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ABSTRACT

Dynamic dataflow models of computation have become
widely used through their adoption to popular programming
frameworks such as TensorFlow and GNU Radio. Although
dynamic dataflow models offer more programming freedom,
they lack analyzability compared to their static counterparts
(such as synchronous dataflow).

In this paper we advocate the use of a boundedly dynamic
dataflow model of computation, VR-PRUNE, that remains
analyzable but still offers more programming freedom than
a fully static dataflow model.

The paper presents the VR-PRUNE model of computation
and runtime, and illustrates its applicability to practical signal
processing applications by two use cases: an adaptive convo-
lutional neural network, and a predistortion filter for wireless
communications. By runtime experiments on two heteroge-
neous computing platforms we show that VR-PRUNE is both
flexible and efficient.

Index Terms— variable-rate dataflow, models of compu-
tation, signal processing, heterogeneous computing

1. INTRODUCTION

In the recent years, dataflow has been used as the underlying
model of computation (MoC) in TensorFlow for machine
learning applications [1], and in GNU Radio for radio com-
munications [2]. Dataflow MoCs provide an abstract and
efficient for way describing various signal processing applica-
tions. Under dataflow, an application is described as a graph
that consists of nodes and directed edges that interconnect
the nodes. The nodes, called actors, perform computations,
whereas the edges act as order-preserving communication
channels between actors. The data that is communicated over
the edges is packaged into tokens of fixed size. An actor can
trigger (fire) its computations when its input edges have a
sufficient number of tokens available – this token quantity
is called the input token rate. Respectively, during its firing
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the actor produces a number of tokens to each of its output
channels. The channel-specific number of tokens produced is
called output token rate.

In one of the most studied dataflow MoCs, Synchronous
Dataflow (SDF) [3], the data quantities produced and con-
sumed by each actor need to be fixed and known at appli-
cation design time. This restriction however enables a va-
riety of compile-time optimizations, as well as full consis-
tency checks at design time for, e.g., ensuring that the ap-
plication cannot deadlock [4] or cause communication buffer
overflows. If the dataflow MoC allows such a full consistency
check in finite time, the MoC is called decidable. Conse-
quently, SDF has been used for specifying a variety of com-
plex digital signal processing systems [5] [6][7].

Despite the advantages of fully static dataflow MoCs,
there are situations where fixed token rates are too restrictive.
Examples of such a case are adaptive signal processing ap-
plications where the application behavior changes at runtime
in response to changes in the environment. An example of
such an application, used in this paper, is a neural network for
video analysis that can adjust its inference frequency based
on video motion detection.

In order to properly support such dynamic behavior, a dy-
namic dataflow MoC is needed. Consequently, actors’ token
rates can vary at runtime in response to dynamically varying
computation needs. As a drawback, such flexibility restricts
application analyzability. An example of a dynamic dataflow
model is Boolean dataflow [8] that is not a decidable MoC.

Between the extremes of fully static and fully dynamic
dataflow, a variety of boundedly dynamic dataflow MoCs
exist, of which a well-known example is Well-Behaved
Dataflow (WBDF) [9]. Recently, Boutellier et al. presented
the PRUNE MoC and framework [10], which similar to
WBDF allows dynamic application behavior to be expressed
within dataflow subgraphs that follow a constrained graph
topology. A different branch of work is variable-rate dataflow
(VRDF) [11] that allows port token rates to change arbitrarily
within predefined limits.

In this paper, we introduce a novel dataflow MoC that is



a hybrid between the PRUNE MoC [10] and the VRDF MoC
[11]: VR-PRUNE keeps the decidability of PRUNE, but adds
to it support for variable token rates. Here we show that VR-
PRUNE increases MoC flexibility over the PRUNE MoC with-
out having a negative impact on run-time efficiency. Some
early results related to the proposed MoC were presented in
our previous work [12], while in this paper the VR-PRUNE
MoC is formalized (as far as the available space allows), and
the MoC’s run-time efficiency is illustrated by experiments.

2. BACKGROUND: THE PRUNE MOC

In this section, we briefly present the PRUNE MoC [10] that
acts as the basis of the proposed VR-PRUNE MoC.

In PRUNE, an application is expressed as a graph G =
(A,F ), where A is a set of actors and F is a set of FIFO chan-
nels. A FIFO channel is connected to an actor through an ac-
tor port; each actor a ∈ A can have any number of input and
output ports. We use the following notation: a = parent(p)
denotes an actor a contains port p, and p+a1 stands for output
port 1 of actor a. The superscript +/− corresponds to out-
put/input port direction, respectively.

For FIFO f ∈ F , we say ports p+a and p−b are connected if
fifo(p+a ) = fifo(p−b ), where actors a and b are referred as
the source and sink of the same FIFO. In the PRUNE MoC,
an output port p+ can be connected to multiple FIFOs, but
every input port p− has only one FIFO connected to it and
each FIFO has unique source and sink ports.

There are three types of ports in the PRUNE MoC: the
control (input/output) port, the static regular port (SRP) and
the dynamic regular port (DRP). SRPs have a fixed token
consumption/production rate, whereas DRPs have two fixed
token rates, which are respectively denoted as active token
rate and inactive token rate of p, also abbreviated as atr(p)
and itr(p). Morever, each FIFO has a single, positive-integer
token rate, denoted as fiforate(f), and we restrict that
atr(p) = fiforate(fifo(p)), in other words the active port
rate must strictly equal to the token rate of the connected
FIFO. By this symmetric-rate dataflow behavior, PRUNE
requires the token consumption rate equal the production
rate for every FIFO. Even though this makes PRUNE more
restricted than SDF with respect to token rate conversion,
PRUNE on the other hand allows dynamic token rates that
are not supported by SDF.

Two PRUNE actors are adjacent if each of them has at
least one port connected over the same FIFO. A chain S =
(a1, a2, ..., an) is a set of actors for which ∀i = 1, 2, ..., n, ai
and ai+1 are adjacent, and S connects a1 and an.

3. THE PROPOSED VR-PRUNE MOC

The proposed VR-PRUNE MoC is a generalization of the
PRUNE MoC in that VR-PRUNE allows token rates of cer-
tain ports to dynamically vary within predefined limits, sim-
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Fig. 1. An illustrative example of a dynamic processing actor.

ilar to VRDF [11]. In the following subsections, we iden-
tify the new structures and required changes compared to the
PRUNE MoC to enable this variable-token rate behavior.

3.1. VR-PRUNE actor types

The varying token rate feature requires a new type of actor,
the dynamic processing actor, that is introduced among other
actor types that are identical to those in PRUNE.

a. Static Processing Actor: Static processing actors (SPA)
can only have SRP ports, and therefore during every firing of
an SPA all ports p must have the token rate atr(p).

b. Configuration Actor: A configuration actor can have
one or multiple control output ports which must be connected
to the control input port of a dynamic actor or a dynamic pro-
cessing actor. The control output ports must be SRPs with a
token rate of unity. Besides, a configuration actor may have
zero or more input or output data ports of type SRP.

c. Dynamic Actor: A dynamic actor has at least one DRP,
one control input port and any number of SRPs. All the DRPs
have to be either input ports, or output ports. Every time a
dynamic actor performs a firing, a token is consumed from
each of its control input ports. In contrast to PRUNE, values
of tokens originating from the control input port set the token
rate of each DRP p to any integer value between 0 and atr(p).

d. Dynamic Processing Actors (DPA): DPAs are similar to
dynamic actors, but differ in the sense that a DPA is required
to have at least one input DRP and at least one output DRP, as
well as at least one control input port. Also, a DPA can have
any number of SRPs. Similar to dynamic actors, the control
input port sets the token rates of DRPs to any integer value
between 0 and atr(p).

Fig. 1 provides an illustration of a DPA: the control input
port sets the token rates of a pair of DRPs (one on the input
side, the other on the output side). When the actor performs
a firing, the value of a single token coming from the control
port sets the token rate of both DRPs.

3.2. VR-PRUNE design rules

Similar to PRUNE, VR-PRUNE imposes a small set of con-
crete design rules to ensure that graph topologies leading to
inconsistent dataflow behavior are avoided. This is achieved
by five design rules that are identical to those in PRUNE, ex-
cept for the connecting subchain rule (3).
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Fig. 2. A VR-PRUNE dynamic processing graph.

1. Linked port control rule: A linked pair of DRPs
{px, py} must be controlled by the same control output port.

2. Balanced delay rule: If a control output port pc con-
trols two control input ports px, py , then delay(pc, px) =
delay(pc, py).

3. Connecting subchain rule: If {px, py} are DRPs linked
by the chain S = (a1, a2, ..., an), then (1) ai, i = 1, 2, ..., n
must all be actors of type SPA or DPA; (2) every connecting
subchain to which ai ∈ S belongs, must be associated with
the two dynamic actors x and y.

4. Single-sided dynamism rule: A dynamic actor can only
have either input DRPs or output DRPs, not both.

5. Encapsulation rule: If {px, py} are linked DRPs whose
parents are x and y, S = (a1, a2, ..., an) is a chain, and k /∈ S
is an actor that connects to ai, i = 1, 2, ..., n, then k must
belong to a chain that connects x and y.

3.3. VR-PRUNE subgraphs and control tables

The VR-PRUNE design rules require that dynamic token rates
occur within a specific type of subgraph, the Dynamic Pro-
cessing Graph (DPG). A DPG consists of one configure actor,
two dynamic actors and any number of DPAs or SPAs. Below,
an example of a DPG is described.

Fig. 2 shows an example of a VR-PRUNE DPG, where
FIR1 and FIR2 are dynamic processing actors, pf11, pf13 and
pf21, pf23 are DRPs, controlled by pf12, pf22 respectively.
The Poly actor is a dynamic actor with DRPs on the output
side and the Add actor is also a dynamic actor with DRPs on
the input side. Conf is a configuration actor and FIR3 is a
static processing actor.

The values of tokens produced by the configuration ac-
tor’s control output ports can be illustrated by a control ta-
ble. Table 1 shows an example of a VR-PRUNE control table,
which is a h × w matrix, where h and w are the numbers of
control output ports and DRPs. All actors between a linked
pair of DRPs {px, py} are required to be controlled by the
same control output port of the configuration actor. In Fig 2,
pc1 is connected to pp2, pf12 and pa2, which actually controls
DRPs pp3, pf11, pf13 and pa3, respectively. This control re-
lationship can be seen in the Table 1 control table such that for

Table 1. Control table for the graph in Fig. 2.
pp3 pp4 pf11 pf13

pc1 [0 .. 2] - [0 .. 2] [0 .. 2]
pc2 - [0 .. 3] - -

pf21 pf23 pa3 pa4
pc1 - - [0 .. 2] -
pc2 [0 .. 3] [0 .. 3] - [0 .. 3]

the rows of pc1 only the DRPs controlled by pc1 have values,
which reflect the range of allowed token rates.

3.4. VR-PRUNE MoC summary

The novelty of VR-PRUNE over PRUNE is the support for
token rates that vary within predefined limits. Whereas in
PRUNE DRP ports had two token rates, itr and atr, VR-
PRUNE allows these ports to have any integer token rate be-
tween itr and atr. To realize this, VR-PRUNE introduces a
new actor type, the DPA, as well as a modification to the
connecting subchain design rule. Unfortunately, due to strict
space limits, it is not possible to show decidability proofs of
the VR-PRUNE MoC here.

In the next section, we will show by experiments with the
VR-PRUNE runtime that this added design and MoC freedom
of VR-PRUNE does not add computational overhead in the
context of heterogeneous target platforms.

4. EXPERIMENTAL RESULTS

In this section, we present two application use cases for VR-
PRUNE and measure the efficiency of the VR-PRUNE run-
time. Similar to PRUNE, VR-PRUNE is designed for hetero-
geneous systems that use both a GPU and multiple CPU cores
for computations. The considered target platforms are shown
in Table 2. The designer provides actor descriptions in C or
OpenCL, based on which the VR-PRUNE compiler generates
a toplevel file that realizes inter-actor communication.

4.1. Dynamic-update predistortion filter

The dynamic-update predistortion filter (DU-DPD) is a filter
for wireless transmitters that in real-time filters the baseband
signal to be transmitted. The VR-PRUNE implementation of
the DU-DPD has an online learning capability, which allows
updating the filter coefficients periodically to accommodate
with varying RF interference.

As Fig. 3 shows, actors Src, Learn and Update form
the varying-token rate learning chain, where Src and Update
are dynamic actors, and Learn is a DPA. This dynamic-token
rate feature allows any number of samples between 1 and X
to be used as training data to acquire new filter coefficient
values. The actor Filter on the other hand operates in real
time on the GPU at a constant token rate of N



Table 2. Platforms used for experiments.
Tag GPPs GPU Operating System
i7-940MX Intel i7-6700HQ @ 2.60 GHz NVidia GeForce 940MX Ubuntu 18.04, g++ 7.0.0
i7-GTX1080 Intel i7-8700K @ 3.70GHz NVidia Geforce GTX1080 Ubuntu 18.04, g++ 7.0.0
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Fig. 3. VR-PRUNE model for the DU-DPD use case.

Fig. 4. Time spent in DU-DPD under VR-PRUNE on i7-
GTX1080, as a function of samples used for learning.

Fig. 4 shows the execution time of the whole DU-DPD
graph for one iteration as a function of kilosamples used (X)
for training in the Learn actor. Here, the minimum value
of X was 1, and the maximum value was 10; intermediate
sample rates were varied with a stepping of 1. The figure
shows that in this applications the variable sample rate fea-
ture allows reducing the number of samples used for learning
in situations when there is little or no RF interference, with
significant computation time savings.

4.2. Adaptive Convolutional Neural Network

The dataflow graph of our neural network use case is depicted
in Fig. 5; it consists of two GPU-accelerated convolution lay-
ers (L1Conv, L2Conv) followed by a GPU-accelerated dense
layer, as well as two more dense layers that have been com-
bined into a single actor (L3Relu-L5). The application is
adaptive in the sense that it allows dynamically enabling and
disabling convolutional neural network inference for individ-
ual frames, e.g. based on inter-frame motion detection.

In the dataflow sense, the image data related to one frame
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Fig. 5. The adaptive CNN application.

Fig. 6. Time spent in the CNN application as a function of %
of frames processed: PRUNE (dashed line) vs. VR-PRUNE
(solid line) on i7-GTX1080 (left) and i7-940MX (right).

(image) forms a single token. For accelerating GPU process-
ing, N = 24 frames are processed in parallel, but for each of
the 24 frames, the inference can be disabled, which makes the
token rate vary in steps of 1 between values 0 and 24. Fig. 5
shows the varying-token rates of ports by X (= [0, 24]) and
fixed rates by N (= 24).

Fig. 6 shows the processing time of the whole graph for
a sequence of 384 frames on two platforms (Table 2). The
CNN inference (on/off) for each frame was randomly varied
at runtime achieving the average percentage of frames pro-
cessed for 0%, 12.5%, 25.0%, 50.0% and 100%, measuring
the execution time time for each percentage value.

For this use case the conditional CNN inference feature
was implemented under conventional PRUNE using the con-
ditional statements approach (See [12]) and by the variable
token rate feature of VR-PRUNE. The results show that the
variable token rate feature of VR-PRUNE does not impose
any overhead compared to conventional PRUNE – in contrast,
VR-PRUNE is computationally slightly more efficient than
conventional PRUNE due to the fact that variable data rate
processing allows omitting data transfer for skipped frames.

5. CONCLUSION

We have introduced VR-PRUNE, a Model of Computation
and runtime for signal processing on heterogeneous plat-
forms. Experimental results show that VR-PRUNE is both
more flexible and efficient than its predecessor PRUNE.
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