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ABSTRACT
The optimal sampling problem is the selection of the optimal sampling instants
together with the optimal control actions such that a given cost function is min-
imized. In this article we solve the optimal sampling problem for free final time
linear quadratic regulator with scalar dynamical system. The solution provides the
optimal sampling instants, control actions, and the optimal final time in a recur-
sive and constructive way for any arbitrary number of samples N ≥ 1, as it is not
based on asymptotic arguments. An application example shows the feasibility of the
approach.
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1. Introduction

Technological developments in sensor networks, the internet of things, and networked
control systems have led to a multitude of nodes sending information for supervi-
sion (Zheng & Jamalipour, 2009), estimation (Ge, Yang, & Han, 2017), and con-
trol (Tran & Ha, 2015). Reduction in the number of sampling instants N saves energy
consumption, computing power, and communication bandwidth, which may be scarce
resources.

Digital control systems were initially developed on the basis of periodic sam-
pling (Astrom & Wittenmark, 1997). However, for a given number of sampling instants
N , non-periodic sampling may lead to a better performance than a periodic one. The
optimal sampling problem was defined in Bini and Buttazzo (2014) as the selection of
the N interarrival times µk := tk+1− tk and control inputs uk for k ∈ {0, 1, . . . , N −1}
that minimize a cost function J .

The analytical solution of the sampling problem by deriving necessary conditions
for the optimum is not feasible. Instead, numerical gradient based optimization al-
gorithms have been derived from necessary conditions, which are of high complexity.
In Bini and Buttazzo (2014), a numerical optimization algorithm was proposed that
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for systems of order n and N sampling instants the computation of the gradient had
complexity of O(N2n3). In a similar way, the control of switched systems (Egerstedt,
Wardi, & Axelsson, 2006; X. Xu & Antsaklis, 2004) has also been founded on numerical
optimization methods where the gradient of the cost function with respect to switch-
ing times was derived, and gradient descent optimization algorithms were employed
for numerical minimization. The derived numerical algorihtms were computationally
costly, not scalable with the number of sampling instants N , and, being a nonconvex
problem, they lacked any guarantee of finding the global minimum (Egerstedt et al.,
2006; X. Xu & Antsaklis, 2004).

Event-triggered and Self-triggered sampling rules yield also non-periodic sampling
patterns (De La Sen (1996)) that promises to preserve the same performance while
decreasing the information exchange required in estimation (Batmani (2020)) and con-
trol (B. Xu, Liu, Wang, and Zhou (2020)). Inspired by the results in (Bini and But-
tazzo (2014)), a new Self-triggered control strategy was proposed in (Velasco, Marti,
and Bini (2015)) and implemented in (Rosero Chandi, Vaca Orellana, and Benavides
Piedra (2017)). Significant cost reductions compared to the optimal periodic controller
were shown. However, the optimality of the Event-triggered and Self-triggered sam-
pling rules is still an open problem.

The optimal sampling problem is also similar to move blocking (MB) in model
predictive control (Son, Park, Oh, Kim, and Lee (2020)). On the basis of a periodic
sampling, the MB keeps the input unchanged trough several periods with the aim
to reduce the number of variables in the optimization problem. However, being the
sampling instants fixed beforehand, it leads to suboptimal solutions. Furthermore, the
resulting problems are of combinatorial nature and do not scale well with the increasing
number of variables (Shekhar and Manzie (2015)). In Kowalska and Von Mohrenschildt
(2012) the switching times were incorporated into the optimization problem. However,
the resulting problem did not provide any guarantee of optimality of the solution and
it was hard to solve in general because the number of decision variables also increased
with the number of switching times N.

To overcome these problems a new approach to solve the optimal sampling problem
was proposed in Bini and Buttazzo (2014), called the quantization-based sampling. The
basic idea of quantization-based sampling was to approximate the optimal continuous-
time control input u(t)∗ by a piecewise constant function that provided the optimal
interarrival times. Once the optimal interarrival times were calculated, the optimal
control inputs were computed by standard linear quadratic regulator (LQR). The
approach was computationally tractable because for LQR the optimal control action
u(t)∗ was readily calculated. Furthermore, it was shown in Bini and Buttazzo (2014)
that quantization based sampling was optimal for first-order systems for a large number
of samples N .

In this article we solve the optimal sampling problem for first-order systems with
quadratic cost function and free final time TN . This is in contrast with the problem
proposed in Bini and Buttazzo (2014) where the final time T is fixed beforehand. As
a result, we not only provide the optimal interarrival times µ∗k and optimal control
inputs u∗k but also the optimal final time T ∗N . The resulting algorithm is: i) optimal
for arbitrary N ≥ 1 because it is not based on asymptotic arguments, ii) scalable
because the optimal interarrival times are obtained by solving N one-dimensional op-
timization problems, iii) recursive because the optimal interarrival times are computed
backwards from the last stage in a sequential manner, and iv) constructive because
given the N optimal interarrival times, the solution for the new problem with N+1 in-
terarrival times just requires to solve one more one-dimensional optimization problem
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to calculate the new optimal interarrival time.

2. Problem Statement

Consider the free final time TN linear quadratic regulator problem

PTN
: min

u(t)∈PN

∫ TN

0
(qx2(t) + ru2(t))dt+ sx2(TN ) (1)

s.t.

ẋ(t) = ax(t) + bu(t)

x(0) = x0

where x(t) ∈ R is the state, u(t) ∈ R the input signal, a ∈ R, and b ∈ R, are the
dynamical system parameters, q ∈ R, r ∈ R, and s ∈ R are the cost function weights,
with q, r and s positive. The control input signal u(t) is constrained to be in the set
PN of N-complexity piecewise constant signals, that is, u(t) is a linear combination of
N indicator functions of intervals

u(t) = uk ∀t ∈ [tk, tk+1), k = 0, 1, . . . , N − 1

with 0 = t0 < t1 < . . . < tN = TN . The sequence {t0, t1, . . . , tN−1, tN} is the sampling
pattern T, while tk for k ∈ {0, 1, . . . , N} are called sampling instants. For t0 = 0,
the sampling pattern information is also given by the sequence {µ0, µ1, . . . , µN−1} of
interarrivals µk := tk+1− tk for k ∈ {0, 1, . . . , N − 1}, defined as the time between two
consecutive sampling instants. Consequently, in what follows the sampling pattern
T is defined by the interarrival sequence. For an arbitrary sampling pattern T =
{µ0, µ1, . . . , µN−1}, with

∑N−1
k=0 µk = TN , the exact discretization of the LQR problem

PTN
given by (1) is

min
uk

N−1∑
k=0

(q(µk)x
2
k + 2p(µk)xkuk + r(µk)u

2
k) + sx2

N (2)

s.t.

xk+1 = φ(µk)xk + γ(µk)uk

x0 = x(0)

with
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φ(µk) := eaµk (3)

γ(µk) :=
b

a
(eaµk − 1) (4)

q(µk) :=
q

2a
(e2aµk − 1) (5)

p(µk) :=
qb

2a2
(eaµk − 1)2 (6)

r(µk) :=
qb2

2a3
(e2aµk − 4eaµk + 2aµk + 3) + rµk (7)

This result follows by direct integration of the cost function and exact discretization
of the dynamical system with the arbitrary sampling pattern T = {µ0, µ1, . . . , µN−1}.
The details can be found in the Appendix A. The discrete-time problem (2) is solved
by providing the optimal control actions sequence U∗ := {u∗0, u∗1, . . . , u∗N−1} and the
optimal sampling pattern T∗ := {µ∗0, µ∗1, . . . , µ∗N−1}.

Remark 1. For the discrete-time problem (2) the cost function parameters q(µk),
p(µk), and r(µk), except s, become a function of the interarrivals µk of the sampling
pattern T, and the same applies to the dynamical system parameters φ(µk) and γ(µk).
For clarity of notation we define φk := φ(µk), γk := γ(µk), qk := q(µk), pk := p(µk),
and rk := r(µk). On the other hand, xk and uk are the state and control action values
at sampling instant tk, that is xk := x(tk) and uk := u(tk).

Remark 2. The cost function of the discretized problem (2) depends on the product
of xk by uk with weight pk, despite the continuous cost function (1) lacks the product
x(t)u(t). This is not a problem for applying dynamic programming.

3. Dynamic Programming

The optimal sampling pattern T∗ is computed using a two-phase procedure. First, we
find the dynamic programming solution for the discrete-time problem (2) considering

an arbitrary sampling pattern T = {µ0, µ1, . . . , µN−1}, with
∑N−1

k=0 µk = TN , as shown
in Fig. 1. Second, on the basis of the dynamic programming solution, the optimal
interarrival time is computed at each stage of the dynamic program by solving an
univariate optimization problem. In what follows we discuss the dynamic programming
solution of the first phase.

x0 x1 xk xN

u0

µ0

u1

µ1

uk−1

µk−1

uk

µk

uN−1

µN−1

Figure 1. Dynamic programming problem. At each stage k ∈ {0, 1, . . . , N − 1} a control action uk is applied

during the interarrival time µk.

3.1. Control Action uk

For an arbitrary intermediate stage k, the cost-to-go is
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Jk = qkxk
2 + pkxkuk + rkuk

2 + J∗∗k+1(xk+1) (8)

with J∗∗k+1(xk+1) the optimal cost-to-go from stage k + 1, calculated in the previous
iteration of the dynamic program, and given by

J∗∗k+1 = K∗k+1xk+1
2 (9)

Substituting the discrete-time dynamical system xk+1 = φkxk+γkuk in equations (8)-
(9) and arranging terms yields

Jk = (qk +K∗k+1φk
2)xk

2 + (pk + 2K∗k+1φkγk)xkuk +

+(rk +K∗k+1γk
2)uk

2 (10)

The optimal control action is obtained by minimizing Jk with respect to uk resulting
in

u∗k =

(
−

(pk +K∗k+1φkγk)

(rk +K∗k+1γk
2)

)
︸ ︷︷ ︸

Ck(µk)

xk (11)

For an arbitrary interarrival µk it follows that the control action is proportional to the
current state xk through Ck, like in the classical linear quadratic regulator. Substitu-
tion of the optimal control action u∗k on the cost-to-go function (10) (see Appendix B
for the details) yields the following cost-to-go at stage k

J∗k :=

(
(qk +K∗k+1φ

2
k)−

(pk +K∗k+1φkγk)
2

(rk +K∗k+1γ
2
k)

)
︸ ︷︷ ︸

Kk(µk)

x2
k (12)

The cost-to-go function is proportional to the squared state through Kk, again like in
the classical linear quadratic regulator. However, in contrast to the periodic discrete-
time case (Anderson & Moore, 1979), the proportional factors Ck and Kk are not
constant but dependent on the interarrival µk.

3.2. Interarrival µk

The optimal interarrival time µk is obtained by minimizing Kk with respect to the
interarrival µk. Assume we have computed the optimal interarrival µ∗k by any means,
hence the optimal control action u∗∗k and optimal cost-to-go function J∗∗k are given by
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u∗∗k := Ck(µ
∗
k)︸ ︷︷ ︸

C∗
k

xk

J∗∗k := Kk(µ
∗
k)︸ ︷︷ ︸

K∗
k

x2
k

At this point the optimal cost-to-go gain K∗k is available to repeat the computations
at stage k − 1.

3.3. Sampling Pattern Solution

Given the optimal cost-to-go gain at stage k+1, that is K∗k+1, it is possible to derive the
cost-to-go function gain at stage k, Kk(µk), as shown by equation (12). Equation (12)
shows how the optimization of interarrival times can be embedded into a family of
similar problems such that each member of the family is easily related with the solution
of the previous problem. By minimization of the term Kk(µk) in equation (12) we
obtain at stage k the optimal interarrival µ∗k and the optimal cost-to-go gain K∗k(µ∗k).
Beginning from the last stage N − 1 we are able to compute backwards the optimal
sampling pattern {µ∗N−1, µ

∗
N−2, . . . , µ

∗
0} by solving N one-dimensional optimization

problems. Once the optimal sampling pattern T∗ := {µ∗0, µ∗1, . . . , µ∗N−1} is computed
backwards, the optimal control actions sequence U∗ := {u∗0, u∗1, . . . , u∗N−1} is computed
forward from the initial state x0 by applying equation (11).

4. Analysis of the Sampling Pattern Cost Function

4.1. Sampling Pattern Cost Function

The optimal interarrival µ∗k at stage k is obtained from the minimization of the cost-
to-go gain Kk

Kk =

(
(qk +K∗k+1φ

2
k)−

(pk +K∗k+1φkγk)
2

(rk +K∗k+1γ
2
k)

)
(13)

with qk, pk, rk, φk, and γk functions of interarrival µk. The functional form of Kk with
respect to interarrival µk is intrincated due to the exponential relationship. However,
we simplify the expression of Kk by applying dimensional analysis (Balaguer, 2013)
and by a change of variable. First, we define the dimensionless time µ̄k := aµk as a has
inverse time dimensions (Palanthandalam-madapusi, Bernstein, & Venugopal, 2007).
We also define b̄ := b/a, q̄ := q/(2a), and r̄ := r/a. Furthermore, we perform the
change of variable τ := eµ̄k . As a result we have that equations (3)-(7) are rewritten
as
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φk(τ) := τ

γk(τ) := b̄(τ − 1)

qk(τ) := q̄(τ2 − 1)

pk(τ) := q̄b̄(τ − 1)2

rk(τ) := q̄b̄2(τ2 − 4τ + 2 ln τ + 3) + r̄ ln τ

and the cost function (13) to be minimized is rewritten as (see Appendix B)

Kk(τ) =

q̄

(
(Kτ2 − 1)− (Kτ2 − (K + 1)τ + 1)2

Kτ2 − 2(K + 1) + (K + 2) +R ln τ

)
(14)

with q̄, R and K given by

q̄ :=
q

2a

R := 2 +
r̄

q̄b̄2

K := 1 +
K∗k+1

q̄
, k ∈ {0, 1, . . . , N − 1}

q̄ and R are constant for all stages because they depend on the cost function parameters
q and r and on the dynamical system parameters a and b. On the contrary, parameter
K changes at each stage because it depends on the optimal cost-to-go at stage k + 1,
K∗k+1. Note also that the optimization problem does not depend on the magnitude of
q̄, but only on its sign because it is a constant that for stable systems is negative q̄ < 0
whereas for unstable systems is positive q̄ > 0.

The success of the proposed approach lies on the solvability of the optimization
problem defined by the cost function (14). In general it is not possible to show con-
vexity of cost function (14) because that property depends on the values of q̄, R and
K. Instead, we show the solvability of the optimization problem by performing the
numerical analysis of the resulting cost function for several values of q̄, R and K,
which depend on the stability of the dynamical system. In the following sections we
perform the analysis for stable, unstable, and critically stable systems.

4.2. Stable systems (a < 0)

For stable dynamical systems, it follows that τ ∈ [0, 1] because a < 0. Furthermore,
parameter q̄ is negative. As a result we investigate the following minimization problem
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min
τ∈[0,1]

−
(

(Kτ2 − 1)− (Kτ2 − (K + 1)τ + 1)2

Kτ2 − 2(K + 1) + (K + 2) +R ln τ

)
(15)

with R > 2 and K ≤ 1, because r̄
q̄b̄2

> 0, K∗k+1 > 0, and q̄ < 0. In Fig. 2 we plot

the cost function for several combinations of parameters R and K, together with the
optimal point. It can be seen that, for any R, the cost function is unimodal (i.e. having
only one maximum o minimum) for sufficiently small values of K.
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Figure 2. Graphs of the sampling pattern cost function for stable systems, given by equation (15), for several

values of R > 2 and K ≤ 1. The dots mark the minimum value for each cost function. Note that the domain
is τ ∈ [0, 1]. The cost function is unimodal for sufficiently small values of K. Otherwise the optimal solution is

τ∗ = 1.

The graphical results of Fig. 2 show that if the derivative of the cost function at
point τ = 1 is greater than zero, that is d

dτKk(τ)|τ=1 > 0, the function is unimodal.
On the contrary, if the derivative is smaller than zero the optimal point is equal to
τ∗ = 1. As a result we require the following condition for a unimodal optimization
problem

d

dτ
Kk(τ)

∣∣∣∣
τ=1

= q̄
2KR− (K + 1)2

R− 2
> 0
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The derivative condition is finite because R > 2. It follows that the previous derivative
condition is equivalent to

2KR− (K + 1)2 < 0 ≡

{
R < (K+1)2

2K if K > 0,

R > (K+1)2

2K if K < 0.

(16)

In Fig. 3 we analyse graphically the condition (16) where it is shown that for any
value R > 2, all values of K to the left of Ks and to the right of Ku, yield unimodal
optimization problems.

K

(K+1)2

2K

1

R > 2

2

Ks Ku

Figure 3. Unimodality condition for optimization problems (15) and (17). Given an R > 2, there are values

Ks and Ku such that the optimization problem is unimodal for stable and unstable systems if K < Ks or

K > Ku.

Summing up, for problem unimodality it must be the case that condition (16) be
true. The condition (16) implies a relation between control action cost r and final cost
s. In words, the final cost s must be large enough with respect to the control action
cost r to be worth to apply a control action during some finite time greater than zero.

4.3. Unstable systems (a > 0)

For unstable dynamical systems the optimization variable domain is τ ∈ [1,∞) and
the minimization problem to be solved is
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min
τ∈[1,∞)

(
(Kτ2 − 1)− (Kτ2 − (K + 1)τ + 1)2

Kτ2 − 2(K + 1) + (K + 2) +R ln τ

)
(17)

with R > 2 but now K ≥ 1, because a > 0. In Fig. 4 we plot the cost function for
several combinations of parameters R and K, together with the optimal point. Now,
for any R, the cost function is unimodal for sufficiently large values of K.

The graphical results of Fig. 4 show that if the derivative of the cost function at
point τ = 0 is smaller than zero, that is d

dτKk(τ)|τ=0 < 0, the function is unimodal.
On the contrary if the derivative is greater than zero the optimal point is equal to
τ∗ = 0. As a result, we require the following condition for a unimodal optimization
problem

d

dτ
Kk(τ)

∣∣∣∣
τ=0

= 2KR− (K + 1)2 < 0 ≡ R <
(K + 1)2

2K
, K > 0

which is the same as the first condition of (16). Hence, stable and unstable systems
share equivalent unimodality conditions.

4.4. Integrator systems (a = 0)

In this case the optimization of the sampling pattern is simpler because equations (3)-
(7) for a = 0 reduce to

φ(µ) := 1

γ(µ) := bµ

q(µ) := qµ

p(µ) :=
qb

2
µ2

r(µ) :=
qb2

3
µ3 + rµ

As a result, without any change of variable, the cost function (13) particularizes to a
rational polynomial optimization problem

min
µ∈[0,∞)

(
(µ+K)−

(1
2µ+K)2µ

1
3µ

2 +Kµ+R

)
(18)

with
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Figure 4. Graphs of the sampling pattern cost funtion for unstable systems, given by equation (17), for
several values of R > 2 and K ≥ 1. The dots mark the minimum value for each cost function. Note that the

domain is τ ∈ [1,∞). The cost function is unimodal for sufficiently large values of K. Otherwise the optimal

solution is τ∗ = 0.

R :=
r

qb2

K :=
K∗k+1

q

We show in Fig. 5 the plot of the cost function for several combinations of parameters
R and K, together with the optimal point. In this case the unimodality condition is

d

dτ
Kk(τ)

∣∣∣∣
µ=0

=
R−K2

R
< 0

The derivative condition is finite for R > 2 and the previous derivative condition is
equivalent to

R < K2 (19)
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As a result the problem is unimodal if condition (19) is true.
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Figure 5. Graphs of the sampling pattern cost function for integrator systems, given by equation (18), for

several values of R > 0 and K > 0. The dots mark the minimum value for each cost function. Note that the
domain is µ ∈ [0,∞]. For fixed R the cost function is unimodal for sufficiently large values of K. Otherwise the

optimal solution is µ∗ = 0.

5. Proposed Optimization Algorithm

In this section we design the optimization algorithm to solve the optimal sampling
problem. The algorithm sequence is first to check the unimodality of the problem,
second to compute the optimal sampling pattern, and third to compute the optimal
control.

The pseudocode of the algorithm is presented in Fig. 6 for stable and unstable
systems and in Fig. 7 for itegrator systems. Being the cost functions unimodal the op-
timization may be performed by some search method (i.e. golden ratio or the bisection
method) or by gradient descendent methods starting from µ = 0 for integrator systems
or from τ = 1 for stable or unstable systems. This problem must be solved at each
stage from stage N −1 to stage 0. As a result, we obtain the optimal sampling pattern
T∗ := {µ∗0, µ∗1, . . . , µ∗N−1}. Finally, once the optimal sampling patter is computed, the
optimal control actions sequence is computed forward from stage 0 to stage N − 1 by
applying the definition of the optimal control action evaluated at the optimal interar-
rival µ∗k, that is Ck(µ

∗
k), as given by equation (11). Therefore, we obtain the optimal
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Figure 6. Optimal Sampling Pattern Algorithm for Stable and Unstable Systems

1: procedure OptimalSampling(N , q, r, s, a, b, x0)
2: q̄ ← q

2a , r̄ ← r
a , b̄← b

a
3: R← 2 + r̄

q̄b̄2

4: K ← 1 + s
q̄

5: if (K > 0) ∧ (R < (K+1)2

2K ) then
6: for k ← (N − 1), 0 do . Compute T∗
7: τ∗k ← minτ Kk . Defined by eq. (15) or (17)
8: K∗k+1 ← Kk(τ

∗
k , R,K, q̄)

9: K ← 1 +
K∗

k+1

q̄

10: µ∗k ←
1
a ln τ∗k . Undo the change of variable

11: end for
12: for k ← 0, (N − 1) do . Compute U∗
13: u∗∗k ← Ck(µ

∗
k) . Defined by equation (11)

14: x∗k+1 ← φk(µ
∗
k)xk + γk(µ

∗
k)u
∗∗
k

15: end for
16: else
17: return T∗ ← 0
18: end if
19: end procedure

control actions sequence U∗ := {u∗0, u∗1, . . . , u∗N−1} and the problem is solved.

6. Application Example

6.1. Stable System

Consider problem (1) with cost function parameters q = 1, r = 1, s = 1, dynamical
system parameters a = −1, b = 1, and initial state x0 = 1, that is

min
u∈PN

∫ TN

0
(x2 + u2)dt+ x(TN )2 (20)

s.t.

ẋ = −x+ u

x(0) = 1

We solve the optimization problem for N = 2, N = 4 and N = 6 for comparative
purposes. The first row of Fig. 8 shows the cost-to-go gains Kk and the optimal inter-
arrivals µ∗k, whereas the second row shows the optimal control action u∗k and optimal
state trajectory x∗k.

Consider for instance the first column of Fig. 8 that corresponds to the case N = 2.
The upper plot shows the cost-to-go gains K1 (blue) and K0 (green) as a function of
τ := eaµk . The minimum of each function, marked by a blue dot, provides the optimum
interarrival times µ∗1 and µ∗0, respectively. The lower plot shows the optimal control
u∗k and state trajectory x∗k, together with the optimal continuous-time solution u(t)∗
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Figure 7. Optimal Sampling Pattern Algorithm for Integrator Systems

1: procedure OptimalSampling(N , q, r, s, b, x0)
2: if R < K2 then
3: R← r

qb2

4: K ← s
q

5: for k ← (N − 1), 0 do . Compute T∗
6: µ∗k ← minµKk . Defined by equation (18)
7: K∗k+1 ← Kk(µ

∗
k, R,K, q̄)

8: K ← K∗
k+1

q
9: end for

10: for k ← 0, (N − 1) do . Compute U∗
11: u∗∗k ← Ck(µ

∗
k) . Defined by equation (11)

12: x∗k+1 ← φk(µ
∗
k)xk + γk(µ

∗
k)u
∗∗
k

13: end for
14: else
15: return T∗ ← 0
16: end if
17: end procedure

and x(t)∗ plotted in blue. As can be seen, even for N = 2, the state evolution x∗k
and the optimal continuous-time state x(t)∗ are almost indistinguishable whereas the
discrete control action u∗k seems a piecewise constant approximation of the optimal
continuous-time control action u(t)∗.

Consider now the solution for N = 4 plotted on the middle column of Fig. 8. The
upper plot shows the cost-to-go gains K3 (blue), K2 (green), K1 (red) and K0 (cyan)
as a function of τ := eaµk . Note that the first two cost-to-go gains K3 and K2 are
equal to the cost-to-go gains from the previous problem N = 2. As a result, for the
sampling pattern with N = 4, the only new information lies on the cost-to-go gains
K1 and K0. This shows the recursive and constructive nature of the optimal sampling
pattern.
Finally, at the sight of solution with N = 6, it can be seen that the optimal state
trajectory x∗k is equal to the optimal continuous-time state trajectory x(t)∗, whereas
the optimal control action u∗k again seems a picewise approximation of the optimal
continuous-time control action u(t)∗. This result is in agreement with the quantization-
based sampling proposed in Bini and Buttazzo (2014), where only the continuous-time
control input is approximated meanwhile the optimal continuous-time state trajectory
is not considered in the computation of the optimal sampling pattern.

6.2. Unstable System

Consider problem (1) with cost function parameters q = 1, r = 1, s = 10, unstable
dynamical system with parameters a = 1, b = 1, and initial state x0 = 1, that is

14
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Figure 8. Optimal sampling solutions for N = 2 (first column), N = 4 (second column) and N = 6 (third
column) for a stable system as defined by problem (20). The first row shows the cost-to-go gains together

with their minimum value, marked by blue dots, that provide the optimal interarrival times µ∗k. The second

row shows the optimal control action u∗k and state trajectory x∗k (in black) together with the continuous-time
optimal solution (in blue) for comparison.

min
u∈PN

∫ TN

0
(x2 + u2)dt+ 10x(TN )2 (21)

s.t.

ẋ = x+ u

x(0) = 1

Again we solve the optimization problem for N = 2, N = 4 and N = 6. The first row
of Fig. 9 shows the cost-to-go gains Kk and the optimal interarrivals µ∗k, whereas the
second row shows the optimal control action u∗k and optimal state trajectory x∗k.

Consider the first column of Fig. 9 that corresponds to the case N = 2. The upper
plot shows the cost-to-go gains K1 (blue) and K0 (green) as a function of τ := eaµk .
In this case the domain is τ ∈ [1,∞). The minimum of each function, marked by a
blue dot, provides the optimum interarrival times µ∗1 and µ∗0, respectively. The lower
plot shows the optimal control u∗k and state trajectory x∗k together with the optimal
continuous-time solution u(t)∗ and x(t)∗ in blue. The state evolution between x∗k and
x(t)∗ differs more significantly than in the stable case, specially near the final time T ∗2 .
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Figure 9. Optimal sampling solutions for N = 2 (first column), N = 4 (second column) and N = 6 (third
column) for an unstable system as defined by problem (21). The first row shows the cost-to-go gains together

with their minimum value, marked by blue dots, that provide the optimal interarrival times µ∗k. The second

row shows the optimal control action u∗k and state trajectory x∗k (in black) together with the continuous-time
optimal solution (in blue) for comparison.

Consider now the solution for N = 4 plotted on the middle column of Fig. 9. The
upper plot shows the cost-to-go gains K3 (blue), K2 (green), K1 (red) and K0 (cyan)
as a function of τ := eaµk . As in previous example, the first two cost-to-go gains K3

and K2 are equal to the cost-to-go gains for the previous problem N = 2, showing
again the recursive and constructive nature of the proposed solution.

Finally, the solution for N = 6 shows that the optimal state trajectory x∗k is equal to
the optimal continuous-time state trajectory x(t)∗, whereas the optimal control action
u∗k again seems a picewise approximation of the optimal continuous-time control action
u(t)∗. As a result, although for unstable systems the convergence towards the optimal
continuous-time state solution is slower than for stable systems, even for low values of
N the state trajectory resembles the optimal continuous-time showing the agreement
with the quantization-based sampling proposed in Bini and Buttazzo (2014).

7. Conclusions and Future Work

In this article we have solved the optimal sampling problem for the free final time
linear quadratic regulator. First, dynamic programming is applied to find, for each
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stage, a cost-to-go function dependent on the interarrival time. Second, it is shown
how to compute the interarrival time that minizes the cost-to-go, thus solving the
optimal sampling pattern problem. The computational approach is feasible because
the algorithmic procedure is scalable, recursive and constructive.

The results are important because it is the first time that a proposed algorithm
solves the optimal sampling problem without any form of approximation. Existing
bibliographical results provide solutions that are approximated and computationally
costly, because either are based on asymptotic arguments to show optimality, or are
based on minimization of non-convex problems. Furthermore, the proposed solution
also provides the optimal final time.

The problem is stated for scalar systems. One important question is the generaliza-
tion to systems of arbitrary order. Preliminary results show that dynamic program-
ming is again applicable and the sampling pattern problem may be cast as a maximum
eigenvalue minimization problem. Current research is focused on the solvability of the
maximum eigenvalue minimization problem by means of semi-algebraic optimization
techniques.

Appendix A. Exact Problem Discretization

Consider the linear quadratic regulator problem

PTN
: min

u∈PN

∫ TN

0
(qx2(t) + ru2(t))dt+ sx2(TN ) (A1)

s.t.

ẋ(t) = ax(t) + bu(t)

x(0) = x0

The solution of the dynamic equation for t > tk is

x(t) = ea(t−tk)︸ ︷︷ ︸
φ(µk)

xk +
b

a
(ea(t−tk) − 1)︸ ︷︷ ︸

γ(µk)

uk (A2)

Given a sampling pattern T = {µ0, µ1, . . . , µN−1}, cost function (A1) can be rewritten
as the sum of N integrals

∫ TN

0
(qx2(t) + ru2(t))dt+ sx2(T ) =

N−1∑
k=0

∫ tk+1

tk

(qx2(t) + ru2(t))dt+ sx2(T ) (A3)

For each integral term in (A3) let’s substitute the state x(t) by (A2), hence
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∫ tk+1

tk

(qx2(t) + ru2
k)dt =∫ tk+1

tk

(
q

(
ea(t−tk)xk +

b

a
(ea(t−tk) − 1)uk

)2

+ ru2
k

)
dt =

=

∫ tk+1

tk

qe2a(t−tk)dt︸ ︷︷ ︸
q(µk)

x2
k +

+2

∫ tk+1

tk

qb

a
ea(t−tk)(ea(t−tk) − 1)dt︸ ︷︷ ︸

p(µk)

xkuk +

+

∫ tk+1

tk

(
qb2

a2
(ea(t−tk) − 1)2 + r

)
dt︸ ︷︷ ︸

r(µk)

u2
k (A4)

The analytic solution of integrals q(µk), p(µk), and r(µk) is

q(µk) =
q

2a
(e2aµk − 1)

p(µk) =
qb

2a2
(eaµk − 1)2

r(µk) =
qb2

2a3

(
e2aµk − 4eaµk + 3 + 2aµk

)
+ rµk

Summing up, by substituting equation (A4) in equation (A3), the exact discretized
problem is

min
uk

N−1∑
k=0

(q(µk)x
2
k + 2p(µk)xkuk + r(µk)u

2
k) + sx2

N

s.t.

xk+1 = φ(µk)xk + γ(µk)uk

x0 = x(0)

with
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φ(µk) := eaµk

γ(µk) :=
b

a
(eaµk − 1)

q(µk) :=
q

2a
(e2aµk − 1)

p(µk) :=
qb

2a2
(eaµk − 1)2

r(µk) :=
qb2

2a3
(e2aµk − 4eaµk + 2aµk + 3) + rµk

Appendix B. cost-to-go Function

The cost-to-go function at stage k is

Jk := qkxk
2 + 2pkxkuk + rkuk

2 +

+J∗∗k+1(xk+1) (B1)

The term J∗∗k+1(xk+1) is the optimal cost-to-go from stage k + 1 that is quadratic in
xk+1

J∗∗k+1(xk+1) := K∗∗k+1xk+1
2

with K∗∗k+1 the optimal cost-to-go gain. For k = N − 1 the optimal cost-to-go gain is
equal to the cost function weight s, that is, K∗∗N = s. The substitution of the discrete
dynamical system xk+1 = φkxk + γkuk in equation (B1) results in

Jk := (qk +K∗∗k+1φk
2)xk

2 + 2(pk +K∗∗k+1φkγk)xkuk +

+(rk +K∗∗k+1γk
2)uk

2 (B2)

The optimal control action is obtained by minimization of Jk with respect to uk. Thus,
solving the necessary condition for optimality dJk/duk = 0 yields

u∗k = −
(pk +K∗∗k+1φkγk)

(rk +K∗∗k+1γk
2)︸ ︷︷ ︸

Ck

xk (B3)

The substitution of the optimal control action u∗k (B3) on the cost function (B2)
provides the following cost-to-go at stage k
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J∗k = (qk +K∗∗k+1φk
2)x2

k −

−2(pk +K∗∗k+1φkγk)
(pk +K∗∗k+1φkγk)

(rk +K∗∗k+1γk
2)
x2
k +

+(rk +K∗∗k+1γk
2)

(pk +K∗∗k+1φkγk)
2

(rk +K∗∗k+1γk
2)2

x2
k

The cancellation of equal terms in the cost-to-go function results in

J∗k =

(
(qk +K∗∗k+1φk

2)−
(pk +K∗∗k+1φkγk)

2

(rk +K∗∗k+1γk
2)

)
x2
k
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