

dex and an index option were used to calculate implied volatility and GARCH(1,1) vola-

tility forecasts for the time period of 1.1.2015–31.12.2019. A one-day forecast was cal-

culated for both models in terms of daily and monthly volatility. A regression analysis 

was computed in order to determine whether implied volatility and GARCH(1,1) volatility 

contain information of future volatility in emerging markets. Error terms were also com-

puted in order to assess the fitness of both models. 

 

The results indicate that both daily and monthly implied volatility and GARCH(1,1) vola-

tility contain significant information about one-day ahead future volatility. However, the 

predictive power of monthly values is higher than daily values for both models. The re-
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sults suggest that in both daily and monthly values GARCH(1,1) volatility is a more accu-

rate estimate for future volatility. The GARCH(1,1) monthly volatility offers the best fit 

for future volatility with the highest predictive power and lowest error measures, sug-

gesting that it is the most appropriate fit for future volatility forecasting in emerging eq-

uity markets.  

 

The results presented in this thesis contribute to the study of volatility forecasting in 

emerging equity markets. The GARCH(1,1) model offers the most accurate future vola-

tility estimate and offers support to some of the existing studies in emerging market 

context. The effects of option moneyness and out-of-sample testing is left for further 

research. 
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