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Strong spatial dispersion in time-modulated dielectric media
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We present an effective medium description of time-modulated dielectric media. By taking the averaged fields
over one modulation period, the relationship between them is derived, therefore defining the different constitutive
parameters. In the most general situation, it is found that the effective material is described by means of a
spatially and temporally dispersive transverse dielectric function and a constant longitudinal dielectric function.
It has been also found that the frequency dependence in the former is weak, in comparison with its wavenumber
dependence (spatial dispersion). Different physical consequences of this spatial dispersion are discussed, with
special emphasis on the weak dispersion approximation and the limit in which it is found that the effective
material behaves as a resonant and isotropic magnetodielectric medium with no additional longitudinal mode,
as it is commonly found in spatially dispersive materials. Time-dependent media therefore opens an alternative
way of designing dynamically tunable metamaterials.
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I. INTRODUCTION

The study of naturally or artificially structured materials
is a classic problem in physics and engineering. Also named
composites, a countless number of theoretical and experimen-
tal methods have been developed to properly understand their
properties [1]. In this context, metamaterials are a special
type of composites, where the effective medium has extreme
constitutive parameters mainly due to local resonances of
the constitutive elements [2,3]. For electromagnetic materi-
als, these extreme parameters imply the existence of simply
or double negative materials, where a huge literature exist
concerning their physics and applications [4–6]. However,
the existence of strongly resonant effective properties is usu-
ally accompanied by more or less weakly spatially dispersive
properties [7–11].

Metamaterials have recently evolved toward more complex
structures, and the possibility of design of new materials based
on the temporal modulation of the constitutive parameters
has also been explored. Then it can be shown that, when a
given medium presents time-modulated constitutive parame-
ters, some effects like nonreciprocity, gain, and tunability can
be easily achieved [12–18].

The concept of effective medium for a time-modulated
material is similar to that of a spatially-modulated material
[19,20] in the sense that, when the modulation frequency
(spatial or temporal) is fast and the operating wavelength
and frequency cannot detect that modulation, we detect an
effective medium with some averaged constitutive parameters.
When the parameters are spatially modulated, we obtain an ef-
fective medium with a strong temporal dispersion (frequency
dependence) but a weak spatial dispersion (wavenumber
dependence).
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In this work it will be shown that the temporal modulation
exchanges these properties, and the effective medium has a
strong spatial dispersion and a weak temporal dispersion. It
will be shown that, after averaging the electromagnetic fields,
the temporal modulation of the dielectric constant results in an
effective material with a nonlocal transverse dielectric func-
tion, but a local longitudinal one. Analytical expressions will
be derived for these two functions and some examples will be
analyzed. Finally, it will be shown how, in the weak dispersion
approximation, the effective material behaves as an isotropic
magnetodielectric medium, a property achieved so far mainly
by complex three-dimensional metamaterials [21–24]. There-
fore, the temporal modulation of the dielectric constant is an
excellent alternative for the realization of complex materials
with extreme electromagnetic properties.

The paper is organized as follows: Section II presents the
homogenization method and the expressions for the nonlocal
dielectric function. Section III analyzes the spatially disper-
sive dielectric function and some of its properties. In Sec. IV
the consequences of the spatial dispersion for finite slabs in
both space and time are discussed. In Sec. V the artificial
magnetic effect due to the weak dispersion approximation is
analyzed. Finally, Sec. VI summarizes the work.

II. NONLOCAL DIELECTRIC FUNCTION

The evolution of the electromagnetic field in matter excited
by an external current Jext and charge density ρext is described
by means of Maxwell’s equations,

∇ × E = −∂t B, (1)

∇ × H = ∂t D + Jext, (2)

∇ · D = ρext, (3)

∇ · B = 0, (4)
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whose solution can be obtained only once we know the con-
stitutive equations relating the fields H, B, E and D. In the
media we aim to study, these constitutive equations are the
corresponding ones to a nonmagnetic material with a time-
dependent electrical permittivity ε(t ), then we will have that
E(r, t ) = ε−1(t )D(r, t ) and B(r, t ) = μ0H (r, t ).

We will assume as well that the function ε(t ) is T periodic
in time, and that the modulation frequency νM = 1/T is larger
than the operating frequency ω of the external currents and
charges. We can assume then that the response of the system
will be a smooth function modulated by a fast function whose
average in a period T will be zero. The relationship between
these averaged fields will define the effective constitutive pa-
rameters of the material, identically as it happens in spatially
periodic media.

Let us then assume that the time-dependent dielectric func-
tion ε(t ) and its inverse ε−1(t ) can be expanded in a Fourier
series of the form

f (t ) =
∑

n

fne−2iπnt/T , (5)

where fn are labeled εn and ε−1
n for ε(t ) and ε−1(t ), respec-

tively. Notice that with this notation for n = 0 we have that
ε0 = 〈ε(t )〉 and ε−1

0 = 〈ε(t )−1〉, not to be confused with the
permittivity of vacuum.

The external current and density are the ones selecting the
operating frequency ω and wavenumber k, thus we assume

Jext = J0eik·re−iωt , (6)

ρext = ρ0eik·re−iωt , (7)

and we know that in this case the solution for the fields will
be of the form

u(r, t ) = eik·re−iωt
∑

n

une−2iπnt/T

= eik·re−iωt u0 + eik·re−iωt
∑

n �=0

une−2iπnt/T , (8)

where u = E, D, B and H . Therefore, the response of the
electromagnetic field to an external field of wavenumber k
and frequency ω is composed of a slow component u0 and a
fast modulation un for n �= 0. For a fast modulation frequency
νM = 1/T we can interpret the n = 0 as the averaged “observ-
able” terms, so that their evolution will define the evolution of
the effective material.

Then the relationship between the n = 0 terms in the above
expansions is

k × E0 = ωB0, (9)

k × H0 = −ωD0 − iJ0, (10)

ik · D0 = ρ0, (11)

k · B0 = 0. (12)

These expressions show that the n = 0 component of the
field expansion satisfies Maxwell’s equation in Fourier space,
as expected. The objective now is to find the relationship
between these components, which will define the effective

constitutive parameters of the medium. The effective magnetic
permeability can be trivially found, since

B0 = μ0H0, (13)

although it will be seen later that, due to the spatial dispersion
in the effective dielectric constant, an effective magnetic per-
meability will be found. Concerning the relationship between
E0 and D0, we see that this can be written as

E0 = ε(t )−1D0 = ε−1
0 D0 +

∑

n �=0

ε−1
−nDn. (14)

Thus, we need the relationship between Dn and D0 in order
to properly define an effective constitutive equation. This re-
lationship is found from Maxwell’s equations, since the wave
equation for D is

ε−1(t )∇ × ∇ × D = −μ0∂
2
tt D − μ0∂t Jext, (15)

which, after using Eqs. (6) and (8), is equivalent to

−
∑

m

ε−1
n−mk × k × Dm = μ0	

2
nDn + iμ0ωJ0δn0, (16)

where we have defined the displaced frequency 	n = ω +
2nπ
T . For n = 0 the above equation is

−ε−1
0 k × k × D0 +

∑

m �=0

ε−1
−mk2Dm = μ0ω

2D0 + iμ0ωJ0,

(17)

since we have from Eq. (3) that ik · Dn = δn0ρ0. Similarly, for
n �= 0 we have

−ε−1
n k × k × D0 +

∑

m �=0

ε−1
n−mk2Dm = μ0	

2
nDn, (18)

from which we obtain the desired relationship between
Dm and D0,

Dm = −
∑

n �=0

�D
mnε

−1
n k × k × D0, (19)

with

�D
mn = (

μ0	
2
nδmn − ε−1

n−mk2
)−1

. (20)

We therefore have obtained the fundamental relationship be-
tween the fast terms and the average field D0, thus Eq. (19)
can now be introduced into Eq. (14) and we get, after
some algebra,

E0 = ε−1
T (ω, k)D0 + (

ε−1
L − ε−1

T (ω, k)
)
ukD0 · uk, (21)

where we have defined the transverse and longitudinal inverse
dielectric constants ε−1

T and ε−1
L , respectively, as

ε−1
T (ω, k) = 〈ε−1〉 + k2

∑

n,m �=0

ε−1
−m�D

mnε
−1
n , (22)

ε−1
L = 〈ε−1〉, (23)

which clearly satisfies

k × E0 = ε−1
T (ω, k)k × D0, (24)

k · E0 = ε−1
L k · D0. (25)
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We therefore see that the effective material behaves as a
material with a nonlocal transverse dielectric response but
a local longitudinal response. The longitudinal response is
independent of both the frequency and the wavenumber, while
the transverse dielectric function depends on both of them,
i.e., it is nonlocal in space and time. However, as can be seen
from Eq. (20), this dependence is of the form ω + 2nπ/T
for n �= 0, which actually implies that, if the modulation fre-
quency νM = 1/T of the medium is larger than the operating
frequency, this dependence will disappear and we will have
nonlocality in space only. This is the opposite situation as
is typically found in classical periodic materials, where non-
locality in time (frequency-dependent dielectric constant) is
stronger than nonlocality in space, for identical reasons as
those considered here, except for layered or wire media, as
will be discussed later.

We can check the consistency of the definition of ε−1
T by

inserting Eq. (19) into Eq. (17), since we obtain

−ε−1
T (ω, k)k × k × D0 = μ0ω

2D0 + iμ0ωJ0, (26)

which is identical to the wave equation we would obtain
from Eqs. (9) and (10) using the constitutive equation derived
in Eq. (21).

We can proceed in a similar way to obtain an alterna-
tive expression for εT (ω, k). Thus, the wave equation for the
H field is given by

∇ × ∇ × H = −μ0∂t (ε(t )∂t H ) + ∇ × Jext, (27)

again using Eqs. (6) and (8) it becomes

k2Hn = μ0

∑

m

	nεn−m	mHm + ik × J0δn0. (28)

As before, we can split these equations into the n = 0
component,

k2H0 = μ0〈ε〉ω2H0 + μ0ω
∑

m �=0

ε−m	mHm + ik × J0, (29)

and the n �= 0 set of equations,

k2Hn = μ0ωεn	nH0 + μ0

∑

m �=0

	nεn−m	mHm, (30)

from which we can obtain the expression analog of Eq. (19),
but for Hm,

Hm = μ0ω
∑

n �=0

�H
mn	nεnH0, (31)

where now we have defined

�H
mn = (k2δmn − μ0	nεn−m	m)−1. (32)

Equation (29) is now

k2H0 = μ0εT (ω, k)ω2H0 + ik × J0, (33)

where

εT (ω, k) = 〈ε〉 + μ0

∑

m,n �=0

	nεn�
H
nmε−m	m. (34)

We therefore arrive at two possible definitions of εT (ω, k), as
given from Eqs. (22) and (34), and we would like to check
if these are equivalent or not. To do so we should prove that

εT (ω, k)εT (ω, k)−1 = 1. Then, if we use the time-dependent
constitutive equation and introduce it in Eq. (2), we get

∇ × D = −μ0ε(t )∂t H, (35)

which in ω − k space is

k × D0 = ωμ0ε0H0 + μ0

∑

m �=0

	mε−mHm = ωμ0εT (ω, k)H0.

(36)
However, from Eqs. (24) and (9) we get

ε−1
T (ω, k)k × D0 = ωμ0H0, (37)

which actually implies that

ε−1
T (ω, k)εT (ω, k) = 1, (38)

as expected.
We can now use the expressions of Eqs. (22) or (34) for

our convenience, as will be shown below. For instance, if we
want to determine the limit of low ω and k, what we could call
the “static limit,” it is more suitable to use Eq. (22), so that we
obtain trivially

ε−1
T = 〈ε−1〉 = ε−1

L . (39)

The material is then a homogeneous dielectric material with
an averaged reciprocal dielectric constant, with identical
transverse and longitudinal responses. The above result gen-
eralizes the result obtained in reference [19] for a layered
time-dependent material, showing the consistency of this
approach.

III. FREQUENCY-INDEPENDENT SPATIALLY
DISPERSIVE DIELECTRIC FUNCTION

Let us consider now the case of a weak modulation
changing the dielectric constant from 〈ε〉 + � to 〈ε〉 − �

harmonically at a frequency νM = 1/T . We therefore have

ε(t ) = 〈ε〉 + � cos(2πνMt ). (40)

We can assume first that 2πνM � ω to focus the analysis on
the spatially dispersive properties of the material. Since all the
Fourier components for n �= 0,±1 are zero, we can restrict
our analysis to these orders. It is clear now that the �H matrix
is diagonal with elements

�H
±1±1 = 1

k2 − μ0〈ε〉4π2ν2
M

, (41)

therefore the effective dielectric constant is given by

εT (k) = 〈ε〉 + �2

2〈ε〉
k2

M

k2 − k2
M

, (42)

where k2
M = 4π2ν2

Mμ0〈ε〉.
The above dielectric constant is similar to that found for

the so-called “wire media”, in which propagation takes place
parallel to a periodic distribution of cylinders [25–27]. This
similarity has a clear explanation: in any periodic medium,
we will have factors of the form k + 2π/a in the homo-
geneization process, so that the dependence on k will be, in
general, small. However, since in wire media the periodicity
along the z axis is “broken” by letting a → ∞, we have a
strong dependence on k. Similarly, the time periodicity of
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FIG. 1. Space-time representation of different modulation scenarios. (a) Homogeneous material modulated in time during a period t =
t f − t0. (b) Homogenization of the periodic modulation presented in panel a. (c) Periodic modulation in time of a finite slab placed between
x = x0 and x = x f . (d) Homogenization of the structure presented in panel d .

the material is generally “broken”, for that reason we have a
strong dependence on ω in composites. However, in this case
the “broken” periodicity is along the full space, while we still
have periodicity along the time axis, thus we find a strong k
dependence and, consequently, strong nonlocality.

The functional form of Eq. (42) is not unique of the weak
harmonic modulation, as will be demonstrated below. The
matrix �H is defined in Eq. (32) as the inverse of the matrix
M given by

Mnm = k2δmn − μ0	nεn−m	m. (43)

Since this matrix is Hermitian, we can use the eigendecompo-
sition of a matrix and express the inverse as a function of the
eigenvectors v
 and eigenvalues λ
 of M. Since matrix M has
the form M = Ik2 − χ, its eigenvalues are λ = k2 − λ′, with
λ′ being the k-independent eigenvalues of χ, thus we have that

�H =
∑




v
 ⊗ v†



k2 − λ′



, (44)

and Eq. (34) is

εT (k) = 〈ε〉 + μ0

∑




∑

m,n �=0

	nεn
v
 ⊗ v†




k2 − λ′



ε−m	m. (45)

In the denominator of the above expression the λ′

 are inde-

pendent of k, and it can be easily shown that the numerator is
as well independent of k, since

∂v


∂k
= (λ
I − M)† ∂M

∂k
v
 = 0. (46)

Then, Eq. (45) shows that the general form of ε(k) is similar
to the weak harmonic modulation but with more poles. In the
above expressions we have ignored the possible dependence
on frequency of ε, however we have previously discussed
that this dependence is weak, but if it has to be included it
will appear through the eigenvalues and eigenvectors of the
expansion.

IV. SPACE-TIME REPRESENTATION OF FINITE
MATERIALS

It is worthwhile now to discuss some physics concerning
the time modulation of the dielectric constant, which will help
us to understand the possible implications of Eq. (42). Let us
consider the situation illustrated in Fig. 1(a). What we see is a
spatially homogeneous material with some dielectric constant
εb and, at t = t0, a periodic modulation is applied until t = t f .
This situation is similar to that analyzed for acoustic waves in
[14,28]. We can assume that we are far away from the band
gap, where the material would be unstable, and that the con-
ditions for the application of the effective medium condition
hold. Then we are in the situation described in Fig. 1(b). We
can see how, for t < t0, a wave is propagating through the ma-
terial with some frequency ωb and wavenumber kb. Once the
modulation begins, we excite a “transmitted” and “reflected”
wave, but the wavenumber of these waves continues being kb,
and it is the frequency that the quantity has changed [14,19].
To obtain the new frequency in the effective material we need
to solve the dispersion relation

ω2 = ε−1
T (k)k2, (47)
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where we have assumed that there is no dependence of ε on
ω. Thus, the time slab has a similar behavior than the spatial
slab, since once the modulation stops we will have transmit-
ted and reflected waves whose relative amplitude can present
gain or loss, as explained in [14], but spatial dispersion does
not change the physics of the problem. The only thing that
changes is its resonant-like nature, similarly as for spatially
modulated materials.

However, the common situation is to have a spatially lim-
ited material (slab), even if we have an additional modulation
in time. Let us therefore consider the situation shown in
Fig. 1(c), where we see a periodically modulated material
in time, but limited to the region x ∈ [x0, x f ]. The full wave
analysis of this situation is rather complex, as can be seen
for the geometry of the domains involved, however it is now
where the effective medium concept is especially useful, as it
is shown in Fig. 1(d). The problem now is limited to a clas-
sical transmission–reflection problem, but now the operating
frequency ωb is indeed a conserved quantity, since any time
dependence of the geometry has been averaged. An additional
difficulty appears in this case, since spatial dispersion usually
involves additional propagating modes that requires the use
of additional boundary conditions, as studied in many works
[29–32], although a recent approach based on an elastody-
namic model for spatially dispersive materials could be more
adequate for isotropic strongly dispersive materials with a
transverse dielectric response [33].

V. ISOTROPIC ARTIFICIAL MAGNETISM

The only treatable situation in which additional boundary
conditions are not required is the so called “weak” dispersion
approximation, which assumes that k is a small quantity so
that we can expand εT (k) as

εT (k) ≈ εT (0) + γ k2, (48)

since in our case it is clear that there is no linear term in k.
Then, according to our response model, we have

D0 = εT (k) + (εL − εT (k))ukD0 · uk. (49)

We showed before that for k = 0 and ω = 0 we have εT = εL,
so that the above expression is approximated to

D0 ≈ εT (0)E0 − γ k × k × E = εT (0)E0 − ωγ k × B0,

(50)

which gives an “artificial” isotropic magnetic response μ(ω)

μ(ω) = μ0

1 − μ0γω2
. (51)

The parameter γ then has a clear physical interpretation: its
presence induces a resonant magnetic response of frequency
ωR given by

ωR = 1

μ0γ
. (52)

If we want our model to be consistent near the resonant
regime, we require that ωR << ωM , otherwise we should
include temporal dispersion in εT to obtain a more accurate
description. This is the case in resonant metamaterials as well,

where the frequency dependence of the effective ε is not
always enough to fully describe the material near resonances.

It is worth mentioning that isotropic artificial magnetism
has been a topic of intense research in the domain of meta-
materials, especially at optical frequencies, and complex
three-dimensional structures are in general required to achieve
this interesting property [21–24]. The temporal modulation
of the dielectric constant is therefore an interesting alter-
native, although it presents different and obvious technical
difficulties.

Expanding Eq. (42), it is easy to see that, for a weak
periodic modulation,

μ(ω) = μ0

1 − �2

〈ε〉2
ω2

ω2
M

. (53)

Finally, Eq. (22) allows us to obtain a very nice expression
of the Taylor expansion of ε−1

T (k) in the general case, since it
is easy to show

ε−1
T (k) ≈ 〈ε−1〉 + k2

∑

n �=0

∣∣ε−1
n

∣∣2

μ0	2
n

, (54)

from which we obtain the expression for γ in the most
general case,

γ = 1

〈ε−1〉2

∑

n �=0

∣∣ε−1
n

∣∣2

μ0	2
n

. (55)

VI. SUMMARY

In summary, we have derived an effective medium theory
for time-modulated dielectric materials. It has been found that,
in general, the fields can be decomposed into averaged and
fast-modulated components, and the relationship between the
slow components of the fields define the effective parameters
of the material. It then has been demonstrated that the effective
dielectric constant has a transverse component presenting a
strong spatial dispersion but a weak temporal one, contrarily
as space-modulated metamaterials, where the dominant ef-
fect is temporal dispersion. Analytical expressions have been
derived for several examples, and the consequences of this
strong spatial dispersion have been discussed under differ-
ent scenarios, with especial emphasis in the so-called “weak
dispersion approximation,” in which an artificial isotropic
magnetic response has been found. Since the modulation fre-
quency is, in principle, a dynamic quantity easier to control
in real time than the spatial modulation, we consider that this
approach opens the door to a new class of dynamically tunable
metamaterials.
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