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ABSTRACT 

In this work PbMoO4 and Pb1-2xCaxSrxMoO4 (x= 0.1, 0.2, 0.3, 0.4 and 0.5) solid solutions 

have been successfully prepared, for the first time, by a simple co-precipitation method 

and the as-synthesized samples were subjected to a water-based reflux treatment. 

Structural characterization of these samples was performed using X-ray diffraction with 

Rietveld refinement analysis and Raman spectroscopy. Their optical properties were 

investigated by UV–Vis absorption spectroscopy and PL emissions, and the 

photocatalytic activity of the as-synthesized samples for the degradation process of 

Rhodamine B has been demonstrated. The surface structure and morphologies were 

characterized by field emission scanning electron microscopy. To complement and 

rationalize the experimental results, the geometry, electronic structures, and 



morphologies of as-synthesized samples were characterized by first-principles quantum-

mechanical calculations at the density functional theory level. By using Wulff 

construction, based on the values of the surface energies for the (001), (100), (110), (111), 

(011) and (112) surfaces, a complete map of the available morphologies for PbMoO4 was 

obtained and a good agreement between the experimental and theoretical predicted 

morphologies were found. The structural and electronic changes induced by the 

substitution of Pb by Ca and Sr allow us to find a relationship among morphology, the 

electron-transfer process at the exposed surfaces, optical properties, and photocatalytic 

activity. We believe that our results offer new insights regarding the local coordination 

of superficial Pb/Ca/Sr and Mo cations (i.e., clusters) on each exposed surface of the 

corresponding morphology, which dictate the photocatalytic activities of the as-

synthesized samples, a field that has so far remained unexplored. The present study, 

which combines multiple experimental methods and first-principles calculations, 

provides a deep understanding of the local structures, bonding, morphologies, band gaps, 

and electronic and optical properties, and opens the door to exploit the electrical, optical 

and photocatalytic activity of this very promising family of materials. 
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1. Introduction 

Metal molybdates have aroused great interest due to their broad applications in a wide 

range of technological fields such as catalysts and photocatalysis, optics, magnetism, gas 

sensors and electrochemistry [1-12]. Among the metal molybdates, the AMoO4 (A = Ca, 

Sr, Ba and Pb) family with a scheelite structure and spatial group I41 presents excellent 

photoluminescent and photocatalytic properties [13-16], lead molybdate, PbMoO4 

(PMO), being one of the most promising compounds in this family [5]. It is organized 

structurally by two fundamental units with point of symmetry S4 [6]. The larger, Pb2+, 

and smaller, Mo6+, cations are coordinated by eight and four oxygen atoms, forming a 

cluster with a dodecahedral arrangement, [PbO8], and a cluster of tetrahedral arrays 

[MoO4], respectively [7]. The valence band (VB) consists of the hybridization of O 2p 

and Pb 6s orbitals, while the conduction band (CB) is composed mainly of Mo 4d orbitals, 

the band gap between CB and VB being approximately 3.2 eV [8]. PMO is employed as 

photocatalysts [9], semiconductor material [10] and an antibacterial agent [11]. 

Different synthetic procedures have been employed to obtain PMO, such as the 

solid state reaction [12]; the electrochemical method [13]; combustion synthesis [14]; 

polymerization of complexes [15]; reverse micro emulsion [16]; citrate complex method 

[17], solvothermic synthesis [18], conventional hydrothermal [11] and the hydrothermal 

microwave assisted methods [19]. Some of these methods, however, offer disadvantages, 

such as the generation and formation of organic residues, prolonged synthesis times, and 

high energy release. Other synthesis methods are therefore needed to overcome these 

drawbacks. The water-based reflux method is a simple, inexpensive, and easily applicable 

process [20]. It has already been used for the synthesis of nanoparticles [21], nanotubes 

[22], nano-shell structures and nanowires [23]. It is well known that the properties of the 

as-synthesized samples are highly dependent on the synthesis method and thermal 



treatments. The size, morphology and crystallinity of the desired nanostructures can be 

controlled by varying the reaction time, concentration of the precursors, and the type of 

solvent used. 

The synthesis of solid solutions offers the advantage of the continuous change of 

properties with components, which is a very effective strategy to tune the properties of 

advanced materials with extended functionalities. Continuous series of substitutional 

solid solutions can provide a variation in crystal structure and changes in the band gap 

values and optical properties, and an opportunity to understand the structure property 

relationship can thus be achieved [24][25]. The design of a solid solution based on 

molybdate compounds is a promising strategy for developing novel materials [26], with 

the aim of improving their properties, and consequently expansion wider range of 

applications [27][28][29]. In particular, Hallaoui et al. [30] have studied the structural and 

optical properties as a function of composition x for Sr(1-x)PbxMoO4 solid solutions, 

showing that the photocatalytic activity of PMO and SrMoO4 is different despite the 

similarity of the structures. In this context, our research group has been engaged in a 

research project devoted to the study of the structural, morphological, and optical 

properties of different solid solutions of wolframite- and tungstate-based materials by 

using a combination of first principles calculations and experimental techniques 

[24][31][32].  

This work reports a series of new solid solutions with improved stability, which 

are appealing materials for several applications. Inspired by the above considerations, in 

this study, we seek to fulfill a four-fold objective. The first is to report, for the first time, 

on the synthesis of PMO and Pb1-2xCaxSrxMoO4 (x= 0.1, 0.2, 0.3, 0.4 and 0.5 (CSMO)) 

solid solutions by employing the co-precipitation method, followed by a water-based 

reflux treatment. This synthesis method is a simple, low-cost, and easy synthesis 



procedure that has received special attention due to the fact that it allows the formation 

of oxides with a high degree of crystallinity and easy dispersion in aqueous medium, 

reduced reaction times, low synthesis temperatures, excellent control of reaction 

parameters, control of product size and morphology, and enhanced product purity or 

material properties. Secondly, X-ray diffraction (XRD), field emission electron 

microscopy (FE-SEM), Micro Raman (MR) and ultraviolet-visible (UV-Vis) 

spectroscopies were employed to characterize the samples and determine the effect of 

their chemical composition on the morphology and photoluminescence (PL) emissions. 

The third aim is to complement and rationalize experimental results by means of first 

principles calculation, at the density functional theory (DFT) level, to obtain the 

geometry, electronic structure, and properties of PMO and the solid solutions. The fourth 

aim is to apply a joint experimental and theoretical strategy that we developed in order to 

obtain a complete map of the morphologies. From these results, we hope to understand 

how the different surfaces change their energies throughout the synthesis process and 

propose a mechanism by which the experimental and theoretical morphologies of the 

solid solutions match. Finally, the insights gained through these calculations help to 

rationalize the mechanism and origin of the photocatalytic activity on the degradation 

process of Rhodamine B (RhB) dye. We discuss how knowledge of surface-specific 

properties can be utilized to design a number of crystal morphologies that may offer 

improved performance in various applications. The different activities can be associated 

to the presence of the number of unsaturated superficial Pb/Sr/Ca and Mo cations capable 

of forming the main active adsorption sites. We believe that these novel results are of 

significant relevance, since they may inspire the efficient synthesis of these and related 

molybdate solid solutions and provide critical information to expand our fundamental 

understanding, while also perhaps contributing to the rational design of new materials for 

multifunctional applications. 



This paper contains three more sections. The next section describes the 

experimental and theoretical procedures, with the synthesis and characterization, as well 

as the computational methods and model systems. In section three, the results are 

presented and discussed. The main conclusions are summarized in the fourth and final 

section. 

2. Experimental and theoretical procedures 

2.1. Materials 

Calcium nitrate hexahydrate [Ca(NO3)2∙4H2O] (98.0% purity; Vetec), strontium 

nitrate [Sr(NO3)2] (99.0% purity, Vetec), molybdic acid [H2MoO4] (85% purity; Alfa 

Aesar), ammonium hydroxide (NH4OH), and distilled water were used as reagents to 

prepare the Pb1-2x CaxSrxMoO4. 

2.2. Synthesis of PMO and Pb1-2x CaxSrxMoO4 powders 

Powder samples of PMO and Pb1-2x CaxSrxMoO4. (x= 0.1, 0.2, 0.3, 0.4 and 0.5) 

were prepared by using the reflux method. The synthesis procedure is described as 

follows: Molybdic acid (5.0 × 10-3 mol) was dissolved in 50 ml deionized water (solution 

1). At the same time, the respective concentrations (% mol) of lead, calcium, and 

strontium nitrates were dissolved in 50 ml deionized water (solution 2). Solution 2 was 

added dropwise to solution 1 and the pH of the solution was adjusted to 11 by adding 

ammonium hydroxide to it, and the formation of a white precipitate was observed. 

Afterward, this solution was stirred for 30 min in an ultrasound bath to accelerate the 

co-precipitation rate. Subsequently, this preformed mixture was transferred to a 150 ml 

round-bottomed flask and refluxed at 100oC / 1h. 

The resulting precipitate was washed several times with deionized water to 

neutralize the suspension (pH ≈7). Finally, the white precipitates were collected and dried 



at 80°C/24 hours. The samples were named according to the concentration of Pb2+ cations, 

i.e., the names of the samples are defined for each value x of the substituents (Ca2+/Sr2+) 

and the corresponding amount of Pb2+: x= 0, 0.1, 0.2, 0.3, 0.4 and 0.5. Hence, they were 

given the denominations PMO, Pb0.8, Pb0.6, Pb0.4, Pb0.2 and CSMO, respectively. 

2.3. Characterization of Pb1-2x CaxSrxMoO4 samples 

XRD patterns of the PMO and Pb1-2x CaxSrxMoO4 samples were collected within 

the 10º to 120º angular range with a step speed of 0.02° min-1 using an XRD 7000 

Shimadzu diffractometer and monochromatic Cu Kα (λ = 1.5406 Å) radiation. The 

powder morphology was examined using an FE-SEM (Carl Zeiss, model Supra 35-VP) 

operating at 6 kV. Micro Raman (MR) spectroscopy was conducted on a Horiba Jobin-

Yvon (Japan) spectrometer coupled to a charge-coupled device detector and Ar-ion laser 

(MellesGriot, United States) operating at 514.5 nm with a maximum power of 200 

mWMR, and measurements were recorded using a T-64000 spectrometer (Jobin-Yvon, 

France) triple monochromator coupled to a CCD detector. The UV-Vis reflectance 

spectrum was obtained using a UV-Vis spectrometer (Shimadzu, model UV-2600). PL 

spectra were measured using a Thermal Jarrell-Ash Monospec 27 monochromator and a 

Hamamatsu R446 photomultiplier. The excitation source used was a krypton laser with a 

wavelength of 325 nm (Coherent Innova) and an output of approximately 13.3 mW. The 

photon energies with the emitted wavelengths were calculated based on Planck-Einstein 

equation (1), where E is the photon energy, in eV, and λ the photon wavelength, in nm.  

     E =
1240

𝜆
    (1) 

The photocatalytic properties for the degradation of Rhodamine B (RhB) dye in 

an aqueous solution were tested under UV-light illumination. About 50 mg of catalyst 

crystals were placed in a 150 mL beaker, and 50 mL of RhB solution (1×10−5 mol L−1) 



was added. These suspensions were ultrasonicated for 10 min in an ultrasonic cleaner 

before illumination. UV illumination was then performed by placing the solution under 

six UVC lamps (15 W TUV Philips, with maximum intensity of 254 nm = 4.9 eV). 

2.4. Computational methods and model systems 

The structural and electronic properties of the PMO structure and 

Pb1-2xCaxSrxMoO4 solid solutions were calculated using Becke's three-parameter hybrid 

non-local exchange functional, combined with a Lee-Yang-Parr gradient-corrected 

correlation functional (B3LYP), implemented in the CRYSTAL17 package [33]. The 

atoms were centered and described using pseudopotential databases 

Ca_pob_TZVP_2012,Sr_ECP28MDF_s411p411d11_Heifets_2013,Pb_ECP60MDF_do

ll_2011, 976-311 (d631) G and O-6-31G* (all-electron) for Ca, Sr, Pb, Mo and O, 

respectively. Regarding the diagonalization of the density matrix, the reciprocal space net 

was described by a shrinking factor of 4, generated according to the Monkhorst–Pack 

scheme. The accuracy of the evaluation of the Coulomb and exchange series was 

controlled by five thresholds, whose adopted values were 10−8, 10−8, 10−8, 10−8, and 10−16.  

The representation of the PMO and CSMO bulk structure is shown in Figure 1.  

Mo atoms are coordinated to four O atoms, and the local coordination can be described 

by a tetrahedral [MoO4] cluster. Correspondingly, the Pb, Ca and Sr are coordinated to 

eight O atoms, resulting in a formation of [PbO8], [CaO8] and [SrO8] clusters, 

respectively. To simulate the substitution process and to obtain the ideal percentages 

presented in the experimental data, a 5x1x1 supercell, with a volume 5 times larger than 

the primitive cell and 60 atoms was used. The most stable distribution of Pb, Ca, and Sr 

atoms in the Pb1-2xCaxSrxMoO4 solid solutions Pb0.8 (x=0.1), Pb0.6 (x=0.2), Pb0.4 

(x=0.3) and Pb0.2 (x=0.4) can be seen in Figure S1.  We have computed the formation 



energy (∆𝐸𝑓) of each system, PMO and Pb1-2xCaxSrxMoO4 solid solutions, using the 

following formula: 

∆𝐸𝑓 =
𝐸𝑓−(𝑣𝐸𝑃𝑏+𝑤𝐸𝑀𝑜+𝑥𝐸𝑂+𝑦𝐸𝐶𝑎+𝑧𝐸𝑆𝑟)

(𝑣+𝑤+𝑥+𝑦+𝑧)
   (2) 

where 𝐸𝑓 is the total energy of a system, 𝐸𝑃𝑏 , 𝐸𝑀𝑜 , 𝐸𝑂 , 𝐸𝐶𝑎 and 𝐸𝑆𝑟 denote the total energy 

per atom of pure elements in their stable crystal structures indicated as subscripts, and v, 

w, x, y, z are the numbers of the corresponding atoms, respectively.  

The values of the surface energy, Esurf, of the (001), (100), (110), (111) and (112) 

surfaces were obtained. Esurf is defined as the total energy of the repeating slab (Eslab) 

minus the total energy of the perfect crystal per molecular unit (Ebulk) multiplied by the 

number of molecular units of the surface (N) and divided by the surface area per repeating 

cell of the two sides of the slab: 

𝐸𝑠𝑢𝑟𝑓 =
1

2𝐴
(𝐸𝑠𝑙𝑎𝑏 − 𝑁𝐸𝑏𝑢𝑙𝑘)     (3) 

In this work, after the optimization process and convergence tests on thickness, 

slab models consisting of 10 molecular units containing 60 atoms were obtained. In 

addition, the relaxation process was performed, with the relaxed energy (Erelax) being 

calculated as the difference between the total energies for relaxed and unrelaxed slabs, as 

follows: 

            𝐸𝑟𝑒𝑙𝑎𝑥 =
(𝐸𝑠𝑙𝑎𝑏

𝑢𝑛𝑟𝑙𝑥−𝐸𝑠𝑙𝑎𝑏
𝑟𝑒𝑙𝑎𝑥)

2𝐴
                              (4) 

The 𝐸𝑠𝑙𝑎𝑏
𝑢𝑛𝑟𝑙𝑥 and 𝐸𝑠𝑙𝑎𝑏

𝑟𝑒𝑙𝑎𝑥 correspond to the total energies for the unrelaxed and relaxed slab 

models, respectively.  



In addition, the broken bonding density (Db), defined as the number of broken 

bonds per unit cell area when a surface is created, can be calculated by using equation 5 

[34][35]. 

𝐷𝑏 =
𝑁𝑏

𝐴
           (5) 

where 𝑁𝑏  is the number of broken bonds per unit cell area on a specific surface and 𝐴 is 

the unit of the surface area. From the Db values that were calculated, it is possible to 

predict the order of surface stability, since it has been established that higher values are 

obtained when a larger number of defects are present on the surface[36]. 

By using the Wulff construction, the Esurf at a fixed volume is minimized, thereby 

providing a simple correlation between the surface energy of the (hkl) plane and the 

distance (rhkl) in the normal direction from the center of the crystallite [37]. The 

procedure to obtain the complete set of morphologies has been presented previously by 

Andrés et al [38], and it has been successfully used in materials science to obtain the 

morphology of materials, including PMO [39], CaWO4 [40], Ag3PO4 [41], α-Ag2MoO4 

[42], BaMoO4 [43], BaWO4 [44], Ag2CrO4 [45] and LaVO4 [46]. 

3. Results and Discussion 

3.1. X-ray diffraction 

The XRD patterns of the as-synthesized samples are shown in Figure 2. Well 

defined peaks are observed, indicating good crystallinity and long-range structural order 

without the presence of secondary phases. Being in accordance with the profile and the 

standards for PMO, indexed to JCPDS 44-1486, the tetragonal structure of the scheelite 

type and space group I41/a is obtained. However, the Ca2+ and Sr2+ cation replacement 

processes in the PMO matrix induce an increase in peaks and a main peak unfolding of 

the samples, starting with sample Pb0.6 and changing to a larger angle (see Figure 2), 



which may be associated with the difference in the size of these cations. A similar result 

was obtained by Song et al. along the Cr3+ cation substitutions in the PMO matrix [8]. 

For comparison purposes, the values of the bond lengths, the volume, and the cell 

parameters have been reported in Tables 1 and 2. A good agreement between 

experimental and theoretical values can be observed for PMO and CSMO sample, 

revealing a reduction in the cell volume proportional to the molar concentration of the 

dopants added. This behavior, more pronounced in theoretical than in experimental data, 

(see Table 2) can be associated to the different values of bond distances, M-O (M= Mo, 

Ca, Sr), at the [MoO4], [CaO8], and [SrO8] clusters due to changes in the atomic positions 

of the oxygen atoms [24]. Similar trend is reported by Hallaoui et al. for the Sr(1-

x)PbxMoO4 solid solution, in which there is an increase in the Mo-O and M-O bond 

lengths at clusters (MoO4) and (MO8) (M = Sr/Pb) with increasing Pb2+ concentration 

[30].  

The negative calculated values of formation energy per unit volume for PMO and 

solid solution structures according to equation (1) show that all of them are stable 

structures with values of -0.128, -0.217, -0.306, -0.396, -0.485 and -0.575 Hartree for 

PMO, Pb0.8, Pb0.6, Pb0.4, Pb0.2 and CSMO, respectively. The ∆𝐸𝑓 values calculated for 

the Pb1-2xCaxSrxMoO4 solid solutions are found to increase monotonously with the Ca/Sr 

content, which is consistent with the process of continuous cation substitution from PMO 

to CSMO.  

3.2. MR spectroscopy 

Figure 3 shows the MR spectra in the range of 50 to 1050 cm-1. The PMO is a 

structure that presents 13 active Raman vibrational modes, which can be described by 

equation (6). A and B are non-degenerate modes and E are doubly degenerate modes [47].  



Γ = 3Ag +5Bg +5Eg      (6) 

In Figure 3a seven Raman vibration modes are found in the PMO matrix spectrum. The 

peak identified at ~860 cm-1 as υ1 (Ag) is associated with a characteristic symmetric 

stretching pattern of the molybdates. The peaks at approximately 760 and 740 cm-1 can 

be considered as corresponding to vibrational modes of the antisymmetric stretches υ3 

(Bg) and υ3 (Eg), respectively. The peaks corresponding to 345 and 310 cm-1 were marked 

as υ4 (Eg) and υ2 (Bg, Ag), which correspond to antisymmetric and symmetric stretching 

of the [MO4]
2- group. The modes at 160 and 100 cm-1 were identified as Ag and Eg, 

corresponding to the rotational and translational modes, respectively. 

All the samples showed the same MR spectrum profiles, which are also in 

agreement with the molybdate structure, and in particular PMO [48][49]. However, a shift 

in the spectra to larger wavenumbers is also observed, and the appearance of two other 

peaks, at 785 and 840 cm-1, can be observed, mainly in Pb1-2xCaxSrxMoO4 samples with 

x=0.5 (CSMO) and x=0.4 (Pb0.2), as shown in Figure 3b. Both peaks are also 

characteristic of CaMoO4 and SrMoO4 compounds [50]. The above results are thus a sign 

of the complete substitution of the Pb cations by the Ca and Sr cations in the samples.  

Figures S2a and S2b in the supporting information (SI) display a comparison of 

the theoretical and experimental Raman modes. A good agreement can be seen, although 

there are a large number of theoretical Raman modes in relation to the experimental data. 

This is explained by the fact that these modes are not easily detected by experimental 

techniques due to their low intensities.  

3.3. FE-SEM images 

Figure 4 presents the FE-SEM images of the as-synthesized samples. Different 

particles sizes appear and a progressive evolution of agglomerated is observed as x= 



(Ca/Sr) increases. It is observed that the PMO sample presents well dispersed anisotropic 

microcrystals with an octahedron-type morphology. Particles with octahedron-type 

morphology have been found in previous work [51], using a capping agent. In this work, 

without the presence of capping agents, only the synthesis method and the Ca/Sr 

substitution processes are responsible for the change in morphology and size. In addition, 

the presence of octahedra is dependent on the substitution of the Pb in the matrix, i.e., 

with a lower concentration of Pb, the number of well-defined octahedra decreases 

(Figures 4d-4f). A nanometric size of particles is observed for samples Pb0.8 and the 

particle shape changes according to the higher proportion of substitution of Pb cations, 

the octahedron-type morphology becomes more isotropic (Figures 4c and 4d) and there 

is a predominance of elongated nanoparticle morphologies (Figures 4e and 4f). 

A deep insight to explain the changes in morphology can be provided by applying 

the Wulff construction based on the values of Esurf. Figure 5 shows the calculated Esurf 

values of PMO and solid solutions. The stability order of the surfaces is (001) < (011) < 

(112) < (110) < (100) < (111) for the PMO. For the CSMO system, there is an inversion 

in the order of stability between the (011) and (112) surfaces and between the (100) and 

(111) surfaces (Figure S3). In the solid solutions the change in the order stability involves 

the (100) and (111) surfaces, except for the system Pb1-2xCaxSrxMoO4 with x=0.2.  

The relative stability of the exposed surfaces with the Sr cation instead of the Ca 

cation yields similar results in the Esurf values that are associated with their structural and 

electronic properties, i.e., the arrangement of the atoms at the exposed surfaces. An 

analysis of the geometry of the studied surfaces suggests that all of them are O- and Pb-

ended (see Figure 6) and the atomic arrangement of the atoms on the top of each surface 

result in the (001) and (112) surfaces presenting exposed undercoordinated [PbO6] 

clusters and complete [MoO4] clusters. The use of the Kröger-Vink notation [52] allows 



us to analyze the number of Pb−O breaking bonds in the exposed clusters and then the 

superficial clusters can be written as [PbO6…2Vo
x], VO

x being the oxygen vacancies. 

However, in the (100), (110), (011) and (111) surfaces there are undercoordinated [PbO5] 

clusters associated with the presence of three oxygen vacancies [PbO5…3Vo
x]. In 

addition, there is a correlation between the surface stability and the Nb values, the number 

of Pb−O breaking bonds in the incomplete clusters at the exposed surfaces. The Db values 

are also directly linked to the order of the surface energy stability, i.e., higher values of 

Db represent a large number of defects on the surface and a higher surface energy value. 

Table S1 lists the surface area values and the calculated Nb and Db values. In addition, the 

values of the surface bonds for PMO and Pb1-2xCaxSrxMoO4 (Pb=0.2, Pb0.4, Pb0.6, Pb0.8 

and CSMO) solid solutions are reflected in Table S1. The (001), (011) and (112) surfaces 

have similar values of Esurf, i.e., 0.388, 0.395 and 0.413 J·m-2, respectively, while low 

values of Nb = 2, 3 and 4, and Db= 6.56, 8.09 and 7.05 nm-2, respectively, can be sensed. 

The (110), (100) and (111) surfaces display the following order of stability: 0.52 < 0.56 

< 0.60 J·m-2, respectively, with values of Nb = 4, 6, and 7, and higher values of Db= 8.37, 

8.88 and 6.97 nm-2, respectively. For the (111) surface, a correlation between the surface 

stability and Db values is not found due to the large surface area. For the (011) surface, 

different slab cuts can be performed, the most stable being the symmetric one shown in 

Figure 6. In addition, some studies reported another non-symmetric slab cut with exposed 

[MO6] clusters, which present less stability (Esurf = 0.25 J/m2) [44][53]. For the solid 

solutions Pb1-2xCaxSrxMoO4, the number of Pb−O breaking bonds in the superficial 

clusters is maintained (as well as the Db values), as can be seen in Figure S4.  

Different crystal morphologies can be achieved by tuning the Esurf values of the 

different surfaces. Based on that, it was possible to obtain the map of the available 

morphologies (Figure 7), and to correlate with the experimental FE-SEM images. This 



map shows the available morphologies of the PMO crystals and solid solutions starting 

with the ideal morphology (a) (bottom of Fig. 7). As (001) Esurf increases to 0.65 J/m2, 

the morphology (b) is obtained with a faceted octahedron defined mainly by the (001), 

(011) and (112) surfaces, similar to that found experimentally for the PMO sample. In 

addition, morphology (b) is in agreement with other previous works where the 

co-precipitation method was employed for the synthesis of PMO [54]. On the other hand, 

the simultaneous increase of the (001) and (112) Esurf values to 0.80 J/m2 results in the 

morphology (c) with the main presence of (011) surface (left side bottom in Fig. 7), 

similar to that found for the Pb0.8 sample.  By decreasing the Esurf  of (110) surface to 

0.23 J/m2, the octahedron-type morphology becomes more elongated allowing (110) 

surface to be exposed in the resulting morphology (d), which can match to the Pb0.6 

sample, showed in Figure 4(c).  

3.4. Electronic Properties 

3.4.1. UV-Visible Spectroscopy 

Diffuse reflectance spectroscopy was used to obtain the band gap energy (Egap) of 

the samples and the reflectance spectra were converted to absorbance using the Kubelka-

Munk function, given by equation (7) [55].  

𝐹(𝑅∞) =
(1−𝑅∞)2

2𝑅∞
=

𝐾

𝑆
     (7) 

where F(R∞) is the Kubelka-Munk function or absolute reflectance of the sample; R∞ is 

the diffuse reflectance; K is the molar absorption coefficient, and S is the scattering 

coefficient. 

Egap values were estimated using the Wood and Tauc [56] method and plotted in 

Figure S5. This method proposes that Egap is related to the absorbance and energy of the 

photon, given by equation (8):  



αhv = C1(hv- Egap)
n         (8) 

where α is the linear absorption coefficient; hv is the photon energy; C1 is a proportionality 

constant and n is indicated for different transitions (n= 1/2, 2, 3/2 or 3 for direct 

permission, indirect permission, prohibited direct, and indirect prohibition, respectively). 

The molybdates in general, which have a tetragonal structure of the scheelite type, allow 

direct electronic transitions (n= 1/2) [57][58]. 

The values of Egap are dependent on the synthesis method, presence of defects, 

shape and size of the crystallite, structural and electronic modification in the lattice, and 

so on. In the metallic molybdates the corresponding emissions occur from charge transfer 

processes within [MO4]
-2 units. In addition, the intermediate levels of energies generated 

from defects caused by the displacement of oxygen in the structure (vacancies) are 

associated with the order-disorder degree of these nanostructures [59][60]. 

The values of the Egap of the samples are presented in Table S2 of the SI. 

Experimental and theoretical Egap values obtained as a function of Pb content in 

Pb1-2xCaxSrxMoO4 solid solution are displayed in Figure 8. An analysis of the results 

yields a similar behavior between experimental and theoretical results. However, it can 

be seen that experimental values are 9-15% smaller than those determined from 

calculations. Such differences are due to a well-known over-estimation in the Egap values 

obtained with the B3LYP method which can explain the discrepancy with experiments. 

It is observed that the sample CSMO presents a high value of Egap = 4.03 eV, while the 

PMO has a lower value (3.35 eV), in agreement with previous reports [7]. In general, 

molybdates present a high Egap, since few intermediate levels between VB and CB are 

present [50][61].  



However, in the solid solutions for values of x= 0.1, 0.2, 0.3 and 0.4, changes in 

the system and formation of transient structures occur, implying higher Egap values as x 

is increased. In addition, Table S3 of the SI shows the Egap values obtained for surfaces, 

where a similar behavior is obtained with bulk results. However, the Egap value of the 

(100) surface remains almost constant. 

3.4.2. Band structures, density of states and charge density maps 

The valence band (VB) and conduction band (CB) of molybdates are mainly 

formed by the 2p O and 4d Mo states, respectively. As can be seen in Figure 9, for PMO 

the upper part of VB is also composed of the 6s states of Pb hybridized with the 2p state 

of O, while the lower part of CB is formed mainly by the 4d states of Mo and 6p states of 

Pb. The band structure of the CSMO sample is similar to SrMoO4 and CaMoO4 structures 

reported in the literature [62][63][64], in which the upper part of VB is composed by 2p 

states of the O while  the 4d states for the Mo and 2p of the O are predominant in the CB,  

with little contribution of the 3d states of the Sr and 4d states of the Ca in the upper part 

of CB.  

An analysis of the band structures and density of states (DOS) of the PMO and 

CSMO systems presented in Figure 9 shows that their electronic structures differ. The 

band structure of the PMO shows an indirect band gap value of 3.61 eV, while CSMO 

presents a direct larger band gap value of 4.74 eV. In addition, both VB and CB of PMO 

are more dispersed than those of CSMO. Therefore, the 6s orbitals of Pb contribute to 

raising the VB resulting in a narrower band gap of PMO compared with that of CSMO 

[65]. This difference may be associated with a higher charge density of the Pb cation 

compared to Sr/Ca cations. The presence of Pb cation states in the vicinity of the band 

gap influences the optical and luminescence properties of PbMoO4. In particular, it has 

been found that the hole self-trapping at [MoO4]
2- anion, which is typically observed in 



molybdates, is not possible in PbMoO4 because holes can migrate along the 6s Pb states 

located at the top of the VB[66][67].  

The charge density maps are presented in Figure 10 with the aim of explaining 

electron density differences. Figures 10a and 10b show electron density maps for the 

PMO and CSMO, respectively, with a chosen plane (100) containing the Pb/Ca/Sr, Mo 

and O atoms. The high and low electron density zones on each map are represented by a 

different color in atomic units (electron/bohr3), the area of accumulation of electron 

density being depicted in red, while the depletion zones of electron density are marked in 

blue. Thus, as expected, there is a higher electronic density around the Pb cations in 

relation to the Ca and Sr cations. Therefore, the higher dispersion of electronic density 

around the Pb cation contributes to the higher total density of the PMO promoted by the 

hybridization of the 6p Pb and 2p O orbitals, which is called "split-off hybridization" [65]. 

This fact allows PMO to have a larger charge mobility, lower recombination rate 

(electron-hole), and greater dispersion in its bands, resulting in lower Egap values of PMO 

compared to CSMO [68][64]. The electron density isosurfaces (electron /bohr3) for PMO 

and CSMO are shown in Figures 10c and 10d, respectively.   

To verify the differences and contribution of each band, the DOS projected on 

atoms and orbitals for Pb1-2xCaxSrxMoO4 structures with x=0.4 (Pb0.2), x=0.3 (Pb0.4), 

x=0.2 (Pb0.6) and x=0.1 (Pb0.8) are presented in Figure 11. It can be seen that the VB in 

all the structures are composed of O 2p orbitals, Mo 4d, and a low contribution of the 

Pb/(Ca, Sr) cations. 

3.5. PL measurements 

Figure 12a shows the PL spectra obtained with excitation at 325 nm at room 

temperature. The samples spectra displayed broadband emission behavior, with an 



increase in the intensity of PL emission from the PMO sample to the Pb0.4 sample 

followed by a decrease in the intensity for the Pb0.2 and CSMO samples, as can be seen 

in Figure 12. The literature offers diverse explanations on the nature of the PL emissions 

in molybdates: i) The PL emission processes are associated to the transitions that occurs 

within [MoO4]
2- moiety, among the fundamental and excited electronic states [69][1][70]. 

The corresponding ground state has the 1A1 symmetry, and the lowest excited states 

present 1T2, 
1T1, 

3T2, and 3T1 symmetries [64][71]. The transition 1A1↔1T2 is a dipole-

allowed transition, and lowest excited states 3T1 and 3T2 to the ground 1A1 state are 

responsible for the material intrinsic luminescence, Figure 12b. The luminescence in this 

case would reveal emission bands referring to sub-levels between the triplet states 3T1 and 

3T2 (region of 400 to 600 nm) due to the Jahn-Teller effect on the symmetry of the 

[MoO4]2- moiety [71], ii) From a structural and electronic point of view, the high 

concentration of defects favors the structural disorder at short range of [MoO4]
2- moiety, 

associated to the presence of oxygen vacancies, and the formation of intermediary energy 

level into the band gap, enhancing the probability of non-radioactive transitions and, 

consequently, increasing the suppression of the PL emission. [72][73][5][39]. In our 

work, the samples obtained by the reflux method are structurally ordered in long and 

disordered at short range, according to the XRD, MR spectroscopy and diffuse reflectance 

analyses (3.1, 3.2  and 3.4.2 sections). About the PL emission intensity was observed that 

the Pb0.4 and Pb0.6 samples display highest intensity whereas samples Pb0.8, Pb0.2 and 

PMO have the lowest intensities. Since the intensity of PL is related to the emission of 

radiation with low non-radioactive states, it can be inferred that samples with higher 

intensities of PL have less concentration of these states. In this sense, this is strongly 

related to the shorter values of the Mo-O bond distances, Table 2, due to the main clusters 

of surfaces exposed in these materials [MO6 ... 2𝑉𝑂
𝑥] (M: Pb or Ca), Figure 6. Then, PL 



emission and the bonding distance are related to the amount and type of defects present 

in the structure [74]. 

Luminescent emission in oxides with high defects density occurs by several paths 

related to the high density of electronic states within the band gap, and this result in broad 

band characteristic. [58]. It is commonly referred to as shallow and deep defect type in 

the band gap that result in different energy PL emission. The former is emissions type in 

few millieletronvolts close to the upper part of VB or to the lower part of CB, and 

monoionized defects type are predominant, which results to a more energetic PL emission 

(cyan-blue-violet colors). Deep type emissions are further away this maximum and 

minimum bands with duple-ionized defect type (lower energetic emission, green-yellow-

orange-red colors) [75][5][76].  

The spectra deconvoluted, Figure S6, show that the PMO sample and solid 

solution samples have mainly emissions with deep defects type (500-700 nm)˗ the PMO 

sample has 76% emission in the green region, Figure S6a, and that by decreasing the 

concentration of Pb, the emission in the green region decreases, increasing the emission 

in the red region, Figures S6b-e. The CSMO sample as shown in the spectrum presents 

shallow and deep defects type with 40% emission in green and 40% emission in blue, 

Figure S6f. Figure 13a-c shows the emission transition states and its relation with the 

band gap for the PMO, Pb0.8 and Pb0.6 samples, respectively. This relationship allows 

us to better consider the shallow and deep levels of each spectrum of the samples [77][78]. 

It would be expected that only the CSMO sample has characteristics of shallow defects, 

𝑉𝑜
∙ type. However, considering the diagram (Figure 13), it is possible to observe that PMO, 

Pb0.8 and Pb0.6 samples have defect levels below 0.8 eV characteristic of shallow defects 

[76][75].    



Therefore, considering the types of defects on exposed surfaces for each sample 

(Figure 7 and S4) and their corresponding gap energy (Table S3), the emission types for 

each material were defined, as shown in the Figure 13. As seen in 3.3 section, the PMO 

morphology presents concomitant (001), (112), and (011) surfaces, being the first and 

second surfaces composed by defects with two oxygen vacancies [PbO6...2𝑉𝑂
𝑥], while the 

last one with three vacancies, [PbO5...3𝑉𝑂
𝑥]. Considering that the (011) and (112) surfaces 

have similar Egap (3.62 and 3.60 eV), and the (001) surface has Egap = 3.56 eV, is expected 

that shallow defects to be related to the chemical environment of the higher gap energy 

surfaces, while that deep defects to be related to the chemical environment of the lower 

gap energy surfaces. Thus, for PMO sample as shallow defects the chemical environment 

will be composed by (011) surface with Pb and Mo clusters interaction 

([PbO5.3𝑉𝑂
∙ ]˗2[MoO4]’˗[PbO8]’), and for the (112) surface with the chemical 

environment of: 2[PbO6.2𝑉𝑂
∙ ] ˗2[MoO4]’. While the deep defects would be related to the 

(001) surface with the following chemical environment: [PbO6.2𝑉𝑂
∙∙]˗[MoO4]”˗[PbO8]”, 

Figure 13a. For the Pb0.8 sample, only the (011) surface is obtained in its morphology 

and thus the exposed clusters of Ca and its neighborhood with Mo and Sr clusters are the 

chemical environment for this surface. For this sample the defects of the shallow type are 

due to [CaO5.3𝑉𝑂
∙ ]˗2[MoO4]’˗[SrO8]’ and similar for deep defects, 

([CaO5.3𝑉𝑂
∙∙]˗2[MoO4]”˗[SrO8]”), Figure 13b. An interesting factor is observed for the 

Pb0.6 sample which has the (011) and (110) surfaces in its morphology and both have a 

chemical environment composed of the Ca cluster around two Mo clusters. The surface 

with the highest gap energy, (011), is the responsible for the emission of shallow defects 

([CaO5.3𝑉𝑂
∙ ]˗2[MoO4]’), while the one with the lowest gap energy, (110) surface, for the 

emission of deep defects ([CaO5.3𝑉𝑂
∙∙]˗2[MoO4]”), Figure 13c. 



3.6. Degradation process of RhB dye 

The photocatalytic performance was tested via degradation of the RhB solution 

under UV light. A graph of (C/C0) vs. reaction time is presented in Figure 14a, where C 

is the concentration of RhB solution at time t and C0 is the initial concentration for 

samples. The behavior observed in the −ln(C/C0) vs. reaction time diagram shown in 

Figure 14b suggests a first-order kinetic reaction. Their analysis showed that with 

increasing concentration of the Ca/Sr cations (and consequently the decrease in the 

concentration of Pb cations), a reduction in the photodegradation process of the RhB can 

be observed. The kinetic constant is reduced from 1·10-2 min-1 to 1·10-3 min-1 in passing 

from PMO to CSMO, respectively. The improvement in the dye molecules degradation 

process, using a photocatalyst, is associated with the numbers of the electron-hole pair 

available on the surface of the photocatalyst and its low recombination rate [49]. Thus, 

the PMO and the samples with higher concentrations of Pb cations (Pb0.8 and Pb0.6) 

presented better results in the RhB degradation. The photocatalysts electronic band 

structure, which is one of the responsible for the photocatalytic efficiency, can be tuned 

changing the specific exposed surfaces [79], as observed for calculated values of band 

gap energy for the PMO and Pb1-2xCaxSrxMoO4 surfaces, Table S3. In addition, a 

comparison of DOS for PMO and CSMO surfaces is presented in Figures S7 and S8, 

showing a similar split-off feature at the VB and the CB compared to the bulk of pure and 

doped systems, where the transfer of electrons is produced to generate the electron/hole 

pairs.  

Table S4 shows the calculated values of the Mulliken population per atom and 

constitutive cluster for PMO and CSMO bulk, as well as the Mulliken population per 

undercoordinated cluster of surfaces. This analysis is a helpful tool that allows 

clarification of the nature of the electron-hole localization in the undercoordinated 

 



clusters at the exposed surfaces. An analysis of the results shows that for both PMO and 

CSMO bulk structures there is an accumulation of electrons at the [Pb/Ca/SrO8] clusters 

and there is an electron depletion (positive charge accumulation) at the [MoO4] cluster, 

thereby creating a difference in potential which is able to form a local electric field. In 

PMO the potential between [PbO8] and [MoO4] clusters are compensated, and the same 

occurs between the [Ca/SrO8] and [MoO4] clusters in CSMO. However, a local electric 

field is generated and also tends to vary on surfaces according to the number of O atom 

vacancies in the exposed surface clusters [80]. These differences in charge in the different 

clusters of the surface have an influence on the transfer of the photogenerated electron-

hole.  

For example, the (011), (110), (100) and (111) surfaces have higher values of Db, 

compared to (001) and (112), and the presence of three oxygen vacancies [PbO5…3Vo
x], 

which generate higher charge differences between [Pb/Ca/SrO5] and [MoO4] clusters. 

Accordingly, it is observed that not only the undercoordinated cations of the exposed 

clusters play a decisive role in the surfaces that constitute the morphology, but they are 

also involved in the structural and electronic distortion of the clusters (see Table S1). The 

information from the FE-SEM image reveals that the presence of nanoparticles with an 

octahedral morphology is controlled mainly by (001), (011) and (112) exposed surfaces. 

As the concentration of Pb in the samples decreases, the surface (001) becomes less 

predominant and the surface (110) appears in the sample Pb0.6, the most photoactive. It 

was observed that between the PMO and Pb0.6 samples the Egap of the surfaces increases, 

Table S3, and the potential difference becomes greater for the [CaO8-y.y𝑉𝑂
𝑥] and [MoO4] 

clusters on the surface (110) as the content of Pb decreases, Table S4. This fact can 

enhance the migration of photoinduced electrons for the surface, suppressing the 

recombination of charge carriers, and improving the photocatalytic activity. 



Moreover, the migrated electrons can be trapped by the oxygen molecules, O2, 

adsorbed on the surface to generate O2
.- radicals, while the holes on the surface react with 

water molecules to yield OH. and H. radicals. Furthermore, these photogenerated reactive 

oxygen species induce the degradation of RhB. Consequently, the undercoordinated and 

complete clusters at the surfaces, [CaOx]/[SrOx]/[PbOx] and distorted [MoO4]d  are the 

active sites capable of reacting with H2O and O2, respectively, and can be considered the 

reservoirs of holes and electrons, respectively, that constitute the active sites in the 

photocatalytic activity.  

5. CONCLUSIONS 

This study reports the successful preparation of PMO and Pb1-2XCaXSrXMoO4 (x= 

0.1, 0.2, 0.3, 0.4 and 0.5) solid solutions in the whole compositional range. Their 

structural, electronic, and vibrational properties, as well as the morphologies and the 

photocatalytic activity in the photodegradation process of RhB dye have been 

investigated. The samples synthesized with higher concentrations of Pb cations presented 

better results in RhB degradation. The photocatalysts’ electronic band structure, which 

has an influence on photocatalysts, can be tuned using the specific exposed surfaces, and 

this has a significant impact on the redox abilities of photoinduced carriers. First-

principles calculations were performed to obtain the energy surface values for the PMO 

and solid solution surfaces, based on the Wulff construction, in order to rationalize the 

crystal morphologies observed in the experimental FE-SEM images.  

The simulations revealed that there are two important factors that must be considered 

when investigating the surface electronic properties of the as-synthesized samples. The 

first factor is that the (011) and (110) surfaces appear in the experimental FE-SEM images 

which show enhanced photocatalytic activity. The second involves the specific local 

coordination of the Pb/Ca/Sr and Mo cations in the exposed surface, i.e., the Pb/Ca/Sr 



and Mo clusters. In particular, we found that the stability of the surfaces and their 

electronic properties are correlated with the presence of incomplete [CaOx]/[SrOx]/[PbOx] 

and distorted [MoO4] clusters as the reservoirs of holes and electrons, respectively, which 

act as the active sites in the photocatalytic activity. These subtle differences between the 

(011), (110) and (112) surfaces illustrate the influence of surface type on reactivity. 

Controlling for the combination of surface types in the morphology thus provides an 

extremely sensitive tuning mechanism for the location of active sites. The PL emission 

spectra of the samples showed predominant emission in the green-orange region, with 

predominantly shallow type defects for the most photoactive samples. Overall, the current 

study opens the door to further uses of solid solutions based on PMO with tunable 

properties for various applications. The reported synthetic approach is believed to have 

potential utility for obtaining other solid solutions, while the results described here 

provide new insights on the geometry, electronic structure, morphology evolution, and 

structure–property relationship of AMoO4-type compounds. These findings show that by 

directing the crystal morphology it is possible to control and understand its properties, 

such as optical and photocatalytic properties. Exploration of semiconductor surface 

effects may lead to the fabrication of more efficient photocatalysts. 
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Figures 

 

Figure 1. Unit cell of the PbMoO4 and CaSrMoO4. The [MoO4], [PbO8], [SrO8] and 

[CaO8] clusters, i.e., local coordination of Mo, Pb, Sr and Ca cations, respectively, as 

building blocks of the samples, are depicted for clarity purposes. 

 

Figure 2. XRD patterns of solid solutions Pb1-2xCaxSrxMoO4. PMO (x=0), Pb0.8 (x=0.1), 

Pb0.6 (x=0.2), Pb0.4 (x=0.3), Pb0.2 (x=0.4), CSMO (x=0.5).   



 

Figure 3. Micro Raman spectra in the range from 100 to 1000 cm−1 of (a) 

Pb1-2xCaxSrxMoO4 and (b) (zoom) range from 700 to 950 cm-1. 

 

 

 

Figure 4. FE-SEM images of the samples and magnifications of the characteristic 

morphology of the samples (inset). (a) PMO (b) Pb0.8, (c) Pb0.6, (d) Pb0.4, (e) Pb0.2, (f) 

CSMO.  



 

Figure 5. Calculated values of Esurf for the different surfaces of PMO and 

Pb1-2xCaxSrxMoO4 solid solutions.  



 

Figure 6. Schematic representations of surfaces: (001), (011), (110), (100), (111), and 

(112) for PMO and CSMO systems. The clusters and oxygen vacancies are written using 

the Kröger-Vink notation. 

  



 

Figure 7. The available morphology map for the PMO crystals (Esurf are given in J/m2). 

The experimental FE-SEM images (inset) are included for comparison purposes.   

  



Figure 8. Experimental and theoretical variation of the Egap values as a function of Pb 

content. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Calculated band structure and DOS projected on atoms of the Pb, Ca, Mo and 

O atoms in (a) PMO and (b) CSMO.   



Figure 10. Electron density difference contour maps on the (100) plane (electron/bohr3) 

for (a) PMO and (b) CSMO. High and low charge density values are shown in red and 

blue, respectively. The blue, white and red colors are 0.00, 0.11, and 0.55 electron/bohr3, 

respectively. Electron density isosurfaces (electron /bohr3) for PMO (c) and (d) CSMO.   

 

 

Figure 11. Calculated total DOS projected on atoms of the samples (a) Pb0.2, (b) Pb0.4, 

(c) Pb0.6, and (d) Pb0.8.   



 

Figure 12. (a) PL emissions, (b) Schematic diagram of energetic levels of the 

fundamental, 1A1, and excited, 1T2,
 1T1,

 3T2, and 3T2, electronic states for [MoO4]
2- anion. 

The intersystem crossing processes between singlet and triplet states are displayed. 

 

 



 

Figure 13. A pictorial representation of the relationship between the PL emission energy 

and location of electronic states within the band gap for the (a) PMO, (b)Pb0.8 and (c) 

Pb0.6.  

 

 



  

Figure 14. Photocatalysis degradation profiles of RhB for PMO and solid solution 

samples: (a) Pb0.8, Pb0.6, Pb0.4, Pb0.2 and (b) CSMO Photocatalytic reaction kinetics.  

 

  



Tables 

Table 1. Experimental and theoretical values of lattice constants (a, b and c in Å), volume 

(V in Å3), bond distances (Pb-O, Mo-O, Sr-O and Ca-O in Å), coordinates of the oxygen 

atom in Å and Rietveld refinement parameters of PMO and CSMO. 

Cell Parameters (Å) 

Samples PMO CSMO 

 Experimental Theoretical Experimental Theoretical 

a=b 5.432 5.529 5.328 5.390 

C 12.117 12.234 11.785 11.882 

Volume (Å3) 357.574 374.061 334.681 345.234 

Bond Distancies (Å) 

Pb-O           2.602 (x4) 2.638 (x4)      

    2.781 (x4          2.666 (x4)   

Mo-O      1.710 (x4)  1.811 (x4)           1.750 (x4) 1.807 (x4) 

Sr-O                                 2.540 (x4) 2.572 (x4) 

                                                                                          2.570 (x4) 2.597 (x4) 

Ca-O                                 2.540 (x4)  2.508 (x4) 

                                                                                          2.570 (x4)       2.536 (x4) 

Coordinates of the oxygen atom (Å)  

X                                       0.2117                0.2376                    0.2367 0.2426 

Y                                       0.1247                0.1127                     0.1115 0.1016 

Z                                       0.0370                0.4408                     0.0434 0.0444 

Rietveld Parameters  

X2                                     3.365                                                   2.075                                                  

R (%)                              20.820                                                 16.520                                              

Rp (%)                           15.720                                                 12.900                                             

 

 

 

 

 

 

 

 



 

 

 

Table 2. Experimental and theoretical values of lattice constants (a, b and c in Å), 

volume (V in Å3), bond distances (Pb-O, Mo-O, Sr-O and Ca-O, in Å), coordinates of 

the oxygen atom in Å and Rietveld refinement parameters of Pb1-2xCaxSrxMoO4 solid 

solutions. 

Note: * Range of values for each bond distance.     

 

 

PMO and Solid solutions (Pb1-2xCaxSrxMoO4; x= 0.1, 0.2, 0.3, 0.4)  

Samples  PMO (x=0) Pb0.8 (x=0.1) Pb0.6 (x=0.2) Pb0.4 (x=0.3) Pb0.2 (x=0.4) 

  

 

Theoretical Experimental Theoretical Experimental Theoretical Experimental Theoretical Experimental Theoretical 

a=b 5.529 5.425 5.499 5.429 5.467 5.428 5.439 5.429 5.409 

c 12.234 12.092 12.173 12.091 12.110 12.085 12.043 12.099 11.970 

Volume (Å3) 374.061 356.001 368.427  356.385 362.740 356.086  357.010 356.720  351.152 

Bond distancies (Å) 

Pb-O  

  

     2.638 (x4) 2.603 (4x) 2.599-2.661* 2.680 (x4) 2.583-2.660* 2.760 (x4) 2.571-2.656*  2.622 (x4) 2.556-2.652* 

        2.666 (x4)         2.708 4x)   2.696 (x4)       2.770 (x4)       2.713 (x4)   

Mo-O       1.811 (x4) 1.723 (4x) 1.805-1.811* 1.649 (x4) 1.809-1.814* 1.530 (x4) 1.809-1.816*     1.711 (x4) 1.806-1.811* 

Ca-O          2.493-2.554*   2.488-2.559*    2.491-2.541*   2.500-2.539* 

Sr-O       2.598-2.637*   2.587-2.638*    2.574-2.633*   2.562-2.631* 

Coordinates of the oxygen atom (Å) 

X                               0.2376                0.2254                 0.2380                    0.2229                 0.2388                0.2080               0.2397                 0.2219          0.2406 

Y                               0.1127                0.1237                 0.1120                    0.1250                 0.1102                0.1380               0.1075                 0.1223          0.1048 

Z                               0.0441                0.0422                 0.0441                    0.0513                 0.0442                0.0552               0.0442                 0.0426          0.0443 

Parameters Rietveld 

X2                                                         2.613                                                  1.621                                              1.465                                              1.432  

Rp                                                        15.20                                                  11.32                                              10.67                                               9.8 

Rwp                                                                                       19.60                                                   15.70                                              14.10                                              13.15 


