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Abstract

System-on-Chip (SoC) devices can be composed of low-power multicore processors combined with a small graphics accelerator
(or GPU) which offers a trade-off between computational capacity and low-power consumption. In this work we use the LLFI-GPU
fault injection tool on one of these devices to compare the sensitivity to soft errors of two different CUDA versions of matrix
multiplication benchmark. Specifically, we perform fault injection campaigns on a Jetson TK1 development kit, a board equipped
with a SoC including an NVIDIA ”Kepler“ Graphics Processing Unit (GPU). We evaluate the effect of modifying the size of the
problem and also the thread-block size on the behaviour of the algorithms. Our results show that the block version of the matrix
multiplication benchmark that leverages the shared memory of the GPU is not only faster than the element-wise version, but it is
also much more resilient to soft errors. We also use the cuda-gdb debugger to analyze the main causes of the crashes in the code
due to soft errors. Our experiments show that most of the errors are due to accesses to invalid positions of the different memories
of the GPU, which causes that the block version suffers a higher percentage of this kind of errors.
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1. Introduction

Modern accelerators (Graphics Processing Unit) are becom-
ing increasingly relevant because of their massive parallel re-
sources and high performance per watt. The reliability of these
devices is especially important in two environments: super-
computer sites and embedded systems used in safety-critical
domains. On the former, most of the TOP500 supercomputer
sites1 include high-end GPUs using state-of the-art technol-
ogy and consisting of a very large number of cores, complex
schedulers, large registers and caches. Due to the huge num-
ber of GPUs included in these sites, their probability of failure
grows rapidly. On the latter, GPUs are one of the main com-
ponents of embedded systems used in critical domains, such as
advanced driver assistance systems [1], avionics or space appli-
cations [2, 3]. In these domains other parameters such as the
size or the energy consumption have to be taken into account.
Therefore, it is very important to evaluate the reliability of mod-
ern GPUs and to design fault tolerant techniques and algorithms
for this kind of devices.

First approaches in terms of reliability of GPUs were carried
out by Paolo Rech in [4, 5], where radiation effects are mea-
sured in different GPUs and the fault injection tool SASSIFI [6]
is used in high-end GPUs. To our knowledge, there are only
few fault injection tools for GPU devices. On the one hand,
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we can highlight the tool SASSIFI, [6] which allows injecting a
variable number of errors in different components of the archi-
tecture. However, this tool is not currently supported by Tegra
SoCs. On the other hand, GPU-Qin [7] and CAROL-FI [8] are
based on cuda-gdb [9], but their use produces significant perfor-
mance degradation. Finally, the LLFI-GPU [10] tool is the only
one that can be installed on the Tegra K1 and does not depend
on the CUDA debugger.

The LLFI-GPU tool injects bit-flips in the results of the in-
structions run by one of the threads that executes the CUDA
kernels. In this work, we use this fault injection tool to com-
pare the sensitivity to soft errors of two different versions of
matrix multiplication benchmark. To the best of our knowledge
this is the first work where the resiliency of different approaches
to this fundamental computational kernel are compared. In our
experiments we analyzed the effect of modifying the size of the
problem and also the thread-block size on the resiliency to soft
errors of matrix multiplication. We have also used the cuda-gdb
debugger to assess the main causes of the crashes produced on
the code when injecting this kind of errors.

Besides, we have performed our experiments in a low-power
embedded platform. Specifically, we have use a Jetson TK1,
which includes a Tegra K1 SoC with a ”Kepler” K20A GPU.
This kind of devices is very well suited to safety-critical do-
mains, where it is especially important to use fault tolerant al-
gorithms.

Our experimental results show that the block version of
matrix multiplication benchmark, which leverages the shared
memory of the GPU, is not only faster, but also much more re-
silient to soft errors than the element-wise version. Besides, our
analysis shows the size of the problem and the thread-block size
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have very slight influence on the behaviour of both matrix mul-
tiplication versions when using the model of fault injection of
the LLFI-GPU tool. Finally, we have seen that the main causes
of the crashes of the algorithms produced by soft errors are the
accesses to invalid positions of the different memories of the
GPU.

The rest of the paper is structured as follows. Section 2 re-
views related works that deal with radiation and fault injection
on GPUs. Section 3 describes the experimental environment.
Experimental results and evaluation is shown in Section 4. Fi-
nally, Section 5 provides the concluding remarks.

2. Related work

Two main techniques can be used to test the fault tolerance
of computer components: radiation and fault injection [11, 12].
A limited number of fault injection tools have been developed
for GPUs due to the scarce information about the internal ar-
chitecture of these accelerators, especially in the case of low-
power GPUs included in embedded system-on-chip (SoC) de-
vices [6, 8]. Many experiments have leveraged benchmarks to
test the behaviour of GPUs with different capabilities. A few
use synthetic codes to test some specific components of the
devices, such as caches [13], register files or schedulers [4].
However, most of the experiments employ simple kernels or
mini-applications such as those included in the Rodinia and
Parboil benchmark suites [14, 10]. In recent years, some ex-
periments have employed neural networks as testbeds [15, 16].
Another interesting aspect that has recently received attention is
the impact of data and arithmetic precision on the reliability of
novel GPUs, such as NVIDIA’s Volta architecture with tensor
cores [17, 18].

One of the most employed benchmarks to evaluate the relia-
bility of GPUs is matrix multiplication. In [4] the authors test
the overall GPU radiation sensitivity dependence to the Degree
of Parallelism of this kernel. They vary both the size of the ma-
trices and the thread-block size to modify the scheduling strain
and the use of other resources. Another radiation-induced eval-
uation is performed in [12], where the authors use matrix mul-
tiplication and other benchmarks to evaluate the behaviour of a
NVIDIA K40 GPU. In a very recent paper [19] the authors also
perform radiation experiments to evaluate the reliability of ma-
trix multiplication implemented using tensor cores and mixed
precision on Volta GPUs. In [20] the cublasSegmm version of
the multiplication was used to check the performance variations
and silent data corruption on a large cluster including multiple
GPUs

Matrix multiplication benchmark has also been used to
develop new frameworks or methodologies to increase the
fault tolerance of GPUs. For example, two variants of the
Duplication-with-Comparison (DWC) technique are evaluated
in [21] using this kernel on a NVIDIA Fermi architecture.
In [22] the authors used the sgemm benchmark and others in-
cluded in the Rodinia test suite to develop a framework to pre-
dict failures in GPU programs. They modified the SASSIFI
tool to identify the scalar and vector instructions of the codes.
Triple-Modular Redundancy (TMR), persistent threading and

CUDA streams are combined in [23] to mask and mitigate
single-event upsets (SEUs) on a Tegra X1 device. The authors
implement a simple ad-hoc fault injection technique to test this
technique on a image processing method. To the best of our
knowledge [23], this is the only paper where Tegra SoCs have
been used before to evaluate the fault tolerance of the GPUs
included in this kind of devices.

3. GPU-based experimental environment

3.1. Jetson Tegra K1 SoC

We have used a Tegra K1 (TK1) System-on-Chip (SoC),
embedded in the Jetson development kit. This particular sys-
tem comprises a quad-core ARM Cortex A15 processor (or
CPU), an ARM Cortex A15 battery-saving shadow core, and
an NVIDIA “Kepler” K20A GPU with 1 Streaming Multipro-
cessor (SM) containing 192 CUDA cores. Therefore, the TK1
combines the luring low-power consumption of embedded sys-
tems with the ample hardware parallelism of graphics accel-
erators. The code to be executed in parallel on the GPU by
multiple elementary processes, called threads, is written as a
CUDA kernel function, [24]. The threads are logically grouped
into thread blocks which are assigned to an SM of the GPU de-
vice and share memory. Thread blocks are then organized in a
grid. Software developers select the thread-block size aiming
to maximize the occupancy of the GPU and the performance of
the application, but this can also affect its reliability.

3.2. LLFI-GPU fault injection tool

LLFI-GPU is an extension of the open-source LLFI fault in-
jection tool [25]. This tool uses the LLVM compiler frame-
work [26] to instrument the code and inject faults. First, the
fault injection tool profiles the program to obtain the total num-
ber of kernel calls, the total number of threads that execute each
kernel, and the number of instructions executed by each thread.
Then the tool instruments the LLVM IR (Intermediate Repre-
sentation) and passes it to the nvcc CUDA compiler. The tool
only modifies the CUDA portion of the code.

Afterward, at runtime, the fault injection tool chooses a ran-
dom thread of a random CUDA kernel call and then modifies
the result of one of its instructions. The instruction is also cho-
sen randomly so that all the instructions executed have the same
probability of being modified. Specifically, it flips one of the
bits of the result of the instruction and resumes the applica-
tion execution. Therefore, the LLFI-GPU fault injection tool
is only modifying the results of the instruction that writes to
the general-purpose registers and does not inject errors in other
components of the architecture, such as the GPU memory, the
condition codes or the store addresses and values. Besides, it
only injects one bit-flip in one of the CUDA kernels in each
execution of the code.

3.3. Benchmark code: Matrix multiplication

We have tested the effect of this kind of fault injection on
matrix multiplication benchmark, A = B×C, which is a widely-
used numerical routine. Matrix multiplication benchmark is an
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embarrassingly parallel problem, because the computation of
the different elements of the result matrix is fully independent.

We have used two well-know implementations of matrix
multiplication [24]:

• mmElem is a straightforward implementation of the multi-
plication where every thread computed on element C[i, j]
of the result matrix as the dot product of the i-th row of
matrix A and the j-th column of matrix B. All the ele-
ments of the matrices are stored in the global memory of
the GPU.

• mmBlock is a block version of the multiplication. Every
thread-block is in charge of computing one block of matrix
C in the shared memory of the GPU and then storing it in
the global memory. This block is computed as the product
of a row of blocks of matrix A and a column of blocks of
matrix B. All the threads on each thread-block collaborate
synchronously to load different blocks of matrices A and
B from global to shared memory. This scheme leverages
the fast shared memory and reduces the global memory
bandwidth. As in the mmElem code, each thread computes
one element of C using one row of A and one column of
B.

3.4. Experimental methodology

In our experiments, we have used the following error cate-
gories:

• Masked: we obtain a correct result of matrix multiplica-
tion. Results are compared with a golden version previ-
ously computed.

• Silent Data Corruption (SDC): one or more ele-
ments of the result do not match the golden output.

• Crash: an error occurs because the program attempted to
perform some invalid action (e.g. read outside its memory
segment). This error can be captured using a debugger, the
process can be killed and the Operating System can launch
the next test (e.g. matrix multiplication).

• Hang: the system reaches an abnormal state and cannot
continue the execution of the benchmark. In our case, the
process performing the matrix multiplication cannot be in-
terrupted and so we cannot use the GPU. Therefore, the
only solution is to reboot the Operating System.

We have used a slight modification of the script included in
the LLFI-GPU to perform our experiments. We use the Python
module Pexpect to spawn and control the subprocess execut-
ing the multiplication. This module reduces the number of
Hangs of the tests. Besides, our experimental setup includes
two timeouts. The first timeout, associated to the spawned sub-
process, is adjusted to time slightly larger than the maximum
foreseeable duration of one iteration of the selected benchmark.
We use this timeout or the cuda-gdb debugger to detect the
crashes of our test. Three consecutive timeouts account for a

hang, in which case we reboot the operating system. Addi-
tionally, we have used the watchdog Linux API to implement a
hardware watchdog that reboots the system if it is hung during
more than 60 seconds.

4. Experimental results and evaluation

We have evaluated the effects of the matrix size and the
thread-block size on the sensitivity of matrix multiplication
benchmark. In the system under test, the size of the CUDA grid
depends on the size of the matrix and the thread-block size.

Figure 1 illustrates the matrix multiplication benchmarks be-
haviour by showing the relationship between performance and
matrix size, ranging from 128 to 1024. It includes the results
with three thread-block sizes, 8x8, 16x16 and 32x32. Both ver-
sions of the benchmark have a very similar behaviour but, as
expected by the use of the shared memory, the mmBlock ver-
sion is twice as fast as the mmElem version. Figure 1 also shows
that the use of larger blocks of threads improves parallel per-
formance of both versions of the code, as we are increasing the
number of threads that can leverage the 192 cores of the Jetson
TK1 GPU.

We performed a fault injection campaign for both versions of
matrix multiplication benchmark with varying matrix size. We
performed 1,000 matrix multiplication per version and size and
injected one fault per matrix multiplication. In each matrix mul-
tiplication the fault injection tool performs a bit-flip in the result
of one instruction on one thread. Hang and crash errors are de-
tected with watchdogs and SDC with golden result comparison
accomplished at the end of the benchmark execution. Figure 2
shows that the effect of the matrix size on the behaviour of both
versions of the code is very similar. The number of Masked
errors and SDCs is almost constant in the mmElem version. In
the case of the mmBlock version, the Masked errors increase
slightly while the SDCs decrease accordingly when we increase
the size of the matrices. On the contrary, the percentages of er-
rors on both versions is very different. The mmElem version is
much more sensitive, with around 80% of the executions result-
ing in SDC or crash. In the mmBlock version, around 50% of
the injected faults are masked. However, the number of crashes
and even hangs of this version is much larger: between 20%
and 25%. We think that the matrix size has such a small effect
on the behaviour of the multiplication due to the fault injection
model employed by LLFI-GPU. Recall that this tool always in-
jects only one bit-flip per execution, independently of the size
of the problem or the time spent by the algorithm to solve it.
The amount of global memory employed by the algorithm does
not affect the fault injection results.

We have observed that all the SDCs produced with both ver-
sions of the code only affect one element of the result matrix
C. This is due to the kind of parallelism exploited in the im-
plementations and the kind of faults injected by the LLFI-GPU
tool. In both versions the results of all the instructions executed
by each thread modify only values that are used by the same
thread. Therefore, any bit-flip in the results of those instruc-
tions will not affect the results obtained by other threads. It is
true that the threads share the elements of matrices A and B,
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Figure 1: Execution time of the two matrix multiplication versions, (a) mmElem and (b) mmBlock, versus matrix size.
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Figure 2: Fault injection results of matrix multiplication versus matrix size. In (a) and (b), we show the implementations denoted as mmElem and mmBlock,
respectively. We use in both cases a thread-block size = 32 × 32.

which are stored in the global or shared memories of the GPU.
However, the threads only read those shared elements and their
values are not affected by the fault injection.

We have implemented a variant of the mmElem code to study
the effect of the Degree of Parallelism (DOP) in the error sen-
sitivity. In this variant of the code we use a constant number of
threads which is independent of the size of the matrices, thus
keeping constant the DOP. As we increase the size of the ma-
trices, the workload each thread has to complete also increases.
Specifically, if we duplicate the size of the matrices, the number
of elements computed by each thread increases four-fold. Irra-
diation experiments reported in [4] using this variant of the
code show that the number of SDCs clearly depends on the
DOP, because different DOPs affect the use of the schedulers
in the GPU and also the number of registers per thread or the
occupancy of the SMs. However, if we only modify the result
of one instruction in one thread independently of the size of the
problem or the number of threads, then the number of SDCs
is not affected by the DOP. Therefore, our experiments show
that the results obtained with this variant of the code are almost
identical to the ones shown on all the figures for the mmElem

code.

In order to have more information about the causes of the
crashes we have performed other injection campaigns with the
same codes and cases, but using cuda-gdb to run the execu-
tions. This execution mode allows us a better control of the
execution and also the possibility of capturing different types
of exceptions using the debugger. However, it has the disad-
vantage of increasing considerably the execution time which
makes testing with large matrices prohibitive. Figure 3 shows
the percentage of crashed executions causes by different kinds
of errors. Specifically, the cuda-gdb debugger cached only 3
of the 15 types of exceptions defined in [9], all of them related
with memory access problems:

• Ex5: occurs when any thread within a warp accesses an
address that is outside its valid range of local or shared
memory regions.

• Ex6: occurs when any thread within a warp accesses an
address in the local or shared memory regions that is not
correctly aligned.

• Ex10: occurs when a thread accesses an illegal (out of
bounds) global address.
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Figure 3: Causes of the crashes of matrix multiplication versus matrix size. In (a) and (b), we show the implementations denoted as mmElem and mmBlock,
respectively. We use in both cases a thread-block size = 32 × 32.

Results in Figure 3 show that most of the crashes of the
mmElem code are due to illegal accesses to global memory and
only a few are due to problems when accessing the local mem-
ory. Recall that this version of the code does not use shared
memory. On the contrary, the use of shared memory in the
mmBlock version increases the performance of the code, but at
the expense of incurring in many more crashes related with the
access to that kind of fast memory.

Finally, we evaluate the effect of the thread-block size on the
behaviour of the matrix multiplication benchmarks under eval-
uation. The results of the instructions executed by each thread
do not depend on the thread-block size. Therefore, the ob-
served cases do not vary when we modify this parameter with-
out changing the matrices size, as we can see in Figure 4.

5. Conclusions

In this work we compared the sensitivity to soft errors of two
CUDA versions of the matrix multiplication benchmark. To
this end, we used the LLFI-GPU tool to perform fault injection
campaigns on a low power Kepler GPU included in a Tegra K1
SoC.

An important conclusion is that the distribution of soft errors
does not depend on the size of the matrices and depends only
slightly on the thread-block size in the mmBlock version. This
results are due to the working mode of the fault injection tool,
since it only injects a bit-flip in the result of only one instruction
in only one of the threads that are employed in the computation.
Besides, matrix multiplication benchmark, in all the evaluated
variants, is highly parallel since threads do not share intermedi-
ate results in order to compute each element, which precludes
cascade errors.

We have been able to appreciate small differences among the
different strategies in carrying out matrix multiplication. The
block version of matrix multiplication (mmBlock) not only is
clearly more efficient that the element-wise version (mmElem),
due to its use of the shared memory, but it is also much less
sensitive to soft errors affecting the results of the instructions.
However, the mmBlock version is more prone to crashes due to
soft errors occurred when accessing the shared memory.

Finally, a meaningful conclusion can be extracted by using
the cuda-gdb debugger in order to identify the origin of the
results of the error type Crash. Our results show that three
kinds of exceptions are catched when a crash failure occurs.
Depending on the strategy for computing matrix multiplica-
tion, the quantity and type of exceptions varies. The element-
wise version produces mostly exceptions related to the access
to the global memory, while the block version of matrix multi-
plication, despite of obtaining higher performance, produces a
higher number of crashes due to the access to the shared mem-
ory.
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